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Abstract

Multi-state occupancy modeling can often improve assessments of habitat use and site

quality when animal activity or behavior data are available. We examine the use of the

approach for evaluating foraging habitat suitability of the endangered Hawaiian hoary bat

(Lasiurus cinereus semotus) from classifications of site occupancy based on flight activity

levels and feeding behavior. In addition, we used data from separate visual and auditory

sources, namely thermal videography and acoustic (echolocation) detectors, jointly

deployed at sample sites to compare the effectiveness of each method in the context of

occupancy modeling. Video-derived observations demonstrated higher and more accurate

estimates of the prevalence of high bat flight activity and feeding events than acoustic sam-

pling methods. Elevated levels of acoustic activity by Hawaiian hoary bats were found to be

related primarily to beetle biomass in this study. The approach may have a variety of appli-

cations in bat research, including inference about species-resource relationships, habitat

quality and the extent to which species intensively use areas for activities such as foraging.

Introduction

Monitoring bat populations is challenging because many species occur at low densities, are dif-

ficult to detect, and have wide-ranging movement and migratory patterns that are poorly

understood [1]. Foliage-roosting “tree bats” (a group of about 17 species of Lasiurus and the

silver-haired bat, Lasionycteris noctivagans) pose a particular challenge as populations are typi-

cally "over-dispersed" [2], and may be vocally cryptic or not readily accessible to acoustic sam-

pling or capture [3–6]. Quantifying conventional population parameters such as abundance or

density for these species is not currently feasible and can hamper species status and conserva-

tion assessments [1]. For such species, occupancy analysis can be an effective method for eluci-

dating the relationship of habitat attributes and species occurrence while also accounting for

imperfect detection [7], and the approach has been used for bat studies at local [8,9], regional

[10] and broader geographic extents [11,12]. However, analyses based solely on animal
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presence can be inadequate because they omit information on abundance, activity levels, or

behavior that may further inform assessment of habitat use and suitability. Advances in occu-

pancy modeling have expanded its application to incorporate additional information about a

range of biologically relevant states such as behavioral attributes (e.g., absent or not detected,

present but possibly not reproducing, and present and reproducing; [13]) or categorical levels

of activity (e.g., calling rates; [14,15]) and abundance (e.g., “none, some, many”; [16]). These

“multi-state” models characterize occupancy as a hierarchical categorical variable, and accom-

modate uncertainty caused by imperfect detection in both the estimation of species occurrence

and classification of the correct state.

Given their flexibility, multi-state occupancy models may serve to evaluate the relative use

or quality of areas used by bats for foraging, roosting, or other requirements. Bat habitat suit-

ability can be assessed in a number of ways, including for example, studies of focal use of areas

by radio-tracked individuals [17], body weight [18], reproductive condition [19], and dietary

richness [20]. However, these approaches typically require bat capture and handling which can

be difficult or impractical in many settings. Non-invasive observations of bat detection rates

and feeding behavior may provide alternate metrics that, coupled with multi-state occupancy

analysis, reveal the degree to which an area is used for foraging by a resident population and

the habitat attributes associated with state variables of interest (e.g., high abundance or activ-

ity), information of relevance to land managers and conservation efforts.

Optimal foraging theory posits that fitness is related to foraging efficiency, and that the rate

at which energy is obtained is partly a function of time spent in a particular habitat [21,22].

Insectivorous bats expend considerable time and energy foraging (e.g., more than half the

energy budget; [23]), with individuals often consuming over a quarter of their body weight in

invertebrates each night, particularly during energetically demanding periods [24]. Thus, bat

occurrence and activity are expected to be generally associated with insect abundance, a pre-

diction broadly supported by various studies (e.g., [25–27]), although this relationship can be

temporally variable and depend on resource availability and prey selection [28,29]. Monitoring

insectivorous bat distribution and habitat use is a particularly pressing issue given observed

declines in many insectivorous bird populations (e.g., [30]), a pattern that may be linked to

diminished flying insect populations and ecosystem changes [31,32].

