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Tidal energy is a renewable resource that helps meet growing energy demands, but 

uncertainties remain about environmental impacts of device installation and operation. 

Monitoring programs are used to detect impacts caused by anthropogenic disturbances 

and are a mandatory requirement of project operating licenses in the United States. 

Because tidal technology is new, studies describing environmental change due to tidal 

devices are scarce, limiting the information that can be used to characterize 

environmental impacts for monitoring requirements. Extreme value analysis (EVA) was 

used to characterize infrequent values from monitoring studies that are potentially 

associated with impact, defined as relevant biological change as a consequence of human 

activity, at a tidal energy site. EVA was adapted for monitoring aquatic organisms in the 

water column using an active acoustic dataset from Admiralty Inlet, a proposed tidal 

energy site. First derivatives were used to identify extreme value thresholds to improve 

estimation precision. Return level plots, which indicate the average period that extreme 

values are expected to appear, and uncertainty estimates of return level predictions, were 

generated using Markov Chain Monte Carlo (MCMC) simulations. Managers and site 

developers could use EVA to characterize rare values that may be associated with 

impacts, and tailor monitoring programs to include operational protocols for conditions 

under which these events occur. To characterize the generality of tidal energy sites, 

metrics describing temporal and spatial distributions of fish and macrozooplankton at the 

Admiralty Inlet site and a second tidal energy site from the Fall of Warness, Scotland 

were compared using statistical methods (t-test, F-test, linear regression), spectral 

analysis, and EVA. General biological characteristics were similar enough that generic 

biological monitoring programs could be implemented at these two sites, which would 

streamline the permitting process as well as facilitate site comparison and detection of 

environmental impact due to tidal technology deployment. 
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Chapter 1: 
 

INTRODUCTION 
 

 

 

1.1    Impact detection during biological monitoring programs  

 

While scientists and managers have sought to understand the consequences of natural 

resource use and landscape modification, measuring environmental change as a result of 

human activity remains a challenge because of uncertainties in how to detect change 

(Schmitt and Osenberg, 1996). Environmental regulations are implemented to mitigate 

and understand the consequences of human activity, and the monitoring program is a 

common approach used to address environmental concerns. Biological monitoring 

programs focus on the detection of change in biological variables such as diversity, size, 

or abundance of monitored species (Bijleveld et al., 2012). A successful biological 

monitoring program provides data that will help regulators make informed decisions on 

adaptive management options (Schmitt and Osenberg, 1996). Despite the wide use of 

monitoring programs, optimal design and interpretation of monitoring data are widely 

debated. As a result, monitoring methods and sampling can vary among similar sites. 

 

Part of the problem in designing and interpreting data from environmental monitoring 

programs, is that there is a lack of consensus on how to define biological change. Both 

“effect” and “impact” have been used to designate significant change in environmental 

monitoring programs. Stewart-Oaten and Bence (2001) define an “effect” on abundance 

as the “difference between the abundance at a site after an alteration and the abundance a 

site would have if the alteration had not occurred”. An environmental impact can be 

distinguished from an effect by measuring “severity, intensity, or duration of the effect, 

and also the direction (positive or negative) of the effect” (Boehlert and Gill, 2010). 

Some authors do not make any distinction between effect and impact, use the terms 

interchangeably (e.g. Osenberg et al., 1994; Underwood, 1996; Hewitt et al., 2001), or 

use “effect” to designate the consequence of a disturbance and “impact” as the 

disturbance itself (e.g. Underwood, 1994). Impacts or effects can also be described as 

“weak” or “strong” (Mapstone, 1995; Hewitt et al., 2001). For the purpose of this study, 

we only use “impact” to designate relevant biological change as a consequence of human 

activity. We define impact as:  

 

Impact = frequency of occurrence x magnitude x duration 



 

2 
 

 

“Frequency of occurrence” refers to the number of times that an outcome is observed 

during the period of interest. The “magnitude” of an observation is measured by 

quantifying characteristics of the biological response to a perturbation, (e.g. mortality or 

change in behavior), or by quantifying characteristics of the disturbance, (e.g. increases in 

noise or pollutant concentration) (Polagye et al., 2011). “Duration” is the period of the 

impact. Increases in any of these three components will increase the severity of an 

impact. This definition can be used to encompass a wide range of impacts that regulators 

may be interested in monitoring, and can be used to categorize impacts based on their 

attributes (Fig. 1.1). Low or High magnitudes of each impact component (i.e. frequency, 

magnitude, and duration) can be used to characterize overall impacts of anthropological 

perturbations on an ecosystem.  

 

Duration = Low 

 

Duration = High 

 

Magnitude 

  

Magnitude 

Frequency 
LL LH 

 
Frequency 

LL LH 

HL HH 

 

HL HH 

 

Fig 1.1: Impact categories as a combination of Low/High quantities of Frequency of 

Occurrence, Magnitude, and Duration. The color code indicates severity, from green to 

dark red. The first letter in the two letter pairs corresponds to Frequency, the second to 

Magnitude.  

 

Deciding on the maximum level of “acceptable” impact is a high priority when forming a 

monitoring plan (Mapstone, 1995), and thresholds are often used when defining 

regulations. Definitions of ecological thresholds are diverse, and ecologists do not often 

agree on threshold values. Examples of variables with detrimental outcomes once 

thresholds are exceeded include the abundance of a population at collapse (Wilkie and 

Carpenter, 1999), a large change in percent coverage of benthic macro-fauna (Lundquist 

et al., 2010), or the temperature at which corals bleach (Jones, 2001). These thresholds 

are context specific and usually require prior knowledge about relevant and important 

environmental variables, which makes determining the value of a threshold difficult 

(Martínez-Abraín, 2008; Duinker et al., 2013), especially for data-poor sectors. In this 

case, impact thresholds can be modeled or estimated from baseline datasets.  

 

1.2    Tidal energy development 

 

Tidal energy is an attractive source of renewable energy because tides are consistent and 

predictable, resulting in energy that can be extracted at a constant and dependable rate 

(Polagye et al., 2011). However, extracting energy from tides does not come without 
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challenges. Because of high currents that pervade areas where tidal energy extraction is 

optimal, there is a high risk of damaging devices and increased difficulty in the 

deployment, retrieval, and maintenance of devices (Cada et al., 2007; Copping et al., 

2013).  

 

Currently, there are no requirements from the Federal Energy Regulatory Commission 

(FERC) detailing priorities for environmental monitoring at tidal energy sites (Copping 

and Geerlofs, 2011). Yet the development and implementation of environmental 

monitoring is part of every project license. All US prospective developers of tidal energy 

sites have to obtain a pilot project license from FERC. The FERC application must 

contain a monitoring plan that includes strategies to detect environmental effects of the 

project (Commission, 2008). When the license is issued, the monitoring plan that was 

included in the application becomes part of the license, and the developer is contractually 

obligated to meet the specified monitoring requirements.  

 

Determining monitoring objectives and methods is protracted and inefficient because the 

developer needs to iteratively revise the monitoring program until regulators and 

stakeholders are satisfied. As a result the monitoring objectives for these plans are driven 

by three main factors: legislation like the Endangered Species Act or Marine Mammal 

Protection Act, site characteristics, and budget constraints. Main focuses of biological 

monitoring are: interaction between marine fauna and devices, noise impacts of devices 

on marine fauna, and physical effects of energy removal (Copping et al., 2014). 

Perceived importance of biological concerns varies among sites. The consequence of lack 

of standardization is site-specific objectives, sampling, and analysis. 

 

Designing biological monitoring programs and defining impact thresholds for new 

technology are particularly challenging, as impact characterizations during monitoring 

plan development are often derived from preliminary samples or prior observations on 

similar disturbances (Schmitt and Osenberg, 1996). Tidal technology is a way to mitigate 

fossil fuel use, but studies describing environmental change due to tidal devices are 

scarce, which restricts information available to develop monitoring programs (Polagye et 

al., 2011). Therefore, to characterize impacts for biological monitoring programs at tidal 

energy sites, regulators must estimate impact thresholds or use models to characterize 

change.  

 

1.3    Objectives 

 

This study seeks to address some of the difficulties in developing environmental 

monitoring plans, particularly for data-poor sectors like tidal energy development. By 

characterizing and comparing biological attributes of tidal energy sites, a method is 
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developed for impact characterization using baseline data (i.e. data collected before the 

alteration began (Stewart-Oaten and Bence, 2001) ), and provides evidence for generic 

monitoring methods at tidal energy sites. Specific objectives include: 

1. Adapt EVA to establish thresholds for monitoring metrics using data from Admiralty 

Inlet. 

2. Use Bayesian methods to predict extreme value return levels and their uncertainty.  

3. Compare the biological characteristics of the Admiralty Inlet and Fall of Warness 

sites to determine whether they are similar enough to justify generic monitoring 

programs.  

4. Evaluate the generality of using EVA for biological monitoring at tidal energy sites.  
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Chapter 2: 
 

CHARACTERIZING BIOLOGICAL IMPACTS 

AT MARINE RENEWABLE ENERGY SITES  
 

 

 

2.1    Introduction   

 

Global interest in renewable energy continues to increase due to rising energy demand 

and environmental concerns. The ocean provides renewable energy resources, in the form 

of wind, geothermal, and marine hydrokinetic energy (Pelc and Fujita, 2002). Interest in 

developing tidal energy projects is growing because tides are a constant and predictable 

energy source (Polagye et al., 2011). While marine renewable energy (MRE) is an 

attractive alternate energy, implementing MRE technology includes uncertainty about 

how the technology will affect both biological and physical components of the 

environment (Pelc and Fujita, 2002; Inger et al., 2009; Frid et al., 2012).  

 

At this time, there are no regulations for MRE monitoring procedures, technologies, or 

metrics for monitoring programs (FERC, 2004). Monitoring programs are developed 

prior to the application for an operating license, and the time to develop a monitoring 

plan that is acceptable to regulators can delay the developer’s submission of the license 

application, adding cost and temporal uncertainty to permitting (e.g. Ocean Renewable 

Power Company, 2011).  

 

To detect an impact, baseline data (i.e. data collected before alteration began (Stewart-

Oaten and Bence, 2001) ) must be collected to facilitate a comparison after devices are 

installed and become operational (Underwood, 1994). Determining the maximum level of 

“acceptable” impact is a high priority when forming a monitoring plan (Mapstone, 1995). 

Impact above a threshold can determine if a tidal project is allowed to continue operating 

(FERC, 2008). Thus it is imperative that setting thresholds and characterizing impacts 

should be completed before MRE operations and concurrent monitoring begins 

(Martínez-Abraín, 2008). 

 

Extreme value analysis (EVA) is an approach used to model values that are infrequent 

but are potentially associated with impacts caused by large change (Coles, 2001). Used in 

engineering and hydrology (e.g. Mazas and Hamm, 2011; Agarwal et al., 2013), EVA 

can be applied to environmental monitoring to target rare but potentially significant 

impact events. These events are expected to be important to MRE regulators as these may 
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have long-lasting consequences for both the ecosystem and tidal devices. Examples of 

this type of impact would include a collision between a marine mammal and a device, or 

altering fish migration patterns. The overall goal of this chapter is to evaluate whether 

extreme value analysis can be used to characterize infrequent values that are potentially 

associated with biological impacts at a tidal energy site. 

