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1 Introduction

While wind energy has been employed for electricity production since the 1880s, it wasn’t
until the oil crisis of the 1970s that commercial wind energy production was pursued actively
in the United States. Wind energy use has grown rapidly since it began to be promoted as an
alternative to fossil fuels and was accorded sponsorship by the state of California in the 1980s
and by the Federal Government beginning in the late 1990s. Concerns about avian and chi-
ropteran deaths caused by wind turbines emerged in the early 1990s [Howell and DiDonato,
1991], with widely varying estimates of the fatality rates, and studies were mounted to assess
these rates as early as 1998 [Smallwood and Thelander, 2005]. Aggregate U.S. mortality es-
timates have been reported ranging from 20,000 to 573,000 birds annually [Erickson et al.,
2001, 2005, Loss et al., 2013, Manville, 2009, Smallwood, 2013, Sovacool, 2012]. High profile
lawsuits in such places as Altamont, CA (2007), Ventura, CA (2012), Nantucket Sound, MA
(2012), Port Clinton, OH (2014) have brought the issue to national prominence.

The näıve approach to estimating turbine-related avian and chiropteran mortality— sur-
veying periodically for bird and bat carcasses in designated areas near turbines at prescribed
time intervals, and scaling the counts by time interval and study area— leads to grossly
distorted estimates, for a variety of reasons. Some carcasses will be removed by scavengers
before the survey, for example; some carcasses may be present but undetected at the time of
the survey; some fatally injured birds or bats may survive long enough to alight outside the
study area; and carcasses may be discovered whose death arose from other causes or during
other time periods.

A number of investigators have developed modeling approaches leading to proposed ad-
justment formulas intended to overcome the distortions and biases of the näıve approach
[Erickson et al., 1998, Johnson et al., 2003, Shoenfeld, 2004, Pollock, 2007, Huso, 2011], each
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embodying slightly different assumptions about the processes affecting carcass discovery. The
wide variability of these estimation formulas leaves practitioners uncertain which of them (if
any) to use. Here we explain the assumptions that underlie four commonly used estimation
formulas, illustrate when each is appropriate and how they differ, and propose a new model-
based Avian and Chiropteran Mortality Estimator called “ACME” that extends all four of
them and introduces three new features to improve the reliability of mortality estimates: the
diminishment of Field Technician (FT) discovery proficiency as carcasses age; the reduced
rate of scavenger removal as carcasses age; and the possibility that some but not all carcasses
present but undiscovered by FTs in one search may be discovered in a later search.

2 The Model Underlying the New Estimator

Suppose that carcasses arrive in a Poisson stream with intensity m(t) that varies slowly with
time t and that they are removed (principally by scavengers) independently after random
times τj with complimentary CDF F̄ (t) = P[τj > t]. Suppose too that field technicians
(FTs) mount blinded searches at a sequence of times Ti at similar intervals Ii = [Ti − Ti−1],
and that the probability that a carcass of age τ will be discovered by an FT in such a search
is S(τ) (which may depend on the carcass age τ , but we are assuming for now that discovery
is statistically independent of the scavenging removal process). Let Ci denote the (random)
number of carcasses actually discovered in the search at time Ti. Then the expected number
of carcasses that arrive during the period and are discovered at time Ti is

c0i :=

∫ Ti

Ti−1

m(t)F̄ (Ti − t)S(Ti − t) dt.

Some existing mortality estimators (see Sections (2.1, 2.2)) embody the assumption that all
carcasses that arrived prior to the previous search at time Ti−1 will have been removed by
scavengers or discovered and removed by an FT in that earlier search, leaving none to “bleed
through” from earlier periods to be removed or discovered in the current search at time Ti.
Under that assumption, c0i would be the expected count E[Ci]. Other mortality estimators are
based on a different assumption— that undiscovered and unremoved carcasses from earlier
periods remain discoverable, so that Ci may include both “new” carcasses from the current
period and “old” ones that arrived during earlier periods. For k ≥ 1 the expected number
discovered at time Ti that arrived during the kth previous period but were undiscovered in
k previous searches would be

cki :=

∫ Ti−k

Ti−k−1

m(t)F̄ (Ti − t)S(Ti − t)
∏

0<n≤k

[

1− S(Ti−n − t)
]

dt

and the total expected carcass count for the ith search would be E[Ci] = ci :=
∑

k≥0 c
k
i .

Evidence (see Section (5)) suggests that both the assumption that all carcasses bleed
through for later discovery, and the assumption that none do, are wrong. We here introduce
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an intermediate possibility: that some fraction 0 ≤ B ≤ 1 do bleed through at each search,
leading to expected carcass count

E[Ci] = ci :=
∞
∑

k=0

B
k

∫ Ti−k

Ti−k−1

m(t)F̄ (Ti − t)S(Ti − t)
∏

0<n≤k

[

1− S(Ti−n − t)
]

dt. (1)

For slowly-varying m(t) ≈ m, this leads to a maximum likelihood estimate for the mean

total mortality mi =
∫ Ti

Ti−1
m(t)dt ≈ mIi in period (Ti−1, Ti] of

M̂⋆
i := Ci/R

⋆
i , (2a)

the carcass count Ci inflated by a factor 1/R⋆
i given by the inverse of the “reduction factor”

