Tidal

Capturing tidal fluctuations with turbines, reciprocating devices, kites, screws, barrages, or lagoons.

Gravity from the moon and sun cause water in the ocean to bulge in a cyclical pattern as the Earth rotates, causing water to rise and fall relative to the land in what are known as tides. Land constrictions such as straits or inlets can create high velocities at specific sites, which can be captured with the use of devices such as turbines. Since seawater is about 800 times denser than air, tidal turbines can collect energy with slower water currents and smaller turbines than wind energy. While tidal currents are very predictable, challenges arise due to the need for devices to collect flow from opposite directions and survive the harsh corrosive marine environment.

 

Environmental effects will vary between the seven most common approaches: axial flow turbine, cross flow turbine, reciprocating device, tidal kite, Archimedes screw, tidal lagoon, and tidal barrage.

 

Axial Flow Turbine

 

These turbines are the most similar to traditional windmills, where the kinetic energy of moving water is captured by spinning blades facing the direction of flow. Turbines can be open or ducted (shrouded) and placed anywhere in the water column, though bottom-mounted is the most common.

 

The main environmental concern is collision between turbine blades and marine organisms due to natural animal movements, attraction to the device, or inability to avoid the turbines within strong currents. It should be noted that these turbines spin much slower than propellers on ships. There is also concern that noise from turbines can affect animals that use sound for communication, social interaction, orientation, predation, and evasion. As with all electricity generation, there is a slight concern that electromagnetic fields generated by power cables and moving parts may affect animals that use Earth's natural magnetic field for orientation, navigation, and hunting. Likewise, chemicals such as anti-corrosion paint and small amounts of oil and grease may enter the waterbody during spills, though some turbine designs do not require lubrication. Large-scale tidal energy removal (from arrays) may disrupt natural physical systems to cause degradation in water quality or changes in sediment transport, potentially affecting the ecosystem.

Cross Flow Turbine

 

These turbines are generally cylindrical on a horizontal axis, where kinetic energy of moving water is captured by spinning blades oriented transversely to the direction of flow. Turbines can be open or ducted (shrouded) and placed anywhere in the water column, though bottom-mounted is the most common.

 

There is typically less environmental concern for collision between turbine blades and marine organisms because blades are spinning in the same direction to the flow of water, depending on the design. Concerns about noise, electromagnetic fields, chemicals, and energy removal are similar to that of axial flow turbines.

Reciprocating Device

 

Reciprocating devices do not have rotating components, but instead have a hydrofoil that is pushed back and forth transverse to the flow direction by lift or drag. Oscillating devices are the most common form of reciprocating devices.

 

Reciprocating devices often move slower than turbines, but move more freely in the water, resulting in some concern for collision. Reciprocating devices often produce little noise, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Tidal Kite

 

A tidal kite is comprised of a hydrodynamic wing, with a turbine attached, tethered by a cable to a fixed point that leverages water flow to lift the wing. As the kite 'flies' loops through the water, the speed increases around the turbine, allowing more energy extraction for slower currents. The kite is neutrally buoyant so as not to fall as the tide changes direction.

 

Collision risk may be of some concern with tidal kites. Although animals are more likely to collide with the tether than the kite itself, little is known about the ability of animals to detect the free movement of some tidal kites. Tidal kites emit noise over a larger frequency than horizontal axis turbines, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Archimedes Screw

 

Historically designed to efficiently transfer water up a tube, an Archimedes screw is a helical surface surrounding a ventral cylindrical shaft. Energy is generated as water flow moves up the spiral and rotates the device.

 

The helical turbine moves very slowly relative to other tidal technologies, and is likely to have little collision risk. Archimedes screws often produce little noise, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Tidal Lagoon

 

Tidal lagoons are comprised of retaining walls embedded with reversible low-head turbines that surround a large reservoir. Tides cause a difference in the water height inside and outside of the walls, functioning very similar to a low-head conventional hydrokinetic dam that works in both direction.

 

The ecosystem within the reservoir undergoes significant transformation, potentially yielding positive impacts with a more diverse seabed, depending on site selection. The changes to the physical system are similar to conventional marine engineering projects and can include altering water flow and shoreline processes partially due to energy removal. Decreased flushing of the reservoir may cause some problems for water quality. There are some collision concerns that arise if fish and benthic invertebrates try to traverse the retaining wall through turbines. Impacts from noise depend on turbine selection. There is little concern for electromagnetic fields because cables are embedded in the retaining wall and are not openly exposed to water. The new reservoir may also create calmer waters that allow better recreation.

