Abstract
The rapid expansion of wind energy in Southeast Europe has raised concerns about its long-term impacts on bird populations, particularly through collisions with wind turbines. Here, we analyze systematic collision monitoring data collected between 2010 and 2024 within the Integrated System for Protection of Birds in the Kaliakra Protected Area (northeast Bulgaria). Monitoring covered 52 wind turbines until 2017 and 114 turbines from 2018 onwards, using daily carcass searches within standardized 200 × 200 m plots around each turbine. Collision rate was analyzed using effort-normalized statistical models and spatial (GIS-based) analyses to assess temporal trends and habitat context derived from land-cover data. Effort-normalized analyses indicate that collision rate per turbine varied over time and exhibited a pronounced long-term decline, together with clear spatial heterogeneity. Turbines located in open steppe landscapes were associated with consistently higher collision rates compared to turbines situated in other habitat types. These results provide long-term empirical evidence from an operational wind farm area, contributing robust baseline information for cumulative impact assessment and spatial planning. From a sustainability perspective, long-term, effort-standardized collision monitoring represents a critical tool for balancing renewable energy expansion with biodiversity conservation. By providing empirical evidence on how collision occurrence evolves under sustained operational conditions, this study supports adaptive mitigation, cumulative impact assessment, and spatial planning frameworks essential for the sustainable development of wind energy in ecologically sensitive regions.