Abstract
The increasing global demand for renewable energy sources for electricity generation, coupled with the urgent need to reduce reliance on fossil fuels, has made the transition to cleaner alternatives more critical in recent years due to the environmental degradation caused by fossil fuel consumption. Among renewable energy sources, wave energy stands out as one of the most promising options because its resource, ocean waves, is inexhaustible. To harness wave energy, one effective device is the oscillating water column (OWC), which converts the kinetic energy of waves into electrical power. Despite the significant capacity of wave energy, particularly through the implementation of OWCs, the environmental and socio-economic impacts remain insufficiently studied. This research addresses this gap by analyzing the potential impacts associated with the deployment of wave energy systems, such as OWCs. Specifically, a sustainability assessment of OWCs was conducted, and a cause-and-effect matrix was developed using Conesa’s methodology to evaluate the impacts linked to their design, installation, operation, maintenance, and disassembly phases. The results obtained revealed that the majority of impacts caused by an OWC are moderate. Notably, the most significant positive effects are related to improvements in the quality of life of communities benefiting from the technology studied. The findings underscore the sustainability of OWCs in harnessing wave energy to generate electricity.