Tidal

Capturing tidal fluctuations with turbines, reciprocating devices, kites, screws, barrages, or lagoons.

Gravity from the moon and sun cause water in the ocean to bulge in a cyclical pattern as the Earth rotates, causing water to rise and fall relative to the land in what are known as tides. Land constrictions such as straits or inlets can create high velocities at specific sites, which can be captured with the use of devices such as turbines. Since seawater is about 800 times denser than air, tidal turbines can collect energy with slower water currents and smaller turbines than wind energy. While tidal currents are very predictable, challenges arise due to the need for devices to collect flow from opposite directions and survive the harsh corrosive marine environment.

 

Environmental effects will vary between the seven most common approaches: axial flow turbine, cross flow turbine, reciprocating device, tidal kite, Archimedes screw, tidal lagoon, and tidal barrage.

 

Axial Flow Turbine

 

These turbines are the most similar to traditional windmills, where the kinetic energy of moving water is captured by spinning blades facing the direction of flow. Turbines can be open or ducted (shrouded) and placed anywhere in the water column, though bottom-mounted is the most common.

 

The main environmental concern is collision between turbine blades and marine organisms due to natural animal movements, attraction to the device, or inability to avoid the turbines within strong currents. It should be noted that these turbines spin much slower than propellers on ships. There is also concern that noise from turbines can affect animals that use sound for communication, social interaction, orientation, predation, and evasion. As with all electricity generation, there is a slight concern that electromagnetic fields generated by power cables and moving parts may affect animals that use Earth's natural magnetic field for orientation, navigation, and hunting. Likewise, chemicals such as anti-corrosion paint and small amounts of oil and grease may enter the waterbody during spills, though some turbine designs do not require lubrication. Large-scale tidal energy removal (from arrays) may disrupt natural physical systems to cause degradation in water quality or changes in sediment transport, potentially affecting the ecosystem.

Cross Flow Turbine

 

These turbines are generally cylindrical on a horizontal axis, where kinetic energy of moving water is captured by spinning blades oriented transversely to the direction of flow. Turbines can be open or ducted (shrouded) and placed anywhere in the water column, though bottom-mounted is the most common.

 

There is typically less environmental concern for collision between turbine blades and marine organisms because blades are spinning in the same direction to the flow of water, depending on the design. Concerns about noise, electromagnetic fields, chemicals, and energy removal are similar to that of axial flow turbines.

Reciprocating Device

 

Reciprocating devices do not have rotating components, but instead have a hydrofoil that is pushed back and forth transverse to the flow direction by lift or drag. Oscillating devices are the most common form of reciprocating devices.

 

Reciprocating devices often move slower than turbines, but move more freely in the water, resulting in some concern for collision. Reciprocating devices often produce little noise, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Tidal Kite

 

A tidal kite is comprised of a hydrodynamic wing, with a turbine attached, tethered by a cable to a fixed point that leverages water flow to lift the wing. As the kite 'flies' loops through the water, the speed increases around the turbine, allowing more energy extraction for slower currents. The kite is neutrally buoyant so as not to fall as the tide changes direction.

 

Collision risk may be of some concern with tidal kites. Although animals are more likely to collide with the tether than the kite itself, little is known about the ability of animals to detect the free movement of some tidal kites. Tidal kites emit noise over a larger frequency than horizontal axis turbines, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Archimedes Screw

 

Historically designed to efficiently transfer water up a tube, an Archimedes screw is a helical surface surrounding a ventral cylindrical shaft. Energy is generated as water flow moves up the spiral and rotates the device.

 

The helical turbine moves very slowly relative to other tidal technologies, and is likely to have little collision risk. Archimedes screws often produce little noise, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Tidal Lagoon

 

Tidal lagoons are comprised of retaining walls embedded with reversible low-head turbines that surround a large reservoir. Tides cause a difference in the water height inside and outside of the walls, functioning very similar to a low-head conventional hydrokinetic dam that works in both direction.

 

The ecosystem within the reservoir undergoes significant transformation, potentially yielding positive impacts with a more diverse seabed, depending on site selection. The changes to the physical system are similar to conventional marine engineering projects and can include altering water flow and shoreline processes partially due to energy removal. Decreased flushing of the reservoir may cause some problems for water quality. There are some collision concerns that arise if fish and benthic invertebrates try to traverse the retaining wall through turbines. Impacts from noise depend on turbine selection. There is little concern for electromagnetic fields because cables are embedded in the retaining wall and are not openly exposed to water. The new reservoir may also create calmer waters that allow better recreation.

