Abstract
The rapid global expansion of offshore wind energy (OWE) has established it as a critical component of the renewable energy transition; however, this development concurrently introduces significant underwater noise pollution into marine ecosystems. This paper provides a comprehensive review of the acoustic footprint of OWE across its entire lifecycle, rigorously distinguishing between the high-intensity, acute impulsive noise generated during pile-driving construction and the chronic, low-frequency continuous noise associated with decades-long turbine operation. We critically evaluate the engineering capabilities and limitations of current underwater acoustic monitoring architectures, including buoy-based real-time monitoring nodes, cabled high-bandwidth systems (e.g., cabled hydrophone arrays with DAQ/DSP and fiber-optic distributed acoustic sensing, DAS), and autonomous seabed archival recorders (PAM deployment). Furthermore, documented biological impacts are synthesized across diverse taxa, ranging from auditory masking and threshold shifts in marine mammals to the often-overlooked sensitivity of invertebrates and fish to particle motion—a key metric frequently missing from standard pressure-based assessments. Our analysis identifies a fundamental gap in current governance paradigms, which disproportionately prioritize the mitigation of short-term acute impacts while neglecting the cumulative ecological risks of long-term operational noise. This review synthesizes recent evidence on chronic operational noise and outlines a conceptual pathway from event-based compliance monitoring toward long-term, adaptive soundscape management. We propose the implementation of integrated, adaptive acoustic monitoring networks capable of quantifying cumulative noise exposure and informing real-time mitigation strategies. Such a paradigm shift is essential for optimizing mitigation technologies and ensuring the sustainable coexistence of marine renewable energy development and marine biodiversity.