Behavioural responses by seals

to offshore energy activities

Katherine Fae Whyte

A thesis submitted for the degree of PhD
at the
University of St Andrews

2022

Full metadata for this thesis is available in
St Andrews Research Repository
at:
https://research-repository.st-andrews.ac.uk/

Identifier to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/222

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

https://creativecommons.org/licenses/by-nc-nd/4.0/



https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/222
https://creativecommons.org/licenses/by-nc-nd/4.0/

Candidate’s declaration

I, Katherine Fae Whyte, do hereby certify that this thesis, submitted for the degree of
PhD, which is approximately 52,000 words in length, has been written by me, and that
it is the record of work carried out by me, or principally by myself in collaboration with
others as acknowledged, and that it has not been submitted in any previous application
for any degree. I confirm that any appendices included in my thesis contain only material

permitted by the ’Assessment of Postgraduate Research Students’ policy.
I was admitted as a research student at the University of St Andrews in January 2017.

I received funding from an organisation or institution and have acknowledged the funder(s)

in the full text of my thesis.

Date 15/10/21 Signature of candidate

Supervisor’s declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Reg-
ulations appropriate for the degree of PhD in the University of St Andrews and that the
candidate is qualified to submit this thesis in application for that degree. I confirm that
any appendices included in the thesis contain only material permitted by the ’Assessment

of Postgraduate Research Students’ policy.

Date 15/10/21 Signature of supervisor

ii



Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. We also understand, unless exempt by an award of an embargo
as requested below, that the title and the abstract will be published, and that a copy of
the work may be made and supplied to any bona fide library or research worker, that this
thesis will be electronically accessible for personal or research use and that the library has
the right to migrate this thesis into new electronic forms as required to ensure continued

access to the thesis.

I, Katherine Fae Whyte, confirm that my thesis does not contain any third-party material

that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication
of this thesis:

Printed copy

Embargo on all of print copy for a period of 3 years on the following ground(s):

e Publication would preclude future publication

Supporting statement for printed embargo request

Publication of the thesis would hinder further publication of this work. The work pre-
sented in this thesis is also of high commercial interest and sensitivity (to offshore energy
developers), and so publishing the thesis prior to a scientific peer-reviewed publication is

undesirable.

Electronic copy

Embargo on all of electronic copy for a period of 3 years on the following ground(s):

e Publication would preclude future publication

iii



Supporting statement for electronic embargo request

Publication of the thesis would hinder further publication of this work. The work pre-
sented in this thesis is also of high commercial interest and sensitivity (to offshore energy
developers), and so publishing the thesis prior to a scientific peer-reviewed publication is

undesirable.

Title and Abstract

o [ agree to the title and abstract being published.

Date 15/10/21 Signature of candidate

Date 15/10/21 Signature of supervisor

iv



Underpinning Research Data or Digital Outputs

Candidate’s declaration
I, Katherine Fae Whyte, hereby certify that no requirements to deposit original research

data or digital outputs apply to this thesis and that, where appropriate, secondary data

used have been referenced in the full text of my thesis.

Date 15/10/21 Signature of candidate



Acknowledgements

First of all, I would like to thank my supervisors: Gordon Hastie, Debbie Russell, Len
Thomas, and Carol Sparling. Thank you for your unwavering encouragement, patience,
trust, and support over the past four years. Thank you for always helping me see the
bigger picture, as well as carefully consider all the important scientific details. I could not

imagine having a better team.

Special thanks also go to my “lab” group (DanGER), and all members past and present:
Gordon, Debbie, Joe, Matt, James, Clair, Chris, Laura, “honourary member” Monica,
Lauren, Izzy, Hannah, Claire, Jules. Thank you for being such a knowledgeable and genuine
support bubble, especially during the uncertainty of a global pandemic and lockdown.
Thanks also to all of my office mates in my different offices over the years: the old top-floor
SMRU office, the new SOI open-plan office, the CREEM office, and of course my working-
from-home office. Only one of these offices had a cat (who is responsible for any typos
found in this thesis), but in all of these offices I was lucky enough to work with people who

made day-to-day PhD life an enjoyable experience.

To everyone at SMRU and CREEM, thank you for always making me feel welcome. I cannot
even begin to list names here, partly out of fear I will forget someone, but also because
I struggle to think of anyone who has not helped shape my career in some way. Thank
you to companions at (often much-needed) lunch, coffee, and cake breaks. In particular,
thank you to those who offered and supported me in opportunities to learn and grow as
a scientist. I am grateful to have gained these experiences, and all of them have helped
to make me a better scientist: from teaching and public engagement, to collaborative
research projects, to fieldwork tagging seals, to publishing my first paper, to attending
(and organising) conferences. In particular, special thanks to Catriona Harris and Stacy

DeRuiter for many long chats about Mahalanobis distance.

Above all, thank you to my family. Thank you for laughs, for adventures, for always keep-

ing me sane, and for reminding me that a PhD is only a small part of life.

vi



Funding

This work was supported by the Department for Business, Energy and Industrial Strategy’s
(BEIS, UK) Offshore Energy Strategic Environmental Assessment programme (OESEA-
16-74), administered through Hartley Anderson Ltd.

This work was supported by the University of St Andrews (School of Biology).

Thanks also to:
e Race Bank Offshore Wind Farm Ltd for funding the sound propagation modelling.

¢ Funders of the original data collection in 2012:

— Harbour seal (pv42) tag deployment in The Wash: Tags and their deployment
were funded by the Department for Business, Energy and Industrial Strategy’s
(formerly the Department of Energy and Climate Change, UK) Offshore En-
ergy Strategic Environmental Assessment programme (OESEA-11-24), with ad-
ditional resources from National Capability funding from the Natural Environ-

ment Research Council to the Sea Mammal Research Unit (NE/R015007/1).

— Harbour seal (pv40) tag deployment in The Thames: Tags and their deployment
were in collaboration with ZSL, funded by SITA Trust and BBC Wildlife Fund.

Data and collaborators

Thank you to:
e Bas Binnerts and Sander von Benda-Beckmann at TNO (Acoustics and Sonar Exper-
tise Group, TNO, The Hague, Netherlands) for producing the acoustic propagation

models of pile driving used in this thesis.
e Centrica plc for the provision of detailed pile driving data at Lincs wind farm.

e SMRU Instrumentation and those who helped with any aspect of the original data
collection and seal tagging in 2012.