Tidal Barrage

 

Tidal barrages are dams built across the entrance to a bay or estuary that captures potential tidal energy, similar to tidal lagoons. Energy is collected when the height difference on either side of the dam is greatest, at low or high tide. A minimum height fluctuation of 5 meters (16.4 feet) is required to justify the construction, so only 40 locations worldwide have been identified as feasible.

 

Installing a tidal barrage impacts bay or estuary ecosystems due to the alteration of tidal flows and can have negative effects such as changing the shoreline and important tidal flats. Inhibiting the flow of water in and out of the bay, may also lead to less flushing of the bay or estuary, altering the water quality, and potentially causing additional turbidity (suspended solids) and less saltwater, which may result in the death of fish that act as a vital food source to birds and mammals. Migrating fish may also be unable to access breeding streams, and may attempt to pass through the turbines and risk collision. Impacts from noise depend on turbine selection, similar to tidal lagoons. Decreasing shipping accessibility can become a major socio-economic issue, though locks can be added to allow slow passage. However, the barrage may improve the local economy by increasing land access when used as a bridge and allowing for more recreation opportunities due to calmer waters.

Total Results: 700
Title Author Datesort descending Type of Content Technology Type Stressor Receptor
Public Willingness to Pay and Policy Preferences for Tidal Energy Research and Development: A Study of Households in Washington State Polis, H., Dreyer, S., Jenkins, L. June 2017 Journal Article Marine Energy general, Tidal Socio-economics
Remote Sensor Platforms for Environmental Monitoring at FORCE, Canada Anna Redden, Haley Viehman, and Melissa Oldreive June 2017 Blog Article Tidal
Effects of hydrokinetic turbine sound on the behavior of four species of fish within an experimental mesocosm Schramm, M., Bevelhimer, M., Scherelis, C. June 2017 Journal Article Marine Energy general, Tidal Noise Fish
Harbour Porpoise Distribution can Vary at Small Spatiotemporal Scales in Energetic Habitats Benjamins, S., et al. July 2017 Journal Article Marine Energy general, Tidal Marine Mammals, Cetaceans
Comparative Studies Reveal Variability in the use of Tidal Stream Environments by Seabirds Waggitt, J., et al. July 2017 Journal Article Marine Energy general, Tidal Birds, Seabirds
Changing Tides: Acceptability, Support, and Perceptions of Tidal Energy in the United States Dreyer, S., Polis, H., Jenkins, L. July 2017 Journal Article Marine Energy general, Tidal Socio-economics
Biodiversity Characterisation and Hydrodynamic Consequences of Marine Fouling Communities on Marine Renewable Energy Infrastructure in the Orkney Islands Archipelago, Scotland, UK Want, A., et al. July 2017 Journal Article Marine Energy general, Tidal, Wave Static Device Benthic Invertebrates
Simulating Current-Energy Converters: SNL-EFDC Model Development, Verification, and Parameter Estimation James, S., et al. July 2017 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Tidal Energy: The Benthic Effects of an Operational Tidal Stream Turbine O'Carroll, J., et al. August 2017 Journal Article Marine Energy general, Tidal Static Device Benthic Invertebrates
Hydroacoustic Assessment of Behavioral Responses by Fish Passing Near an Operating Tidal Turbine in the East River, New York Bevelhimer, M., et al. August 2017 Journal Article Marine Energy general, Tidal Dynamic Device Fish
Regional-Scale Patterns in Harbour Porpoise Occupancy of Tidal Stream Environments Waggitt, J., et al. August 2017 Journal Article Marine Energy general, Tidal
Wave and Tidal Range Energy Devices Offer Environmental Opportunities as Artificial Reefs Callaway, R., et al. September 2017 Conference Paper Marine Energy general, Tidal, Wave Static Device Nearfield Habitat
The impacts of tidal turbines on water levels in a shallow estuary Garcia-Oliva, M., Djordjević, S., Tabor, G. September 2017 Journal Article Marine Energy general, Tidal Energy Removal