The primary objective of our study is to investigate the use of multi-state occupancy model-

ing to quantify foraging habitat use and suitability by Hawaiian hoary bats (Lasiurus cinereus
semotus, Vespertilionidae), and constitutes the first application of the method to observations

of bat activity and behavior. Also known as the ‘Ōpe‘ape‘a, the species is the only extant native

terrestrial mammal and sole bat species in Hawai‘i state and occurs on all of the major islands

[33]. It is an aerial-hawking bat that feeds primarily on Coleoptera and Lepidoptera captured

and eaten while in flight [34–37]. The Hawaiian hoary bat served as the focal species in this

study because it is an endangered endemic susceptible to fatality by collision with wind turbine

blades [38] and the subject of management aimed at mitigating these impacts [39]. The North

American subspecies, L. c. cinereus, also accounts for approximately 40% of all bat fatalities at

turbines in continental North America [40]. We specifically examine the issue of foraging hab-

itat use because land-cover restoration is a conservation approach applied to offset Hawaiian

hoary bat fatalities and requires an understanding of current bat activity before management

efforts begin and from which to compare results.

We applied the multi-state occupancy approach to analyze two distinct types of behavioral

data amenable to classification as variable “states”—flight activity levels and feeding behavior.

Survey methods that rely on acoustic sampling are widely used to determine species presence

and relative activity, but bats may at times be vocally cryptic and remain undetected [5,6].

Therefore, we used data derived from separate visual and auditory sources, namely thermal

Multi-state occupancy modeling of bat habitat use
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videography and acoustic (echolocation) detectors, jointly deployed at each sample site to sec-

ondarily compare how sampling techniques affect habitat use inferences. We speculate that

prey availability may be a limiting resource regulating Hawaiian hoary bat occurrence and

activity; as such, we focus exclusively on insect biomass as a predictive variable of bat occu-

pancy and habitat use. This focus also helped ensure that models were not over-parameterized

and were able to accommodate our limited sample size. We discuss the use of multi-state occu-

pancy models to draw inference about habitat suitability and the assumptions relevant to

applying such models to local populations comprised of wide-ranging individuals.

Methods

Study area and data collection

The field study was conducted from 10 July to 10 August 2017 in the northern Ko‘olau Moun-

tains of O‘ahu, within a 25 sq km area managed for wind energy production (centered at 21˚

36’21"N, 158˚2’14"W). The region is comprised of a mix of active and fallow cattle pasture and

forest, with the latter dominated by introduced species at lower elevations and native species at

higher elevations (generally >300 m). Topography consists of incised hillsides with elevation

at sample sites ranging from 145 to 360 m above sea level. Four sites, located an average of 2.5

km apart, were concurrently sampled four nights each week for a period of five weeks (20 sites

total). Candidate sites based primarily on a road and trail network were obtained from a gener-

alized random-tessellation stratified (GRTS) sampling design produced with the R package

spsurvey version 3.3 [41]. Stratification was applied by dividing the study area into quadrants,

and sites were selected from the candidate pool given the constraint of a 1-km minimum spac-

ing between sites sampled concurrently. The selection of the study area for sampling and test-

ing multi-state occupancy models was based on a previous study demonstrating bat

occurrence in the region [38].

Bat activity and behavior was quantified both visually and acoustically. Visual detection of

bats was achieved using surveillance cameras equipped with 19-mm lenses (Axis Q1922-E,

Axis Communications, Lund, Sweden). These cameras image in the “thermal” spectrum of

infrared light (approximately 9,000–14,000 nm) and require no supplemental illumination. At

each sample site, a camera was set in an open area and aimed upward at a 45˚ angle so as to

exclude any nearby vegetation. Previous trials showed that bats were detectable at distances of

over 100 m. Video imagery was processed using custom-written code and matrix-based statis-

tical software (Mathworks, Natick, Massachusetts, USA) to automatically detect animals flying

through the video scenes. Video was recorded at 30 frames per second, and every 10th video

frame was analyzed resulting in the detection of events lasting as little as 0.3 sec. All objects

detected by software algorithms were visually reviewed and identified as bat, bird or insect. Bat

detections occurring�1 minute apart were counted as a single event, and counts of these

events by night and site were used to measure relative activity. Although use of a 1-minute

threshold was arbitrary, about 84% of video detections of bat flight were comprised of single

passes, and the time difference between all detection events averaged 21 minutes, reflecting the

occasionally clustered but generally sparse distribution of the visual observations. In addition

to the video-based index of activity, observations of flight trajectories that included a rapid

loop or roll (accomplished in�1 s) were used to indicate active prey targeting. Aerial-hawking

species such as L. borealis and L. cinereus that have a moderate to high wing-load (ratio of

mass to wing area) and aspect ratio (wingspan2/wing area) are fast and agile fliers with the abil-

ity to rapidly initiate a roll and alter their flight path while in pursuit of prey [42–44]. Nightly

counts of these observations were used to quantify the number of feeding attempts at each site.