All capture and handling protocols were carried out under UK Home Office License 60,/4009
in accordance with the Animals Scientific Procedures Act 1986, with additional licence ap-
proval from the University of St Andrews Animal Welfare and Ethics Committee. Seals
were captured under licence from Marine Management Organisation. All appropriate per-
missions with regard to designated sites, with any necessary mitigation measures in place,
were obtained from the relevant authority. The data used in this thesis are published in
Hastie et al., 2015, Russell et al., 2016, and Whyte et al., 2020.

vii



Abstract

To effectively manage interactions between industrial activities and wildlife populations
in increasingly urbanised environments, it is essential to understand how animals may be
affected by different anthropogenic activities. In this thesis, I used biologging devices to
investigate the potential effects of sound disturbance on seals. By simulation study, I
evaluated the use of statistical tools (Mahalanobis distance) to detect unusual instances
of movement and dive behaviour in seal biologging data. The results of these simulations
were used to produce recommendations for future studies aiming to detect behavioural
changes in animal movement data. Building on the findings of this work, I examined the
movement and dive behaviour of 24 harbour seals (Phoca vitulina) during pile driving
construction at an offshore wind farm in the UK. Using GPS location data collected on
animal-borne tags, I identified statistically unusual horizontal movement events during pile
driving, typically consisting of increases in speed, the cessation of horizontal movement,
or the sudden initiation of travel. Using dive data from animal-borne tags, I identified
statistically unusual groups of dives, and also characterised the effect of pile driving activity
on behaviour-switching between different dive types (by hidden Markov models). Seals
were found to switch dive behaviours more often during pile driving (compared to baseline
periods), and the identified unusual dives were typically shorter and shallower, with longer
post-dive surface intervals. For both horizontal and diving responses, dose-response curves
were produced to estimate the relationship between the received sound level of pile driving
and the probability of a behavioural change. By examining behaviour at the individual-
level, improved insights of at-sea seal behaviour during disturbance events were gained.
The results of this thesis also inform future offshore activities, enabling the renewable

energy industry to develop in a timely and environmentally-responsible manner.
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Chapter 1

General Introduction

Part of the work in this chapter (See Appendix F for full paper) is published as:

Whyte, K.F., Russell, D.J.F., Sparling, C.E., Binnerts, B., & Hastie, G.D. (2020). Esti-
mating the effects of pile driving sounds on seals: Pitfalls and possibilities. The Journal
of the Acoustical Society of America, 147(6): 3948-3958.



1.1. Animal behaviour and human interactions

1.1 Animal behaviour and human interactions

Animals must make decisions as they move through and interact with their environment
(Davies et al., 2012; Owen et al., 2017). They must decide where to go, what to eat, when
to rest, and which conspecifics to interact with. The consequences of these decisions may
affect their immediate survival, their long term health and condition, and their breeding
success. To make successful decisions, sensory cues are fundamental for informing them of
particular resources or risks within their environment (Sih, 2013; Smith et al., 2021). As
human presence and activities continue to expand across the globe (Venter et al., 2016),
humans are modifying the physical environment and producing sensory pollution (Halfwerk

and Slabbekoorn, 2015) which may alter or impact animal decision-making.

Sensory pollution is often produced as a by-product of human activities, and can be visual,
acoustic or chemical (Dominoni et al., 2020). This pollution may affect animals by masking
the signals of other important stimuli, distracting or disrupting the animal from its intended
behaviour, or eliciting animals to interpret and react to these signals as if they were natural
cues (Barber et al., 2010; Dominoni et al., 2020). For example, marine turtle hatchlings
can be disorientated by artificial light near breeding sites (Kamrowski et al., 2013), great
tits (Parus magor) spend more time on vigilance behaviours and less time feeding during
exposure to aircraft noise (Klett-Mingo et al., 2016), and moths (Manduca sexta) can have
a reduced ability to locate flowers when background odours are present (Riffell et al., 2014).
Over time, such individual behavioural changes have the potential to reduce the fitness of
individuals, populations, or species, for example through missed foraging opportunities or
maladaptive behaviour. Wider ecosystem functions and processes (e.g. trophic cascades,
nutrient cycling, seed dispersal) may also be disrupted if animal behaviours, distributions
or abundances are significantly altered (Wilson et al., 2020). Understanding how and why
animals may alter their behaviour in response to human activity is therefore an important
step in predicting how populations and ecosystems may be affected by human activities,

and in determining how mitigation may be effectively used (Smith et al., 2021).

1.2 Urbanisation of the marine environment

Over the last century, technological advances have enabled a vast increase in the type
and extent of human activities being conducted in the marine environment. Although

it is likely that only some of these activities will have acute impacts on marine wildlife



1.2. Urbanisation of the marine environment

(e.g. the removal of individuals) or habitats (e.g. degradation), many will produce sound
pollution which is released into the marine environment. The number of ships worldwide
increased by a factor of 3.5 between World War II and 2008 (Erbe et al., 2019; Frisk, 2012),
and shipping lanes now extend across the globe, including regions of the Arctic previously
inaccessible due to ice (Smith and Stephenson, 2013). This expansion has led to commercial
shipping now being considered as a major source of low-frequency (5-500 Hz) background
noise in the world’s oceans (Duarte et al., 2021; Hildebrand, 2005). In the fishing industry,
substantial noise pollution is produced from bottom trawling activity (Daly and White,
2021), and in aquaculture acoustic deterrent devices are used to deter seals from farming
facilities (Findlay et al., 2018). Energy extraction activities, in particular seismic surveys
to locate oil and gas reserves, use high intensity low-frequency sounds to detect and map
the extent of resources underwater (Estabrook et al., 2016). Seismic surveys are thought
to be a significant component of underwater noise in the North Atlantic (Nieukirk et al.,
2004). In addition, the marine environment is also widely used for tourism and recreation
(Marley et al., 2017), military activities (Goldbogen et al., 2013), construction (Culloch
et al., 2016), and harvesting and mining of natural resources (Christiansen et al., 2020),
all of which produce noise from increased vessel activity, sonar, drilling, or other areas of

activity.