 

 

2.2     Methods 

 

2.2.1     Study site description 

 

Admiralty Inlet is the proposed site of the Snohomish Public Utility District 1 (SnoPUD) 

tidal energy pilot project that received its project license from FERC on March 20
th

, 

2014. The proposed project, now dormant, would deploy two OpenHydro turbines 

(http://www.openhydro.com/) approximately one kilometer west of Whidbey Island. Two 

sub-sea power cables would connect the turbines to the onshore  electric grid (Public 

Utility District No. 1 of Snohomish County, 2012).  

 

Acoustic backscatter (i.e. reflected energy) data were recorded using an upward looking, 

bottom mounted BioSonics DTX echosounder operating at 120 kHz from May 9th until 

June 9th, 2011 (Horne et al., 2013). The echosounder was placed at 55m depth about 

750m off Admiralty Head at the SnoPUD tidal turbine site (Fig. 2.1). The echosounder 

sampled at 5Hz for 12 minutes every 2 hours. Because of a 3
rd

 surface echo, data values 

were constrained to 25 m from the bottom. A -75 dB re 1m
-1

 threshold was applied to 

remove noise (Horne et al., 2013). Data were binned into 12 minute samples, and 

vertically integrated, yielding 361 datapoints (Jacques, 2014).  

 

 
 

Fig. 2.1. Study location within Puget Sound, Washington (upper right), and location of 

the acoustic package (left) within the SnoPUD proposed turbine location. The blue dot 

indicates the echosounder location.  
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2.2.2     Echometrics 

 

Echometrics are a suite of indices that quantify variability of vertical biomass in the water 

column over space and through time (Urmy et al., 2012).  Among the suite of seven 

Echometrics developed by (Burgos and Horne, 2007) and refined by Urmy et al. (2012), 

density and aggregation indices are used to reflect horizontal or vertical changes in 

biomass distribution, which can be used to evaluate interactions between pelagic biomass 

and MRE devices. For the purpose of this study, high aggregation and density are 

assumed associated with high risk of collision with MRE devices. The density metric is 

the mean volume-backscattering strength, or mean Sv (unit: dB re 1 m
-1

(Maclennan et al., 

2002) hereafter dB), which is proportional to biomass density. The aggregation index was 

used to quantify vertical patchiness with values from 0 to 1, with 0 being evenly 

dispersed and 1 being aggregated.  

 

2.2.3     Extreme Value Analysis   

 

Extreme value analysis (Pickands, 1975; Coles, 2001; Beirlant et al., 2004) is a statistical 

technique used to model the probability and periodicity of extreme values, which are rare 

values in the tail of a probability distribution. Observed extreme values are used to model 

extremes of greater magnitude (Coles, 2001), making this analysis unusual in that it 

focuses on the tails and not the mean of a sample distribution. 

 

2.2.3.1    Peaks-Over-Threshold (POT) 

 

In the peaks-over-threshold (POT) method, extreme values are identified as exceedances 

above a threshold. These exceedances follow a generalized Pareto distribution (GPD) 

which is given by (Pickands, 1975): 

  

                             𝐺(𝑧) = {
1 −  (1 +

𝜀(𝑧−𝑢)

𝜎
)

−1
𝜀⁄

 𝑖𝑓 𝜀 ≠ 0

1 − 𝑒𝑥𝑝 {
−(𝑧−𝑢)

𝜎
}         𝑖𝑓 𝜀 =  0

                                             (1) 

 

 

where u is the threshold, σ is the scale parameter, ε is the shape parameter, and σ > 0.  

The shape parameter determines whether the GPD is bounded. The sign of the shape 

parameter determines the behavior of the GPD (Coles, 2001). If the shape parameter is 

negative, the GPD is finite. If positive, then the GPD can continue to infinity. To perform 

a POT analysis, first a threshold (u) is selected, then the scale (𝜎) and shape (ε) 

parameters are fitted to the data to model extreme values.  
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2.2.3.2    Identifying the extreme value threshold (first step of POT) 

 

Selecting the threshold for fitting the GPD to a frequency distribution is an important but 

difficult step in applying the POT method. If the threshold is too low then the model will 

be biased by including observations from the middle of the frequency distribution. If the 

threshold is too high then the model will be fitted to too few data points and the variance 

of the GPD parameter estimates will increase (Behrens et al., 2004; Jonathan and Ewans, 

2013). The ideal threshold is the lowest value that includes as many excesses as possible 

while still achieving model fit. 

 

The threshold is usually defined visually (Scarrott and MacDonald, 2012) using mean 

residual life (MRL) plots and parameter stability plots. An MRL plot shows the mean 

number of values above a threshold as the threshold increases. If a GPD is valid for 

excesses at a threshold u0, it should also be valid for the thresholds u > u0, with the scale 

parameter adjusted to the threshold u (Coles, 2001). So E(X – u | X > u) is a linear 

function of u, and the mean excesses change linearly with u at values of u for which the 

GPD is appropriate. The optimal GPD threshold is identified as the value where the curve 

becomes linear. The parameter stability plot shows the fit of the GPD scale or shape 

parameters for successive thresholds. The rationale for this method is that the shape ε and 

adjusted scale parameter σ
*
, with σ

*
 = σu – ε u, should be constant above u0, if u0 is a 

valid threshold for the GPD (Coles, 2001). On a parameter stability plot, the threshold is 

identified as the value where parameter estimates become stable, or near-constant. The 

adjusted scale parameter plots and the shape parameter plots are often complements of 

each other, so visual diagnostics on only one is necessary. 

 

Interpretation of MRL and parameter stability plots is challenging. Since the MRL plot is 

rarely smooth, it is difficult to decide where linearity is achieved. Interpretation of the 

parameter stability plot is a little easier, but in both cases the choice of threshold is 

subjective (Dupuis, 1999; Thompson et al., 2009).  

 

An objective and automated way of selecting a threshold for extreme values is to take the 

derivative of the threshold diagnostic plots and identify the value where the derivative 

first equals zero. Plot functions were smoothed to remove local variability using a 

polynomial kernel density smoother (Wand and Jones, 1994), implemented using the 

KernSmooth package in R. Derivatives were calculated for the smoothed functions and 

the inflexion point corresponding to the best threshold estimate from each plot was 

identified.  

 

To evaluate how dependent the threshold value is on the proportion of data used, 

thresholds were calculated for random subsets of the Admiralty Inlet mean Sv and 
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aggregation index data. Derivatives were first calculated for an MRL plot of the full 

dataset (n=361), and then were calculated on random subsets with the sample size for 

each set decreasing by one datapoint at a time. A threshold value was obtained for 350 

(n=360 to n=11, below which a threshold was not identifiable) subsets of the Admiralty 

Inlet data, for both mean Sv and aggregation index metrics.  

 

2.2.3.3    Fitting the GPD using Bayesian methods   
 

2.2.3.3.1    Applying Bayesian theory to POT 

 

While the most widespread method for fitting model parameters is maximum likelihood 

estimation (MLE), we performed a peaks-over-threshold analysis using Bayesian 

inference.  

Bayes theorem:  

                                 𝑃(𝐻𝑖|𝑑𝑎𝑡𝑎) =  
𝐿(𝐻𝑖|𝑑𝑎𝑡𝑎) × 𝑃𝑟𝑖𝑜𝑟(𝐻𝑖)

𝑃(𝑑𝑎𝑡𝑎)
                                            (2) 

 

Bayes theorem allows the generation of a posterior distribution, 𝑃(𝐻𝑖|𝑑𝑎𝑡𝑎), which is a 

probability distribution for an unknown variable. 𝐿(𝐻𝑖|𝑑𝑎𝑡𝑎) is the likelihood of the 

variable taking on a value given the data, with 𝐻𝑖 as the hypothetical value of the variable 

(in this case, the value of the scale or shape parameter), and 𝑃(𝑑𝑎𝑡𝑎) is the sum of all the 

possible ways of observing the data. The primary difference between MLE and Bayesian 

methods is that MLE uses estimate maximization whereas Bayesian analysis uses 

integration. The Bayesian method will result in a more conservative estimate of 

parameter values and distribution since it represents an integration over all probable 

values instead of selecting a maxima. A conservative estimate of parameter uncertainty is 

appropriate for MRE monitoring to ensure that the range of outcomes is not 

underestimated. As posteriors are analytically challenging to compute, these are typically 

simulated numerically. To obtain the posterior distribution for the two GPD parameters, 

scale σ, and shape ε, a Markov chain Monte Carlo (MCMC) simulation (Hastings, 1970) 

was used.  

 

A Bayesian analysis includes the utilization of a prior, which is information on the 

probability of the parameters, formed without knowledge of or previous experience with 

the sample data. The use of prior information needs to be justified as it influences the 

distribution of the posterior. For this study, the use of an informative prior could not be 

justified as there is a dearth of information on biotic distributions at tidally dynamic sites. 

Flat priors for the scale and shape parameters were used. These priors were centered at 0 

and have high variance which ensures that no bias is introduced to the posterior 

parameter distributions: σ ~ N(0,1000); ε ~ N(0,100). 
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2.2.3.3.2    MCMC application 

 

The MCMC method used for this study was a Gibbs sampler. The negative log-likelihood 

(NLL) for the GPD is given by Coles (2001): 

 

              𝑁𝐿𝐿(𝑢, 𝜎, 𝜀; 𝑥)  =  − { −𝑛 log 𝜎 − (1 +
1

𝜀
) ∑ log [1 + 𝜀

(𝑥𝑖−𝑢)

𝜎
]𝑛

𝑖=1   }                (3) 

 

where u is the threshold, σ is the scale, ε is the shape, x is the data, n is the number of 

values in the dataset.  

 

As is customary in MCMC simulations, the first 20% of the chains’ accepted draws were 

discarded as a burn-in period, and then chains were thinned according to the 

autocorrelation between chain draws (Gelman et al., 2013). Three tests (starting the chain 

from different initial values, the Geweke test (Geweke, 1992), and Gelman-Rubin test 

(Gelman and Rubin, 1992)) were performed to ensure that the MCMC chain was 

converging on the same posterior distribution.  

 

Posterior distributions for the GPD scale and shape parameters were produced for both 

mean Sv and the aggregation index. MCMC method attributes (jump size, chain length, 

thinning interval) (Table 2.1) were iteratively selected to obtain a well-mixed chain 

(30%-40% draws accepted) (Gelman et al., 2013).  

 

Table 2.1: MCMC parameter values for mean Sv and aggregation index simulations. 

Metric 
Scale 

jump size 

Shape 

jump size 

% draws 

accepted 

% draws out 

of bounds 

Chain 

length 

Thinning 

interval 

Mean Sv 1.54 0.42 35 5 200 000 25 

Aggregation 

Index 
0.18 0.46 36 21 400 000 50 

 

2.2.3.3.3    GPD parameter sensitivity to threshold value   

 

Because the threshold determines what portion of the data is fit to the GPD, it is 

important to examine the sensitivity of the GPD scale and shape estimates. Simulated 

data were generated following GPD distributions with known threshold, scale, and shape 

parameters. The MCMC routine was then used to fit the scale and shape parameters while 

increasing the threshold value by increments of 0.01 units. This procedure was repeated 

on different combinations of the median, 0.025 and 0.975 quantiles for the scale and 

shape estimates for density (Mean Sv) and aggregation (Aggregation Index) using the 

Admiralty Inlet data. 
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2.2.3.4    Return Level   

 

While it is informative to examine values of location, shape, and scale parameters of the 

fitted GPD, further inference can be gained from examining return levels. qp is the return 

level associated with the return period 1/p, and qp is the value that is expected to be 

exceeded on average once every 1/p time units (Behrens et al., 2004). Return levels for 

data exceedances are generated by inversing the GPD cumulative density function 

(Equation 1). For an arbitrary probability p, the corresponding return level qp is (Behrens 

et al., 2004): 

 

                                                                 𝑞𝑝 = 𝑢 +
𝜎

𝜀
(𝑝−𝜀 − 1)                                                (4) 

 

where u is the threshold, σ is the scale, ε is the shape, qp is the return level, and p is the 

return level probability.  