Tidal Barrage

 

Tidal barrages are dams built across the entrance to a bay or estuary that captures potential tidal energy, similar to tidal lagoons. Energy is collected when the height difference on either side of the dam is greatest, at low or high tide. A minimum height fluctuation of 5 meters (16.4 feet) is required to justify the construction, so only 40 locations worldwide have been identified as feasible.

 

Installing a tidal barrage impacts bay or estuary ecosystems due to the alteration of tidal flows and can have negative effects such as changing the shoreline and important tidal flats. Inhibiting the flow of water in and out of the bay, may also lead to less flushing of the bay or estuary, altering the water quality, and potentially causing additional turbidity (suspended solids) and less saltwater, which may result in the death of fish that act as a vital food source to birds and mammals. Migrating fish may also be unable to access breeding streams, and may attempt to pass through the turbines and risk collision. Impacts from noise depend on turbine selection, similar to tidal lagoons. Decreasing shipping accessibility can become a major socio-economic issue, though locks can be added to allow slow passage. However, the barrage may improve the local economy by increasing land access when used as a bridge and allowing for more recreation opportunities due to calmer waters.

Total Results: 690
Title Author Date Type of Contentsort descending Technology Type Stressor Receptor
Using Hydroacoustics to Understand Fish Presence and Vertical Distribution in a Tidally Dynamic Region Targeted for Energy Extraction Viehman, H., et al. January 2015 Journal Article Marine Energy general, Tidal Fish
Understanding and Informing Permitting Decisions for Tidal Energy Development Using an Adaptive Management Framework Jansujwicz, J., Johnson, T. January 2015 Journal Article Marine Energy general, Tidal Socio-economics
Understanding the Potential Risk to Marine Mammals from Collision with Tidal Turbines Copping, A., et al. September 2017 Journal Article Marine Energy general, Tidal Dynamic Device Marine Mammals
Tidal Power and the Aquatic Environment of La Rance Retiere, C. January 1994 Journal Article Marine Energy general, Tidal Energy Removal Birds, Fish, Nearfield Habitat
Tidal Power Development in Maine: Stakeholder Identification and Perceptions of Engagement Johnson, T., Jansujwicz, J., Zydlewski, G. January 2015 Journal Article Marine Energy general, Tidal Socio-economics, Stakeholder Engagement
Tidal Current Energy Technologies Fraenkel, P. March 2006 Journal Article Marine Energy general, Tidal
Tidal Barrages and Birds Clark, N. March 2006 Journal Article Marine Energy general, Tidal Energy Removal, Static Device Birds, Nearfield Habitat
Variability in Suspended Sediment Concentration in the Minas Basin, Bay of Fundy, and Implications for Changes due to Tidal Power Extraction Ashall, L., Mulligan, R., Law, B. January 2016 Journal Article Marine Energy general, Tidal Energy Removal
Application of Tidal Energy for Purification in Fresh Water Lake Jung, R., Isshiki, H. January 2015 Journal Article Marine Energy general, Tidal
Numerical Modeling of the Effect of Tidal Stream Turbines on the Hydrodynamics and the Sediment Transport - Application to the Alderney Race (Raz Blanchard), France Thiébot, J., de Bois, P., Guillou, S. March 2015 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Harbour Porpoise Distribution can Vary at Small Spatiotemporal Scales in Energetic Habitats Benjamins, S., et al. July 2017 Journal Article Marine Energy general, Tidal Marine Mammals, Cetaceans
Impact assessment of marine current turbines on fish behavior using an experimental approach based on the similarity law Zhang, J., et al. June 2017 Journal Article Marine Energy general, Tidal Dynamic Device Fish
The Effects of a Severn Barrage on Wave Conditions in the Bristol Channel Fairley, I., et al. August 2014 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Estimating the Probability of Fish Encountering a Marine Hydrokinetic Device Shen, H., et al. November 2016 Journal Article Marine Energy general, Tidal Fish
Modeling of In-Stream Tidal Energy Development and its Potential Effects in Tacoma Narrows Washington USA Yang, Z., et al. October 2014 Journal Article Marine Energy general, Tidal Energy Removal Nearfield Habitat