R⋆
i :=

1

Ii

∞
∑

k=0

B
k

∫ Ti−k

Ti−k−1

F̄ (Ti − t)S(Ti − t)
∏

0<n≤k

[

1− S(Ti−n − t)
]

dt (2b)

(so-called because on average the count Ci ≈ MiR
⋆
i will be the mortality Mi reduced by the

factor R⋆
i ). For similar search intervals Ii ≈ I, the kth term in this sum for k ≥ 1 represents

carcasses that arrived between kI days and (k+1)I days before the end of this search period,
were unremoved by scavengers over that entire period, were undiscovered and yet remained
discoverable in k consecutive searches, and were finally discovered at time Ti. This will be a
rare event unless kI is quite small, so only a few terms of this sum are typically sufficient to
achieve accuracy within a few percent. Simple approximations and truncation error bounds
for them are given in Section (3.1).

Shoenfeld [2004] describes as periodic those estimators (including his own) based on
the premise that all the undiscovered and unremoved carcasses remain discoverable, and
the assumption that consecutive periods are similar. Our proposed estimator, intermediate
between the periodic ones that assume 100% bleed-through and the aperiodic ones that
assume 0%, might be described as partially-periodic.

2.1 Special Cases & Previous Estimators

Before turning to the general case, consider first the simple situation with constant removal
rate (or hazard) [−F̄ ′/F̄ ](τ) ≡ r and constant search proficiency S(τ) ≡ s. Under this
assumption that the scavenger removal rate and FT discover probabilities do not depend
on carcass age τ , the removal times must follow the exponential distribution τ ∼ Ex(r)
with survival function F̄ (t) := P[τ > t] = exp(−rt) for t > 0 and mean removal time
t̂ := E[τ ] = 1/r. In that case, for constant inter-search intervals Ii ≡ I, the reduction factor
(2b) simplifies to a geometric series,

3



R⋆
i :=

1

I

∞
∑

k=0

B
k

∫ (i−k)I

(i−k−1)I

exp
(

− r(iI − t)
)

s(1− s)k dt

=
s [erI − 1]

rI[erI −B(1− s)]
=

s t̂ [eI/t̂ − 1]

I[eI/t̂ −B(1− s)]
. (3)

In the case of zero bleed-through, B = 0 and (3) leads to the estimator

M̂P
i =

I Ci

s t̂ [1− e−I/t̂]
, (4a)

that introduced by Pollock [2007] (under exponentially-distributed persistence).
Huso [2011] introduced a similar estimator M̂H that differs in replacing the term [1−e−I/t̂]

by min
(

0.99, [1 − e−I/t̂]
)

. The two are identical whenever (as usual) search intervals I are

shorter than the mean removal times t̂ times a factor of log 100 ≈ 4.6, for then [1− e−I/t̂] <
0.99 (otherwise Huso’s estimator MH

i is up to 1% higher than Pollock’s MP
i ).

In the case of full bleed-through, B = 1 and (3) gives the “periodic” estimator introduced
by Shoenfeld [2004],

M̂S
i =

I Ci

s t̂

[

eI/t̂ − 1 + s

eI/t̂ − 1

]

. (4b)

Finally, setting B = 1/(1− s) gives

M̂E
i =

I Ci

s t̂
, (4c)

the steady-state estimator introduced by Erickson et al. [1998].

2.2 Comparing Current Estimators

All four of the estimators M̂E
i , M̂

S
i , M̂

P
i , and M̂H

i are special cases1 of (3), for specific values
of B. Always

[

1− e−(4.6∧I/t̂)]M̂H
i = M̂E

i < M̂S
i < M̂P

i ≤ M̂H
i , (5)

1For unusually long search intervals Ii > 4.6t̂ then M̂H is up to 1% higher than special case M̂P of
M̂⋆. Also Pollock’s estimator M̂P is not limited to exponentially-distributed removal times τ with constant
removal rate r = 1/t̂, although the method commonly used to estimate t̂ [Erickson et al., 2008, §2.6 & §3.2]
is the MLE for that case and is badly biased for heavier-tailed distributions.
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so all four estimators are within 5% if I > 3t̂ and within 58% for I > t̂. Under the
assumptions of constant removal rate −F̄ ′/F̄ ≡ r and constant searcher proficiency S ≡ s,
the proposed new estimator M̂⋆ of (2) also lies in the interval [M̂E

i , M̂
H
i ] for any 0 ≤ B ≤ 1.

Differences among the estimators will be substantial for shorter search intervals, however.
For example, for search intervals substantially shorter than the mean scavenger removal time,
I ≪ t̂ and so

M̂H
i ≥ M̂P

i > (t̂/I)M̂E
i ≫ M̂E

i ,

and it will be important to assess bleed-through rate B accurately. And, if the assumptions
of constant removal rates and search proficiencies are incorrect, then the estimators may
agree with each other but all be badly biased.

3 Variable Search Proficiency and Removal Rates

Both the assumptions of constant removal rate and of constant search proficiency, irrespective
of carcass age, appear inconsistent with the observations presented in Section (5). In this
section we show how to go beyond those assumptions.