Multi-state occupancy modeling of bat habitat use
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Bat echolocation was acoustically monitored with ultrasonic detectors (Song Meter 4 Bat

FS, Wildlife Acoustics, Inc., Concord, Massachusetts, USA), each equipped with a directional

horn-mounted SMM-U1 microphone oriented towards the air-space imaged by a video cam-

era. Detectors began recording 30 minutes before local sunset until 30 minutes after sunrise

the next morning. Acoustic events were recorded without digital compression as full-spectrum

wav sound files with the following settings: sampling rate of 192 kHz; high pass filter at 16 kHz

and 12 decibel gain; microphone bias off; digital high pass filter at fs/24; digital low pass filter

off; trigger level 6 decibel signal-noise ratio; trigger window 3.0 sec; trigger max length 15 sec;

frequency division ratio 16. Kaleidoscope Pro (version 4.1.0a; Wildlife Acoustics, Inc.) soft-

ware was used to review files and filter acoustic background noise with the following settings:

signal of interest between 8 and 80 kHz, 2 to 250 ms pulse duration, and a minimum of 2

pulses per event. All files classified as containing bat echolocation pulses were visually and

aurally inspected as sonograms with Kaleidoscope Pro (version 3.1.0; Wildlife Acoustics) to

ensure that there were no false positives. As with video detections, acoustic detections occur-

ring�1 minute apart were counted as a single event, and counts of these events by night and

site were used as an acoustic-based index of activity. Terminal-phase calls (“feeding buzzes”

emitted just prior to an attempted insect catch [45]) were qualitatively distinguished from

search and approach-phase calls by a rapid increase in the call rate. In addition to the acoustic

index of activity, counts of terminal-phase call events were used to quantify feeding events per

night.

To determine the abundance of potential bat prey, insects were sampled at each site with an

ultraviolet fluorescent light trap (Leptraps, Georgetown, Kentucky, USA). Trapped insects

were collected following each night of sampling, sorted to size and order for insects with a

body length�5 mm, and oven-dried for 48 h at 65˚C. Data used for analyses were restricted to

biomass (dry weight) tallies of Coleoptera and Lepidoptera in the size class�5 to 20 mm (sum-

marized in S1 Table). Moths and beetles with body lengths >20 mm made up 15% of all insect

weight but comprised only 1% of counts and were generally larger than 24 mm, the maximum

length of prey items consumed by Hawaiian hoary bats [36]. These captures were excluded

from analyses to minimize the effect of outliers.

All sampling protocols for this study were approved by IACUC at the University of Hawai‘i

at Hilo. Access to the wind power facility was granted by D.E. Shaw Renewable Investments

IV, L.L.C.

Occupancy modeling

We used two types of multi-state models to investigate foraging habitat use by bats. The first

model applied flight activity categories derived from nightly tallies of bat detections (“activity”

model), and the second model used feeding attempts by bats evident from flight trajectories

and terminal-phase vocalizations (“feeding” model). Both of these models were developed sep-

arately for the data obtained from the two different survey methods (“acoustic”, “video”). Alto-

gether the analyses consist of four model types: Acoustic–activity, Acoustic–feeding, Video–

activity, and Video–feeding.

Each of the models produced estimates of the probability of observing the species in state 1

given its true state was 1 (p1), and the probability of observing the species in state 2 given its

true state was 2 (p2). Put another way, for the activity model these are the probabilities of

observing at least one bat at sites at which activity was truly low (p1) or high (p2), respectively.

For the feeding model, they are the probabilities of observing at least one bat at sites where

feeding was not occurring or was actually occurring, respectively. Additionally, the models

estimated overall occupancy, or the probability that bats were present at a site regardless of

Multi-state occupancy modeling of bat habitat use

PLOS ONE | https://doi.org/10.1371/journal.pone.0205150 October 31, 2018 4 / 14

https://doi.org/10.1371/journal.pone.0205150


state (ψ1), the conditional probability that state 2 (high activity or feeding) actually occurred

given bat presence (ψ2; the parameter of primary interest), and the probability of correctly

identifying state 2 versus state 1 given the detection of bat presence (δ).

