Predicting the Large-Scale Consequences of Offshore Wind Turbine Array Development on a North Sea Ecosystem

Journal Article

Title: Predicting the Large-Scale Consequences of Offshore Wind Turbine Array Development on a North Sea Ecosystem
Publication Date:
August 15, 2014
Journal: Continental Shelf Research
Volume: 85
Pages: 60-72
Publisher: Elsevier
Receptor:

Document Access

Website: External Link

Citation

van der Molen, J.; Smith, H.; Lepper, P.; Limpenny, S.; Rees, J. (2014). Predicting the Large-Scale Consequences of Offshore Wind Turbine Array Development on a North Sea Ecosystem. Continental Shelf Research, 85, 60-72.
Abstract: 

Three models were applied to obtain a first assessment of some of the potential impacts of large-scale operational wind turbine arrays on the marine ecosystem in a well-mixed area in a shelf sea: a biogeochemical model, a wave propagation model and an acoustic energy flux model. The results of the models are discussed separately and together to elucidate the combined effects. Overall, all three models suggested relatively weak environmental changes for the mechanisms included in this study, however these are only a subset of all the potential impacts, and a number of assumptions had to be made. Further work is required to address these assumptions and additional mechanisms. All three models suggested most of the changes within the wind turbine array, and small changes up to several tens of km outside the array. Within the array, the acoustic model indicated the most concentrated, spatially repetitive changes to the environment, followed by the SWAN wave model, and the biogeochemical model being the most diffuse. Because of the different spatial scales of the response of the three models, the combined results suggested a spectrum of combinations of environmental changes within the wind turbine array that marine organisms might respond to. The SWAN wave model and the acoustic model suggested a reduction in changes with increasing distance between turbines. The SWAN wave model suggested that the biogeochemical model, because of the inability of its simple wave model to simulate wave propagation, over-estimated the biogeochemical changes by a factor of 2 or more. The biogeochemical model suggested that the benthic system was more sensitive to the environmental changes than the pelagic system.

Find Tethys on InstagramFind Tethys on FacebookFind Tethys on Twitter
 
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.