3.1 Diminishing Proficiency

For many data sets the search proficiency S(t) appears to diminish with increasing carcass
age t. In Section (5) it is shown that the data are fit well by an exponentially decreasing
success rate

S(t) = exp
(

− a− bt
)

(6)

for parameters a, b ≥ 0 (logistic models gave very similar results). With this modeling
choice, and for equal search intervals Ii = I (say, with searches at times Ti = iI), the ACME
estimator M̂⋆

i and reduction factor R⋆
i of (2) take the form

M̂⋆
i := Ci/R

⋆
i , (7a)

with

R⋆
i :=

∞
∑

k=0

B
k

∫ k+1

k

F̄
(

xI
)

e−a−xbI
∏

0<n≤k

[

1− e−a−(x−n)bI
]

dx =

∞
∑

k=0

T ⋆
k , (7b)

whose kth term T ⋆
k represents the fraction of carcasses that arrived in the search period

ending at Ti−k that are discovered at time Ti. Of particular importance (see Section (4)) is
the first of these
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T ⋆
0 =

∫ 1

0

F̄
(

xI
)

e−a−xbI dx, (7c)

the fraction of carcasses discovered at the search ending the interval in which they arrived.
Each T ⋆

k is expressible as the sum of 2k terms of the form

Q⋆
kmn := B

k(−1)m+1

∫ 1

0

F̄
(

(k + x)I
)

e−m (a+bI x)−n bI dx (8)

for suitable nonnegative integers m,n that can be enumerated recursively: beginning with
(k,m, n) = (0, 1, 0), each entry (k,m, n) generates at the next level (k + 1, m, n + 1) and
(k + 1, m+ 1, n+ k + 1). The first few terms are

T ⋆
0 = Q⋆

010 (9)

T ⋆
1 = Q⋆

111 +Q⋆
121

T ⋆
2 = Q⋆

212 +Q⋆
223 +Q⋆

222 +Q⋆
233

T ⋆
3 = Q⋆

313 +Q⋆
325 +Q⋆

324 +Q⋆
336 +Q⋆

323 +Q⋆
335 +Q⋆

334 +Q⋆
346

The truncation error from using only the first N terms 0 ≤ k < N of the infinite sum in
(7b) is bounded by

0 ≤ Truncation Error ≤ B
N F̄ (N I)

[

e−a−N bI

bI ∨ (1−Be−bI)
∧ (1− e−a)N

]

. (10)

For the examples presented in Section (5), the truncation error bound is about 1% of R⋆
i

with N = 3 terms, and about 0.1% with N = 5 terms.

3.2 Persistence Distributions

Bispo et al. [2013a,b] found (and we verify in Section (5.1) below) that log normal, log logis-
tic, and Weibull distributions with decreasing hazard functions all fit empirical persistence
data quite well, and that exponential distributions did not. Here we take the Weibull distri-
bution, parametrized in the form

F̄ (t) := P[τ > t] = exp
(

− (ρt)α
)

, t > 0 (11)

for rate ρ > 0 (in units of day−1) and unitless shape parameter α > 0. For this distribution
the key quantities Q⋆

kmn from (8) needed to compute R⋆
i are
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Q⋆
kmn := B

k(−1)m+1

∫ 1

0

exp
(

− (ρ(k + x)I)α −m (a+ bI x)− n bI
)

dx,

easily evaluated numerically using Simpson’s quadrature rule or, for the particular values of
α = 1

2
and α = 1, available explicitly in closed form:

Q⋆
kmn =

2Bk(−1)m+1

ρI
exp

(

−ma + (mk − n)bI + ρ/4mb
)

(α = 1
2
)

×
{

ρ

2mb

[

e−mb(
√
kIρ+ρ/2mb)2 − e−mb(

√
(k+1)Iρ+ρ/2mb)2

]

+ 2

√

πρ

mb

[

Φ
(

√

2mb/ρ
(

√

ρkI +
ρ

2mb

)

)

− Φ
(

√

2mb/ρ
(

√

ρ(k+1)I +
ρ

2mb

)

)]

}

Q⋆
kmn =

(−1)m+1e−m(a+bI)

(ρ+mb)I

[

1− e−(ρ+mb)I
](

Be−rI
)k

(α = 1)

where Φ(z) denotes the CDF for the standard No(0, 1) normal distribution.

4 Mortality Estimates

Point estimates like M̂⋆ of (2a) and (7a) are more informative when accompanied by some
measure of their uncertainty. For example, Erickson et al. [1998] recommend reporting 50%
and 90% interval estimates for mortality.

4.1 Interval Estimates for Mean Mortality mi

In this section we will find interval estimates for the mean daily mortality rate mi based on
observed carcass counts Ci. Such an estimate is given by a pair of functions lo(c) and hi(c)
with the property that

P
[

mi ∈ [lo(Ci), hi(Ci)]
]

≥ γ

for specified γ (such as 0.5 or 0.9, per Erickson et al. [1998]). The common symmetric choice
is to arrange that P

[

mi < lo(Ci)
]

and P
[

mi > hi(Ci)
]

are each below (1−γ)/2. Frequently
in practice however mortality is low enough (or removal is rapid enough) that observed
counts as low as zero or one are common [Huso et al., 2014], motivating interest in one-sided
interval estimates with lo(c) ≡ 0 and P

[

0 ≤ mi ≤ hi(Ci)
]

≥ γ. A third option is to find the
shortest interval that captures m with probability at least γ.