A key assumption in occupancy modeling is that the occupancy state (e.g., not detected,

present at low abundance, present at high abundance) remains constant for the duration of the

sampling period [7]. When sample plot areas are smaller than an individual’s home range and

movement leads to temporary absence, occupancy estimates should instead be interpreted as

the ‘proportion of area used’ (or for multi-state model parameterizations, ‘probability of site

use’), rather than as the proportion of area occupied [46, 47]. MacKenzie et al. [14] caution

that the relaxation of the assumption of site closure may introduce bias. However, they do so

only in the context of directional changes in the occupancy state over a survey period (e.g., sea-

sonal trend in the breeding calls of frogs). We do not believe that Hawaiian hoary bats are

likely to exhibit seasonal trends in foraging rates over the short time period (4 nights) at which

it was measured at each site. MacKenzie et al. [14] also note “[w]hen such changes occur at

random . . . the interpretation of the state-specific occupancy-related probabilities is the proba-

bility that that state is the highest reached during the season (i.e., the state of a unit may not

always be 2, but 2 is the highest state reached at some point during the surveying)”. We inter-

pret our results along these lines such that parameter ψ2 represents the mean probability that

state 2 actually occurred at sample sites at some point during the survey, and represents the

extent to which the survey area as a whole can support high levels of bat activity and feeding;

i.e., “focal” habitat use. Furthermore, it is important to note that relaxation of the site closure

assumption also applies to the interpretation of parameter ψ1. That is, the parameter indicates

the probability, regardless of actual state, that one or more bats were present at some point at a

site during a survey period. For the totality of sites, it represents the overall prevalence of the

organism in the surveyed area inclusive of “non-focal” habitat use (e.g., transit between sites).

Low and high categories of activity were distinguished based on the median detection rates

from acoustic and video data obtained from a previous 1-year bat study in the same region

[38]. To distinguish high from low activity, the thresholds for acoustic and video data was set

at a nightly count of 1.0 and 5.0 per site, respectively. Counts greater than those values were

designated as “2” in the detection history matrix used in the multi-state analyses, with “1” indi-

cating observations of only low activity or no feeding, and “0” representing no observations of

bats. The choice of the median as a threshold was arbitrary but served in our study as an exam-

ple of how it may be used to identify higher-use areas; different threshold values can be

obtained from pilot studies or other knowledge of a species’ biology.

Multi-state model parameters can be fit with and without covariates. The basic occupancy

model that included only their intercepts without covariates served as a null model against

which we compared model types and covariate-fitted models. The null model specified sepa-

rate parameters for the detection probabilities of state 1 and state 2, and is referred to herein as

“null” with the notation ψ1(�)ψ2(�)p1(�)p2(�)δ(�). To restrict the number of candidate models

and likelihood of obtaining spurious results given a limited sample size, and given our study’s

focus on the relationship between insect prey and bat presence, we constrained our models to

include only insect sample covariates that might affect overall prevalence (ψ1) and the occur-

rence of high activity or feeding (ψ2). We did not examine the use of site-specific covariate

data in multi-state models because the survey area was limited to 25 sq km of relatively homog-

enous land-cover and physiognomic attributes that are readily traversed by resident bats (e.g.,

Hawaiian hoary bats tracked by radio telemetry had long-axis home range movements up to

18 km [mean = 3.4 km ± 0.8 SE]; [48]). Post-hoc trials with “single-state” occupancy models

also did not demonstrate any support for the inclusion of sample-specific covariates (which

can change across sampling nights) comprising mean wind speed, wind variability, total

Multi-state occupancy modeling of bat habitat use
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precipitation, proportion of night with rain, and night-time sky illumination. The trials and

consistent mild weather during the sampling period justified the exclusion of these variables

from multi-state models (although such covariates can be readily included where sites attri-

butes differ spatially and sampling conditions vary over a survey period). Therefore, we esti-

mated p1 and p2 as constant over the 4 consecutive nights of sampling at each site. Similarly,

survey night was not deemed likely to affect the probability of correctly identifying state 2 so δ
was also treated as a constant over all samples.