For aquatic animals, sound is an important sensory modality. In marine habitats, the
availability of light reduces with depth, and water turbidity limits underwater vision (e.g.
during extreme weather, or in areas with high silt). Relative to air, sound travels approx-
imately 4-5 times faster in seawater (~1,500 ms~! vs. ~340 ms~!) and can travel long
distances underwater. For example, the calls of blue whales (Balaenoptera musculus) can
be detected from over 200-600 km away (Sirovié et al., 2007; Stafford et al., 1998). Sound
propagation underwater depends on a variety of environmental conditions including water
temperature, depth (pressure) and salinity, as well as the frequency characteristics of the
sound itself (Au and Hastings, 2008). Many marine animals are highly reliant on their abil-
ity to make and detect sounds in order to communicate, navigate and interact with their
environment. The production of additional sound from human activities therefore presents
a potential environmental concern for marine habitats, as many of the sounds that are
produced overlap highly with the sound frequencies heard, produced, and used as cues
and signals by marine animals (Figure 1.1). The extent to which wildlife is affected will
depend on the characteristics of the sound source (e.g. loudness, frequency), the pattern
of its use, and the spatial and temporal overlap of these sounds with marine animal vo-

calisations, behaviours, and distributions. As marine habitats are increasingly being filled
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Figure 1.1 Sources and receivers of sound in the marine environment. Shown are the approximate
sound frequency ranges of sound production by different animal taxa, the estimated hearing ranges
of each animal group, and the frequency ranges of sound produced from selected anthropogenic
noise sources. Colour shading denotes the dominant frequencies of the anthropogenic sound sources.
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1.3. The transition to renewable energy

with sounds from human activities (Duarte et al., 2021), it is important to document and
understand the potential impacts of anthropogenic sounds, both as individual stressors,

and as additional contributions to an already complex ocean soundscape.

1.3 The transition to renewable energy

1.3.1 Renewable energy trends

The need to combat climate change is driving a global transition from carbon-based en-
ergy (oil, coal, natural gas) to renewable energy sources (e.g. wind, solar, geothermal,
hydropower). In the decade of 2011-2020, global surface temperatures were 1.09°C higher
than the 1850-1900 average, and it is predicted that global warming will exceed 2°C by
2100 unless severe reductions in global greenhouse gas emissions are made (IPCC, 2021).
Concern regarding the consequences of this warming for global climate, extreme weather
events, sea level rise and ecosystem functioning (IPCC, 2021; Walther, 2010) is increas-
ing pressure on countries to reduce their emissions and switch to more environmentally-
sustainable sources of energy. For example, the United Kingdom (UK) is committed to
reaching net-zero emissions by 2050, and reaching a 40 GW capacity (equivalent to the
electricity required to power all UK households) in offshore wind by 2030 (The United
Kingdom Government, 2020). Worldwide, although the use of renewable energy sources
has been increasing annually over the last half-century (Figure 1.2(a)), the rate of increase
in total renewable energy generation has been substantially higher within the last 20 years
(average annual increase of ~54 GW pre-2003 vs. ~268 GW post-2003; Ritchie and Roser,
2020).

1.3.2 Offshore wind and pile driving

The wind energy sector has been one of the fastest growing renewable energy industries in
the last 20 years (Figure 1.2(b)), and is increasingly moving towards offshore developments,
despite the increased financial costs of construction and operation in these environments
(Breton and Moe, 2009). Wind farms built offshore can have larger arrays, larger turbines,
benefit from stronger and more predictable offshore winds, and can be built with reduced
limitations caused by visual and operational noise concerns from nearby residents (Breton
and Moe, 2009; Diaz and Guedes Soares, 2020). With this expansion of the sector comes

the urgent need to understand how these new technologies may affect marine habitats and
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marine wildlife. Environmental impact assessments (EIAs) are conducted to predict the
potential impacts of each development, but these assessments require robust information
on the effects of construction and operation on each species. For example, turbines (both
onshore and offshore) present a potential risk of direct collision between the fast-moving
turbine blades and in-flight bats (Ahlén et al., 2009; Arnett et al., 2008) and birds including
migrants and seabirds (Furness et al., 2013; Hiippop et al., 2006).

For marine animals that spend time underwater, a key environmental concern from off-
shore wind is underwater noise. During operation, offshore wind turbines produce a near-
continuous low-frequency (< 1 kHz) sound which is radiated into the water (Tougaard
et al., 2008; Yang et al., 2018). As the operational sound produced is of low intensity
(< 120 dB re 1 pPa (RMS) at ~100 m from the turbine), it is considered unlikely that
this sound has a significant effect on marine mammals (Madsen et al., 2006). Notably,
Yang et al. (2018) reported that the operational noise produced by two types of turbine
was so low-level that it was challenging to measure and was often masked by wave and
tidal flow noise. Underwater noise is highest during the construction phase of the wind
farm, which can encapsulate a wide range of activities including increased boat activity,
dredging and pile driving (Madsen et al., 2006). Pile driving, used to hammer wind tur-
bine foundations into the seafloor, produces very high intensity sounds (up to 250 dB re
1pPa @ 1 m (peak-peak); Bailey et al., 2010). Given that pile driving to install a single
turbine can require repeated strikes (approximately every 1-2 seconds) for multiple hours
(Bailey et al., 2014; Graham et al., 2019), understanding of how this sound may affect the
hearing (Hastie et al., 2015), behaviour (Brandt et al., 2011), and long-term population
health (Thompson et al., 2013) of marine animals present in the vicinity of the wind farm

is urgently required.

1.4 Seals: ecology, behaviour, and population status

Pinnipeds (comprising the true seals (Phocidae), eared seals (Otariidae), and walruses
(Odobenidae)) are long-lived mammals with a large body size and a semi-aquatic lifestyle
(Berta, 2018). The life of a pinniped is divided between time spent hauled out on land (or
ice), and time spent at-sea. In this thesis, the focus is largely on investigating the at-sea
portion of pinniped lifecycles. At sea, pinnipeds must acquire the food they need to survive
and may encounter a variety of threats including natural predators and human activities.

This is typically when pinnipeds are also hardest to observe directly. Understanding at-sea
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behaviour is therefore a challenging but important area of research; however, it is essential
to remember that the requirement of pinnipeds to regularly haulout (e.g. to rest, breed,

digest) remains an intrinsic part of their movement ecology, distribution and life history.

1.4.1 Movement ecology of seals

Seals are considered to be central-place foragers (Bell, 1990), making foraging trips out to
sea from a central location on land. In practice, while seals typically show high site-fidelity
to haulout sites (or groups of sites), seals can change haulout locations during their lifetime
(Dietz et al., 2013; Sharples et al., 2012). The distance that seals travel during these trips
can be 10’s to 1000’s of km, with differences between species and between geographic
regions. For example, southern elephant seals (Mirounga leonina) in South Georgia have
been observed to travel up to ~3,000 km away from their breeding beaches (McConnell
and Fedak, 1996). In contrast, a study of harbour seals (Phoca vitulina) in west Scotland
(Cunningham et al., 2009) reported maximum trip extents of only 46 km from the haulout
site, with trips typically lasting from 12—-24 hours; however, there is considerable variation
in harbour seal foraging trip behaviour between different regions of the UK (Sharples et al.,
2012).