Under the model introduced in Sections (2, 3) the mortality Mi in the ith search period
(Ti−1, Ti] has a Poisson distribution whose mean is the product miIi of the average daily
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mortality in that period mi and the search period length Ii = (Ti − Ti−1). If these rates and
lengths are nearly constant (say, mi ≈ m and Ii ≈ I) over the period during which all the
carcasses found at time Ti arrived, and if the model parameters determining the reduction
factor R⋆

i of Eqn (7b) are nearly constant, then the conditional (given m) distribution of Ci

is

Ci | m ∼ Po
(

R⋆
imI).

With conjugate Gamma prior distribution m ∼ Ga(ξ, λ) (more on this below), the marginal
distribution of carcass counts is negative binomial

Ci ∼ NB(ξ, λ/(λ+R⋆
i I)) (12)

and the posterior distribution for m given Ci is again Gamma but with new parameters:

m | Ci ∼ Ga(ξ + Ci, λ+R⋆
i I). (13)

The Objective Bayes reference prior distribution [Berger et al., 2009] for m, expressing no
available prior or extrinsic information about it, is the improper m ∼ m− 1

2 , the limiting case
of the Gamma distribution with ξ = 1

2
and λ = 0. An alternative to Objective Bayes is to

follow an Empirical Bayes approach [Robbins, 1955, Casella, 1985] using the evidence about

m reflected by previous observations of {Ci} iid∼ NB(ξ, λ/(λ + R⋆
i I)) (typically this leads to

shorter intervals, since they reflect more evidence about the average mortality rate m). It
proceeds by making (often Maximum Likelihood) estimates ξ̂ and λ̂ of the parameters, and
basing interval estimates for m on these.

The resulting posterior γ = 50% or γ = 90% Credible Interval estimates for m are of the
form

[

lo(Ci), hi(Ci)
]

with the functions lo(c) and hi(c) given by one of:

Objective Bayes, One-Sided: lo(c) = 0

hi(c) = qgamma(γ, c+ 1

2
, R⋆

i
I)

Objective Bayes, Symmetric: lo(c) = qgamma((1 − γ)/2, c+ 1

2
, R⋆

i
I)

hi(c) = qgamma((1 + γ)/2, c+ 1

2
, R⋆

i
I)

Empirical Bayes, One-Sided: lo(c) = 0

hi(c) = qgamma(γ, ξ̂ + c, λ̂+ R⋆
i
I)

Empirical Bayes, Symmetric: lo(c) = qgamma((1 − γ)/2, ξ̂ + c, λ̂+ R⋆
i
I)

hi(c) = qgamma((1 + γ)/2, ξ̂ + c, λ̂+ R⋆
i
I)

where qgamma(x, a, b) [R Core Team, 2015] denotes the quantile function (inverse CDF) for
the Gamma distribution. If the mortality rate m(t) varies slowly enough that it may be
considered constant over a longer period of time including some n ≥ 2 search intervals of
total length I+ := (Ti − Ti−n), then the total number of carcasses C+ :=

∑

Ci found in
the n searches will again have a Poisson conditional distribution C+ | m ∼ Po(R⋆

i I+m) and
a Negative Binomial marginal distribution C+ ∼ NB(ξ, λ/(λ + R⋆

i I+)), and the posterior
for m will again be Gamma, m | C+ ∼ Ga(ξ + C+, λ + R⋆

i I+). Quantiles of this Gamma
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distribution will determine Credible Intervals for m that will be narrower by approximately
a factor of

√
n than those of (13), and so will specify m to higher precision. The assumption

of near-constancy of m and the model parameters determining R⋆
i would be violated for

periods long enough to include changes in season, vegetation, or migratory patterns.

4.2 Interval Estimates for Mortality Mi

In this section we find interval estimates for the number Mi of carcasses that arrived in the
interval (Ti−1, Ti] based on the observed carcass count Ci. These will be wider than the
intervals for mi of Section (4.1) because the aleatoric uncertainty and variability of mortality
events typically exceeds the epistemic uncertainty about parameter values.

In general the Ci carcasses discovered in the search at time Ti may include both some
of the Mi carcasses that arrived during the period as well as some of those that arrived in
earlier periods. Thus there is no way of making meaningful interval estimates about Mi from
Ci alone, without making some assumptions about either the {Mj} for j < i, i.e., about
mortality in the recent past, or about the absence of bleed-through.

4.2.1 Classical Confidence Intervals (B = 0 only)

If, despite the evidence in Section (5), one assumes that no carcasses from earlier periods
are ever discovered, i.e., if B = 0, then Ci ∼ Bi(Mi, R

⋆
i ) and classical Confidence Interval

estimates are available for this binomial model without concern for mortality in earlier peri-
ods. For example, a 90% one-sided classical confidence interval for Mi would be [Ci, hi(Ci)],
where

hi(c) = inf{M ≥ c : pbinom(c, M, R⋆
i
) ≤ 0.10}

where pbinom(x, n, p) [R Core Team, 2015] denotes the CDF for the Binomial distribution.

