Tidal

Capturing tidal fluctuations with turbines, reciprocating devices, kites, screws, barrages, or lagoons.

Gravity from the moon and sun cause water in the ocean to bulge in a cyclical pattern as the Earth rotates, causing water to rise and fall relative to the land in what are known as tides. Land constrictions such as straits or inlets can create high velocities at specific sites, which can be captured with the use of devices such as turbines. Since seawater is about 800 times denser than air, tidal turbines can collect energy with slower water currents and smaller turbines than wind energy. While tidal currents are very predictable, challenges arise due to the need for devices to collect flow from opposite directions and survive the harsh corrosive marine environment.

 

Environmental effects will vary between the seven most common approaches: axial flow turbine, cross flow turbine, reciprocating device, tidal kite, Archimedes screw, tidal lagoon, and tidal barrage.

 

Axial Flow Turbine

 

These turbines are the most similar to traditional windmills, where the kinetic energy of moving water is captured by spinning blades facing the direction of flow. Turbines can be open or ducted (shrouded) and placed anywhere in the water column, though bottom-mounted is the most common.

 

The main environmental concern is collision between turbine blades and marine organisms due to natural animal movements, attraction to the device, or inability to avoid the turbines within strong currents. It should be noted that these turbines spin much slower than propellers on ships. There is also concern that noise from turbines can affect animals that use sound for communication, social interaction, orientation, predation, and evasion. As with all electricity generation, there is a slight concern that electromagnetic fields generated by power cables and moving parts may affect animals that use Earth's natural magnetic field for orientation, navigation, and hunting. Likewise, chemicals such as anti-corrosion paint and small amounts of oil and grease may enter the waterbody during spills, though some turbine designs do not require lubrication. Large-scale tidal energy removal (from arrays) may disrupt natural physical systems to cause degradation in water quality or changes in sediment transport, potentially affecting the ecosystem.

Cross Flow Turbine

 

These turbines are generally cylindrical on a horizontal axis, where kinetic energy of moving water is captured by spinning blades oriented transversely to the direction of flow. Turbines can be open or ducted (shrouded) and placed anywhere in the water column, though bottom-mounted is the most common.

 

There is typically less environmental concern for collision between turbine blades and marine organisms because blades are spinning in the same direction to the flow of water, depending on the design. Concerns about noise, electromagnetic fields, chemicals, and energy removal are similar to that of axial flow turbines.

Reciprocating Device

 

Reciprocating devices do not have rotating components, but instead have a hydrofoil that is pushed back and forth transverse to the flow direction by lift or drag. Oscillating devices are the most common form of reciprocating devices.

 

Reciprocating devices often move slower than turbines, but move more freely in the water, resulting in some concern for collision. Reciprocating devices often produce little noise, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Tidal Kite

 

A tidal kite is comprised of a hydrodynamic wing, with a turbine attached, tethered by a cable to a fixed point that leverages water flow to lift the wing. As the kite 'flies' loops through the water, the speed increases around the turbine, allowing more energy extraction for slower currents. The kite is neutrally buoyant so as not to fall as the tide changes direction.

 

Collision risk may be of some concern with tidal kites. Although animals are more likely to collide with the tether than the kite itself, little is known about the ability of animals to detect the free movement of some tidal kites. Tidal kites emit noise over a larger frequency than horizontal axis turbines, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Archimedes Screw

 

Historically designed to efficiently transfer water up a tube, an Archimedes screw is a helical surface surrounding a ventral cylindrical shaft. Energy is generated as water flow moves up the spiral and rotates the device.

 

The helical turbine moves very slowly relative to other tidal technologies, and is likely to have little collision risk. Archimedes screws often produce little noise, though this depends on the design and generator. Concerns about electromagnetic fields, chemicals, and energy removal are similar to that of other tidal devices.

Tidal Lagoon

 

Tidal lagoons are comprised of retaining walls embedded with reversible low-head turbines that surround a large reservoir. Tides cause a difference in the water height inside and outside of the walls, functioning very similar to a low-head conventional hydrokinetic dam that works in both direction.

 

The ecosystem within the reservoir undergoes significant transformation, potentially yielding positive impacts with a more diverse seabed, depending on site selection. The changes to the physical system are similar to conventional marine engineering projects and can include altering water flow and shoreline processes partially due to energy removal. Decreased flushing of the reservoir may cause some problems for water quality. There are some collision concerns that arise if fish and benthic invertebrates try to traverse the retaining wall through turbines. Impacts from noise depend on turbine selection. There is little concern for electromagnetic fields because cables are embedded in the retaining wall and are not openly exposed to water. The new reservoir may also create calmer waters that allow better recreation.