Understanding the Potential Risk to Marine Mammals from Collision with Tidal Turbines Copping, A., et al. September 2017 Journal Article Marine Energy general, Tidal Dynamic Device Marine Mammals
Hydrodynamic Impacts of a Marine Renewable Energy Installation on the Benthic Boundary Layer in a Tidal Channel Fraser, S., et al. September 2017 Journal Article Marine Energy general, Tidal Energy Removal
Community Energy and Emissions Planning for Tidal Current Turbines: A Case Study of the Municipalities of the Southern Gulf Islands Region, British Columbia Sangiuliano, S. September 2017 Journal Article Marine Energy general, Tidal Socio-economics, Life Cycle Assessment
Efficient unstructured mesh generation for marine renewable energy applications Avdis, A., et al. September 2017 Journal Article Marine Energy general, Tidal Dynamic Device
From Scotland to New Scotland: Constructing a Sectoral Marine Plan for Tidal Energy for Nova Scotia Sangiuliano, S., Mastrantonis, S. October 2017 Journal Article Marine Energy general, Tidal Legal and Policy
Developing Methodologies for Large Scale Wave and Tidal Stream Marine Renewable Energy Extraction and its Environmental Impact: An Overview of the TeraWatt Project Side, J., et al. October 2017 Journal Article Marine Energy general, Tidal, Wave Energy Removal Farfield Environment, Nearfield Habitat
Multisensor Acoustic Tracking of Fish and Seabird Behavior Around Tidal Turbine Structures in Scotland Williamson, B., et al. October 2017 Journal Article Marine Energy general, Tidal Birds, Seabirds, Fish
Assessing the impact of tidal stream energy extraction on the Lagrangian circulation Guillou, N., Chapalain, G. October 2017 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment, Nearfield Habitat
Large Scale Three-Dimensional Modelling for Wave and Tidal Energy Resource and Environmental Impact: Methodologies for Quantifying Acceptable Thresholds for Sustainable Exploitation Gallego, A., et al. October 2017 Journal Article Marine Energy general, Tidal, Wave Energy Removal Farfield Environment
A comprehensive insight into tidal stream energy farms in Iran Radfar, S., et al. November 2017 Journal Article Marine Energy general, Tidal Socio-economics
A Tool for Simulating Collision Probabilities of Animals with Marine Renewable Energy Devices Schmitt, P., et al. November 2017 Journal Article Marine Energy general, Tidal Dynamic Device
Determining the Water Column Usage by Seals in the Brims Lease Site Evers, C., et al. November 2017 Report Marine Energy general, Tidal Marine Mammals, Pinnipeds
Multi-Scale Ocean Response to a Large Tidal Stream Turbine Array De Dominicis, M., Murray, R., Wolf, J. December 2017 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
The Ebb and Flow of Tidal Barrage Development in Zhejiang Province, China Li, Y., Pan, D. December 2017 Journal Article Marine Energy general, Tidal
A Modeling Study of Tidal Energy Extraction and the Associated Impact on Tidal Circulation in a Multi-Inlet Bay System of Puget Sound Wang, T., Yang, Z. December 2017 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Turning of the tides: Assessing the international implementation of tidal current turbines Sangiuliano, S. December 2017 Journal Article Marine Energy general, Tidal Socio-economics
A Review of the Current Understanding of the Hydro-Environmental Impacts of Energy Removal by Tidal Turbines Nash, S., Phoenix, A. December 2017 Journal Article Marine Energy general, Tidal Energy Removal
Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics Angeloudis, A., Falconer, R. December 2017 Journal Article Marine Energy general, Tidal Dynamic Device Ecosystem
First in situ Passive Acoustic Monitoring for Marine Mammals during Operation of a Tidal Turbine in Ramsey Sound, Wales Malinka, C., et al. January 2018 Journal Article Marine Energy general, Tidal Dynamic Device Marine Mammals
Wave and Tidal Energy Johnson, K., Kerr, S. January 2018 Book Chapter Marine Energy general, Tidal, Wave
Marine Hydrokinetic (MHK) systems: Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents Domenech, J., Eveleigh, T., Tanju, B. January 2018 Journal Article Marine Energy general, Tidal Socio-economics
Black Rock Tidal Power Grand Passage MRE Permit Black Rock Tidal Power January 2018 Report Marine Energy general, Tidal