4.2.2 Objective Bayes Credible Intervals (any B)

No simple classical confidence intervals for Mi are available for the more realistic situation
of B > 0. Again, however, Objective Bayes and Empirical Bayes credible intervals may
be constructed for Mi based on the model of Sections (2, 3). Both Objective and Empirical
Bayes posterior distribution for Mi, given Ci, are derived in Appendix A.2 and presented as

P[Mi = M | Ci = C] = c× 2F1(−C,−M ; ξ − C −M ;−z) (14)

with ξ = 1
2
for Objective Bayes or ξ = ξ̂ for Empirical Bayes, for specified quantities c and z

given in Eqns (21b, 21a), respectively, as explicit functions of R⋆
i and T ⋆

0 from Eqns (7b, 7c)
(here 2F1(a, b; c; z) denotes Gauss’ hypergeometric function [NIST DLMF, §15]). Setting
p(m|c) := P[M = m | C = c] from (14), credible intervals for M are

9



[lo(Ci), hi(Ci)] (15)

with
One-sided: lo(c) =0

hi(c) =min{M :
∑

m≤M p(m|c) ≥ γ}
Symmetric: lo(c) =max{M :

∑

m≤M p(m|c) ≤ (1− γ)/2}
hi(c) =min{M :

∑

m≤M p(m|c) ≥ (1 + γ)/2}
while Highest Posterior Density or HPD intervals [the shortest possible intervals with cover-
age probability γ, see Gelman et al., 2009, §2.3] for M upon observing Ci = c are available
by sorting the values {p(m|c) :m ≥ 0} in decreasing order and identifying the smallest collec-
tion whose sum exceeds γ. Some of these distributions and intervals are shown in Figure (3).
Similar Empirical Bayes results are available from Eqns (14, 21a) with estimated hyperpa-
rameters ξ̂, λ̂.

In the absence of bleed-through (i.e., B = 0) all found carcasses are “new” so necessarily
Mi ≥ Ci. It is shown in Section (A.2.2) that the number (Mi−Ci) of undiscovered carcasses
then has the Negative Binomial distribution (Mi −Ci) | Ci ∼ NB

(

ξ+C, (λ+R⋆
i I)/(λ+ I)

)

,
so

P[Mi = M | Ci = C] =
Γ(ξ +M)

Γ(ξ + C) (M − C)!
(R⋆

i + λ/I)ξ+C(1− R⋆
i )

M−C(1 + λ/I)−ξ−M (16)

from which credible intervals for Mi are available. For example, the one-sided Objective
Bayes interval is [lo(Ci), hi(Ci)] with

lo(c) = c hi(c) = c+ qnbinom(γ, c + 1/2, R⋆
i
) (17a)

where qninom(p, alpha, prob) [R Core Team, 2015] denotes the quantile function for the
negative binomial distribution. HPD regions are available with a search.

A more direct and less model-dependent Bayesian approach to finding the conditional
distribution of M given C would be to begin with an improper uniform prior distribution
for M on the nonnegative integers {0, 1, . . . }. The posterior distribution of the unobserved
carcass count (M − C), after observing C ∼ Bi(M,R⋆), then has the negative binomial
distribution (Mi−Ci) | Ci ∼ NB(Ci+1, R⋆

i ), leading to very similar one-sided intervals with

lo(c) = c hi(c) = c+ qnbinom(γ, c + 1, R⋆
i
). (17b)

5 Results from Altamont

Warren-Hicks et al. [2012] report on data taken from January 7 to April 30 of 2011 in the
Altamont Pass Wind Resource Area in a study of the removal and discovery rates of aging
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bird and bat carcasses. One hundred and ten bird carcasses (predominantly brown-headed
cowbirds, Molothrus Ater, with AOU code BHCO [Pyle and DeSante, 2014]) and 78 bat
carcasses of disparate species were placed by Project Field Managers (PFMs), who then
checked every few days to confirm whether or not each carcass remained in place. Field
Technicians (FTs) would search for carcasses at approximately one week intervals, noting the
species and location of those they discovered but not disturbing or removing them. Successive
searches were conducted by different FTs who were unaware of any earlier carcass discoveries.
This “integrated detection trial” or IDT design [Warren-Hicks et al., 2012, Chap. 2] afforded
the possibility of exploring how removal rates and discovery probabilities may change over
time.

5.1 Removal by scavengers

Figure (1) illustrates the removal of brown-headed cowbird carcasses by scavengers. Removals
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Weibull P(T > t) = exp{− (ρt)α}: α̂ = 0.4695, ρ̂ = 0.0809, E[T] = 27.97d

Exponential P(T > t) = exp{− ρt}: ρ̂ = 0.0606, E[T] = 16.49d

Carcass type: Brown−Headed Cowbird

Figure 1: Empirical survival function showing removal of brown-headed cowbirds by scav-
engers (solid black stair-step lines), along with best Weibull distribution fit (solid blue line)
and best Exponential distribution fit (dashed red line). Note Weibull fits well while Expo-
nential does not.

are interval censored: we only observe the times of the last recorded discovery of a carcass’s
presence and the first of its absence. Thus the empirical survival function in Figure (1) con-
sists of two black stair-step curves based on the earliest and latest possible times of removal
consistent with the observations. The best Weibull distribution fit (see Section (A.1.1) for
derivation of likelihood function (18) and MLEs),

P[τ > t] = exp
(

− (ρt)α
)

, α̂ = 0.4695, ρ̂ = 0.0809 day−1

is illustrated with the solid blue curve. Its mean of E[τ ] = 27.97 day is nearly twice that
(16.49 day) of the best exponential distribution fit, shown as a dashed red line. The expo-
nential distribution model underestimates early removal rates and overestimates later ones.
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The estimated shape parameter α̂ = 0.4695 is 9.8 standard errors away from the value α = 1
for the exponential distribution, making the exponential distribution and its assumption of
constant removal rates entirely untenable. Best fits with log normal and log logistic were
nearly indistinguishable from Weibull, so we present only Weibull results here.