A Review of the Current Understanding of the Hydro-Environmental Impacts of Energy Removal by Tidal Turbines Nash, S., Phoenix, A. December 2017 Journal Article Marine Energy general, Tidal Energy Removal
The Ebb and Flow of Tidal Barrage Development in Zhejiang Province, China Li, Y., Pan, D. December 2017 Journal Article Marine Energy general, Tidal
Turning of the tides: Assessing the international implementation of tidal current turbines Sangiuliano, S. December 2017 Journal Article Marine Energy general, Tidal Socio-economics
Multi-Scale Temporal Patterns in Fish Presence in a High-Velocity Tidal Channel Viehman, H., Zydlewski, G. May 2017 Journal Article Marine Energy general, Tidal Fish
A Holistic Method for Selecting Tidal Stream Energy Hotspots Under Technical, Economic and Functional Constraints Vazquez, A., Iglesias, G. June 2016 Journal Article Marine Energy general, Tidal Socio-economics
Modelling the Far Field Hydro-Environmental Impacts of Tidal Farms - A Focus on Tidal Regime, Intertidal Zones and Flushing Nash, S., et al. October 2014 Journal Article Marine Energy general, Tidal Farfield Environment
Habitat characterization of a tidal energy site using an ROV: Overcoming difficulties in a harsh environment Greene, H. September 2015 Journal Article Marine Energy general, Tidal Benthic Invertebrates
Three-Dimensional Hydrodynamic Modelling of Inland Marine Waters of Washington State, United States, for Tidal Resource and Environmental Impact Assessment Kawase, M., Thyng, K. November 2010 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment, Nearfield Habitat
Assessment of Zooplankton Injury and Mortality Associated With Underwater Turbines for Tidal Energy Production Schlezinger, D., Taylor, C., Howes, B. July 2013 Journal Article Marine Energy general, Tidal Dynamic Device Ecosystem
Public Willingness to Pay and Policy Preferences for Tidal Energy Research and Development: A Study of Households in Washington State Polis, H., Dreyer, S., Jenkins, L. June 2017 Journal Article Marine Energy general, Tidal Socio-economics, Legal and Policy
Estimating the optimum size of a tidal array at a multi-inlet system considering environmental and performance constraints González-Gorbeña, E., et al. December 2018 Journal Article Marine Energy general, Tidal
A strategic policy framework for promoting the marine energy sector in Spain Vazquez, S., Astariz, S., Iglesias, G. December 2015 Journal Article Tidal, Wave, Offshore Wind Legal and Policy
A comprehensive insight into tidal stream energy farms in Iran Radfar, S., et al. November 2017 Journal Article Marine Energy general, Tidal Socio-economics
Multi-Scale Ocean Response to a Large Tidal Stream Turbine Array De Dominicis, M., Murray, R., Wolf, J. December 2017 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Localised anthropogenic wake generates a predictable foraging hotspot for top predators Lieber, L., et al. April 2019 Journal Article Marine Energy general, Tidal Energy Removal Birds, Seabirds
Fish, finances, and feasibility: Concerns about tidal energy development in the United States Dreyer, S., et al. July 2019 Journal Article Marine Energy general, Tidal Socio-economics
The Tidal-Stream Energy Resource in Passamaquoddy-Cobscook Bays: A Fresh Look at an Old Story Brooks, D. November 2006 Journal Article Marine Energy general, Tidal
Modelling impacts of tidal stream turbines on surface waves Li, X., et al. January 2019 Journal Article Marine Energy general, Tidal Energy Removal Nearfield Habitat
Tidal stream energy impacts on estuarine circulation Ramos, V., et al. April 2014 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Assessment of the impacts of tidal stream energy through high-resolution numerical modeling Ramos, V., et al. November 2013 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
The impacts of tidal turbines on water levels in a shallow estuary Garcia-Oliva, M., Djordjević, S., Tabor, G. September 2017 Journal Article Marine Energy general, Tidal Energy Removal
Environmental impacts of tidal power schemes Wolf, J., et al. January 2009 Journal Article Tidal Static Device Farfield Environment, Nearfield Habitat
Effects of hydrokinetic turbine sound on the behavior of four species of fish within an experimental mesocosm Schramm, M., Bevelhimer, M., Scherelis, C. June 2017 Journal Article Marine Energy general, Tidal Noise Fish