1.4.2 Diving behaviour of seals

While at sea, seals spend the majority of their time underwater (Bekkby and Bjgrge, 2000;
DeLong and Stewart, 1991). The physiology of pinnipeds is highly adapted to enable this,
with animals possessing thick layers of blubber to aid in thermoregulation, large oxygen
stores and specialised cardiovascular systems to cope with long dives and high pressure at
depth, and sensory systems that can function well both in-air and underwater (Blix, 2018;
Crocker and Champagne, 2018). Pinnipeds must dive to locate and capture their prey, but
many species also dive while travelling to foraging locations and during low-activity periods
in the water. Within each species, the presence of dives with different biological functions
leads to the observation of dives with different measured properties, such as variable dive
depths, durations, and shapes (e.g. Baechler et al., 2002; Kuhn et al., 2009; Photopoulou
et al., 2014). This third (vertical) dimension of seal movement is therefore an important

consideration when attempting to understand the patterns and drivers of seal behaviour.



1.5. Biologging as a tool to track individuals

1.4.3 Harbour seals in the UK

Harbour seals are one of two pinniped species that breed in the UK, alongside the larger
and more abundant grey seal (Halichoerus grypus) (Thomas et al., 2019; Thompson et al.,
2019). Mature adult male harbour seals can reach maximum body lengths of approximately
1.6 m and weights of ~75-104 kg (Teilmann and Galatius, 2018). Females are typically
smaller, reaching maximum sizes of approximately 146 cm and 67-83 kg (Teilmann and
Galatius, 2018). Both sexes reach sexual maturity at 46 years, with maximum recorded
ages of 31 and 36 for males and females respectively (Harkonen and Heide-Jgrgensen, 1990;
Teilmann and Galatius, 2018). In the UK, the harbour seal pupping and breeding season
lasts from June to July (Thompson et al., 1997, 2019), during which time females give
birth on land to a single pup. The lactation period lasts an average of ~24 days, with
females continuing to forage during this period and harbour seal pups being able to swim
from birth (Arso Civil et al., 2021; Thompson et al., 1994).

The estimated total population size of harbour seals in the UK is 43,450 (95% CI: 35,550~
57,900; Thompson et al., 2019). Approximately 80% of the UK population is in Scotland,
but significant numbers are also found in south-east England and in Northern Ireland
(Thompson et al., 2019). In particular, aerial surveys of the south-east England Seal Man-
agement Unit area (Figure 1.3), which includes The Wash & North Norfolk Special Area of
Conservation (the focus of the tagged seals in this thesis), counted 5,061 harbour seals at
haulout sites in the most recent survey in 2016 (Thompson et al., 2019). Despite popula-
tions of harbour seals increasing in the south-east of England, there have been substantial
regional declines (east Scotland, Northern Isles) in some harbour seal populations (Loner-
gan et al., 2007; Thompson et al., 2019). The cause of these regional declines is not fully
understood; however, there are several possible factors including competition with grey
seals (Wilson and Hammond, 2019), predation (Brownlow et al., 2016), and algal toxins
(Jensen et al., 2015). Given the projected increases in offshore wind developments around
UK coastlines, it is vital to understand how increased industrial activity may affect this

protected species, particularly for populations which may already be under pressure.

1.5 Biologging as a tool to track individuals

Biologging, the practice of recording and/or relaying data from animal-attached tags
(Hooker et al., 2007), is a rapidly growing area of scientific research (Rutz and Hays,

2009). Developments in the miniaturisation of sensors and mobile electronic devices are
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1.5. Biologging as a tool to track individuals

enabling scientists to attach devices to animals to record different aspects of their move-
ment, behaviour, physiology, and environment (Wilmers et al., 2015). These developments
have been particularly important for aquatic environments, as tags can now record data
on animals which were previously challenging to observe, e.g. during diving or extended

periods at-sea (Hooker et al., 2007; Hussey et al., 2015).

As Dbiologging devices are deployed on free-ranging animals, careful consideration must
be given to how the recorded data will be recovered at the end of the study. The first
option is to store all recorded data on the tag (often termed “archival” tags; Cooke et al.,
2004), and recover the physical tag itself. In practice, guaranteeing the recovery of tags
can be challenging, in particular for studies with long-term deployments (months—years),
wide-ranging species, or inaccessible habitats. The second option is therefore to deploy
tags which are able to record and remotely transmit data recorded on the animal back to
a receiver (often termed “telemetry” tags). Multiple options now exist for transmitting
data, including VHF radio, ARGOS satellites, and the GSM phone network (Hooker et al.,
2007). The need to transmit data often places constraints on the type, resolution, and
volume of data that can be reliably recovered from the telemetry tag (Carter et al., 2016).
Therefore, data collected from telemetry tags may need to be pre-processed on-board the
tag to summarise the data before transmission (e.g. Cox et al., 2018; Photopoulou et al.,
2015). Understanding the limitations of this abstracted data is an important consideration
when interpreting telemetry data; however, in practice, all biologging tags must necessarily
be a careful compromise between obtaining data appropriate for the study goals (e.g.
data resolution, study duration, number of individuals) and technological constraints (e.g.

battery life, data storage, physical size of the tag) (Holton et al., 2021).

One of the main benefits of using biologging devices is the ability to continuously track
individuals while they interact with their environment, without the requirement or po-
tential disturbance of human observers (Cooke et al., 2004). These devices therefore also
enable detailed data collection on how wild animals interact with human activities in their
environment. For example, Ordiz et al. (2019) investigated the responses of wild brown
bears (Ursus arctos) in Sweden to groups of human hikers, using GPS devices to track the
movements of both bears and humans. Two common concepts in behavioural biology were
also investigated: habituation and sensitisation (Peeke, 1984). During repeated exposures
to a stimulus, habituation is considered to occur when the occurrence or severity of the an-
imal’s response to the stimulus decreases over time (McSweeney et al., 1996). In contrast,
sensitisation occurs when the occurrence or severity of the animal’s response increases over

time (McSweeney et al., 1996). During the experimental trials in Ordiz et al. (2019), bears

11



1.6. Seals and noise: from population to individual

consistently reacted to human presence by moving away from the hikers, with no evidence
of sensitisation or habituation during repeated trials (n<8) on the same animals (n=29)
over 1-3 months. Tracking the bears’ movements continuously during the study revealed
that the increased movement activity observed during the responses to hikers was followed
by a period of 4-5 hours where bears exhibited reduced movement (relative to baseline),
highlighting the potential longer-term effects of disturbance on their movement activity.
Pirotta et al. (2018b) modelled the movement behaviour of GPS-tagged northern fulmars
(Fulmarus glacialis) in relation to fishing boat activity off the coast of Scotland. It was
estimated that fulmars may be attracted to fishing vessels up to 35 km away, potentially
using olfactory cues to inform them of scavenging opportunities from discarded fish and
offal. The use of biologging devices in Pirotta et al. (2018b) enabled animal movements to
be studied over geographic scales which would be impossible to achieve by other means.
Many studies also use biologging devices to monitor how animals move through human-
altered landscapes (e.g. urban environments, fragmented habitats, roads). The interest
in these studies has largely focussed on animals in terrestrial ecosystems (e.g. large cats,
Tigas et al., 2002; squirrels, Stevenson et al., 2013; rattlesnakes, Tracey et al., 2005), where

human developments are perhaps most apparent.