Mean nightly Coleoptera and Lepidoptera biomass were each considered as site covariates

that could independently affect bat presence (if bats preferred one food type over the other)

and are referred to in models as “beetle” and “moth”, respectively. We also included the com-

bined Coleoptera and Lepidoptera biomass as an additional site covariate reflective of overall

site productivity (“insect”). For models which used these covariates only for the parameter ψ1,
the hypothesis was that prey biomass affects overall bat prevalence but not the probability of

high bat activity or feeding behavior. Conversely, where parameter ψ1 was treated as a constant

and parameter ψ2 included covariates, the interpretation was that prey biomass determines

high bat activity or feeding behavior but was not related to overall prevalence. Finally, where

ψ1 included the covariate “insect” and parameter ψ2 included either “beetle” or “moth”, the

models assumed that prevalence was determined by site productivity, but the likelihood of

high bat activity or feeding at a site depended on bat preference for either beetles or moths.

We used the program PRESENCE version 12.7 [49] to obtain maximum likelihood esti-

mates for model parameters and rankings. The number of sites (n = 20) was used as the effec-

tive sample size to calculate the small-sample-corrected Akaike’s Information Criterion (AICc)

and relative model weights reflect evidence in favor of the respective models being the most

appropriate among the members of the model set [50]. For comparability, we initially present

null model (intercept-only) parameter estimates for all four model types (acoustic–activity,

acoustic–feeding, video–activity, video–feeding), and subsequently examine covariate-fitted

models that rank better than the null for inference of bat-prey relationships. Parameter esti-

mates are provided with their unconditional standard errors. Bat detection histories for each

of the four model types are tabulated in S2 Table, and site samples of prey biomass are pre-

sented in S1 Table and S1 Fig. Acoustic and video detections of bats are shown in S2 and S3

Figs.

Results

Acoustic bat detections were relatively infrequent and averaged 0.8 per night/site (range = 0–5;

median = 0.0), whereas video sampling resulted in an average of 5.5 detections per night/site

(range = 0–35; median = 7.2). Acoustic detections were recorded at 13 of the 20 sites, yielding

a naïve occupancy probability of ~c1 = 0.65 (where “naïve” means not accounting for imperfect

detection). High activity and feeding were detected acoustically at least once at 7 and 6 sites

known to be occupied, respectively, yielding naïve estimates of ~c2 = 0.35 and 0.30 for the prev-

alence of these events. In comparison, bats were detected by video at all sites during the survey;

that is, ~c1 = 1.0. High activity and feeding were also detected by video at least once at 15 and

16 sites known to be occupied, respectively, yielding naïve estimates of ~c2 = 0.75 and 0.80 for

the prevalence of these events.

The probability that a site was occupied, ĉ1, was estimated as 1 by all null models (Table 1),

a result substantially higher than the naïve estimates but in agreement with the scenario that

Hawaiian hoary bats occur across all sites in the study area regardless of the sparsity of detec-

tions related to activity or feeding. Estimates of p̂1, the probability of detecting bats in state 1

Multi-state occupancy modeling of bat habitat use
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(low activity or no observed feeding), for each of the two survey methods was similar in terms

of the type of bat observation (activity versus feeding) but differed between sampling methods,

with the video-based method demonstrating much higher parameter values. Of greater inter-

est, video samples yielded higher estimates and greater precision for both p̂2 and ĉ2 compared

to acoustic methods. For example, the probability of detecting high bat activity by video was

almost twice that obtained by acoustic sampling: p̂2 = 0.96 (SE = 0.028) versus 0.52

(SE = 0.116). Likewise, the video-derived estimate of the prevalence of feeding, ĉ2, was 0.89

(SE = 0.108) compared to 0.48 (SE = 0.205) for acoustic methods.

The probability of correctly classifying high activity given bat presence, d̂, was one and a

half to twice that of identifying feeding events, irrespective of sampling method. For example,

d̂ = 0.74 (SE = 0.101) for video samples of bat activity, and indicated that there was a 74%

chance of a nightly sample visually recording >5 separate detections. A similar result was evi-

dent from acoustic samples of bat activity. Finally, both acoustic and video-based samples of

feeding activity exhibited fairly low values (d̂ = 0.32 and 0.49, respectively), suggesting that the

probability of correctly identifying feeding from either method may be difficult and liable to

underestimate true ψ2. Nonetheless, estimates of ψ2 for all null models were higher than the

naïve estimates, a result consistent with the expectation that occupancy models adjust upward

appraisals of occurrence when detection probabilities are <1.