5.2 Search Proficiency and Bleed-through

Figure (2) illustrates the search process by FTs. Short vertical dashes at the top and bottom
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Model: S(t) = Bke−a−bt

Constant
Empirical

â = 1.0322, b̂ = 0.0706, B̂ = 0.9573.

Search Proficiency for:  Brown−Headed Cowbird

Figure 2: Empirical plot of search proficiency (dashed black line) for brown-headed cowbirds,
along with best fit exponentially-decreasing curve (solid blue line) and best fit of a constant
proficiency (dashed red line). Search successes (and failures) are shown as whiskers at the
top (and bottom) of the plot, respectively. Note diminishing proficiency model fits data well
while constant proficiency does not.

of the plot indicate the times of successful and unsuccessful searches, respectively. Dashed
black curve indicates a nonparametric estimator of time-dependent search proficiency, a
moving-average double-exponential window estimator with width of 5 day. Proficiency ex-
ceeds 30% initially, but falls off at about 7% day−1.

Solid blue line shows best exponentially-decreasing fit, based on MLEs α̂ = 0.4695,
ρ̂ = 0.0808, and B̂ = 0.9573 found by minimizing the negative log likelihood of Eqn (6) (see
Section (A.1.2)). Dotted red line shows best constant-proficiency fit.

The deviance between the proposed model and the constant-proficiency model, a sub-
model with b = 0 and B = 1, is D = 22.63. By Wilks’ theorem [Wilks, 1938] this would
have approximately a χ2

2 distribution with two degrees of freedom if the constant-rate model
were correct, evidently an entirely untenable supposition with P -value about 10−5.

Carcasses were later discovered after an initial miss 9 times in this study, and after some
earlier miss 12 times, confirming that some bleed-through occurred. Estimated bleed-through
rate is B̂ = 95.73%. Evidence against full bleed-through B = 1 is not strong enough to
reject that possibility.
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5.3 Mortality Estimation at Altamont

With the parameter estimates

α̂ = 0.4695 ρ̂ = 0.0809 day−1 â = 1.0322 b̂ = 0.0706 day−1
B̂ = 0.9573

for the Weibull removal distribution (α, ρ), exponentially falling search proficiency (a, b), and
bleed-through rate (B) (see Section (A.1)), we can use (7c) and a five-term approximation
to (7b) to evaluate the Reduction Factor R⋆

i for future searches at 7 day intervals and the
fraction of “new” carcasses T ⋆

0 found in each search:

R⋆
i = 0.2496 T ⋆

0 = 0.1740.

This suggests that about a quarter of the carcasses are discovered eventually, 17% in the first
search after arrival and the rest following bleed-through. This leads to the ACME adjusted
mortality estimate

M̂⋆
i = Ci/R

⋆
i = 4.01× Ci

for a seven-day interval ending in a search at which Ci brown-headed cowbird carcasses are
discovered. From the same data and parameter estimates we can find reduction factors for
other possible search interval lengths. For example, R⋆

i = 0.14 and M̂⋆
i = 6.9×Ci for I = 14-

day searches, while R⋆
i = 0.47 and M̂⋆

i = 2.1 × Ci for I = 2-day searches and R⋆
i = 0.57,

M̂⋆
i = 1.8× Ci for daily searches.
Figure (3) shows Objective Bayes posterior distributions (see Eqns (14, 21b)) for the

Brown Cowbird mortality Mi at Altamont in a 7-day search period in which Ci carcasses
were discovered for a few small values of Ci. Also given in the figure legends are point esti-
mates M̂⋆

i = Ci/R
⋆, posterior means M

⋆

i , and 50% and 90% Objective Bayes posterior HPD
interval estimates I50 and I90, derived in Section (A.2). These are also indicated in the figure
by vertical arrows at M̂⋆

i and M
⋆

i and by large red squares and filled blue disks illustrating
I50 and I90, respectively.

6 Discussion

Commonly-used existing estimators give similar results if search intervals Ii are much longer
than the typical time t̂i carcasses remain unremoved by scavengers, but differ drastically for
more frequent searches because some of these estimators assume that undiscovered carcasses
may remain from one search period to the next and some do not. Even when they agree they
may be biased by disregarding the diminishing removal rate (by scavengers) and discovery
proficiency (by Field Technicians) as carcasses age.
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Figure 3: Objective Bayes posterior distribution of mortality Mi for brown-headed cowbirds
using 7-day search intervals for carcass counts Ci = 0, 1, 2, 5 in panels (a), (b), (c), (d),
respectively, based on Eqns (14, 21b). Large red squares show 50% HPD credible intervals,
filled blue disks show 90% intervals. Downward arrows indicate ACME estimates M̂⋆

i =
Ci/R

⋆
i and Objective Bayes posterior means M

⋆

i .

14



This work presents a new estimator called ACME (an acronym for Avian and Chiropteran
Mortality Estimator) that includes many existing estimators as special cases, but that ex-
tends them in three ways: it reflects diminishing removal rates; it reflects decreasing discovery
proficiency; and it allows for an arbitrary rate of “bleed-through” of carcasses that arrived
before the current search period began. It also includes interval (as well as point) mortality
estimates.