1.6 Seals and noise: from population to individual

To date, research into the effects of noise on seals has largely focussed on the analysis of
visual observations (e.g. Harris et al., 2001), surfacing and haul-out behaviour (e.g. Edrén
et al., 2010), abundance estimates (e.g. Culloch et al., 2016) and captive experiments (e.g.
Kastelein et al., 2006). Biologging devices, despite being first deployed on wild pinnipeds
over 30 years ago (Kooyman, 1964; Thompson et al., 1991), have had a relatively limited
use in studies investigating the potential effects of anthropogenic sound. These technologies
present an often undervalued resource in further understanding how individual seals may
move and behave in response to human activities. Some studies have conducted playback
experiments to wild tagged seals, investigating the behaviour and distribution of seals
when exposed to artificial tidal turbine sounds (Hastie et al., 2018), predator calls (Fregosi
et al., 2016; Gordon et al., 2019), and a variety of other acoustic deterrent and human-
associated sounds (Costa et al., 2003; Fregosi et al., 2016; Gordon et al., 2019). Within
the last 5-10 years, biologging data has been used to examine the effects of some human
activities and sound in situ, with studies predicting the sound exposure of shipping noise

to tagged grey and harbour seals (Jones et al., 2017; Trigg et al., 2020) and the movement
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1.6. Seals and noise: from population to individual

and distribution of tagged harbour seals in the presence of operational tidal turbines (Joy
et al., 2018; Onoufriou et al., 2021; Sparling et al., 2018).

For pile driving sounds in particular, biologging devices have been used to investigate the
predicted sound exposure (Hastie et al., 2015; Whyte et al., 2020) and density (Russell
et al., 2016; Whyte et al., 2020) of harbour seals during offshore wind farm construction.
Out of the 24 tagged harbour seals, it was predicted that four (17%) exceeded the estimated
onset threshold for temporary auditory damage (in the form of a temporary threshold shift
(TTS)), using the updated Southall et al. (2019b) thresholds for phocid seals in water
(Whyte et al., 2020). The at-sea density of harbour seals was also compared between
times of piling and non-piling (Russell et al., 2016; Whyte et al., 2020). Predicted seal
density significantly decreased during pile driving within 25 km of the wind farm, and
above estimated single-strike sound exposure levels (SELss) of 145 dB re 1uPa® - s (Figure
1.4; Whyte et al., 2020). Russell et al. (2016) used a cumulative approach to examining
the relationship between seal density and wind farm distance (or SELss), where results
were quantified and presented by including all spatial cells within each specified distance
(e.g. seal density at distance z; includes all spatial cells between 0 and z; km; seal
density at distance xy includes all spatial cells between 0 and 3 km). In addition to
this, Whyte et al. (2020) quantified the relationships using an annulus approach, where
spatial cells are included based on distinct bands or zones as distance increases away
from the wind farm (e.g. seal density at distance x; includes all spatial cells between 0
and z1 km; seal density at distance xs includes all spatial cells between z; and z9 km).
By quantifying seal density change in annulus zones around the wind farm, the updated
estimated relationships in Whyte et al. (2020) highlighted that changes in seal density were
present in each distance (and SELss) increment. They also improved the applicability of
these results to environmental impact assessments, as these assessments typically require

data collected using the annulus approach.

Population-level redistribution studies are a key step in determining the presence and
magnitude of potential disturbance effects; however, there are limitations to this approach,
and there remain a number of uncertainties in understanding the effects of pile driving
on seals. For example, to examine changes in seal density, these studies (Russell et al.,
2016; Whyte et al., 2020) conducted a binary comparison between the distribution of all
tagged seals during non-piling periods, and the distribution of all tagged seals during pile
driving. Multiple piling events were necessarily combined together, averaging over multiple
pile driving locations and different temporal patterns of piling blow energies (and corre-

sponding sound levels). By this approach, it was also not possible to quantify differences

13



1.6. Seals and noise: from population to individual

percentage change in density (%)

Figure 1.4 Predicted changes in seal density as a function of (a) distance from the centre of the
wind farm and (b) estimated sound exposure level (b)(SEL, dB re 1uPa? - s), with SEL averaged
across all water depths and piling locations. (a) Seal density in annulus 5 km increments: plotted
density change at distance x is the change in all spatial cells between 2 — 5 and  km. (c) Seal
density in annulus 5 dB increments: plotted density change at SEL x is the change in all spatial cells
between = and x + 5 dB. Annotations denote the number of spatial grid cells in each distance/SEL
category. The dashed lines represent 95% confidence intervals. Figure adapted from Whyte et al.

(2020).
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1.7. Statistical methods for behavioural response studies

between and within individual animals, or to investigate the effect of different internal (e.g.
behavioural motivation) and external (e.g. time of day) contexts on the nature or severity
of disturbance. Furthermore, although it is known that seal density is predicted to be
lower near to pile driving activity, the mechanism by which this density change occurs is
not understood. For example, changes in density could arise through seals travelling away
from piling, through seals delaying entering an area of piling, or through a combination
of both. Studying the behaviour of individuals, and accounting for the specific context of
each disturbance event, may therefore provide greater insights into the effects of sound on
marine mammals such as seals (Southall et al., 2021), and ultimately improve efforts to

quantitatively model effects at the population level.