Fuzzy Impact Assessment on the Landscape: The Kobold Platform in the Strait of Messina Case Study Bergamascoa, A., et al. January 2011 Journal Article Marine Energy general, Tidal
Assessing the Sensitivity of Seabird Populations to Adverse Effects from Tidal Stream Turbines and Wave Energy Devices Furness, R., et al. June 2012 Journal Article Marine Energy general, Tidal, Wave Dynamic Device, Energy Removal, Static Device Birds
Comparison of Underwater Background Noise during Spring and Neap Tide in a High Tidal Current Site: Ramsey Sound Broudic, M., et al. January 2013 Journal Article Marine Energy general, Tidal Noise
An Evaluation of the Use of Shore-Based Surveys for Estimating Spatial Overlap between Deep-Diving Seabirds and Tidal Stream Turbines Waggitt, J., Bell, P., Scott, B. December 2014 Journal Article Marine Energy general, Tidal Birds
Using Drifting Passive Echolocation Loggers to Study Harbour Porpoises in Tidal-Stream Habitats Wilson, B., Benjamins, S., Elliot, J. December 2013 Journal Article Marine Energy general, Tidal Marine Mammals
Accommodating Wave and Tidal Energy - Control and Decision in Scotland Johnson, K., Kerr, S., Side, J. September 2012 Journal Article Marine Energy general, Tidal, Wave Socio-economics
A Review of the Potential Water Quality Impacts of Tidal Renewable Energy Systems Kadiri, M., et al. January 2012 Journal Article Marine Energy general, Tidal Energy Removal Nearfield Habitat
The Muskeget Channel Tidal Energy Project: A Unique Case Study in the Licensing and Permitting of a Tidal Energy Project in Massachusetts Barrett, S. July 2013 Journal Article Marine Energy general, Tidal Socio-economics
A Techno-Economic Analysis of Tidal Energy Technology Johnstone, C., et al. January 2013 Journal Article Marine Energy general, Tidal Socio-economics
A Political, Economic, Social, Technology, Legal and Environmental (PESTLE) Approach for Risk Identification of the Tidal Industry in the United Kingdom Kolios, A., Read, G. September 2013 Journal Article Marine Energy general, Tidal Socio-economics
Sediment-Generated Noise and Bed Stress in a Tidal Channel Bassett, C., Thomson, J., Polagye, B. April 2013 Journal Article Marine Energy general, Tidal Energy Removal, Noise
A systematic review of transferable solution options for the environmental impacts of tidal lagoons Elliott, K., et al. January 2019 Journal Article Marine Energy general, Tidal
Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis Sanchez, M., et al. March 2014 Journal Article Marine Energy general, Tidal Energy Removal
Tidal energy machines: A comparative life cycle assessment study Walker, S., et al. May 2015 Journal Article Marine Energy general, Tidal Socio-economics, Life Cycle Assessment
Life cycle comparison of a wave and tidal energy device Walker, S., Howell, R. November 2011 Journal Article Marine Energy general, Tidal, Wave Socio-economics, Life Cycle Assessment
Future policy implications of tidal energy array interactions Waldman, S., et al. October 2019 Journal Article Marine Energy general, Tidal Energy Removal Socio-economics, Legal and Policy
Current Policy and Technology for Tidal Current Energy in Korea Ko, D., et al. May 2019 Journal Article Marine Energy general, Tidal Socio-economics, Legal and Policy
A Scenario-Based Approach to Evaluating Potential Environmental Impacts Following a Tidal Barrage Installation Kidd, I., et al. November 2015 Journal Article Marine Energy general, Tidal Energy Removal Ecosystem
Analysing the potentials and effects of multi-use between tidal energy development and environmental protection and monitoring: A case study of the inner sound of the Pentland Firth Sangiuliano, S. August 2018 Journal Article Marine Energy general, Tidal Socio-economics
Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress Gillibrand, P., Walters, R., McIlvenny, J. October 2016 Journal Article Marine Energy general, Tidal Dynamic Device Nearfield Habitat
Evaluation and Comparison of the Levelized Cost of Tidal, Wave, and Offshore Wind Energy Astariz, S., Vazquez, A., Iglesias, G. October 2015 Journal Article Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind Socio-economics
Refinements to the EFDC model for predicting the hydro-environmental impacts of a barrage across the Severn Estuary Zhou, J., Falconer, R., Lin, B. February 2014 Journal Article Marine Energy general, Tidal Farfield Environment, Nearfield Habitat