 

By plotting the return level qp against the return period 1/p, one obtains a return level plot 

that shows the expected periodicity for data excesses and values extrapolated beyond the 

range of the sampled data.  

 

2.2.3.5    Bivariate peaks-over-threshold analysis 

 

The bivariate POT method fits the GPD to two variables as a joint process. This method 

can be used as a supplement to the univariate analysis as it can be used to examine the 

correlation of processes underlying extreme values. While multivariate extreme value 

theory is well-developed, model computation and validation are challenging due to 

greater independence between high-level extreme event processes (Coles, 2001). There 

are several methods to obtain a bivariate model, including a logistic model: 

 

                                        𝐺(𝑥, 𝑦) =  (𝑥
−1

𝛼⁄ + 𝑦
−1

𝛼⁄ )
𝛼

, 0 < 𝛼 < 1                                (4) 

 

where x and y are the fitted univariate GPDs for the x and y variables (Coles, 2001).  

 

Complete independence of the two variables is obtained when α = 1, and inversely, 

dependence is obtained when α approaches 0. Results of the bivariate analysis are GPD 

estimates for x, y, and an alpha calculation that follows a bivariate model. In this study, 

the logistic bivariate model was fitted to mean Sv and the aggregation index using a 

maximum likelihood estimation (MLE) function provided by the evd R package (A.G. 

Stephenson, 2002). The metric thresholds obtained from the univariate analysis were 

used to define the bivariate distribution, which is an accepted method of determining 

thresholds for the bivariate analysis (Coles, 2001).  
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2.3    Results 
 

2.3.1    Threshold estimation 
  

2.3.1.1    Mean Sv threshold diagnostics 

 

Visual interpretation of diagnostic plots resulted in a preliminary threshold estimate. The 

mean residual life plot is approximately linear between u ≈ -75 dB and u ≈ -71 dB (Fig. 

2.2a). While it may appear that linearity is not achieved until u ≈ -69 dB, there are only 6 

datapoints above -69 dB which increases uncertainty of an estimate. Patterns in the shape 

parameter stability plot (Fig. 2.2b) mimic those of the mean residual life plot (Fig. 2.2a). 

The shape parameter appears to be stable until about u ≈ -75 dB, which is also the value 

where variance sharply increases. After u ≈ -71 dB, the sharp increase in variance 

indicates that there are too few values to estimate parameter stability.   

 

 
Fig. 2.2: The mean residual life plot (a) and scale parameter stability plot (b) with the red 

line representing the smoothed plots, the corresponding derivatives (c,d) of the smoothed 

plots, with the red line showing dY=0 for Mean Sv. 

 

To obtain a more precise estimate of the threshold, the derivative method was applied to 

mean Sv data (Fig. 2.2). After smoothing both the MRL (Fig. 2.2a) and parameter 
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stability plots (Fig. 2.2b), and taking the derivative (Fig 2.4c, 2.4d), the first point where 

dY = 0 for the parameter stability plot is u = -74.48 dB, and for the mean residual life plot 

it is at u = -74.58 dB. These values are very close and are consistent with the visual 

diagnostics (Fig. 2.2 a, b). We set the threshold for the POT analysis to the average of the 

two values from the derivative plots, which is u = -74.53 dB. A threshold of u = -74.53 

dB results in 90 exceedances, which is 25% of the data (Fig. 2.3). 

 
Fig. 2.3: Histogram of mean Sv values with the threshold marked at -74.53 dB (blue line) 

and GPD fit (red line). The scale and shape parameter values were obtained from 

posterior medians. 

 

2.3.1.2    Aggregation index threshold diagnostics   

 

Diagnostic plots for the aggregation index metric (Fig. 2.4) differed from the mean Sv 

threshold diagnostic graphs. The mean residual life plot (Fig. 2.4a) increased rapidly until 

about u ≈ 0.14 m
-1

, where variance increased and the plot became approximately linear. 

The linear trend is more visible in the scale parameter stability plot (Fig. 2.4b), where the 

shape parameter estimate decreased from u ≈ 0.05 m
-1

 to u ≈ 0.15 m
-1

, then it remained 

constant until u ≈ 0.2 m
-1

 where the variance increased steadily.  
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Fig. 2.4: Graphical and derivative aggregation index threshold diagnostic plots. The mean 

residual life plot (a) and scale parameter stability plot (b) with the red line representing 

the smoothed plots, the corresponding derivatives (c, d) of the smoothed plots, with the 

red line showing dY=0 

 

A threshold estimate was obtained using the derivative method for each plot. The 

threshold value from the mean residual life plot derivative was u = 0.135 m
-1

. The first 

value where dY= 0 for the derivative of the parameter stability plot was u = 0.05 m
-1

, but 

did not correspond to stabilization in the shape parameter estimate, which is illustrated by 

the amplitude of values around this point. The threshold from the parameter stability plot 

was set to u = 0.146 m
-1

, the second inflexion point in the derivative plot, as it also 

matched the result from the MRL plot (Fig. 2.4c). The average of the threshold estimates 

from the MRL and parameter stability plots is 0.140 m
-1

. As with mean Sv, this value is 

consistent with visual interpretation of the mean residual life and parameter stability 

plots. A threshold of 0.140 m
-1

 results in 26 exceedances for the aggregation index, which 

is 7% of the data (Fig. 2.5). 
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Fig. 2.5: Histogram of aggregation index values with the threshold marked at 0.140 m

-1
 

(blue line) and GPD fit (red line). The scale and shape parameter values were obtained 

from posterior medians. 

 

2.3.1.3    Threshold robustness 

 

The robustness of the derivative analysis was examined by calculating thresholds for 

subsets of data of decreasing size. For both the mean Sv and aggregation indices, 

reduction in the sample size affected the threshold estimate (Fig. 2.6). The threshold for 

mean Sv remains stable until about n=110, where the estimated threshold starts to 

decrease with sample size. The threshold for the aggregation index becomes unstable at a 

sample size of approximately n = 235. The aggregation index threshold is more 

dependent on sample size as 7% of datapoints are considered extreme compared to 25% 

of the mean Sv data. In both cases, the estimated threshold is considered robust as the 

threshold estimate does not immediately change with decreasing sample size.  
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Fig. 2.6: Threshold estimates from the derivative method plotted against data sample size 

for (a) mean Sv (b) aggregation index.  

 

2.3.2    Bayesian analysis   
 

2.3.2.1    Shape and scale posteriors   

 

The first objective of the Bayesian analysis was to generate posterior distributions for the 

GPD scale and shape parameters using the MCMC method. The scale and shape posterior 

distributions for both mean Sv and aggregation index metrics show a slight right-skew 

(Fig. 2.7).  The range (-1 to 1) of the shape parameter for both variables contained 

positive and negative values. Given that the shape parameter controls the shape of the 

GPD, this will affect return level predictions. 
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Fig. 2.7: Posterior densities for the mean Sv (a) scale and (b) shape parameters, and 

aggregation index (c) scale and (d) shape parameters 

 

The aggregation index shape parameter density has a larger range (-1 to 1) and larger tails 

compared to the mean Sv shape parameter posterior density (range: -0.2 to 1) (Table 2.2). 

The greater 95% quantile parameter range is attributed to the smaller number of points 

above the aggregation index threshold compared to the mean Sv threshold.  

 

Table 2.2: Median parameter values and the 95% quantiles in parentheses (lower, upper 

bounds. 

Metric Scale Shape 

Mean Sv 2.147 (1.541, 2.913) 0.0712  (-0.129, 0.378) 

Aggregation Index 0.191  (0.114, 0.319) -0.264  (-0.619, 0.257) 
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2.3.2.2    MCMC diagnostics 
 

2.3.2.2.1    Convergence 

 

Three diagnostics were computed for the MCMC chains to verify that they converged to 

stationary distributions. The first diagnostic was to start multiple chains from different 

pairs of scale and shape values to ensure that they converged at the same posterior 

distribution (Fig. 2.8). Six chains of a million draws which had a range of starting values 

(scale: 0 to 15, shape: -2 to 2) converged to the same stationary distribution. The Gelman-

Rubin test resulted in point estimates of the potential scale reduction factors that were 

equal to 1, indicating that convergence had been achieved, and the Geweke test resulted 

in Z-scores that were between -2 and 2 indicating that the first 10% were not significantly 

different from the last 50% of the scale and shape chains. Collectively, these tests 

confirmed that the chain was converging to a single stationary distribution.  

 

 
Fig. 2.8: (a) scale and (b) shape posteriors for the mean Sv metric from six chains with 

six different pairs of starting values.  

 

2.3.2.2.2    MCMC sensitivity to threshold value   

 

The sensitivity of the GPD scale and shape estimates to the threshold value was 

examined. MCMC simulations performed on simulated GPD data with known scale and 

shape parameters returned consistent scale and shape parameters when the threshold 

input was within 0.2 to 1.2 units of the defined threshold (Fig. 2.9). These results varied 

depending on the combinations of scale and shape parameters in the simulated data. In all 
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cases, the MCMC algorithm was unable to fit the true scale and shape parameters once 

the threshold value deviated greater than 1.2 units from the true threshold. 

 
 

Fig. 2.9: Median values from MCMC generated posteriors of scale and shape parameters 

plotted as a function of threshold, for simulated data with known parameters, (a) scale 

and (b) shape parameter combination for mean Sv and for (c) scale and (d) shape 

aggregation index. The known scale and shape parameter values are depicted by the red 

line.  

 

2.3.2.3    Return levels   

 

Using the GPD parameter posteriors, return level plots with credible intervals were 

generated to examine how the return period changes as extreme values increased. The 

median mean Sv return level steadily increased as the return period increased, reaching -

40 dB every 10 years (Fig. 2.10 a).  

 

The aggregation index return level exhibited a different behavior than mean Sv. The 

median return level increased slowly until it reached about 0.75 m
-1

 at 1 year (Fig. 2.10 
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b), and then increased exponentially, reaching an asymptote at 0.75 m
-1

. The aggregation 

index credible intervals increased at a greater rate than the intervals for mean Sv, with the 

upper quantile slopes rapidly increasing after a 1 day return period.  

 
Fig. 2.10: Median (a) mean Sv and (b) aggregation index return levels. The solid lines is 

the best fit, and grey colors indicate credible intervals, from 10% (darkest grey) 40%, 

80%, 90% lightest grey). 

 

The rapid expansion of the credible intervals for the return levels of both metrics is 

attributed to sample size. The data were collected for one month, which increases the 

uncertainty in return levels for larger return periods (Coles, 2001).  

 

Return levels must be interpreted with caution. The aggregation index return levels are 

bounded by the values of 0.14 m
-1

 and 1 m
-1

, which is the largest possible aggregation 

index value. Most of the calculated upper 95% credible interval bounds exceed the upper 

bounds for the metric (Table 2.3). This occurs because a positive shape parameter makes 

the GPD infinite. For metrics that are bounded, the values that exceed the bound limits 

could be replaced by the true metric bounds (e.g. 1 m
-1

 for the aggregation). For metrics 

that are unbounded, such as Mean Sv, the return levels could be constrained to 

biologically reasonable values. 
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Table 2.3: Median values and 95%  (lower, upper) credible intervals for mean Sv and 

aggregation return levels for univariate GPD fit, MLE return level for bivariate GPD.   