1.7 Statistical methods for behavioural response studies

To further understand the potential mechanisms of disturbance, and to understand individ-
ual variation, it is important to use data and analytical methods which provide information
at the individual level. For example, research into the effects of sound on cetaceans have
shown that, by tracking tagged individuals, it is possible to gain insights into how distur-
bance may affect horizontal movements (van Beest et al., 2018), dive behaviour (Falcone
et al., 2017), and activity budgets (Isojunno et al., 2017). Much of this research has been
driven by a need to understand and predict the effects of military sonar sounds on cetaceans.
The observations of multiple mass strandings of beaked whales coincident with military
sonar exercises has prompted concern that some animals may respond so severely to these
sounds that they dive beyond their normal physiological limits, resulting in an increased
risk of gas bubble emboli or decompression sickness (Cox et al., 2006; Fahlman et al., 2014;
Hooker et al., 2009). Thus, behavioural response studies investigating the effects of sonar
on the behaviour of different cetacean species have been conducted and, in tandem, the
most appropriate statistical methods to analyse these data have been developed and utilised
(by projects such as MOCHA; Harris et al., 2016). The challenges of analysing data of this
sort include accounting for baseline variability in behaviour, modelling repeated observa-
tions on the same (few) individuals over time, and maximising the use of the multivariate
metrics of movement recorded on the biologging devices (Harris et al., 2016). Whilst, in
practice, a variety of statistical methods can be used in behavioural response studies, there
are two main approaches increasingly being used to detect changes in individual movement

behaviour.
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1.7. Statistical methods for behavioural response studies

1.7.1 Mahalanobis distance

The first approach is based on the multivariate statistic Mahalanobis distance (Maha-
lanobis, 1936). Mahalanobis distance measures the distance between two points in multi-
variate space, such as two data observations where multiple metrics are measured on both
occasions. Correlation between the different metrics measured (the different dimensions of
the multivariate space) are accounted for by including the covariance matrix of the data
within the distance calculation. A full description of the statistic and its application to
these studies is provided in Section 2.2.2. In this application, Mahalanobis distance can
be used to reduce multivariate time-series measurements of movement behaviour (such as
those recorded on a tag) to a single number summarising behaviour change over time (Fig-
ure 1.5). By examining the distribution of Mahalanobis distance values observed during
baseline (or non-exposure) periods, understanding is gained on what values are normal to
observe; in practice, this is usually approached by determining a quantitative threshold,
above which behaviour is considered to be statistically unusual. By comparing Mahalanobis
distance values observed during known sound exposures to the values observed in baseline,
it is possible to identify times when individuals exhibited statistically unusual movement
behaviour. These calculations are usually conducted within each individual to account for
likely differences between animals. The focus of this approach is the identification of ex-
treme or highly unusual movement behaviours ( “change-points”), where individuals exhibit

unusual changes in one or a combination of movement metrics.

While Mahalanobis distance-based methods have been used in studies of cetacean responses
to sonar (DeRuiter et al., 2013; Miller et al., 2014), they have largely been used on very
high-resolution data (e.g. accelerometer tags, that measure movement and body posture
multiple times per second) and have not yet been applied to other taxa or other types of po-
tential sound disturbance. Additionally, they have only been applied in controlled exposure
experiments, which typically involve a standardised experimental protocol for exposing few
(< 10) animals to set durations and levels of sound over a short time period (hours-days).
The method has not yet been applied to observational studies, typically involving larger
numbers of animals which are exposed to a wider variety of sound durations and levels as
they move around their environment over a long study period (weeks—months). Further-
more, despite the reliance of many sonar behavioural response studies on this method, and
its importance in producing quantitative estimates for naval activities (Harris et al., 2016),
there has been limited quantitative assessment of how this approach performs, and in how

different choices made in method implementation may affect the conclusions drawn.
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Figure 1.5 Mahalanobis distance can be used to reduce multivariate measurements of animal
behaviour (b) to a single number summarising behaviour change over time (¢). In behavioural
response studies, data are often available before (baseline), during and after exposure to a particular
disturbance (a), and so this method can be used to determine if the animal’s behaviour exceeded a
pre-defined threshold (d) in response to this disturbance.
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OBSERVED

HIDDEN

Figure 1.6 Dependence structure of a basic hidden Markov model (HMM). The observations
X4q,..., X arise from an unobserved sequence of underlying states Zi,...,Zr. Figure adapted
from MecClintock et al. (2020).

1.7.2 Hidden Markov models (HMMSs)

State-space models are hierarchical models consisting of (1) a state process (an unobserved
time series of interest) and (2) an observation process which produces data related to
the underlying time series (Auger-Méthé et al., 2021). The second approach in behavioural
response studies uses a type of state-space model (Auger-Méthé et al., 2021) called a hidden
Markov model (HMM). HMMs are used to model and understand time series, where some
system switches between a discrete number of “states” over time (Zucchini et al., 2016;
Figure 1.6). The states themselves are not directly observed, and so are often described
as latent or “hidden”. Data observations are made which can then be used to infer the
underlying state-switching process; these observations may be univariate (a single type of
data observation over time) or multivariate (multiple types of data observation over time).
The statistical model assumes that the state Z; at time ¢ depends only on the previous
state Zy_1 at time ¢ — 1 (the first-order “Markov property”), and that each observation X;
depends only on the current state Z; (the “conditional independence property”) (Figure
1.6; Zucchini et al., 2016). This therefore assumes that there is no additional correlation
between observations made at successive time steps, i.e. observation X; is independent from
observation X; ;. Extensions and modifications to these relatively simple assumptions
are increasingly being developed (McClintock et al., 2020), for example by incorporating
longer-term memory into the state-switching process and by relaxing the assumption that

sequential observations are independent.
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HMMs are a practical approach to model ecological time series, where indirect (often im-
perfect) observations are made about a time series of interest (McClintock et al., 2020).
In particular, HMMs are often used in animal movement studies, where observations of
the animal’s horizontal movement (e.g. steps, turns) are used to estimate the sequence of
underlying animal behaviours (e.g. travelling, foraging, resting) (Langrock et al., 2012).
Similarly, HMMs have been used to examine sequences of different dive behaviours in a
variety of species including macaroni penguins (Eudyptes chrysolophus; Hart et al., 2010),
American mink (Neovison vison; Bagniewska et al., 2013), and narwhals (Monodon mono-
ceros; Ngo et al., 2019). In behavioural response studies, HMMs can be used to model the
normal sequence of animal behaviours observed during baseline periods, and examine how
this may be altered during potential disturbances (DeRuiter et al., 2017; Durbach et al.,
2021; Isojunno et al., 2017). The focus of this approach is to obtain a broad estimate of the
effects of disturbance on the overall movement activity of the animal, through exploring

its effect on the type, duration, and/or nature of different exhibited behaviours.

1.8 Thesis overview

Overall, the objective of this thesis is to improve understanding of how individual seals react
to in situ anthropogenic sound disturbance, with a particular focus on renewable energy
applications. This thesis presents an in-depth observational study of wild seal behaviour in
response to an anthropogenic sound source. This thesis also aims to generate quantitative
estimates of behavioural disturbance for environmental impact assessments, and evaluate

the statistical methodology of current behavioural response studies.