Tidal Barrage

 

Tidal barrages are dams built across the entrance to a bay or estuary that captures potential tidal energy, similar to tidal lagoons. Energy is collected when the height difference on either side of the dam is greatest, at low or high tide. A minimum height fluctuation of 5 meters (16.4 feet) is required to justify the construction, so only 40 locations worldwide have been identified as feasible.

 

Installing a tidal barrage impacts bay or estuary ecosystems due to the alteration of tidal flows and can have negative effects such as changing the shoreline and important tidal flats. Inhibiting the flow of water in and out of the bay, may also lead to less flushing of the bay or estuary, altering the water quality, and potentially causing additional turbidity (suspended solids) and less saltwater, which may result in the death of fish that act as a vital food source to birds and mammals. Migrating fish may also be unable to access breeding streams, and may attempt to pass through the turbines and risk collision. Impacts from noise depend on turbine selection, similar to tidal lagoons. Decreasing shipping accessibility can become a major socio-economic issue, though locks can be added to allow slow passage. However, the barrage may improve the local economy by increasing land access when used as a bridge and allowing for more recreation opportunities due to calmer waters.

Total Results: 669
Title Author Datesort descending Type of Content Technology Type Stressor Receptor
Spatial and Temporal Benthic Species Assemblage Responses with a Deployed Marine Tidal Energy Device: A Small Scaled Study Broadhurst, M., Orme, C. August 2014 Journal Article Marine Energy general, Tidal Benthic Invertebrates, Ecosystem
Ocean Flow Energy - Sanda Sound August 2014 Project Site OES-Environmental Marine Energy general, Tidal
The Effects of a Severn Barrage on Wave Conditions in the Bristol Channel Fairley, I., et al. August 2014 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
EMEC Fall of Warness Test Site: Environmental Appraisal European Marine Energy Centre August 2014 Report Marine Energy general, Tidal Benthic Invertebrates, Birds, Fish, Marine Mammals, Socio-economics, Environmental Impact Assessment
In-Situ Ecological Interactions with a Deployed Tidal Energy Device; An Observational Pilot Study Broadhurst, M., Barr, S., Orme, D. October 2014 Journal Article Marine Energy general, Tidal Static Device Fish
An assessment of the impacts of a tidal renewable energy scheme on the eutrophication potential of the Severn Estuary, UK Kadiri, M., et al. October 2014 Journal Article Marine Energy general, Tidal
Comparison of hydro-environmental impacts for ebb-only and two-way generation for a Severn Barrage Ahmadian, R., Falconer, R., Bockelmann-Evans, B. October 2014 Journal Article Marine Energy general, Tidal Nearfield Habitat
Modelling the Far Field Hydro-Environmental Impacts of Tidal Farms - A Focus on Tidal Regime, Intertidal Zones and Flushing Nash, S., et al. October 2014 Journal Article Marine Energy general, Tidal Farfield Environment
Modeling of In-Stream Tidal Energy Development and its Potential Effects in Tacoma Narrows Washington USA Yang, Z., et al. October 2014 Journal Article Marine Energy general, Tidal Energy Removal Nearfield Habitat
Insights from Archaeological Analysis and Interpretation of Marine Data Sets to Inform Marine Cultural Heritage Management and Planning of Wave and Tidal Energy Development for Orkney Waters and the Pentland Firth, NE Scotland Pollard, E., et al. October 2014 Journal Article Marine Energy general, Tidal, Wave Socio-economics
INORE: Sharing is Knowing Cameron McNatt and Michele Martini October 2014 Blog Article OTEC, Tidal, Wave, Offshore Wind
Outer Bay of Fundy Tidal Energy Development: Where the Leviathans Live Trowse, G., Malinka, C. October 2014 Presentation Marine Energy general, Tidal
Simulating Blade-Strike on Fish Passing Through Marine Hydrokinetic Turbines Romero-Gomez, P., Richmond, M. November 2014 Journal Article Marine Energy general, Riverine, Tidal Dynamic Device Fish
Assessing the Influence of Inflow Turbulence on Noise and Performance of a Tidal Turbine using Large Eddy Simulations Lloyd, T., Turnock, S., Humphrey, V. November 2014 Journal Article Marine Energy general, Tidal Noise