 Mean Sv Aggregation Index 

Return period Univariate Bivariate Univariate Bivariate 

1 day -68.66  (-71.21, -62.43) -68.86 0.49 (0.29, 1.25) 0.46 

1 week -63.32  (-69.28,-40.64) -63.93 0.64 (0.31, 2.79) 0.59 

1 month -58.80  (-68.12, -9.68) -59.92 0.71 (0.32, 4.57) 0.64 

1 year -49.88  (-66.58, 106.6) -52.31 0.79 (0.32, 9.75) 0.69 

5 years -43.23  (-65.82, 267.7) -46.88 0.81 (0.32, 15.4) 0.71 

10 years -40.13 (-65.54, 374.2) -44.41 0.82  (0.32, 18.7) 0.71 

 

 

2.3.3    Bivariate peaks-over-threshold 

 

The logistic model for the bivariate POT analysis was fitted to the mean Sv and 

aggregation index data to examine whether additional information was provided by 

modeling the variables as a joint process. Only 8 data points are jointly above the mean 

Sv and aggregation index thresholds. The α-value is 0.95 suggesting weak correlation, 

and almost independent variables. MLE estimates for the bivariate model are close to the 

median values estimated by Bayesian inference (Table 2.3), and the differences changed 

the shape of the return level curves slightly (Fig 2.11 a, b). Standard errors for the MLE 

estimates are large (Table 2.4), reflecting the difficulty in fitting a bivariate model to this 

data due to the limited number of joint extreme datapoints (n=8) and the near 

independence of the variables.  

 

Table 2.4: Parameter estimates for the bivariate peaks-over-threshold analysis 

 
        mean Sv Aggregation Index 

 

 
Scale Shape Scale Shape Alpha 

MLE 2.13 0.05 0.19 -0.32 0.95 

Standard Error 0.34 0.12 0.05 0.17 0.04 

 

 

Return levels for both the mean Sv and aggregation index (Table 2.3) in the bivariate case 

are lower than in the univariate case. This is an expected result as high aggregation and 

density rarely occur at the same time and joint events occur less frequently than single 

events.  
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Fig. 2.11: Median univariate (blue) and bivariate (red) return level for (a) mean Sv and 

(b) aggregation index.  

 

 

2.4    Discussion 
 

2.4.1    Extreme value analysis applications for biological monitoring 

 

EVA can be used to analyze a baseline dataset and make inferences about conditions that 

may be associated with biological impacts. These inferences are useful to refine 

environmental monitoring programs. Observations above a threshold are statistically rare 

and occur where high-risk events are likely to transpire (Coles, 2001). Observing values 

above a threshold or an increase in the frequency of extreme values, compared to baseline 

measurements, could be used as an indication that an impact has occurred. Defining a 

threshold for extreme values will help MRE managers assess the risk of impacts, as well 

as establish a baseline for expected extreme value periodicity.  

 

EVAs are also useful for understanding conditions under which an impact is likely. 

Extreme events can be tested for correlation with biological covariates, such as a metric 

tracking vertical distribution in the water column (e.g. center of mass), or environmental 
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covariates such as tidal speed or weather structures. Correlation with covariates could 

lead to a greater understanding of conditions under which impacts may occur, which 

could be used to increase monitoring effort during these conditions. 

 

2.4.2    Utility of Peaks-over-threshold   

 

Selecting a threshold is a critical and challenging step in the POT analysis (Dupuis, 

1999). Besides examining diagnostic plots, other methods for selecting thresholds have 

been proposed, but many of these are computationally intensive or case-specific (Mazas 

and Hamm, 2011; Scarrott and MacDonald, 2012). In this study, a derivative method is 

used to establish the GPD threshold. This method utilizes traditional diagnostic plots but 

with greater precision and objectivity than visual examination, and with low computation 

load. For both mean Sv and aggregation index metrics, values where derivatives equaled 

zero were similar for both the MRL and parameter stability plots. Matching threshold 

estimates from derivatives of both plots is interpreted that the derivative method 

accurately estimated the GPD threshold.  

 

Even though the threshold is not sample size dependent, it is sample dependent. POT 

analysis allowed estimation of threshold values, but the true GPD threshold may differ 

than the one determined by the POT threshold analysis, depending on how the data 

represents the true distribution of outcomes. Precision of the GPD threshold value is 

increased by collecting more baseline data and by sampling the full range of conditions at 

a MRE site.  

 

There are no generic guidelines for biological monitoring at tidal energy sites in the US, 

and there are no guidelines for the temporal sampling resolution or contents of a baseline 

dataset (FERC, 2004). Monitoring plans for pilot projects in the US have a wide range of 

monitoring methods, objectives, and are site-specific. The Admiralty Inlet baseline 

dataset was collected continuously for one month. In comparison the baseline data for the 

Cobscook Bay tidal energy project was collected over nine 24 hour periods in a year 

(Viehman, 2012). In a BACI analysis, a representative baselines dataset is crucial for 

comparison to data collected after the environmental alteration has occurred if impacts 

are to be detected (Schmitt and Osenberg, 1996). The Admiralty Inlet and the Cobscook 

Bay datasets contain different temporal resolutions and the threshold analysis for the 

Cobscook Bay dataset would likely reflect seasonal fluctuations rather than daily biotic 

variability. It will be important to determine the appropriate temporal resolution of 

baseline sampling, both to establish an accurate GPD threshold and to detect biologically 

relevant change once project installation and operation begins.  

 



 

24 
 

Results from the bivariate peaks-over-threshold analysis indicated that joint extreme 

density and aggregation events were too rare to accurately model. A bivariate analysis 

was incorporated in this study because a joint extreme aggregation and density event 

potentially represents a greater risk for animal collision with a tidal turbine device. A 

precise estimate of a joint return level prediction was not determined, and extreme values 

of the two metrics were independent. The simultaneous occurrence of an extreme density 

and an extreme aggregation event is improbable for this dataset. Because the mean Sv 

and aggregation index metrics were independent, the bivariate model does not provide 

additional information to the univariate models and the mean Sv and aggregation index 

metrics should be considered separately in a monitoring program. 

 

Multivariate extremes can be used to model highly correlated processes, such as wind, 

wave amplitude, and current fluxes (Nerzic et al., 2007) and spatial dependence in 

extremes (Northrop and Jonathan, 2011). A multivariate model may be informative if 

additional data confirms correlation between biomass density and aggregation, or if 

correlations exist between extremes of other metrics. A multivariate model could also be 

used to examine spatial variability of metric values if multiple datasets are collected at a 

site.  

 

The spread of the 95% credible intervals around return levels show that return level 

predictions are uncertain, even at small return periods. This wide range of return level 

credible intervals is partially due to the conservative uncertainty estimate from Bayesian 

computation. Uncertainty could be decreased by collecting baseline data over a longer 

period, but this may be impractical as data collection surveys are expensive (e.g. Verdant 

Power, 2010). Baseline surveys could also be supplemented by data collected during the 

project operation period; with return levels estimated separately and used to inform 

project managers about conditions under which increased monitoring is necessary (i.e. 

conditions that may result in extreme events). This approach is useful during ongoing 

monitoring programs, as more data will increase accuracy of GPD parameter estimates, 

which will, in turn, decrease return level uncertainty.  

 

Parameter uncertainty can also be reduced by performing an MCMC analysis using 

informative priors. Informative priors have been used in impact detection studies (e.g. 

Crome et al., 1996; Garthwaite and O’Hagan, 2000; Martin et al., 2005), and can be 

formed by soliciting expert opinion on the effects of and relationship to a disturbance 

(e.g. Behrens et al., 2004). To illustrate by example: MRE development has no negative 

impact on the environment, MRE development has a strong negative effect on fish 

abundance, the negative effects of MRE devices are linearly related to noise production 

(Polagye et al., 2011). As more baseline and operational biological effect studies are 

conducted and environmental impacts are better understood, it will be possible to create 
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informative priors. An informative prior is expected to reduce the range of GPD 

parameter estimates, which will decrease the range of the return level credible intervals. 

As a cautionary note, interpretation of MCMC analyses using informative priors should 

be conservative, as they may be biased in favor of expert belief (Gelman et al., 2013). 

Informative priors could also be used to predict impact severity under different impact 

expectations (e.g. tidal turbines will or will not impact fish behavior). Strategic 

Environmental Assessments have shown that stakeholder groups (e.g. developers, 

regulators, and fishers) vary greatly in how they perceive MRE development’s effects on 

the environment (Gray et al., 2005; Doelle, 2009). If in doubt, then non-informative 

priors will provide the most conservative, even though they will result in the widest, 

credible intervals in return period prediction. 

 

2.4.3    Statistical vs. biological significance 

 

The goal of any monitoring is to detect whether a perturbation causes a significant 

change. Regulators typically set a threshold for the amount of change that is acceptable.  

Determining this threshold is crucial as regulators may use the amount of environmental 

change detected to evaluate the success of a project, trigger adaptive management, or 

terminate the project earlier than scheduled (FERC, 2004). The debate over how to 

quantify a biologically significant effect is ongoing (Germano, 2000; Hobbs and Hilborn, 

2006; Lovell, 2013). Using an extreme value approach, one can set a threshold for 

extreme events based on statistical significance. A biologically significant change does 

not necessarily correspond to statistical significance (Martínez-Abraín, 2008). The choice 

of biological significance relies on expert, and potentially subjective, judgment (Lovell, 

2013). Consensus among stakeholders may be difficult to reach (Gray et al., 2005). 

Martínez-Abraín (2008) advocates that these decisions have to be made before 

monitoring begins, which, given the paucity of the data, is challenging in poorly studied 

ecosystems.  

 

 Statistical thresholds can be used as guidelines for regulators, and supplemented by 

return level plots to facilitate evaluations of the biological relevance of extreme events. 

One advantage of EVA in the debate on what constitutes a significant effect is that 

extreme values are rare, but very detectable with active acoustics. The detectability of 

extremes is important in variable and energetic environments. Detectability of extreme 

events coupled with the ability to set thresholds provides a starting point to define an 

impact, compared to the uncertainty when establishing a biologically-based threshold. 

Knowledge of a study site’s biology helps determine whether statistical thresholds 

identified by EVA are biologically relevant. 
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Chapter 3: 
 

COMPARISON OF BIOLOGICAL CHARAC-

TERISTICS IN DISTRIBUTION OF FISH AND 

MACROZOOPLANKTON AT TWO TIDAL 

ENERGY SITES 
 

 

 

3.1    Introduction 

 

Biological monitoring programs are important to identify and minimize impacts from 

anthropogenic disturbances. These programs focus on the detection of change in 

biological variables such as diversity, size, or abundance of monitored targets (Bijleveld 

et al., 2012). Many monitoring programs require the collection of baseline data before 

any alteration to an ecosystem (Stewart-Oaten and Bence, 2001). At a single site, 

biological characteristics before and after an alteration can be compared to detect change, 

as in a classic Before – After – Control – Impact (BACI) design  (Underwood, 1994). 

Among sites, standard sampling protocols permit monitoring datasets to be compared to 

evaluate if observed changes are site-specific or generic. 