In Chapter 2, I design and run a simulation study to evaluate the performance of a sta-
tistical method used in cetacean behavioural response studies: Mahalanobis distance. I
develop two novel simulators to generate realistic harbour seal biologging data for: (1)
horizontal movement tracks (via a multi-state correlated random walk, with bias to and
from spatial features), and (2) dive records (via a Markov chain and state-dependent mul-
tivariate distributions). The Mahalanobis distance method is applied to data from both
simulators to quantify the performance of the method in a variety of simulated scenarios.
This work aims to evaluate the performance of the method when applied to seal biolog-
ging data, compare different implementations of the method, and provide insights and

recommendations for future studies using this method in any behavioural response study.
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In Chapter 3, I investigate the horizontal movement of 24 GPS-tagged harbour seals and
examine the movement tracks taken by individuals during pile driving at an offshore wind
farm. Building on the findings of Chapter 2, I identify times of unusual movement behaviour
(using Mahalanobis distance) and quantify the relationship of these events with piling
sound level (using a Bayesian hierarchical model). A number of behavioural, individual
and exposure-related factors are investigated as potential contextual drivers of behavioural
response. The effective response range and total number of seals predicted to respond
within the study area are estimated. This work provides direct information for offshore
industries using pile driving, and insights into how individual seals may react to sound

disturbance.

In Chapter 4, I examine the dive behaviour of harbour seals exposed to pile driving sounds
during offshore wind farm construction, using dive records from 24 tagged individuals.
Building on the findings of Chapter 2, I identify times of unusual dive behaviour during
pile driving (using Mahalanobis distance) and quantify the relationship of these behaviours
with piling sound level (using a Bayesian hierarchical model). I also investigate how pile
driving affects behaviour-switching between different dive types (using a hidden Markov
model).

In the General Discussion, I bring the results from Chapters 2, 3 and 4 together and
present the wider implications of this work. In particular, the key insights gained for
the renewable energy sector, for studies of behavioural disturbance, and for seal move-
ment ecology are discussed. Knowledge gaps and future research directions are highlighted
to aid developments in statistical, technological, ecological and applied research in this
area. Together, this thesis presents an in-depth study of wild seal behaviour during an-
thropogenic noise exposure, provides quantitative information for environmental impact
assessments, and generates concrete advice for future studies aiming to explore changes in

animal movement behaviour.

As part of the work of this thesis, several R functions (R Core Team, 2020) were written
which allow reproducibility of the data computation and analysis undertaken. A summary

of these key functions is presented in Appendix A.
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Chapter 2

Detecting behavioural responses in
biologging data: an evaluation of

Mahalanobis distance
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2.1. Abstract

2.1 Abstract

Behavioural response studies aim to investigate the effects of stimuli on animal behaviour.
In studies of cetacean responses to sonar, an increasingly common approach is to use
biologging devices to record aspects of individual movement behaviour, and use statistical
approaches based on Mahalanobis distance to quantitatively identify behavioural responses
to disturbance. Despite the growing application of this approach, there is currently limited
information on (1) the detection and false positive rates of the method, (2) how different
implementations of the method may affect performance, and (3) the performance of the
method with lower resolution biologging devices. In this chapter, I designed a simulation
study to quantify the detection and false positive rates of Mahalanobis distance approaches
when aiming to detect behavioural responses in seal biologging data. To do this, I developed
two simulators to generate both realistic harbour seal GPS locations and harbour seal dive
summary records. A variety of different types of behavioural response were simulated, and
different implementations of Mahalananobis distance were applied to the simulated data. In
the horizontal simulations, strong and long movement responses were likely to be detected
(up to 79% of simulations), whereas weak and short movement responses were detected
less reliably (up to 43% of simulations). In the dive simulations, performance differed
between the type of behavioural response simulated, with detection being generally higher
for simulated responses with short unusual post-dive surfacing behaviour (~55-100% of
simulations), than responses with longer-term modifications to travelling behaviour (~5-
100% of simulations). False positive rates were generally low (~5%) when at least five days
of baseline data were available. Overall, both simulations provided important insights and
recommendations for future behavioural response studies aiming to use this methodological
approach. In particular, future studies should aim to (1) maximise the collection of baseline
data prior to disturbance, (2) calculate the covariance matrix (used in calculations of
Mahalanobis distance) on baseline data only, and (3) consider carefully the duration and

type of behavioural response that is of interest prior to analysis.

22



2.2. Introduction

2.2 Introduction

Behavioural response studies aim to identify and characterise the effects of particular stim-
uli or stressors on animal behaviour. Studies typically measure one or more aspect of
animal behaviour, and attempt to assess whether the stimulus has caused the animal to
exhibit a substantial change in this behaviour. For example, animals may change their
behaviour in response to cues that inform them of predators. Jara and Perotti (2010)
found that three species of tadpoles (Pleurodema thaul, Pleurodema bufoninum, Rhinella
spinulosa) reduced their movement activity when presented with visual and chemical cues
of predators; however, the responses differed between tadpole species, predator species,
and the size of the tadpole. Animals may also alter their behaviour in response to envi-
ronmental cues. For example, brown trout (Salmo trutta) can become nocturnal feeders
during winter in response to low water temperatures (Heggenes et al., 1993). As human
activities continue to expand across the globe (Venter et al., 2016), a key consideration
in many recent studies are the behavioural responses of animals to humans (e.g. Doherty
et al., 2021). Animal reactions may be due to human presence directly (Braimoh et al.,
2018; Ordiz et al., 2019), or due to a stimulus produced by human activity, such as sound
(Weilgart, 2007). An increasingly popular method to collect data on animal behaviour is to
use biologging devices, which are deployed directly onto the study animals and can contain
a variety of sensors to record aspects of behaviour (e.g. location, acceleration, posture) and
the environment (e.g. depth, temperature, salinity). This approach can be useful as the
study animals do not have to be visible to observers at all times during the study, allowing
data to be collected remotely on wild animals in their natural habitat, over long periods
(e.g. months), and in habitats where visibility is limited (Wilmers et al., 2015). This is
particularly advantageous when considering diving animals, which are often unavailable
to observe at the water surface (Hooker et al., 2007). As such, many studies of marine
mammal behaviour have used biologging devices to help understand the potential impacts

of human disturbance on their behaviour.