GHYDRO: Methodology Guide for Assessment of Environmental Impacts of Tidal Stream Energy Technologies at Sea Lejart, M. November 2014 Presentation Marine Energy general, Tidal Socio-economics, Legal and Policy
Estimates of Collision Risk of Harbour Porpoises and Marine Renewable Energy Devices at Sites of High Tidal-Stream Energy Wilson, B., et al. November 2014 Report Marine Energy general, Tidal Dynamic Device Marine Mammals, Cetaceans
Detecting Potential and Actual Turbine-Marine Life Interactions: A Call for the Development of Best Practices Redden, A. November 2014 Presentation Marine Energy general, Tidal Dynamic Device, Static Device Fish, Marine Mammals
Swansea Bay Tidal Lagoon Adaptive Environmental Management Plan November 2014 Report Marine Energy general, Tidal Noise Benthic Invertebrates, Birds, Fish, Marine Mammals, Nearfield Habitat, Socio-economics, Fishing, Recreation
Developing regional locational guidance for wave and tidal energy in the Shetland Islands Tweddle, J., et al. December 2014 Journal Article Marine Energy general, Tidal, Wave Socio-economics, Marine Spatial Planning, Stakeholder Engagement
Impact of Tidal-Stream Arrays in Relation to the Natural Variability of Sedimentary Processes Robins, P., Neill, S., Lewis, M. December 2014 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
An Evaluation of the Use of Shore-Based Surveys for Estimating Spatial Overlap between Deep-Diving Seabirds and Tidal Stream Turbines Waggitt, J., Bell, P., Scott, B. December 2014 Journal Article Marine Energy general, Tidal Birds
Depth use and movements of homing Atlantic salmon (Salmo salar) in Scottish coastal waters in relation to marine renewable energy development Godfrey, J., et al. December 2014 Report Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind Fish
Environmental Risk Evaluation System - An Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments Copping, A., et al. January 2015 Journal Article Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind Chemicals, Dynamic Device, Energy Removal Birds, Fish, Marine Mammals
Using Hydroacoustics to Understand Fish Presence and Vertical Distribution in a Tidally Dynamic Region Targeted for Energy Extraction Viehman, H., et al. January 2015 Journal Article Marine Energy general, Tidal Fish
Application of Tidal Energy for Purification in Fresh Water Lake Jung, R., Isshiki, H. January 2015 Journal Article Marine Energy general, Tidal
Examining the Impacts of Tidal Energy Capture from an Ecosystem Services Perspective Leslie, H., Palmer, M. January 2015 Journal Article Marine Energy general, Tidal Ecosystem
Fish Interactions with a Commercial-Scale Tidal Energy Device in the Natural Environment Viehman, H., Zydlewski, G. January 2015 Journal Article Marine Energy general, Tidal Fish
Tidal Power Development in Maine: Stakeholder Identification and Perceptions of Engagement Johnson, T., Jansujwicz, J., Zydlewski, G. January 2015 Journal Article Marine Energy general, Tidal Socio-economics, Stakeholder Engagement
Assessing Marine Mammal Presence in and Near the FORCE Lease Area During Winter and Early Spring - Addressing Baseline Data Gaps and Sensor Performance Redden, A., Porskamp, P. January 2015 Report Marine Energy general, Tidal Marine Mammals
A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction Wang, T., Yang, Z., Copping, A. January 2015 Journal Article Marine Energy general, Tidal Energy Removal Nearfield Habitat
Evaluating biological characteristics of marine renewable energy sites for environmental monitoring Wiesebron, L. January 2015 Thesis Marine Energy general, Tidal
Consenting Guidance for Developers at the EMEC Fall of Warness Test Site European Marine Energy Centre January 2015 Report Marine Energy general, Tidal Socio-economics, Legal and Policy
Understanding and Informing Permitting Decisions for Tidal Energy Development Using an Adaptive Management Framework Jansujwicz, J., Johnson, T. January 2015 Journal Article Marine Energy general, Tidal Socio-economics
The Maine Tidal Power Initiative: Transdisciplinary Sustainability Science Research for the Responsible Development of Tidal Power Jansujwicz, J., Johnson, T. January 2015 Journal Article Marine Energy general, Tidal Socio-economics