 

Biological monitoring programs are mandatory for marine renewable energy (MRE) tidal 

energy projects in the US, although no regulations for monitoring procedures, 

technologies, or metrics currently exist (FERC, 2004). This lack of standardization has 

resulted in different and site-specific monitoring programs for each tidal energy pilot 

project in the US. Standardization of a portion or all monitoring components would 

enable monitoring plans to be proposed in a time-efficient manner, and make monitoring 

datasets comparable across sites.  

 

Determining what the maximum level of “acceptable” impact, or biologically significant 

change, is a high priority when forming a monitoring plan (Mapstone, 1995). Impact 

above a threshold can determine if a tidal project is allowed to continue operating (FERC, 

2008). Thus it is imperative that setting thresholds and characterizing impacts should be 

completed before monitoring begins (Martínez-Abraín, 2008). Extreme value analysis 

(EVA, described in Chapter 1) is an approach used to model values that are infrequent 

but are potentially associated with impacts (Coles, 2001). This approach also provides a 
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threshold for infrequent values and could provide regulators with statistically significant 

thresholds for biological monitoring (Chapter 1, Section 4).  

 

Little data have been gathered at tidally dynamic sites because they are difficult to 

sample. One option for studying biota in the water column is active acoustic technology. 

Acoustic instruments use sound to evaluate distributions, abundances, and behavior of 

fish (Horne, 2000; Simmonds and MacLennan, 2005). Acoustic instruments offer non-

invasive methods to continuously sample large volumes of water, regardless of current 

speed or light levels. Instruments can be deployed on autonomous or cabled platforms 

that are suited for short or long-term monitoring at high spatial and temporal resolution 

(Urmy et al., 2012), and low cost (Handegard et al., 2013).  

 

It is important to evaluate and compare MRE site characteristics so the potential for 

standardized programs can be developed and then implemented. While MRE tidal sites 

may be chosen for similar physical characteristics (e.g. high tidal flux), it is unknown 

whether tidal energy sites have similar biological characteristics. In this study we 

describe and compare biological characteristics of pelagic fish and zooplankton 

distribution at two proposed tidal energy sites, using datasets collected by active 

acoustics, to examine whether fish and zooplankton density distributions are similar or 

site-specific. We also evaluate whether an EVA is an appropriate general approach to 

determine impact thresholds at tidal energy sites. 

 

 

3.2    Methods 
 

3.2.1    Site descriptions 

 

The active acoustic datasets used for this study were collected at two tidal energy sites 

without any deployed turbines. Admiralty Inlet, on the west side of Whidbey Island in 

Puget Sound, Washington State, was the proposed site of the Snohomish Public Utility 

District 1 (SnoPUD) tidal energy pilot project that received its project license from FERC 

on March 20, 2014. The project, now dormant (http://www.openhydro.com/), would have 

deployed two OpenHydro turbines one kilometer off Whidbey Island (Fig. 3.1 a). Two 

sub-sea power cables would have connected the turbines to the electric grid onshore 

(Public Utility District No. 1 of Snohomish County, 2012). The second dataset was 

collected at the European Marine Energy Council (EMEC) test facility in Fall of 

Warness, located centrally in the North Isles of Orkney, Scotland (Fig. 3.1 b). The data 

was collected as a control for the FLOWBEC project (http://noc.ac.uk/project/flowbec). 
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Fig. 3.1 (a) Admiralty Inlet study location within Puget Sound, Washington, and location 

of the acoustic package within the SnoPUD proposed turbine location, (b) EMEC tidal 

test site within the Orkney Islands, Scotland, and location of Fall of Warness deployment 

site. 

 

3.2.2    Data acquisition 

 

Acoustic backscatter (i.e. reflected energy) data were recorded at Admiralty Inlet using a 

bottom mounted BioSonics DTX echosounder operating at 120 kHz from May 9 to June 

9, 2011 (Horne et al., 2013). The echosounder was placed on the bottom at 55 meters 

depth about 750 meters off Admiralty Head at the SnoPUD tidal turbine site. The 

echosounder sampled at 5Hz for 12 minutes every 2 hours. Tidal velocity data were 

collected once every 10 minutes by a NORTEC acoustic Doppler current profiler set 10 

meters off the bottom (Table 1). 

 

At Fall of Warness, a bottom-mounted acoustic package was placed at 35m depth 

containing a multibeam sonar and an EK-60 Echosounder (Williamson et al., 2015). It 

was deployed over an 18 day period from June 18 to July 5 2013. The echosounder 

collected data at three frequencies: 38 kHz, 120 kHz, and 200 kHz and operated 

continuously at 1 Hz (Table 3.1). Water column mean tidal speeds were modeled from 
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tidal velocity data that were collected every minute using an SonTek/YSI ADVOcean 

acoustic Doppler velocimeter  (ADV) (Williamson et al., 2015).  

 

Table 3.1. Acoustic sampling parameters 

Deployment Fall of Warness Admiralty Inlet 

Technology Echosounder Echosounder 

Manufacturer Simrad BioSonics 

Model EK-60 DTX 

Frequency 120kHz 120kHz 

Beam Angle 7
o
 7

o
 

Pulse length 1024 μs 500 μs 

Ping Rate 1 Hz 5 Hz 

 

 

3.2.3    Data processing    
 

3.2.3.1    Admiralty Inlet 

 

Data processing of the Admiralty Inlet data was done prior to this study and is described 

in Jacques (2014) and Horne et al., (2013). Because of a 3
rd

 surface echo, data values 

were constrained to 25 m from the bottom. A -75 dB re 1m
-1

 (hereafter dB) threshold was 

applied to remove noise (Horne et al., 2013). Data were binned into 12 minute samples, 

and vertically integrated, yielding 361 datapoints (Jacques, 2014).  

 

An 18 day period needed to be sampled from the Admiralty Inlet dataset to closely align 

it to the 18 day period of the Fall of Warness data. Using historical tide charts from 

NOAA (National Ocean Service, 2011, 2013), the 18 day portion of the Admiralty Inlet 

data was selected so that the lunar phases of the two datasets matched. The start and end 

times of the Admiralty Inlet dataset were selected to match the start and end times of the 

Fall of Warness dataset. 

 

3.2.3.2    Fall of Warness 

 

Acoustic data from Flowbec’s Fall of Warness site was processed in Echoview (version 

6.0). The background noise was removed by using a post-processing TVG-based noise 

reduction (Watkins and Brierley, 1996). The noise estimates were obtained from three 

empty water recordings (i.e. low water column integrated Sv value), and the average of 

the three values, -105.44 dB, was subtracted from the data (Nunnallee, 1990). The data 

were constrained to 25m from the bottom to ensure complete turbulence removal and to 

match the depth of the processed Admiralty Inlet data portion. A 12 minute temporal 
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block was used to accommodate Echoview memory capacity and to match the sample 

block size used in Admiralty Inlet data. 
 

 

Turbulence in the water was detected using the SHAPES algorithm (Coetzee, 2000), as 

implemented in Echoview. This algorithm is normally used to detect fish and 

macrozooplankton aggregations but can be also used to detect turbulence features 

(Jacques, 2014). This algorithm detects aggregations by searching for adjacent pixels 

with density values above a threshold, and applying a minimum size criterion to groups 

of pixels. The user determines the acoustic threshold, minimum aggregation size, and 

amalgamation parameters. Virtual positions, necessary for the implementation of this 

algorithm, were created using flow rates derived from ADV data by matching the start 

and end times of the echogram to the ADV data, and then indexing each second of the 

data samples to a corresponding flow speed. The turbulence detection threshold was set 

to -75 dB, to include all backscatter attributed to pelagic nekton and to exclude 

particulates. After aggregations were detected, they were classified as turbulence or non-

turbulence regions using depth and length of detected aggregation as criteria. 

 

The two datasets had to have identical sample blocks to enable a direct comparison. To 

match the Admiralty Inlet data (12 minutes of continuous sampling every two hours), the 

Fall of Warness data needed to be binned to 12 minutes and one of 10 options of 12 

minute bins chosen to represent each 2 hour block. The continuous sampling at Fall of 

Warness also facilitated an analysis of how representative 12 minute samples are of a 

continuous two hour dataset. Each of these 10 series were comprised of bins selected at 

regular intervals (i.e. the first series was made up of the first 12 minute bin in every 

block, the second series was made of the second 12 minute bin in every block …).  

 

The ten mean Sv series of 12 minute bins from the Fall of Warness data were compared 

to each other using an ANOVA and by examining the fit of a Generalized Pareto 

Distribution (GPD) for all series. The GPD is used to model extreme values, which are 

exceedances above a threshold. The threshold is selected through examination of 

diagnostic plots, which was done in this study through automated derivative selection 

(Chapter 1, Section 2.3.2).  

 

The effect of varying the amount of data on the threshold estimate for the GPD was 

examined. Series containing nine different amounts of data were generated, starting at 

10% (one bin randomly selected from each 2 hour block) to 90% of the data (nine bins 

randomly selected from each two hour block). The random selection was repeated 500 

times (total 4500 series) and derivative based thresholds (Chapter 1, Section 2.3.2) were 

estimated for each series.  
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3.2.4    Data Analysis   
 

3.2.4.1    Echometrics   

 

To quantify variability in vertical biomass distribution in the water column over space 

and through time a suite of metrics were used (Urmy et al., 2012).  Among the metrics, 

density (mean Sv), center of mass, dispersion, and aggregation index were selected to 

characterize biomass distributions at the two sites, as these metrics describe a wide range 

of distribution attributes (Jacques, 2014). The density metric is the mean volume-

backscattering strength, or mean Sv (unit: dB re 1 m
-1

, Simmonds and MacLennan, 

2005), which is proportional to biomass density. The aggregation index (unit: m
-1

) 

quantifies vertical patchiness and is calculated on a relative scale of 0 to 1, with 0 being 

evenly dispersed and 1 being aggregated. Mean Sv and aggregation index are used for 

extreme value analyses. High aggregation and density values are assumed to be 

associated with a high risk of collision with MRE devices. The center of mass (unit: m) 

measures the location of the mean weighted acoustic backscatter relative to the bottom. 

The dispersion (unit: m
2
) metric measures the spread of biomass around the center of 

mass, and is analogous to the variance. 

 

3.2.4.2    Tidal site comparison 

 

Spectral analysis (Box and Jenkins, 1976; Chatfield, 1989) is used to compare dominant 

periodicities in the metrics of the two datasets. Periodograms can be used to examine how 

the variance of a time series is distributed over its frequency components (Chatfield, 

1989). To interpret the periodogram, one plots the frequency against the power. Peaks 

identify frequencies that contribute more to the variance of the time series than other 

unpeaked areas. The total area under the curve, for a log-log plot, equals the total 

variance in the time series. Periodograms were generated for the biological metrics at 

both Admiralty Inlet and Fall of Warness. A red noise spectrum (a red noise process is an 

auto-regressive process with the memory of 1) was calculated for each periodogram 

(Shumway and Stoffer, 2011) and the significant frequencies were defined as those above 

the red noise spectrum. The coherence is measured from 0 to 1, with 0 signifying that the 

two time series are significantly different, and 1 being that the phase differences and 

amplitudes are the same for all frequencies. Coherence between the power spectra of 

metric pairs was calculated to compare the amplitudes and phases of frequencies in the 

metric time series between the two sites.   