Challenges and Opportunities in Monitoring the Impacts of Tidal-Stream Energy Devices on Marine Vertebrates Fox, C., et al. January 2018 Journal Article Marine Energy general, Tidal Marine Mammals
Evaluating Statistical Models to Measure Environmental Change: A Tidal Turbine Case Study Linder, H., Horne, J. January 2018 Journal Article Marine Energy general, Tidal Farfield Environment
Environmental Effects Monitoring Program Annual Report 2017 FORCE January 2018 Report Marine Energy general, Tidal Noise Benthic Invertebrates, Birds, Fish, Marine Mammals
Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves Sellar, B., et al. January 2018 Journal Article Marine Energy general, Tidal
Development and the Environmental Impact Analysis of Tidal Current Energy Turbines in China Liu, Y., Ma, C., Jiang, B. January 2018 Journal Article Marine Energy general, Tidal
The State of Knowledge for Environmental Effects: Driving Consenting/Permitting for the Marine Renewable Energy Industry Copping, A. January 2018 Report Marine Energy general, Tidal, Wave Farfield Environment, Nearfield Habitat, Socio-economics
Harbour seals (Phoca vitulina) around an operational tidal turbine in Strangford Narrows: No barrier effect but small changes in transit behaviour Sparling, C., Lonergan, M., McConnell, B. February 2018 Journal Article Marine Energy general, Tidal Marine Mammals, Pinnipeds
Multi-Dimensional Optimisation of Tidal Energy Converters Array Layouts Considering Geometric, Economic and Environmental Constraints González-Gorbeña, E., Qassim, R., Rosman, P. February 2018 Journal Article Tidal
Predictive model for local scour downstream of hydrokinetic turbines in erodible channels Musa, M., Heisel, M., Guala, M. February 2018 Journal Article Marine Energy general, Tidal Dynamic Device
Black Guillemot Ecology in Relation to Tidal Stream Energy Generation: An Evaluation of Current Knowledge and Information Gaps Johnston, D., et al. March 2018 Journal Article Marine Energy general, Tidal Birds, Seabirds
Harbour Seals Avoid Tidal Turbine Noise: Implications for Collision Risk Hastie, G., et al. March 2018 Journal Article Marine Energy general, Tidal Noise Marine Mammals, Pinnipeds
Wave and Tidal Energy: Environmental Effects Iglesias, G., et al. March 2018 Book Chapter Marine Energy general, Tidal, Wave Farfield Environment, Nearfield Habitat
Environmental Interactions of Tidal Lagoons: A Comparison of Industry Perspectives Mackinnon, K., et al. April 2018 Journal Article Marine Energy general, Tidal
Spotlight on Ocean Energy: 20 Projects + 5 Policy Initiatives Ocean Energy Systems (OES) April 2018 Report Marine Energy general, Tidal, Wave
Assessing the Impact of Rows of Tidal-Stream Turbines on the Overtides of the M2 Potter, D, Folkard, A., Ilić, S. April 2018 Presentation Marine Energy general, Tidal Dynamic Device Farfield Environment
Can tidal stream turbines change the tides in the Pentland Firth, and is there an acceptable limit? Murray, R. April 2018 Presentation Marine Energy general, Tidal Dynamic Device Farfield Environment
Comparative effects of climate change and tidal stream energy extraction in the NW European continental shelf De Dominicis, M., Wolf, J., Murray, R. April 2018 Presentation Marine Energy general, Tidal Farfield Environment
Monitoring the environmental interactions of tidal devices - how do we achieve what is required in a practical and cost effective manner whilst retaining focus on the key issues to assist the consenting of future projects? Foubister, L. April 2018 Presentation Marine Energy general, Tidal Socio-economics
Local scour around a model hydrokinetic turbine in an erodible channel Hill, C., et al. April 2018 Journal Article Marine Energy general, Tidal Dynamic Device
Using Coupled Hydrodynamic Biogeochemical Models to Predict the Effects of Tidal Turbine Arrays on Phytoplankton Dynamics Schuchert, P., et al. May 2018 Journal Article Marine Energy general, Tidal Energy Removal Ecosystem
OERA Webinar Series: Finite Element Analysis to Assess Fish Mortality from Interactions with Tidal Turbine Blades Fyffe, N. May 2018 Presentation Marine Energy general, Tidal Dynamic Device Fish
Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics Ramírez-Mendoza, R., et al. May 2018 Journal Article Marine Energy general, Tidal Dynamic Device
2018 State of the Sector Report: Marine Renewable Energy in Canada Marine Renewables Canada June 2018 Report Marine Energy general, Riverine, Tidal, Wave, Wind Energy general, Offshore Wind
Minesto Holyhead Deep - Non-grid connected DG500 June 2018 Project Site OES-Environmental Marine Energy general, Tidal
Marine Mammal Behavioral Response to Tidal Turbine Sound Robertson, F., et al. June 2018 Report Marine Energy general, Tidal Noise Marine Mammals, Pinnipeds
Comparative Effects of Climate Change and Tidal Stream Energy Extraction in a Shelf Sea De Demonicis, M., Wolf, J., Murray, R. July 2018 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Cape Sharp Tidal Environmental Effects Monitoring Program 2018 Cape Sharp Tidal July 2018 Report Marine Energy general, Tidal
Winter and summer differences in probability of fish encounter (spatial overlap) with MHK devices Viehman, H., Boucher, T., Redden, A. August 2018 Conference Paper Marine Energy general, Tidal Dynamic Device Fish
Long‐term effect of a tidal, hydroelectric propeller turbine on the populations of three anadromous fish species Dadswell, M., et al. August 2018 Journal Article Marine Energy general, Tidal Dynamic Device Fish
Analysing the potentials and effects of multi-use between tidal energy development and environmental protection and monitoring: A case study of the inner sound of the Pentland Firth Sangiuliano, S. August 2018 Journal Article Marine Energy general, Tidal Socio-economics
Applying a simple model for estimating the likelihood of collision of marine mammals with tidal turbines Copping, A., Grear, M. August 2018 Journal Article Marine Energy general, Tidal Dynamic Device Marine Mammals
Deployment characterization of a floatable tidal energy converter on a tidal channel, Ria Formosa, Portugal Pacheco, A., et al. September 2018 Journal Article Marine Energy general, Tidal Farfield Environment, Nearfield Habitat
Oil and gas infrastructure decommissioning in marine protected areas: System complexity, analysis and challenges Burdon, D., et al. October 2018 Journal Article Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind
Modelling the Hydrodynamic and Morphological Impacts of a Tidal Stream Development in Ramsey Sound Haverson, D., et al. October 2018 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Marine Energy Exploitation in the Mediterranean Region: Steps Forward and Challenges Pisacane, G., et al. October 2018 Journal Article Marine Energy general, Tidal, Wave
Fine-Scale Hydrodynamic Metrics Underlying Predator Occupancy Patterns in Tidal Stream Environments Lieber, L., et al. November 2018 Journal Article Marine Energy general, Tidal Marine Mammals
Perspectives on a way forward for ocean renewable energy in Australia Hemer, M., et al. November 2018 Journal Article Marine Energy general, Tidal, Wave Socio-economics, Legal and Policy, Stakeholder Engagement
Empirical measures of harbor seal behavior and avoidance of an operational tidal turbine Joy, R., et al. November 2018 Journal Article Marine Energy general, Tidal Dynamic Device Marine Mammals, Pinnipeds
Fish Distributions in a Tidal Channel Indicate the Behavioural Impact of a Marine Renewable Energy Installation Fraser, S., et al. November 2018 Journal Article Marine Energy general, Tidal Static Device Fish
Tidal range energy resource and optimization - Past perspectives and future challenges Neill, S., et al. November 2018 Journal Article Marine Energy general, Tidal
West Coast Organization Channels Energy for Marine Renewables Marisa McNatt and Matthew Sanders (POET) November 2018 Blog Article Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind
Noise characterization of a subsea tidal kite Schmitt, P., et al. November 2018 Journal Article Marine Energy general, Tidal Noise
Human dimensions of tidal energy: A review of theories and frameworks Jenkins, L., et al. December 2018 Journal Article Marine Energy general, Tidal Socio-economics
Estimating the optimum size of a tidal array at a multi-inlet system considering environmental and performance constraints González-Gorbeña, E., et al. December 2018 Journal Article Marine Energy general, Tidal