Model selection statistics indicated that null model weights made up the plurality or major-

ity of the support for three of the four model types (S3 Table). The exception was for the acous-

tic–activity set in which the three top models ranked better than the null model and together

comprised 93% of total weight. The models ψ1(�)ψ2(beetle)p1(�)p2(�)δ(�) and ψ1(�)ψ2(insect)

p1(�)p2(�)δ(�) each demonstrated that the probability of high acoustic activity occurring at a site

was positively related to beetle and insect biomass, respectively (Table 2). The model

ψ1(insect)ψ2(beetle)p1(�)p2(�)δ(�) showed that overall bat prevalence was dependent on insect

abundance, whereas the probability of high acoustic activity was related to beetle biomass. In

keeping with these results, site-specific estimates of ĉ2from the top model averaged only 0.39

for the study area as a whole and revealed that high acoustic activity was not widespread, yet

the estimates were fairly well correlated with Coleoptera biomass samples (r = 0.78) and sug-

gest that high vocalization rates may be linked to available prey (S4 Fig). Non-native copropha-

gous dung beetles (Scarabaeidae, Onthophagus spp.) were the most common group of

Table 1. Null model parameter estimates for each of four model types.

Acoustic–activity Acoustic–feeding Video–activity Video–feeding

Parameter Mean SE Mean SE Mean SE Mean SE

ĉ 1 1.00 † 1.00 † 1.00 † 1.00 †

ĉ 2 0.48 0.161 0.48 0.205 0.78 0.103 0.89 0.108

p̂ 1 0.19 0.076 0.17 0.078 0.83 0.101 0.86 0.156

p̂ 2 0.52 0.116 0.70 0.273 0.98 0.021 0.96 0.028

d̂ 0.75 0.131 0.32 0.118 0.74 0.101 0.49 0.073

† Standard error (SE) cannot be calculated for parameters estimated at boundary of parameter space.

ψ1—probability that bats were present at a site regardless of state (high activity or feeding)

ψ2—conditional probability that state 2 actually occurred given bat presence

p1—probability of observing the species in state 1 given its true state was 1

p2—probability of observing the species in state 2 given its true state was 2

δ —probability of correctly identifying state 2 versus state 1 given the detection of bat presence.

https://doi.org/10.1371/journal.pone.0205150.t001

Multi-state occupancy modeling of bat habitat use

PLOS ONE | https://doi.org/10.1371/journal.pone.0205150 October 31, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0205150.t001
https://doi.org/10.1371/journal.pone.0205150


Coleoptera encountered, with high proportions of the nocturnally volant O. sagittarius preva-

lent in the light trap samples.

Discussion

Our study is the first application of multi-state occupancy analysis of bat activity and behavior

for the purpose of evaluating habitat use and quality, an assessment that can be particularly dif-

ficult to quantify for bat species. The use of this type of model in bat ecology is novel and our

study may serve to inform its application to other such investigations. For example, our study

demonstrated that the probability of detecting high bat activity and feeding by video was high

or close to 1.0 in null models, which may argue for the use of analyses that do not require cor-

rection for imperfect detection for this type of data. Alternatively, given the interpretation of

habitat use based on cumulative samples of occurrence, it also indicates that fewer video sam-

ples at sites expected to have a high frequency of detections of interest may suffice to achieve a

desired level of precision in occupancy model parameters. The use of both acoustic and video

sampling methods also provided a useful comparison from which to gauge in subsequent stud-

ies the relative effort necessary to balance the number of sites and repeat samples in light of the

preferred sampling method [51].

Small sample sizes are common to ecological studies and conservation projects, which typi-

cally have limited resources and focus on rare species. Such studies may benefit from a larger

number of samples than that available in this study to reduce the risk of over-fitting models

and to accommodate covariates in addition to prey biomass. We also caution that models are

expected to perform better where estimated parameters do not attain a maximum value of 1.0

and preclude estimation of standard error (i.e., “boundary effect”). This effect was evident in

estimates of ψ1 which indicated that the study area was “saturated” and the actual prevalence

of bats was widespread (more so than anticipated during the study design). However, in our

case this was not relevant given that focal habitat use as estimated by ψ2 is the parameter of pri-

mary interest and detection of high activity and feeding was not ubiquitous.