Mathematical formulas and computational methods are derived and presented here for
both the initial problem of estimating the model’s five parameters on the basis of field
discovery trials, and the continuing problem of constructing point and interval estimates for
mortality on the basis of these parameter estimates and subsequent observed carcass counts.

Data Accessibility

A software package acme in the open-source R computer environment [R Core Team, 2015]
is available at CRAN for finding maximum likelihood estimates of the model parameters and
for evaluating the ACME estimator M̂⋆, to make use of this estimator more accessible. Data
used in preparation for this paper are included in that package. A guide to the design of
integrated discovery trials suitable for supporting inference about the diminishing rates of
discovery and removal (often unavailable from current discovery trial protocols) is also under
development.
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A Appendix: Computational Details

A.1 Parameter Estimates

In this section we construct maximum likelihood estimates from Integrated Detection Trial
(IDT) data for the five parameters (α, ρ, a, b, B) needed for the model of Sections (2, 3) to
support point estimates M̂⋆

i := Ci/R
⋆
i of Eqn (7) and interval estimates [lo(Ci), hi(Ci)] of

Section (4.2) for mortality Mi.
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A.1.1 Removal

Persistence times in this model have the Weibull distribution (11) with P[τ > t] = exp
(

−
(ρt)α

)

for t > 0, depending on the two parameters α and ρ. Carcass placement times t0 are
known, but removal times tr (by scavengers) are generally not observed. The data available
from an IDT bearing on (α, ρ) from the kth carcass consist of its placement time tk0, the last
time tkp ≥ tk0 of its known presence from discovery by either a FT or PFM, and the first time
tka ≥ tkp of its confirmed absence by a PFM (or tka = ∞ if it remains present throughout the
trial). The negative log likelihood function on the basis of these interval-censored data is

ℓrem(α, ρ) = −
∑

k

log
{

e−[ρ(tkp−tk0 )]
α − e−[ρ(tka−tk0)]

α
}

= ρα
∑

k

(tkp − tk0)
α −

∑

k

log
{

1− eρ
α[(tkp−tk0)

α−(tka−tk0)
α]
}

. (18)

The MLEs presented in Section (5.1) are the minimizing values (α̂, ρ̂), easily found by a
numeric search, along with approximate standard errors from the inverse Hessian.

A.1.2 Discovery

The probability of discovery of a t-day-old carcass present at an FT’s search is given in (6)
as S(t) = exp

(

− a− bt
)

, depending on the two parameters (a, b).
Again denote by t0 the placement time for a particular carcass (say, the kth) and by tp

the last time it is known to be present. Let m0 := min{n : Tn ≥ t0} and m∗ := max{n ≥
m0 : Tn ≤ tp index the first and last FT searches at which the carcass is present, and let
m∗ := max{n ≥ m0 : Dn = 1} index the last successful search (or m∗ = m0 if it is never
discovered). Introduce the short-hand notation pn(a, b) := exp

(

− a − b(Tn − t0)
)

for the
probability of discovery at the nth search, for m0 ≤ n ≤ m∗. For a carcass that arrived in
an earlier search period to be discovered now it must have been undiscovered and also “bled
through” at each previous search. Set Dn = 1 for a successful discovery and Dn = 0 for a
failure. Then the probability of the observed sequence of successes and failures for the kth
carcass, as a function of (a, b,B), is the sum over all possible indices m of the last search
time Tm at which the carcass bleeds through,

Lk
disc(a, b,B) = (1−B)

∑

m∗≤m<m∗

B
m−m0

∏

m0≤n≤m

pn(a, b)
Dn(1− pn(a, b))

1−Dn

+B
m∗−m0

∏

m0≤n≤m∗

pn(a, b)
Dn(1− pn(a, b))

1−Dn .
(19a)

The negative log likelihood contribution for all carcass combined is the sum

ℓdisc(a, b,B) =
∑

k

− logLk
disc(a, b,B). (19b)
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The MLEs presented in Section (5.2) are the minimizing values (â, b̂, B̂).

A.2 Posterior Distribution of Mortality

In this section we consider the posterior distribution of the mortality Mi in a fixed period
(Ti−1, Ti] of length Ii = (Ti−Ti−1) days, conditional upon the observed count Ci in the search
at time Ti, in order to find interval estimates for Mi. To make the notation less cumbersome
we omit the subscripts “i”.

The total number C of carcasses discovered in the search will in general be a sum C =
Cnew + Cold of “new” carcasses that arrived during the current interval and “old” ones that
arrived in earlier periods, but were undiscovered and unremoved in earlier periods. In this
model the mortality M ∼ Po(mI) in a particular search interval has a Poisson distribution
with uncertain mean mI for a daily average rate m ≥ 0 which varies sufficiently slowly
from one interval to another that we may treat it as constant over the arrival times of all
the carcasses discovered in a particular search. We employ a Gamma prior distribution
m ∼ Ga(ξ, λ) for m, usually with the Objective Bayes prior parameters ξ = 1/2, λ = 0
[Berger et al., 2009].