 

Means and variances of the mean Sv, center of mass, dispersion metrics, and tidal speed 

were compared using t-tests and F-tests with alpha = 0.05. The aggregation index was not 

normally distributed and could not be compared with parametric tests, so a Kolmogorov-

Smirnov test (Massey Jr, 1951) was used to compare means and a Bartlett’s test (Bartlett, 
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1947) was used to compare variances. Differences in metrics between day (Admiralty 

Inlet: 06:00 – 20:00, Fall of Warness: 04:00 – 22:00) and night (Admiralty Inlet: 22:00 – 

04:00, Fall of Warness: 00:00 – 02:00) were examined in the mean using t-tests and in 

the variance using F-tests.  

 

Linear models were fit to the four metrics at both sites. A group of covariates were tested 

in each model: tidal speed (ms
-1

), hour of day, Julian day, a Fourier series defined by the 

4 hour period, a Fourier series defined by a 12 hour period, a Fourier series defined by a 

24 hour period. Fast Fourier transforms provides the amplitudes and phases for the 

Fourier series. The models were fit by forward selection, and the fit was evaluated using 

the Akaike Information Criterion (AIC) (Akaike, 1987). The model with the lowest AIC 

was selected as the best model. Residual plots were examined to evaluate model fit and 

multicollinearity was examined through the variance inflation factor (VIF) (Belsley et al., 

1980). Linear regression was also used to evaluate the metrics’ relationship with tidal 

speed as a single covariate. 

 

Extreme value theory (Pickands, 1975; Coles, 2001; Beirlant et al., 2004) is a statistical 

technique used to model the probability and periodicity of extreme values, which are rare 

values in the tail of a probability distribution. In the peaks-over-threshold (POT) method, 

extreme values are identified as exceedances above a threshold (Coles, 2001), which 

follow a generalized Pareto distribution (GPD). To fit the GPD to data, first a threshold is 

selected, and then scale and shape parameters are fit to the data to parametrize the GPD. 

The GPD was fit to the mean Sv and aggregation index metrics calculated using 

Admiralty Inlet and Fall of Warness backscatter data. The threshold for the GPD fit was 

selected by computing the derivative of diagnostic plots (Chapter 1, Section 2.3.2). 

Posterior distributions were obtained for the scale and shape parameters through Markov 

chain Monte Carlo (MCMC) simulation (Gelman et al., 2013), as described in Chapter 1 

(section 2.3.4). The fit of the GPD was evaluated by computing the sums of squares 

between the observed density function and the corresponding GPD. Return level plots 

(the return level is the value expected to be exceeded on average once every its associated 

return period) with credible intervals were generated for the mean Sv and aggregation 

indices at both sites. 

 

 

3.3    Results   
 

3.3.1    Fall of Warness sample block selection 

 

Results of ANOVA comparing the ten mean Sv series of regularly spaced 12 minute bins 

per two hour block showed that means of the series were not significantly different (p = 



 

33 
 

0.7024), suggesting that any of the ten series could be used as a representative dataset for 

the Fall of Warness site. 

 
Fig. 3.2: Boxplots for the ten Mean Sv series, with the thresholds as orange dots.  

 

Corresponding GPD threshold values differed between the 10 series. Standard deviations 

(standard deviation range: 1.95 dB to 2.87 dB) and number of significant outliers varied 

among series (1 to 4 outliers) (Fig. 3.2) which could affect the GPD fit as the GPD is 

modeled using extreme values as determined by the threshold. The choice of the 

threshold value was dependent on how the derivative values were rounded. The MCMC 

routine to fit the GPD did not converge for the series 3, 6, and 7, which have few outliers 

and low variance. The mean for the thresholds of the ten series was -75.41 dB. Series 8, 

with a threshold of -75.63 dB was selected as the Fall of Warness dataset to be used in 

further analysis as it had the closest threshold to the mean of the thresholds of the 10 

series and successfully converged on a GPD posterior under the MCMC routine.  
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The proportion of data used in the derivative method did not greatly affect the mean 

value of the GPD threshold, but it affected the variance in the threshold estimate (Fig. 

3.3). The threshold when all the data is included is -75.68 dB. The mean threshold value 

increases slightly as the proportion of data used to estimate the threshold increases (e.g. 1 

bin per block = -75.72 dB, 9 bins per block = - 75.67 dB), but the overall increase is less 

than 0.1 dB. The standard deviation of the threshold estimate decreases with an 

increasing proportion of data used, from 0.63 dB at one bin per block, to 0.045 dB at 9 

bins per block. Over 500 draws, when 10% of the data is used (1 bin per block), the 

threshold estimates range from -77.84 dB to -73.79 dB. This analysis suggests that 

increasing the amount of data used decreases the variance in the threshold estimate.  

 

 
Fig. 3.3: Boxplots showing the distribution of threshold estimates for 500 draws of mean 

Sv series containing 1 bin (10%) to 9 bins (90%) of the available data. 

 

3.3.2    Comparison of tidal site characteristics   

 

Similarities of biological characteristics were evaluated by comparing metrics describing 

biological distribution of fish and macrozooplankton. Mean Sv, center of mass, and 

dispersion metrics at both sites displayed a saw-toothed pattern with a low-frequency 



 

35 
 

sinusoidal component (Fig. 3.4). Values at Admiralty Inlet had larger amplitudes 

compared to metric values from the Fall of Warness. F-tests show that standard 

deviations for the three metrics were significantly greater at Admiralty Inlet than at Fall 

of Warness (Table 3.2). The aggregation index series had a spiky appearance and was 

mainly composed of low values (~ 0.04) with occasional high aggregations. Metric 

means, except for mean Sv, were significantly different between sites. The center of mass 

was, on average, higher in the water column at Fall of Warness (14.07 m) than at 

Admiralty Inlet (11.35 m). There was greater dispersion at Admiralty Inlet (46.13 m
2
) 

than Fall of Warness (41.97 m
2
). Aggregation was greater at Fall of Warness (0.064 m

-1
) 

than at Admiralty Inlet (0.062 m
-1

).  

 

Table 3.2: Means and standard deviations of biological characteristics at Admiralty Inlet 

(AI) and Fall of Warness (FoW). The p-values are for t-tests (left) and F-tests (right), for 

the aggregation index, the p-values are for a Kolgomorov-Smirnov test (left) and 

Bartlett’s test (right). 

 Mean Standard Deviation 

 
AI FoW p-value AI FoW p-value 

Mean Sv -76.52 dB -76.94 dB 0.2041 3.869 dB 2.524 dB 2.46E-09 

Center of 

Mass 
11.35 m 14.07 m 2.2E-16 2.27 m 1.93 m 1.62E-06 

Aggregation 0.062 m
-1 

0.064 m
-1

 5.12E-06 0.047 m
-1

 0.047 m
-1

 0.9957 

Dispersion 46.13 m² 41.97 m² 2.21E-05 10.46 m² 8.96 m² 0.028 

 

 

Daily patterns in metric values also varied between sites. On average there was greater 

variability between day and night mean Sv at Admiralty Inlet than at Fall of Warness 

(Admiralty Inlet , difference =2.63 dB, t-test p value p = 9.15E-07; Fall of Warness 

difference = 1.35 dB, t-test p values = 0.0005535). At Admiralty Inlet, the center of mass 

was higher in the water column at night (mean: 13.8 meters from the bottom) and 

descended during the day to 10 meters from the bottom (Fig. 3.5 b). At Fall of Warness 

the center of mass increased from 13.8 meters from the bottom at night to 15.2 m during 

the day. The aggregation index at both sites had two peaks on average, though these 

occurred at different times. At Fall of Warness, the peaks occurred at: 06:00 (0.09 m
-1

) 

and 18:00 (0.12 m
-1

), while at Admiralty Inlet the peaks occurred at 08:00 (0.09 m
-1

) and
 

14:00 (0.1 m
-1

). Dispersion was significantly different between night and day at 

Admiralty Inlet (difference = 4.25 m
2
, p = 0.002624), but not at Fall of Warness 

(difference = 0.15 m
2
, p = 0.972).  
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Fig. 3.4: The time series for four metrics (a) mean Sv, (b) center of mass, (c) dispersion, 

(d) aggregation, with Admiralty Inlet in blue and Fall of Warness in red. 
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Fig. 3.5: The (a) mean Sv, (b) center of mass, (c) dispersion, (d) aggregation variability 

by hour for Admiralty Inlet (blue) and Fall of Warness (red). The solid lines are the 

means with the blocks; for clarity, only the positive standard deviation is depicted by the 

colored blocks. 

 

Biomass distribution was predicted to vary with tidal speed. The tides were stronger at 

Fall of Warness (mean speed=1.58 ms
-1

), compared to Admiralty Inlet (mean speed = 

1.18 ms
-1

). At Admiralty Inlet, the mean tidal speeds ranged between 0.5 and 2 ms
-1

. The 

tidal speed range was greater at Fall of Warness, varying between 0 and 3 ms
-1

. In 

Admiralty Inlet, mean Sv increased with tidal speed (slope = 0.64), but the relationship 

was not significant (p = 0.481) (Fig. 3.6 a). At Fall of Warness, the biomass density 
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increased significantly with tidal speed, and at a steeper slope than Admiralty Inlet (slope 

= 1.033, p = 7.28E-5). The center of mass decreased significantly with increased tidal 

speed at Admiralty Inlet (slope = -1.47, p = 0.0153), but not at Fall of Warness (slope = 

0.04, p = 0.947). Aggregation index values did not change with increasing tidal speed at 

either site (slope = -0.004, slope = -0.005). Dispersion increased at Fall of Warness (slope 

= 2.048, p = 0.028) but not at Admiralty Inlet, where it decreased slightly with increasing 

tidal speed (slope = -0.659, p = 0.779). 

 

 
Fig. 3.6: The (a) mean Sv, (b) center of mass, (c) dispersion, (d) aggregation as a function 

of tidal speed for Admiralty Inlet (blue) and Fall of Warness (red). The lines of best fit 

from a linear regression are shown as well. 

 

Metric values at both sites had many of the same dominant periodicities, though not 

always with similar amplitudes (Fig. 3.7). For mean Sv, the significant periods (compared 
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to the red-noise spectrum) for Admiralty Inlet were 24 hours and 4 hours (Table 3.3). 

Twenty four hours was by far the dominant periodicity (amplitude = 2.5), perhaps 

highlighting the importance of diel processes at this site. For Fall of Warness the Mean 

Sv significant periods were 404 hours, 12 hours, and 4 hours. Coherence between the two 

mean Sv metrics was the highest among all metrics, at 0.997. We discounted the 404 hour 

period as its significance may be due to edge effects (Chatfield, 1989). The importance of 

the 12 hour (amplitude = 0.9) and 4 hour frequencies (amplitude = 0.6) indicates the 

potential importance of tidal over diel processes for the biology of this site (Table 3.3). 

However, amplitudes of these frequencies are small compared to the 24 hour period 

amplitude at Admiralty Inlet, suggesting that there may not be as dominant a process 

accounting for the variability in mean Sv at Fall of Warness as there is in Admiralty Inlet.  

 
Fig. 3.7: Periodograms for the suite of metrics (mean Sv, center of mass, aggregation, 

dispersion) at both sites. The significant frequencies (purple dots) are above the red noise 

spectrum (red line).  
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The center of mass metrics from the two sites shared two significant frequencies (24 hour 

period and 12 hour period), and two similar periods (6 hours for Fall of Warness, 7 hours 

for Admiralty Inlet) (Table 3.3). The amplitude of the 24 hour frequency was greater at 

Admiralty Inlet (1.9) than at Fall of Warness (0.7), but the amplitudes for the 12 hour and 

6 or 7 hour frequencies were similar (Table 3.3). Similarities in amplitudes and values of 

the significant frequencies at both sites, as well as the coherence between the center of 

mass patterns indicate that the center of mass series are very similar (0.923). The sites did 

not share any similar significant periods for aggregation index (Table 3.3) and the 

aggregation metrics at the two sites had the lowest coherence of all metric pairs (0.378). 