It is important to note that multi-state occupancy models do not include a separate parame-

ter to estimate availability, that is, the occurrence of individuals exposed to sampling and avail-

able for detection. Despite this, the non-identifiability of detection and availability

components is not an issue where availability is relatively constant. Although the sample vol-

ume of both acoustic and video devices are considerably smaller than the total area used

nightly by individual bats, the overlap of these areas and sample sites is not likely to change

over short time periods. We believe this condition is met, in part, by sampling at a “fine-

grained” temporal resolution over periods of short duration (in our study, nightly samples

Table 2. Parameter estimates for top ranked models of the acoustic–activity set. Estimates for ψ2 (the probability that state 2 –high activity or feeding–actually occurred

given bat presence) were obtained by averaging site-specific predicted values and their standard errors. Parameter definitions are provided in the footnote to Table 1.

ψ1(�)ψ2(beetle)p1(�)p2(�)δ(�) ψ1(�)ψ2(insect)p1(�)p2(�)δ(�) ψ1(insect)ψ2(beetle)p1(�)p2(�)δ(�)

Parameter Mean SE Mean SE Mean SE

ĉ 1 1.00 † 1.00 † 1.00 †

ĉ 2 0.39 0.123 0.39 0.126 0.40 0.130

p̂ 1 0.20 0.069 0.20 0.068 0.22 0.078

p̂ 2 0.56 0.111 0.56 0.109 0.56 0.113

d̂ 0.79 0.107 0.79 0.107 0.79 0.107

† Standard error (SE) cannot be calculated for parameters estimated at boundary of parameter space.

https://doi.org/10.1371/journal.pone.0205150.t002
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over 4 nights). MacKenzie et al. [52] demonstrated a similar approach by sampling amphibian

activity during a fixed period during which species were active and known to be consistently

available for detection. Moreover, a telemetry study of Hawaiian hoary bats [48] demonstrated

high foraging site fidelity in which individuals make repeated nightly use of areas within peri-

ods of at least several weeks. This, and the energetic need for bats to forage nightly (particularly

during the breeding season) and general ubiquity (estimated overall prevalence was equal to

1), supports our assumption that their availability for detection is fairly invariant over short

periods.

Efford and Dawson [53] distinguish asymptotic occupancy, the accumulated area used over

time, from that of instantaneous occupancy, the proportion of sites occupied at a point in

time. The distinction between use and occupancy is important in that it highlights the need to

consider both the duration of sampling and the spatial extent of sampling if comparisons are

to be made among surveys. For our study, multi-state models produced useful metrics describ-

ing the prevalence of high bat activity and feeding, results which can be used to track trends in

habitat use and quality within this particular study area. Similar surveys can be applied else-

where but the spatial and temporal grain of sampling (i.e., plot size relative to study area), sur-

vey duration and number of samples over time should be consistent if comparisons among

areas or over time is the objective.

In terms of habitat use and inferences regarding habitat quality, models demonstrated that

elevated levels of acoustic activity (i.e. number of calls detected nightly) by Hawaiian hoary

bats were related primarily to beetle biomass at this particular place and time. Insect biomass

as a covariate may also have ranked highly in acoustic–activity models because beetles com-

prised about three-quarters of the combined Coleoptera-Lepidotera biomass (S4 Table). Mod-

els with moth biomass as a covariate did not perform better than null models in any of the four

model types, a result that might have been due to moths comprising a relatively minor amount

of the insects sampled. It is possible that a relationship between Hawaiian hoary bat foraging

activity and moth abundance might be more evident where and when moth availability is

higher. For example, moths were the most abundant insect order and dominated the diet of

Hawaiian hoary bats in open habitat, but were consumed less in cluttered habitat where they

were generally smaller than the minimum prey size noted in a study on Kaua‘i Island [35]. In

addition, moth and beetle prevalence in the diet of hoary bats in North America appears to be

seasonally variable, indicating some degree of opportunistic feeding [54–55].