A Political, Economic, Social, Technology, Legal and Environmental (PESTLE) Approach for Risk Identification of the Tidal Industry in the United Kingdom Kolios, A., Read, G. October 2013 Journal Article Marine Energy general, Tidal Socio-economics, Legal and Policy, Stakeholder Engagement
Assessing the impact of tidal stream energy extraction on the Lagrangian circulation Guillou, N., Chapalain, G. October 2017 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment, Nearfield Habitat
Increased integration between innovative ocean energy and the EU habitats, species and water protection rules through Maritime Spatial Planning van Hees, S. February 2019 Journal Article Marine Energy general, Ocean Current, Salinity Gradient, Tidal, Wave Socio-economics, Legal and Policy, Marine Spatial Planning
3D modelling of the impacts of in-stream horizontal-axis Tidal Energy Converters (TECs) on offshore sandbank dynamics Chatzirodou, A., Karunarathna, H., Reeve, D. October 2019 Journal Article Marine Energy general, Tidal Energy Removal
Regulating wave and tidal energy: An industry perspective on the Scottish marine governance framework Wright, G. March 2016 Journal Article Marine Energy general, Tidal, Wave Socio-economics, Environmental Impact Assessment, Legal and Policy
A framework to evaluate the environmental impact of OCEAN energy devices Mendoza, E., et al. June 2019 Journal Article Marine Energy general, Ocean Current, OTEC, Tidal, Wave, Offshore Wind Dynamic Device, Noise Benthic Invertebrates, Birds, Seabirds, Shorebirds, Ecosystem, Farfield Environment, Fish, Marine Mammals, Cetaceans, Pinnipeds, Nearfield Habitat, Environmental Impact Assessment
Three‐dimensional movements of harbour seals in a tidally energetic channel: Application of a novel sonar tracking system Hastie, G., et al. March 2019 Journal Article Marine Energy general, Tidal Marine Mammals, Pinnipeds
Life cycle assessment of the Seagen marine current turbine Douglas, C., Harrison, G., Chick, J. February 2008 Journal Article Marine Energy general, Tidal Socio-economics, Life Cycle Assessment
The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach du Feu, R., et al. May 2019 Journal Article Marine Energy general, Tidal Energy Removal Benthic Invertebrates
Predictable changes in fish school characteristics due to a tidal turbine support structure Williamson, B., et al. October 2019 Journal Article Marine Energy general, Tidal Fish
Comparing nekton distributions at two tidal energy sites suggests potential for generic environmental monitoring Wiesebron, L., et al. July 2016 Journal Article Marine Energy general, Tidal Fish
A World First: Swansea Bay Tidal Lagoon in Review Waters, S., Aggidis, G. April 2016 Journal Article Marine Energy general, Tidal
A Review of the Application of Lifecycle Analysis to Renewable Energy Systems Lund, C., Biswas, W. April 2008 Journal Article Marine Energy general, Riverine, Tidal, Wave, Wind Energy general Socio-economics, Life Cycle Assessment
Marine renewables and coastal communities—Experiences from the offshore oil industry in the 1970s and their relevance to marine renewables in the 2010s Johnson, K., Kerr, S., Side, J. March 2013 Journal Article Marine Energy general, Tidal, Wave Socio-economics
Public Willingness to Pay and Policy Preferences for Tidal Energy Research and Development: A Study of Households in Washington State Polis, H., Dreyer, S., Jenkins, L. June 2017 Journal Article Marine Energy general, Tidal Socio-economics
Public Willingness to Pay and Policy Preferences for Tidal Energy Research and Development: A Study of Households in Washington State Polis, H., Dreyer, S., Jenkins, L. June 2017 Journal Article Marine Energy general, Tidal Socio-economics
Interaction between instream axial flow hydrokinetic turbines and uni-directional flow bedforms Hill, C., Musa, M., Guala, M. February 2016 Journal Article Marine Energy general, Ocean Current, Tidal Farfield Environment
Empirical Determination of Severe Trauma in Seals from Collisions with Tidal Turbine Blade Onoufriou, J., et al. March 2019 Journal Article Marine Energy general, Tidal Marine Mammals, Pinnipeds, Marine Spatial Planning
Developing regional locational guidance for wave and tidal energy in the Shetland Islands Tweddle, J., et al. December 2014 Journal Article Marine Energy general, Tidal, Wave Socio-economics, Marine Spatial Planning, Stakeholder Engagement