Evaluation of Behavior and Survival of Fish Exposed to an Axial-Flow Hydrokinetic Turbine Amaral, S., et al. February 2015 Journal Article Marine Energy general, Tidal Dynamic Device Fish
Public Perceptions and Externalities in Tidal Stream Energy: A Valuation for Policy Making Vazquez, A., Iglesias, G. March 2015 Journal Article Marine Energy general, Tidal Socio-economics
Numerical Modeling of the Effect of Tidal Stream Turbines on the Hydrodynamics and the Sediment Transport - Application to the Alderney Race (Raz Blanchard), France Thiébot, J., de Bois, P., Guillou, S. March 2015 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Attitudes towards Marine Energy: Understanding the Values de Groot, J. March 2015 Thesis Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind Socio-economics, Stakeholder Engagement
Development of Marine Mammal Observation Methods for Vantage Point Surveys in Ramsey Sound Nuuttila, H., Mendzil, A. March 2015 Report Marine Energy general, Tidal Marine Mammals
MeyGen Tidal Energy Project Phase 1 Electromagnetic Fields Best Practice Report Rollings, E. March 2015 Report Marine Energy general, Tidal EMF
Cobscook Bay Tidal Energy Project: 2014 Environmental Monitoring Report ORPC Maine March 2015 Report Marine Energy general, Tidal Benthic Invertebrates, Fish
Proceedings of the 4th Oxford Tidal Energy Workshop University of Oxford March 2015 Workshop Article Marine Energy general, Tidal
Tidal Resource Extraction in the Pentland Firth, UK: Potential Impacts on Flow Regime and Sediment Transport in the Inner Sound of Stroma Martin-Short, R., et al. April 2015 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Value Proposition for Tidal Energy Development in Nova Scotia, Atlantic Canada and Canada Gardner, M., et al. April 2015 Report Marine Energy general, Tidal Socio-economics, Legal and Policy
Improvements to Probabilistic Tidal Turbine-Fish Interaction Model Parameters Tomichek, C., Colby, J., Adonizio, M. April 2015 Conference Paper Marine Energy general, Tidal Dynamic Device Fish
Advancing a Key Consenting Risk for Tidal Energy: The Risk of Marine Mammal Collision for In-Stream Tidal Energy Devices Booth, C., et al. April 2015 Conference Paper Marine Energy general, Tidal Dynamic Device Marine Mammals
Understanding the Risk to Marine Mammals from Collision with a Tidal Turbine Copping, A., et al. April 2015 Conference Paper Marine Energy general, Tidal Dynamic Device Marine Mammals
OCGen Module Mooring Design Marnagh, C., et al. April 2015 Conference Paper Marine Energy general, Tidal
Tidal energy machines: A comparative life cycle assessment study Walker, S., et al. May 2015 Journal Article Marine Energy general, Tidal Socio-economics, Life Cycle Assessment
Modelling the Response of Sandbank Dynamics to Tidal Energy Extraction Chatzirodou, A., Karunarathna, H., Reeve, D. June 2015 Conference Paper Marine Energy general, Tidal Energy Removal
MR7.2.2 Collision Risk and Impact Study: Examination of Models for Estimating the Risk of Collisions Between Seals and Tidal Turbines Lonergan, M., Thompson, D. July 2015 Report Marine Energy general, Tidal Dynamic Device Marine Mammals, Pinnipeds
MR7.2.3 Collision Risk and Impact Study: Field Tests of Turbine Blade-Seal Carcass Collisions Thompson, D., et al. July 2015 Report Marine Energy general, Tidal Dynamic Device Marine Mammals, Pinnipeds
MR7.2.1 Collision Risk: A Brief Review of Available Information on Behaviour of Mammals and Birds in High Tidal Energy Areas Onoufriou, J., Thompson, D. July 2015 Report Marine Energy general, Tidal Dynamic Device Birds, Marine Mammals
Review of Cetacean Monitoring Guidelines for Welsh Wave and Tidal Energy Developments Nuuttila, H. July 2015 Report Marine Energy general, Tidal, Wave Marine Mammals, Cetaceans
Hydrokinetic Turbine Models in Complex Channel Topography: Local Scour, Sediment Transport and Device Performance Hill, C., et al. July 2015 Conference Paper Marine Energy general, Tidal Energy Removal
Guidance to Inform Marine Mammal Site Characterisation Requirements at Wave and Tidal Stream Energy Sites in Wales Sparling, C., et al. July 2015 Report Marine Energy general, Tidal, Wave Marine Mammals