ETIP Ocean 2 January 2019 Research Study OES-Environmental Marine Energy general, Ocean Current, Tidal, Wave
A systematic review of transferable solution options for the environmental impacts of tidal lagoons Elliott, K., et al. January 2019 Journal Article Marine Energy general, Tidal
Modelling impacts of tidal stream turbines on surface waves Li, X., et al. January 2019 Journal Article Marine Energy general, Tidal Energy Removal Nearfield Habitat
Increased integration between innovative ocean energy and the EU habitats, species and water protection rules through Maritime Spatial Planning van Hees, S. February 2019 Journal Article Marine Energy general, Ocean Current, Salinity Gradient, Tidal, Wave Socio-economics, Legal and Policy, Marine Spatial Planning
Monitoring getijdenturbines Oosterscheldekering Jaarrapportage 2018 Leopold, M., Scholl, M. March 2019 Report Marine Energy general, Tidal Marine Mammals, Cetaceans, Pinnipeds
Three‐dimensional movements of harbour seals in a tidally energetic channel: Application of a novel sonar tracking system Hastie, G., et al. March 2019 Journal Article Marine Energy general, Tidal Marine Mammals, Pinnipeds
Harbor porpoise (Phocoena phocoena) monitoring at the FORCE Test Site, Canada Melissa Oldreive, Dom Tollit, and Daniel J. Hasselman (FORCE) March 2019 Blog Article Tidal
Empirical Determination of Severe Trauma in Seals from Collisions with Tidal Turbine Blade Onoufriou, J., et al. March 2019 Journal Article Marine Energy general, Tidal Marine Mammals, Pinnipeds, Marine Spatial Planning
Providing ecological context to anthropogenic subsea noise: Assessing listening space reductions of marine mammals from tidal energy devices Pine, M., et al. April 2019 Journal Article Marine Energy general, Tidal Noise Marine Mammals, Pinnipeds
Localised anthropogenic wake generates a predictable foraging hotspot for top predators Lieber, L., et al. April 2019 Journal Article Marine Energy general, Tidal Energy Removal Birds, Seabirds
DTOceanPlus May 2019 Research Study OES-Environmental Marine Energy general, Ocean Current, Tidal, Wave
The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach du Feu, R., et al. May 2019 Journal Article Marine Energy general, Tidal Energy Removal Benthic Invertebrates
Current Policy and Technology for Tidal Current Energy in Korea Ko, D., et al. May 2019 Journal Article Marine Energy general, Tidal Socio-economics, Legal and Policy
Agent-Based Modelling of fish collisions with tidal turbines Rossington, K., Benson, T. May 2019 Presentation Marine Energy general, Tidal Dynamic Device Fish
Effects of a Tidal Lagoon on the Hydrodynamics of Swansea Bay, Wales, UK Horrillo-Caraballo, J., et al. May 2019 Conference Paper Marine Energy general, Tidal
A framework to evaluate the environmental impact of OCEAN energy devices Mendoza, E., et al. June 2019 Journal Article Marine Energy general, Ocean Current, OTEC, Tidal, Wave, Offshore Wind Dynamic Device, Noise Benthic Invertebrates, Birds, Seabirds, Shorebirds, Ecosystem, Farfield Environment, Fish, Marine Mammals, Cetaceans, Pinnipeds, Nearfield Habitat, Environmental Impact Assessment
Fish, finances, and feasibility: Concerns about tidal energy development in the United States Dreyer, S., et al. July 2019 Journal Article Marine Energy general, Tidal Socio-economics
PLAT-O at EMEC September 2019 Project Site OES-Environmental Marine Energy general, Tidal
Future policy implications of tidal energy array interactions Waldman, S., et al. October 2019 Journal Article Marine Energy general, Tidal Energy Removal Socio-economics, Legal and Policy
Predictable changes in fish school characteristics due to a tidal turbine support structure Williamson, B., et al. October 2019 Journal Article Marine Energy general, Tidal Fish
3D modelling of the impacts of in-stream horizontal-axis Tidal Energy Converters (TECs) on offshore sandbank dynamics Chatzirodou, A., Karunarathna, H., Reeve, D. October 2019 Journal Article Marine Energy general, Tidal Energy Removal

Pages

Subscribe to Tidal
Find Tethys on InstagramFind Tethys on FacebookFind Tethys on Twitter
 
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Subscribe to Tidal