Tidal range energy resource and optimization - Past perspectives and future challenges Neill, S., et al. November 2018 Journal Article Marine Energy general, Tidal
Tidal Resource Extraction in the Pentland Firth, UK: Potential Impacts on Flow Regime and Sediment Transport in the Inner Sound of Stroma Martin-Short, R., et al. April 2015 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Efficient unstructured mesh generation for marine renewable energy applications Avdis, A., et al. September 2017 Journal Article Marine Energy general, Tidal Dynamic Device
Impact of Tidal Energy Converter (TEC) Arrays on the Dynamics of Headland Sand Banks Neill, S., Jordan, J., Couch, S. January 2012 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Estimating Effects of Tidal Power Projects and Climate Change on Threatened and Endangered Marine Species and Their Food Web Busch, S., Greene, C., Good, T. December 2013 Journal Article Marine Energy general, Tidal Ecosystem, Socio-economics, Climate Change
Quantifying Pursuit-Diving Seabirds' Associations with Fine-Scale Physical Features in Tidal Stream Environments Waggitt, J., et al. December 2016 Journal Article Marine Energy general, Tidal Birds, Seabirds
Marine Energy Exploitation in the Mediterranean Region: Steps Forward and Challenges Pisacane, G., et al. October 2018 Journal Article Marine Energy general, Tidal, Wave
In-Stream Tidal Energy Potential of Puget Sound, Washington Polagye, B., Kawase, M., Malte, P. January 2009 Journal Article Marine Energy general, Riverine, Tidal Farfield Environment
Environmental and Ecological Effects of Ocean Renewable Energy Development: A Current Synthesis Boehlert, G., Gill, A. June 2010 Journal Article Marine Energy general, OTEC, Tidal, Wave, Wind Energy general, Offshore Wind Static Device Nearfield Habitat
An assessment of the impacts of a tidal renewable energy scheme on the eutrophication potential of the Severn Estuary, UK Kadiri, M., et al. October 2014 Journal Article Marine Energy general, Tidal
Comparison of hydro-environmental impacts for ebb-only and two-way generation for a Severn Barrage Ahmadian, R., Falconer, R., Bockelmann-Evans, B. October 2014 Journal Article Marine Energy general, Tidal Nearfield Habitat
Estimation of Tidal Power Potential Walters, R., Hiles, C., Tarbotton, M. March 2013 Journal Article Marine Energy general, Tidal
A Finite Element Circulation Model for Embayments with Drying Intertidal Areas and its Application to the Quoddy Region of the Bay of Fundy Greenberg, D., et al. January 2005 Journal Article Marine Energy general, Tidal
Tidal Current Power Resources and Influence of Sea-Level Rise in the Coastal Waters of Kinmen Island, Taiwan Chen, W., et al. May 2017 Journal Article Marine Energy general, Tidal
Wave and Tidal Current Energy - A Review of the Current State of Research Beyond Technology Uihlein, A., Magagna, D. May 2016 Journal Article Marine Energy general, Tidal, Wave
The effects of array configuration on the hydro-environmental impacts of tidal turbines Fallon, D., et al. April 2014 Journal Article Marine Energy general, Tidal Nearfield Habitat
Generating Electricity from the Oceans Bahaj, A. September 2011 Journal Article Marine Energy general, Tidal, Wave
The Maine Tidal Power Initiative: Transdisciplinary Sustainability Science Research for the Responsible Development of Tidal Power Jansujwicz, J., Johnson, T. January 2015 Journal Article Marine Energy general, Tidal Socio-economics
The Cumulative Impact of Tidal Stream Turbine Arrays on Sediment Transport in the Pentland Firth Fairley, I., Masters, I., Karunarathna, H. August 2015 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
A Self-Contained Subsea Platform for Acoustic Monitoring of the Environment Around Marine Renewable Energy Devices - Field Deployments at Wave and Tidal Energy Sites in Orkney, Scotland Williamson, B., et al. January 2016 Journal Article Marine Energy general, Tidal, Wave Dynamic Device, Static Device Birds, Fish, Marine Mammals
Current tidal power technologies and their suitability for applications in coastal and marine areas Roberts, A., et al. May 2016 Journal Article Marine Energy general, Tidal Ecosystem, Socio-economics

Pages

Subscribe to Tidal
Find Tethys on InstagramFind Tethys on FacebookFind Tethys on Twitter
 
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Subscribe to Tidal