Environmental Monitoring and Mitigation Plan: Shetland Tidal Array, Bluemull Sound McPherson, G. July 2015 Report Marine Energy general, Tidal
A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis Masters, I., et al. July 2015 Journal Article Marine Energy general, Tidal
TeraWatt Position Papers: A "Toolbox" of Methods to Better Understand and Assess the Effects of Tidal and Wave Energy Arrays on the Marine Environment Murray, R., et al. August 2015 Report Marine Energy general, Tidal, Wave Energy Removal Farfield Environment, Nearfield Habitat
The Cumulative Impact of Tidal Stream Turbine Arrays on Sediment Transport in the Pentland Firth Fairley, I., Masters, I., Karunarathna, H. August 2015 Journal Article Marine Energy general, Tidal Energy Removal Farfield Environment
Effects of Hydrokinetic Energy Turbine Arrays on Sediment Transport at São Marcos Bay, Brazil González-Gorbeña, E., et al. August 2015 Conference Paper Marine Energy general, Tidal Energy Removal Farfield Environment
Confusion Reigns? A Review of Marine Megafauna Interactions with Tidal-Stream Environments Benjamins, S., et al. August 2015 Book Chapter Marine Energy general, Tidal Birds, Marine Mammals
Modelling Seabed Shear Stress, Sediment Mobility, and Sediment Transport in the Bay of Fundy Li, M., et al. September 2015 Journal Article Marine Energy general, Tidal Energy Removal
Habitat characterization of a tidal energy site using an ROV: Overcoming difficulties in a harsh environment Greene, H. September 2015 Journal Article Marine Energy general, Tidal Benthic Invertebrates
Towards Acoustic Monitoring of Marine Mammals at a Tidal Turbine Site: Grand Passage, NS, Canada Malinka, C., Hay, A., Cheel, R. September 2015 Conference Paper Marine Energy general, Tidal Marine Mammals
Surveying Marine Mammals in Nearby Tidal Energy Development Sites: a Comparison Benjamins, S., et al. September 2015 Conference Paper Marine Energy general, Tidal Static Device Farfield Environment, Marine Mammals
An Integrated Solution to Real Time Marine Mammal Monitoring for Tidal Turbines Bromley, P., Boake, C., Broudic, M. September 2015 Conference Paper Marine Energy general, Tidal Static Device Marine Mammals
Sediment Transport in the Pentland Firth and Impacts of Tidal Stream Energy Extraction Fairley, I., Masters, I., Karunarathna, H. September 2015 Conference Paper Marine Energy general, Tidal Energy Removal
Impact of Scaled Tidal Stream Turbine over Mobile Sediment Beds Ramírez-Mendoza, R., et al. September 2015 Conference Paper Marine Energy general, Tidal Energy Removal
Remote Detection of Sea Surface Roughness Signatures Related to Subsurface Bathymetry, Structures and Tidal Stream Turbine Wakes Bell, P., et al. September 2015 Conference Paper Marine Energy general, Tidal
Field Testing a Full-Scale Tidal Turbine Part 3: Acoustic Characteristics Schmitt, P., et al. September 2015 Conference Paper Marine Energy general, Tidal Noise
Hydrodynamic Response to Large Scale Tidal Energy Extraction Brown, A., Neill, S. September 2015 Conference Paper Marine Energy general, Tidal Energy Removal Farfield Environment
Numerical Modeling of the Impact Response of Tidal Devices and Marine Mammals Grear, M., Motley, M. September 2015 Conference Paper Marine Energy general, Tidal Marine Mammals, Cetaceans, Pinnipeds
Field Testing a Full-Scale Tidal Turbine Part 2: In-Line Wake Effects Schmitt, P., et al. September 2015 Conference Paper Marine Energy general, Tidal
Numerical Modelling Study of the Effects of Suspended Aquaculture Farms on Tidal Stream Energy Generation O'Donncha, F., et al. September 2015 Conference Paper Marine Energy general, Tidal Energy Removal Farfield Environment, Socio-economics, Fishing
Pentland Firth Meygen AR1500 FLOWBEC Platform Fluorometer Data October 2015 Dataset Marine Energy general, Tidal Ecosystem
Pentland Firth Meygen AR1500 FLOWBEC Platform ADVOcean 5MHz Data October 2015 Dataset Marine Energy general, Tidal Dynamic Device
Pentland Firth Meygen AR1500 FLOWBEC Platform Multi-beam and Echosounder Data October 2015 Dataset Marine Energy general, Tidal Dynamic Device Birds, Fish, Marine Mammals
Evaluation and Comparison of the Levelized Cost of Tidal, Wave, and Offshore Wind Energy Astariz, S., Vazquez, A., Iglesias, G. October 2015 Journal Article Marine Energy general, Tidal, Wave, Wind Energy general, Offshore Wind Socio-economics
