Abstract
Biofouling, the accumulation of marine organisms on submerged surfaces, presents a significant challenge to the design, performance, and maintenance of offshore wind turbines (OWTs). This work synthesizes current knowledge on the physical and operational impacts of biofouling on OWT marine substructures, with a particular focus on how it alters hydrodynamic loading, increases drag and mass, and affects fatigue and structural response. Drawing from experimental studies, computational modeling, and real-world observations, this paper highlights the critical need to integrate biofouling effects into design practices. Additionally, emerging mitigation strategies are explored, including advanced antifouling materials and AI-driven monitoring systems, which offer promising solutions for long-term biofouling management. By addressing both engineering and ecological perspectives, this paper underscores the importance of developing robust, adaptive approaches to biofouling that can support the durability, reliability, and environmental sustainability of the offshore wind industry.