The dispersion also did not share any significant periods (Table 3.3), but the coherence 

for the dispersion metrics was higher (0.903) than for the aggregation index.  

 

Table 3.3: Significant periods rounded to the nearest integer value (hour), with 

amplitudes in parentheses. 

 
Admiralty Inlet Fall of Warness 

Mean Sv 24 (2.5), 4 (0.8) 12 (0.9), 4 (0.6) 

Center of Mass 24  (1.9), 12 (0.9), 7 (0.7) 12 (0.8), 24 (0.7), 6 (0.6), 4 (0.5) 

Aggregation 24 (0.02), 4 (0.01), 9 (0.01) 12 (0.01), 8 (0.01) 

Dispersion 12 (3.3) 
4 (3.1), 135 (2.8), 6 (2.7), 9 

(2.6), 24 (2.5) 

 

Overall, the common significant frequency components were 24 hours, 12 hours, and 4 

hours. These periods were used as covariates in linear regressions (Table 3.4). 

Amplitudes of significant frequency components had similar values between sites with 

the exception of the 24 hour frequency component. The greater amplitudes for the 24 

hour frequency component in the mean Sv and center of mass periodograms at Admiralty 

Inlet indicate a greater dominance of diel processes at Admiralty Inlet than at Fall of 

Warness, which is supported by the pattern in hourly variability of these metrics (Fig. 

3.5).  

 

All linear regression models of the metrics, except for aggregation index, included the 24 

and 12 hour periods (Table 3.4). Regression models for Admiralty Inlet and Fall of 

Warness mean Sv included almost the same covariates, with the exception that Admiralty 

Inlet model did not include the 4 hour period and tidal speed covariates. The mean Sv 

models for both sites were the only models that included Julian day. Besides the 24 and 

12 hour periods, the center of mass model for Admiralty Inlet included tidal speed. The 

Fall of Warness included the 4 hour period. The aggregation model was the only model 

where the sites did not have any covariates in common (Table 3.4). The dispersion model 

was the same for Admiralty Inlet and Fall of Warness with the addition of tidal speed in 
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the Fall of Warness model. All model residuals formed a random pattern indicating good 

model fit. No VIF for any model covariates was above 5, indicating no severe 

multicollinearity. 

 

Table 3.4: The covariates and corresponding p-values for linear regressions for the 

Admiralty Inlet and Fall of Warness. The stars indicate the strength of p-value (0 < *** < 

0.001 < ** < 0.01 < * <  0.05).  

 Covariate Admiralty Inlet Fall of Warness 

  estimate p-value estimate p-value 

Mean Sv 
     

 
Tidal speed - - 0.94398 0.000116 *** 

 
Julian day 2.52E-01 1.31e-06 *** -0.06301 0.063581  

 
24 hour period 9.36E-01 3.37e-12 *** 1.04186 0.007225 ** 

 
12 hour period 1.053 0.051458  0.9324 0.000238 *** 

 
4 hour period - - 1.04538 0.007193 ** 

Center of Mass 
     

 
Tidal speed -2.5532 2.77e-07 *** - - 

 
24 hour period 1.116 2e-16 *** 0.999 3.68e-05 *** 

 
12 hour period 0.9933 9.07e-06 *** 0.9932 2.93e-05 *** 

 
4 hour period - - 0.996 0.00233 ** 

Aggregation 
     

 
24 hour period 0.976273 3.89e-05 *** - - 

 
12 hour period - - 0.999509 0.00413 ** 

 
4 hour period 0.976719 0.000734 *** - - 

Dispersion 
     

 
Tidal speed - - 2.0279 0.020892 * 

 
24 hour period 0.9753 0.03587 * 1.0065 0.002647 ** 

 
12 hour period 0.9786 0.00119 ** 1.0965 0.023284 * 

 
5 hour Period 0.976 0.04177 * 1.0125 0.000186 *** 

 

3.3.3    EVA results comparison   

 

The GPD fit did not differ greatly between sites for the mean Sv or aggregation index 

variables (Fig 3.8 and 3.9). Metric thresholds were similar between sites (Table 3.5), 

especially for the aggregation index metric. Scale parameters for both metrics were of the 

same order of magnitude, shape parameters differed between sites. The sums of squares 

between the GPD and the metric density function were used to evaluate the fit of the 

GPD. The mean Sv and aggregation index from Admiralty Inlet had a better GPD fit 

(lower sums of squares) than those of Fall of Warness (Table 3.5). It should be noted that 

there were small differences in the numbers of datapoints over the threshold for the 
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metrics between Admiralty Inlet and Fall of Warness (4 datapoints for mean Sv, 1 data 

point for aggregation) which may have affected the sums of squares. 

 

 

 
Fig. 3.8: Mean Sv (a) GPD fit and (b) return levels at Admiralty Inlet and (c) GPD fit and 

(d) return levels Fall of Warness. The solid lines is the best fit, and grey colors indicate 

credible intervals, from 10% (darkest grey) 40%, 80%, 90% lightest grey) 
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Fig. 3.9: Aggregation index (a) GPD fit and (b) return levels at Admiralty Inlet and (c) 

GPD fit and (d) return levels Fall of Warness. The solid lines is the best fit, and grey 

colors indicate credible intervals, from 10% (darkest grey) 40%, 80%, 90% lightest grey) 

 

Table 3.5: Summary of Generalized Pareto Distribution fit for mean Sv and aggregation 

index metrics from both sites, with the median fits and 95% credible intervals (lower, 

upper) for scale and shape parameters. 

 
            Mean Sv           Aggregation Index 

 
  AI  FoW AI FoW 

Threshold -74.0 -75.6 0.1148 0.1137 

Scale 2.87 (1.80, 4.43) 1.08 (0.69, 1.64) 0.25 (0.08, 0.56) 0.15 (0.07, 0.29) 

Shape 0.02 (-0.29, 0.47) 0.35 (0.05, 0.82) -0.65 (-1.79, 0.94) -0.13 (-0.61, 0.60) 

Sums of 

Squares 
0.000985 0.02576 0.715408 1.783951 
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Shapes of return level plots were similar for Mean Sv (Fig. 3.8) but not for aggregation 

(Fig. 3.9). The temporal difference between the data (2 weeks) and prediction (up to 10 

years) explains why credible intervals spread quickly.  

 

 

3.4    Discussion 
 

3.4.1    Tidal sites comparison    

 

Patterns in pelagic nekton density and distribution at tidal energy sites have not been 

previously compared. Tidal energy sites are expected to have similar physical 

characteristics and are chosen because of high tidal fluxes. However, this does not dictate 

similarity in biological features. While there are some dissimilarities, many of the 

biological features at both sites are similar (Table 3.6). With the exception of 

aggregation, linear models of the metrics shared two or more covariates (Table 3.3). 

Density means and coherence values were surprisingly similar at both sites. Coherence 

between sites for center of mass and dispersion were similar, suggesting that temporal 

patterns in fish and zooplankton are in phase. Both sites had significant periodicities in all 

metrics that reflected tidal and diel processes (Table 3.6), but metrics at each site did not 

consistently identify the same process at each site. A longer dataset is necessary to 

examine effects of a lunar tidal cycle, and to parse lunar from diel effects.  

 

Table 3.6: Comparison of Admiralty Inlet and Fall of Warness site ecosystem attributes, 

and coherence of metric pairs between sites. 

                                       Structure                   Function 

 
 Density Center of Mass  Aggregation  Dispersion 

Mean AI = FoW AI > FoW AI < FoW AI > FoW 

Variance AI > FoW AI > FoW AI = FoW AI > FoW 

Significant 

periodicities 

(hours) 

same: 4 

different: (AI) 24 

(FoW) 12 

same: 24, 12 

different: (AI) 7 

(FoW) 6, 4  

different: (AI) 24, 

9, 4 

(FoW) 12, 8 

different: (AI) 12 

(FoW) 135, 24, 9, 

6, 4 

Coherence  0.997 0.923 0.378 0.903 

 

Assessing the condition of an ecosystem is challenging. There are three primary attributes 

of an ecosystem: composition, structure, and function (Noss, 1990). Composition is the 

number and variety of elements in a system, structure is the physical organization of a 

system, and function includes ecological and evolutionary processes. Ecological 

indicators are measurable characteristics of these three attributes and changes in 
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indicators can be used to detect ecosystem change in response to disturbances (Niemi and 

McDonald, 2004). The four metrics used in this study can be used as indicators for 

structure (density, center of mass) and function (aggregation, dispersion). Composition is 

not an attribute that can be well-addressed using single-frequency, active acoustic data 

without trawls or another means to identify species. These metrics, while not 

encompassing the entire range of ecosystem attributes, present an assessment of the 

structure and function of the biology at the two study sites, and are appropriate indicators 

for comparison. This approach could be extended to include a comparison of physical 

metrics, such as tidal speed, or tidal range.  

 

Species composition was not compared between sites as species were not identified 

during acoustic data collection. Broad taxonomical composition can be inferred from 

other studies. Historic studies of fauna around Fall of Warness are scarce, but some fish 

species that are likely to be present during the summer for spawning are mackerel 

(Scromber scrombus), herring (Cluepa harengus), and sprat (Sprattus sprattus) (Aurora 

Environmental, 2005). Other fish that are likely to be in the vicinity are haddock 

(Melanogrammus aeglefinus), ling (Molva molva), saithe (Pollachius limanda), and cod 

(Gadus morhua). The Environmental Statement (2005) for the Fall of Warness also 

identifies non-commercially important butterfish (Pholis gunnellus) and scorpion fish 

(Taurulus bubalis). Long-term data from the Continuous Plankton Recorder show that 

zooplankton biomass in the North Sea fluctuates greatly on a yearly basis (Richardson 

and Schoeman, 2004; Pitois and Fox, 2006). Zooplankton are composed primarily of 

numerous copepod taxa which serve as the primary prey source for important commercial 

fish species such as herring (Frederiksen et al., 2006). In comparison, trawls were 

conducted during mobile acoustic surveys of the Admiralty Inlet site (Horne et al., 2013), 

consistently catching Pacific sand lance (Ammodytes hexapterus), northern lampfish 

(Stenobrachius leucopsarus), copper rockfish (Sebastes caurinus), and Pacific herring 

(Clupea pallasii). Broad zooplankton taxa are similar to those at Fall of Warness, 

including copepods, hydromedusae, and larval stages of fish and small pelagic 

crustaceans (Mackas et al., 2013). The relative abundances and distributions between the 

two sites are unknown. Fish at both sites (mackerel, sprat, and herring at Fall of Warness; 

Pacific sand lance, and Pacific herring at Admiralty Inlet) provide a prey base that 

support fish and apex predators in upper trophic levels (Harvey et al., 2012; Greene et al., 

2015). Even though previous studies suggest that some zooplankton and fish taxa are 

similar between the two sites and provide similar ecosystem services, additional data on 

site-specific species abundance and distribution are necessary for a complete species 

characterization and comparison.  