Bat detection rates were higher for video than for acoustic sampling methods, but neither

the video–activity nor video–feeding model sets resulted in models with moth, beetle or insect

covariates that ranked better than the null. Although null model mean estimates p2 and ψ2

were considerably higher and precision was greater for video-based methods, measures of ele-

vated acoustic activity appeared to be more closely associated with prey abundance. This may

reflect the possibility that the higher rates of bat detections by video include commuting indi-

viduals not engaged in foraging situations. Recent observations of hoary bats not detectably

vocalizing while in flight [5,6] suggest that the species may not be entirely reliant on echoloca-

tion for nocturnal navigation. Consequently, when vocalization is detected may be a more reli-

able indicator of prey targeting and active foraging than the number of flight passes detected

visually.

Feeding activity as identified by terminal-phase calls (“feeding buzzes”) were not demon-

strably related to beetle or moth biomass, but this result may reflect the relative sparsity of

these particular detections (only once at each of 6 sites over the 61 nights with acoustic sam-

ples) rather than the actual absence of such relationship. Terminal-phase calls are unambigu-

ous indicators of prey targeting and likely feeding, but are typically emitted at a much lower

intensity than search or approach phase calls so as to temper gain and prevent self-deafening
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from echoes as a bat closes in on a target [56–58]. As such, terminal-phase calls are more diffi-

cult to detect in the field and using these calls as a measure of feeding may under-represent

these events compared to tallies obtained from the acoustics of bats simply searching for prey.

Notably, of the four model types, the acoustic–feeding model exhibited the highest uncertainty

in correctly identifying feeding activity (d̂ = 0.32; Table 1).

As with the detection of terminal-phase calls, identifying flight trajectories that included a

rapid loop or roll from video recordings may undercount the actual prevalence of feeding

events because Hawaiian hoary bats may be able to catch prey without such manoeuvers.

Therefore, although observed detection probability was quite high (p̂2 = 0.96; Table 1), the

state assignment was characterized by uncertainty (d̂ = 0.49) and likely hindered modeling the

relationships between the prevalence of this behavior and beetle and moth biomass.

The strength of bat activity and prey biomass associations can be expected to change across

habitats and seasons in response to shifts in the composition and abundance of available

insects. The apparent absence of bat activity and prey biomass associations for three of the

four model types may be partly due to prey not actually being a limiting resource in the sum-

mer months when insect abundance is generally highest. Even reproductive bats with higher

energetic demands likely can achieve a positive energy balance after only a few hours of forag-

ing [59]. Consequently, causal factors in the spatial patterns of bat abundance, food resources,

and insect predation may only be evident during seasons or periods of less favorable environ-

mental conditions and more restricted resource availability.

Multi-state modeling has the potential to be useful in studies where investigators can obtain

information at occupied sites about species status (e.g., encounter rates, behavior, etc.). Infor-

mation about bat activity and the availability of foraging resources can be acquired for many

species and settings, and may often be obtained non-invasively and with less effort than com-

parable sampling involving bat capture and handling. Assuming that sites with higher abun-

dances, activity levels or specific behaviors (e.g. feeding or breeding) are indicative of higher

habitat quality or availability, the opportunity exists to use these models to explore relation-

ships between species status and focal resources. Multi-state occupancy modeling also can be

applied to multi-season models to assess trends in specific habitat use that might not be appar-

ent solely from short-term assessments of species presence [60]. For example, overall preva-

lence (as represented by ψ1) of a widely ranging species may be relatively constant over time,

yet the proportion of sites at which focal species activity or behavior is tracked could change in

directions important to conservation management (e.g., habitat restoration, resource extrac-

tion impacts, etc.). Such models can allow inference about transition probabilities for both spe-

cies occupancy state and habitat state, and the dependence of species status on habitat

condition.

In summary, multi-state occupancy modeling can establish quantitative relationships in set-

tings where sampling is difficult and animal crypsis results in imperfect detection. Although

applied to coarse categories of bat activity and behavior, the resulting models are robust and

explicitly incorporate uncertainty. Krebs [61] stated that "Ecology is the scientific study of the

interactions that determine the distribution and abundance of organisms. We are interested in

where organisms are found, how many occur there, and why". By linking animal activity,

occurrence and habitat, multi-state modeling can use information of the how many (or how

much) to effectively describe the where and infer the why.
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