Each of the M carcasses that arrive during the period has probability T ⋆
0 of being discov-

ered in the current search, probability (R⋆ − T ⋆
0 ) of being discovered in some future search,

and probability (1− R⋆) of never being discovered. Thus the model may be described:

m ∼ Ga(ξ, λ) Average daily mortality

Cold ∼ Po
(

m(R⋆ − T ⋆
0 )I

)

From all previous periods

M ∼ Po(mI) Mortality this period

Cnew | M ∼ Bi(M,T ⋆
0 ) New count, conditional on M

Cnew ∼ Po(mT ⋆
0 I) New count, marginal

C = Cnew + Cold (new + old), indep.

where R⋆ ≥ T ⋆
0 are given in Eqns (7b, 7c).

A.2.1 Possible bleed-through (B > 0)

First consider the case where R⋆ > T ⋆
0 , and in particular B > 0, so the mortality M may

take any nonnegative integer value— even M < C, since some or even all of the C discovered
carcasses may have arrived in earlier search intervals. Summing over the possible number
x = Cnew of new carcasses and integrating over the uncertain mean daily mortality m,
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P[C = C,M = M ]

=

C∧M
∑

x=0

∫ ∞

0

{

mξ−1λξ

Γ(ξ)
e−mλ

}{

(mI)M

M !
e−mI

}{(

M

x

)

(T ⋆
0 )

x(1− T ⋆
0 )

M−x

}

×
{

[(R⋆ − T ⋆
0 )mI]C−x

(C − x)!
e−(R⋆−T ⋆

0 )mI

}

dm

=
C∧M
∑

x=0

Γ(ξ + C +M − x)

Γ(ξ)(C − x)!(M − x)!x!

λξ(T ⋆
0 )

x(R⋆ − T ⋆
0 )

C−x(1− T ⋆
0 )

M−xIC+M−x

[λ+ (R⋆ − T ⋆
0 + 1)I]ξ+C+M−x

= c×
C∧M
∑

x=0

Γ(ξ + C +M − x)

(C − x)!(M − x)!x!
zx

= c× Γ(ξ + C +M)

C!M !
2F1(−C,−M ; 1− ξ − C −M ;−z) (20a)

where 2F1(a, b; c; z) is Gauss’ hypergeometric function [NIST DLMF, §15] and where

c =
λξ(R⋆ − T ⋆

0 )
C(1−T ⋆

0 )
MIC+M

Γ(ξ)[λ+ (R⋆ − T ⋆
0 + 1)I]ξ+C+M

z =
T ⋆
0 [λ+ (R⋆ − T ⋆

0 + 1)I]

(1−T ⋆
0 )(R

⋆ − T ⋆
0 ) I

.

The induced marginal distribution of C ∼ Po
(

mR⋆I) is negative binomial,

P[C = C] =
Γ(ξ + C)

Γ(ξ) C!
λξ(R⋆I)C(λ+R⋆I)−ξ−C. (20b)

Dividing (20a) by (20b) gives the conditional distribution for mortality M given a carcass
count of C:

P[M = M | C = C] = c× 2F1(−C,−M ; 1− ξ − C −M ;−z) (14)

with c and z given by

c =
Γ(ξ + C +M)(λ +R⋆I)ξ+C(R⋆ − T ⋆

0 )
C(1− T ⋆

0 )
M IM

Γ(ξ + C) M ! (R⋆)C [λ+ (R⋆ − T ⋆
0 + 1)I]ξ+C+M

z =
T ⋆
0 [λ+ (R⋆ − T ⋆

0 + 1)I]

(1−T ⋆
0 )(R

⋆ − T ⋆
0 ) I

.

(21a)

For the Objective Bayes reference values ξ = 1
2
and λ = 0 the distribution is again given by

(14), but c and z are a bit simpler and don’t depend on the search interval length I:

c =
Γ(1

2
+ C +M)(R⋆)

1
2 (R⋆ − T ⋆

0 )
C(1− T ⋆

0 )
M

Γ(1
2
+ C) M ! (R⋆ − T ⋆

0 + 1)
1
2
+C+M

z =
T ⋆
0 (R

⋆ − T ⋆
0 + 1)

(1−T ⋆
0 )(R

⋆ − T ⋆
0 )

.

(21b)
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This is well-defined even though, by (12), the marginal predictive distribution of C is degener-
ate for λ = 0. Objective Bayes 100γ% credible intervals forM are presented in Section (4.2.2)
and illustrated in Figure (3), based on the conditional distribution of M (for specified C)
given in Eqns (14, 21b).

A.2.2 No bleed-through (B = 0)

For the remaining case of R⋆ = T ⋆
0 where only “new” carcasses can be found, the sum of

Eqn (20a) reduces to the single term x = C ≤ M , so only values M ≥ C are possible and
for these Eqn (14) becomes:

P[M = M | C = C] =
Γ(ξ +M)

Γ(ξ + C) (M − C)!
(R⋆ + λ/I)ξ+C(1− R⋆)M−C(1 + λ/I)−ξ−M . (16)

The number M − C of undiscovered carcasses will have a negative binomial conditional
distribution (M − C) | C ∼ NB

(

ξ + C, (λ + R⋆I)/(λ + I)
)

or, for the Objective Bayes case
of ξ = 1

2
, λ = 0, (M −C) | C ∼ NB

(

C + 1
2
, R⋆

)

, justifying the interval estimate for M given
in Eqn (17a).
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