 

One primary difference between sites is that variance in the metrics was greater at 

Admiralty Inlet than at Fall of Warness, with the exception of the aggregation index. A 
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possible explanation is that water fluxes at Admiralty Inlet are more complex than at Fall 

of Warness. Admiralty Inlet is located near the entrance of Puget Sound at the confluence 

of Deception Pass, the Hood Canal Basin, and the Puget Sound main basin (Moore et al., 

2008; Sutherland et al., 2011). These three water sources have different oceanographic 

properties (e.g. ocean water from the Strait of Juan de Fuca, fresh water from the Fraser 

River) and potentially carry different types of pelagic species, which may increase 

variability in the species composition between ebb and flood tides at Admiralty Inlet. 

Conversely, Fall of Warness is located on an open ocean coast, making water sources 

during ebb and flood tides uniform. Differences in location and physical properties of the 

two sites potentially explain the greater variability in metrics at Admiralty Inlet compared 

to Fall of Warness. An alternative explanation is that the sites’ different tidal speeds 

(mean tidal speeds were significantly greater at Fall of Warness) could affect biomass 

distribution variability. Nekton motility is partiality dependent on flow speed of the 

surrounding medium, and the ratio of nekton locometry velocity to fluid velocity 

increases with nekton body length (Schneider, 1994). Greater flow speeds may result in 

smaller nekton (especially micronekton < 5 mm (Schneider, 1994)) acting as passive 

particles, possibly causing metric patterns at Fall of Warness to be more uniform than at 

Admiralty Inlet. The significant positive relationships between tidal speed and both 

density and dispersion at Fall of Warness, which is not seen at Admiralty Inlet, support 

this hypothesis.  

 

3.4.2    Generality of EVA applicability   

 

This study allowed an examination of the proportion of data necessary for performing an 

EVA. As the proportion of data increases when determining a GPD threshold, the 

precision of a threshold estimate should increase because of the higher inclusion of 

extreme values for the threshold determination (Coles, 2001). As predicted, a higher 

proportion of data included in the analysis reduces the variability in the threshold 

estimate (i.e. threshold estimates from 10% of the data were most variable; threshold 

estimates from 90% of the data were least variable). However, over 500 random draws, 

the mean threshold estimate did not change significantly with increasing data proportion. 

Results from this study could be used to justify lower frequency data collection for 

monitoring as greater data inclusion does not change the mean threshold estimate. When 

sampling at low frequency (between 10 % and 70% of continuous data sampling) the 

standard deviation of the threshold estimate is greater than 0.1 dB over 500 draws, so the 

precision of the threshold estimate from a single draw is lower at lower sampling 

frequencies. If accuracy of the threshold estimate is a concern, then one should sample at 

70% of continuous sampling or greater as the standard deviation in the threshold estimate 

is less than 0.1 dB over 500 draws.  
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While return levels and GPD threshold values differed between sites, the process of 

applying the peaks-over-threshold method was similar and successful in each case. As the 

EVA method had not been previously used for biological monitoring at MRE sites, it was 

important to determine whether the EVA method could be applied to another dataset. A 

similar proportion of data was fit to the GPD for both density and aggregation metrics at 

both sites. The MCMC diagnostics showed that convergence to a stationary distribution 

of GPD parameters was achieved at both sites for both metrics. The sums of squares 

results were of the same order of magnitude for both sites. The results lead to the 

conclusion that extreme value analysis produced comparable results at the two sites, and 

that this approach was an appropriate method to determine thresholds for these metrics. 

This study shows that EVA results may be site-specific (e.g. Admiralty Inlet mean Sv 

GPD threshold: -74.5 dB, Fall of Warness mean Sv GPD threshold: -75.6 dB), but that 

EVA can be applied as a generic biologically monitoring tool for tidal energy sites.  

 

3.4.3    Standardizing MRE monitoring   

 

Because tidal energy is a relatively new technology, regulators are unsure of 

environmental impacts, and decisions on what to monitor have been largely made for 

site-specific concerns (e.g. Southern resident killer whales at Admiralty Inlet, sturgeon at 

Roosevelt Island). While regulators are unsure of generic monitoring targets, there is also 

uncertainty around how to monitor environmental variables. The three monitoring plans 

for current marine hydrokinetic energy in the US (Admiralty Inlet, Roosevelt Island, and 

Cobscook Bay) share broad objectives. For example, fish monitoring includes 

distribution, abundance, and diversity. Differences in the monitoring plans are 

concentrated in the choice of monitoring technologies and in the spatial and temporal 

scales of monitoring. Differences in monitoring methods may reflect differences in 

objectives but also reflect perceptions, preferences, and knowledge of developers 

proposing the monitoring plans. Results from monitoring of early tidal energy projects 

will be useful in identifying important spatiotemporal scales at which to monitor 

(Jacques, 2014), and the optimal sampling frequency and instrumentation to use when 

sampling. Standardization of tool and techniques will allow for streamlining project 

development, especially during a project application process, which currently is long and 

expensive (e.g. Verdant Power, 2010).  

 

The goal of comparing results among tidal sites is one reason why standardization of data 

acquisition methods and analysis is so important to MRE monitoring. The primary 

justification for comparing the Fall of Warness data to the Admiralty Inlet data was that 

both datasets were collected with bottom-mounted echosounders. It was therefore 

relatively simple to subsample the Fall of Warness data to match the Admiralty Inlet 

sampling scheme. This comparison would not have been possible, and certainly would 
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have been less powerful, if data collection had not been so similar. Comparison among 

sites once tidal energy projects are operational will be crucial in determining whether 

there are generic impacts from tidal energy development. Comparisons will be difficult if 

monitoring methods differ among sites.  

 

Site-specific monitoring plans are motivated by the idea that sites differ and need to have 

monitoring plans tailored to the biology of each site. This study suggests that not all 

biological characteristics of tidal energy sites are site-specific. While tidal energy is still 

in the developmental pilot project stage, standardization of monitoring goals and methods 

is a viable and necessary goal to facilitate project development and the detection of 

environmental impacts.  
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Chapter 4: 
 

SUMMARY AND SIGNIFICANCE 
 

 

 

The first objective of this thesis was to evaluate whether Extreme Value Analysis (EVA) 

could be used for impact characterization. The peaks-over-threshold (POT) method, 

where extreme values are defined as values above a threshold and then fit to a 

Generalized Pareto Distribution (GPD), was successfully applied to Admiralty Inlet mean 

Sv and aggregation metrics using a Bayesian MCMC simulation. A derivative method to 

objectively determine the GPD threshold was developed. The univariate POT was 

deemed more appropriate for this dataset than the bivariate POT. The MCMC simulation 

converged for both metrics and return level plots were generated using the resulting 

MCMC posteriors for the GPD parameter estimates values. Return level plots had wide 

confidence intervals for return level estimates, indicating uncertainty in predictions for 

periods many times larger than the length of the baseline dataset.  

 

EVA has many applications for MRE biological monitoring, and defining extreme value 

thresholds for each site will help MRE regulators assess the risk of impacts, as well as 

establish a baseline for expected extreme value periodicity. Evaluating periodicities of 

extreme events will allow both site developers and regulators to predict the risk of 

damage to tidal technology or other MRE technologies, and the risk of MRE technologies 

impacting the environment. Techniques used in this study should decrease the time 

needed to develop environmental monitoring plans, reduce costs of permitting, and help 

identify relevant monitoring variables. Using EVA, regulators will be able to set variable 

or metric thresholds and model the frequency of rare values that may be associated with 

biological impacts. Regulators could use this approach and results from threshold 

analyses to compare conditions among tidal energy sites to set more generic monitoring 

guidelines. These methods are also applicable to other forms of environmental 

monitoring around most anthropogenic disturbances. 

 

The second objective of the study was to compare the distribution and abundance of fish 

and macrozooplankton at two tidal energy sites. This comparison enabled evaluation of 

the similarities of biological characteristics, and to determine whether EVA could be used 

as a generic approach for biological monitoring at tidal energy sites. The two datasets 

were collected using active acoustics and were processed to maximize comparability. 

Metrics describing variability in vertical biomass distribution in the water column over 

space and through time were used to compare the two sites. Results show that sites had 

similar biological patterns. EVA was successfully applied to mean Sv and aggregation 
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index series at both sites. The main difference between the two sites was that the variance 

in metrics was greater at Admiralty Inlet than at Fall of Warness, which could be 

explained by physical differences between the sites. These analyses lead to the 

conclusions that tidal energy sites have similar biological characteristics, and that similar 

monitoring methods could be used at both sites. 

 

The amount of data necessary to perform an EVA was also evaluated using Fall of 

Warness mean Sv data. While it is possible to obtain a threshold estimate using 10% of 

the available data, accuracy is increased as the amount of data used increased. Evaluating 

the amount of data needed could be used to address a problem frequently encountered 

when designing a monitoring plan, which is the temporal and spatial resolution at which 

to monitor. While the scope of the study can be determined by monitoring objectives and 

targets, sampling frequency and scope of study can also be determined by resource 

availability (e.g. financial, data storage, power capability) particularly for autonomous 

instrument packages. While collecting as much data as possible is a typical goal, there 

can be a point of diminishing return. A power analysis or autocorrelation study may show 

that increasing the resolution of data does not result in a corresponding increase in 

information. Collecting additional data may be costly and may be the only option in lieu 

of adequate sample design (e.g. Verdant Power). Determining the appropriate sample 

design to detect impacts is an important problem that is needed to optimize monitoring 

plan formulation and implementation.  

 

This study was based on the analysis of acoustic backscatter data. No effort was made to 

proportion acoustic backscatter into species or functional groups. While species 

identification is possible, it requires direct sampling (e.g. trawls), which are constrained 

in high flow areas. Acoustic backscatter classification was not required for this study as it 

was tangential to the primary objectives, but without classification comments on 

community and composition are not possible. Using acoustic backscatter as a common 

currency is an advantage when comparing sites because it enabled direct comparison of 

temporal and spatial organism distribution patterns. As much of environmental regulation 

is species specific, a natural extension of this project would be to investigate whether 

thresholds from EVA could be applied to datasets that include taxonomical composition, 

and see if differences in thresholds are proportional to species abundances and residence 

times. This would aid proposing generic monitoring guidelines for more specific 

monitoring targets (e.g. special status marine mammal and fish species). 

 

One primary issue that this study addressed was the definition and detection of biological 

impacts. While it is possible to define thresholds based on statistical significance, 

determining biological significance is more challenging. Specific knowledge and studies 

will be essential to characterize biological significance, and consensus on defining 
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biological impact, even in case-specific settings, is expected to be difficult to reach. It 

will be interesting to see how thresholds generated from EVA will be used to inform 

regulatory decisions, and if they will differ from those that are deemed biologically 

significant. 

 

Investigating the generality of monitoring methods was another important component of 

this study. The case is made that standardized monitoring is advantageous for site 

comparisons. Site comparisons are important for determining general impacts of human 

activities. Environmental monitoring around human disturbances also requires observed 

changes to be attributed to one or more disturbances. This is the grand challenge of 

monitoring. Changes may be detected, but whether observed changes are caused by 

human activity or simply natural fluctuations is difficult to determine. Control sites can 

used to address this issue, but this approach has been criticized due to the difficulty of 

finding appropriate control sites for a treatment site (Underwood, 1994). An alternative to 

using control sites would be to compare monitoring data from several impact sites (e.g. 

operational tidal energy projects) and to quantify change in a common set of monitoring 

variables to see if similar changes can be detected. To be effective, it is critical that 

consistent methodology be used at all sites. The comparison of biological characteristics 

at two sites suggests that standardization of methods is a realistic regulatory objective.  
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