Marine Energy Research and Innovation Centre (MERIC) October 2015 Project Site OES-Environmental Marine Energy general, Ocean Current, Tidal, Wave
A Scenario-Based Approach to Evaluating Potential Environmental Impacts Following a Tidal Barrage Installation Kidd, I., et al. November 2015 Journal Article Marine Energy general, Tidal Energy Removal Ecosystem
NERC Knowledge Exchange: An Autonomous Device to Track Porpoise Movements in Tidal Rapids Macaulay, J., et al. November 2015 Report Marine Energy general, Tidal Marine Mammals
Ramsey Sound December 2015 Project Site OES-Environmental Marine Energy general, Tidal
The Value of Delay in Tidal Energy Development MacDonald, S. December 2015 Journal Article Marine Energy general, Tidal Socio-economics
A strategic policy framework for promoting the marine energy sector in Spain Vazquez, S., Astariz, S., Iglesias, G. December 2015 Journal Article Tidal, Wave, Offshore Wind Legal and Policy
Learning from Early Commercial Tidal Energy Projects in the Puget Sound, Washington and the Pentland Firth, Scotland McMillin, N. January 2016 Thesis Marine Energy general, Tidal Socio-economics, Legal and Policy
Data Based Estimates of Collision Risk: An Example Based on Harbour Seal Tracking Data around a Proposed Tidal Turbine Array in the Pentland Firth Thompson, D., et al. January 2016 Report Marine Energy general, Tidal Dynamic Device Marine Mammals, Pinnipeds
Effects of Underwater Turbine Noise on Crab Larval Metamorphosis Pine, M., Jeffs, A., Radford, C. January 2016 Book Chapter Marine Energy general, Tidal Noise Benthic Invertebrates
Refining Estimates of Collision Risk for Harbour Seals and Tidal Turbines Band, B., et al. January 2016 Report Marine Energy general, Tidal Dynamic Device Marine Mammals, Pinnipeds
A Self-Contained Subsea Platform for Acoustic Monitoring of the Environment Around Marine Renewable Energy Devices - Field Deployments at Wave and Tidal Energy Sites in Orkney, Scotland Williamson, B., et al. January 2016 Journal Article Marine Energy general, Tidal, Wave Dynamic Device, Static Device Birds, Fish, Marine Mammals
Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices Lepper, P., Robinson, S. January 2016 Book Chapter Marine Energy general, Tidal, Wave Noise
Variability in Suspended Sediment Concentration in the Minas Basin, Bay of Fundy, and Implications for Changes due to Tidal Power Extraction Ashall, L., Mulligan, R., Law, B. January 2016 Journal Article Marine Energy general, Tidal Energy Removal
Nova Bluemull Sound - Appropriate Assessment Marine Scotland January 2016 Report Marine Energy general, Tidal Seabirds, Marine Mammals
Interaction between instream axial flow hydrokinetic turbines and uni-directional flow bedforms Hill, C., Musa, M., Guala, M. February 2016 Journal Article Marine Energy general, Ocean Current, Tidal Farfield Environment
Environmental Monitoring of the Paimpol-Brehat Tidal Project Barillier, A., Carlier, A. February 2016 Presentation Marine Energy general, Tidal Noise, Static Device Benthic Invertebrates, Marine Mammals
What Should a Condition Monitoring System Look like for a Tidal Turbine? Marnoch, J. February 2016 Presentation Marine Energy general, Tidal
Regulating wave and tidal energy: An industry perspective on the Scottish marine governance framework Wright, G. March 2016 Journal Article Marine Energy general, Tidal, Wave Socio-economics, Environmental Impact Assessment, Legal and Policy
Nova Innovation - Shetland Tiday Array (Bluemull Sound) March 2016 Project Site OES-Environmental Marine Energy general, Tidal
RITE Monitoring of Environmental Effects (RMEE) Reports (DRAFT ver. Mar 2016) RITE Project (FERC No. P-12611) Smith, R. March 2016 Report Marine Energy general, Tidal Dynamic Device, Noise Farfield Environment, Fish, Marine Mammals, Nearfield Habitat, Reptiles
Brims Tidal Array Collision Risk Modelling - Atlantic Salmon Xodus Group March 2016 Report Marine Energy general, Tidal Dynamic Device Fish

Pages

Subscribe to Tidal
Find Tethys on InstagramFind Tethys on FacebookFind Tethys on Twitter
 
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Subscribe to Tidal