Abstract
Marine renewable energy holds strategic potential in Indonesia, not only to meet the target of renewable energy share in the national energy mix but also to provide equal access to clean energy throughout the archipelago. Marine energy in Indonesia is still in the early phase of development, which mainly focusses on resources assessment and power generation through technology prototype testing. Based on a review of available literature, it is found that specific research on the effects of biofouling on material durability of marine energy infrastructure in Indonesia has yet to be addressed. In this study, a matrix that identifies and predicts key fouling organisms and their possible risks on marine renewable energy infrastructure in tropical waters of Indonesia is developed by analysing previous findings in temperate and subtropical waters. Based on the matrix developed, calcareous polychaetes (Serpulidae), barnacles (Amphibalanus spp.), and bivalves (Perna viridis) are among possible key fouling organisms that might pose risks to marine energy infrastructure in Indonesia, such as by adding weight and drag and causing corrosion. Further studies and detailed and statistically robust analysis of the biofouling and its impacts are needed to support the development of the technological performance of marine renewable energy in Indonesia.