2.2.1 Use of Mahalanobis distance in practice

Despite developments in biologging technology allowing data to be recorded on many dif-
ferent species, statistical methods to effectively analyse these data and identify disturbance
events are relatively limited. One approach that has been used to quantify behavioural

responses in marine mammals, particularly in studies of cetacean responses to sonar, is
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based on Mahalanobis distance (DeRuiter et al., 2013). This approach has three key ben-
efits which have led to its growing use in this context. First, it can be used to objectively
and clearly categorise an animal’s behaviour during disturbance as either a response or
a non-response. Second, the method identifies the precise timing of the behavioural re-
sponse, allowing identified responses to be linked to secondary data which may explain its
occurrence, such as estimated sound level. The relationship between the probability of an
animal responding and the strength of a particular stimulus can then be quantified. Third,
the method is relatively straightforward to implement, and does not require any further

model fitting or goodness-of-fit assessments.

Mahalanobis distance has been applied in studies assessing the impact of sonar on a variety
of cetacean species, including blue whales (Balaenoptera musculus, Southall et al., 2019a),
minke whales (Balaenoptera acutorostrata, Kvadsheim et al., 2017), killer whales ( Orcinus
orca, Miller et al., 2014), long-finned pilot whales (Globicephala melas, Antunes et al.,
2014), and beaked whales (e.g. DeRuiter et al., 2013, Stimpert et al., 2014). Biologging
data have been a key component in the majority of these studies, but there has been
variation in how the data have been considered within the Mahalanobis distance approach.
In general, the approach involves (1) deciding on the animal behaviour metrics of interest
(e.g. movement speed, dive depth), (2) dividing the data time series into discrete time
windows, and (3) performing Mahalanobis distance calculations between pairs of time
windows. (A detailed introduction to the specifics of the approach is provided in Section
2.2.2.) The chosen animal behaviour metrics differ between studies, and some studies have

2

also subdivided the measurements from biologging tags into “movement” and “energetic”
metrics to perform separate Mahalanobis distance analyses, attempting to detect different
types of response (Kvadsheim et al., 2017; Miller et al., 2015; Wensveen et al., 2019). Most
previous studies have used the approach to divide the data into time windows corresponding
to durations of time (e.g. every x minutes). Other studies have divided the data into dive-
by-dive units for analysis (e.g. DeRuiter et al., 2013, Kvadsheim et al., 2017), where the
start of each underwater dive (or group of dives) represents the start of a new time window
(e.g. every z dives). The size of the resulting time windows chosen (a necessary step
in the analysis) varies, from 5 minutes (e.g. Stimpert et al., 2014) to 15 minutes (e.g.
Wensveen et al., 2019), and the overlap between time window calculations also differs.
During the Mahalanobis distance calculation stage, the majority of studies compare animal
behaviour during disturbance to their average behaviour during non-disturbance periods
(baseline), but it is also possible to compare the animal’s current behaviour to its most

recent behaviour to detect behavioural responses (Antunes et al., 2014).
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2.2.2 Mahalanobis distance: an introduction

A multivariate statistic

Mahalanobis distance (Mahalanobis, 1936) is a statistical measurement of the distance
between two points in multivariate space. These two points should be from the same sta-
tistical distribution, and contain observations of the same set of variables (e.g. body length,
body weight). In this application, the method is used to calculate the distance between
the means of two sets of multivariate data. By including the covariance matrix of the data
within the calculation, the distance accounts for correlation between variables within the
dataset. Hence, Mahalanobis distance can be used to identify unusual combinations of
variables (outliers) in multivariate data (for a two-dimensional example see Figure 2.1).

The Mahalanobis distance D4 ) between two sets of observations is calculated by

Di,y) = \/(w —y)TS Nz - y) (2.1)

where = (21, 22, x3,...,x ) is a vector containing the mean of multivariate data observa-
tions for variables 1 to N, y = (y1,¥2,¥3, ..., yn) iS a vector containing mean observations
of the same variables, and S~ is the inverse covariance matrix of the data. The resulting
Mahalanobis distance is a measurement of how far apart the means of the two observations
are, given the variability and correlations of the dataset. Mahalanobis distance is both
unitless and scale-invariant (i.e. is not affected by the magnitude of the data observations
used).

Data inputs

Any number of behaviour measurements can be used as inputs in the Mahalanobis distance
calculation. The choice of inputs depends on the data available, the research question, and
some judgement on which variables may be appropriate and informative in detecting a par-
ticular type of behavioural response. Some studies have carried out multiple Mahalanobis
distance analyses (with different inputs) to look for different types of response, e.g. Miller
et al. (2015) investigated the behaviour change in “movement parameters” and “energetic

parameters” separately.

Time window structure

In order to use Mahalanobis distance to investigate change over time series of data, obser-
vations need to be divided into time windows. There are several different approaches to do
this; here I describe these approaches and outline the terminology I will use to differentiate

them.
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Figure 2.1 Example of Mahalanobis distance for two variables: animal body length and weight.
Shown are a simulated dataset (crosses) and the values of Mahalanobis distance (colour-scale)
relative to the mean (red dot) of this dataset. The new data observation 1 (annotated white dot)
would have a lower Mahalanobis distance (value of 2.1), whereas observation 2 (annotated white
dot) would have higher Mahalanobis distance (value of 4.3). Although observation 1 has a high
body weight, it is not an unusual value for the corresponding observed length. Observation 2 has
a weight equal to the mean of the dataset and the same body length as observation 1, but this is
an unusual combination of the two variables.
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Figure 2.2 Time window options for Mahalanobis distance calculations. All calculations take
place between a reference window (striped) and moving window (solid colour). The reference
window can be fixed at a particular point in the data timeline, with a moving reference window for
comparison (a); or both windows can slide consecutively together over the data timeline (b). When
the windows are moved over the data timeline, they can have overlap with the previous calculation
(c)(d) or no overlap (a)(b). The width of the time window can also be varied for different studies

OF

Every Mahalanobis distance calculation takes place between two groups of data observa-
tions (e.g.  and y in Equation 2.1). Here, these two groups are two time windows placed
within the dataset: a moving window, and a reference window. Vector & contains the
mean of the observation(s) contained within the moving window, and vector y contains
the mean of the observation(s) contained within the reference window. The moving window
slides along the timeline of the data, and at each position (e.g. 1, 2, 3; Figure 2.2) the

Mahalanobis distance between the moving and reference window is calculated.

The reference window itself can either be fixed or consecutive (Figure 2.2). If the refer-
ence window is fixed (Figure 2.2(a)(c)), it is usually positioned immediately prior to the
exposure event or covers the entire baseline period. By this approach, the moving window
is comparing the current behaviour to the animal’s general behaviour prior to exposure.
If the reference window is consecutive (Figure 2.2(b)(d)), it moves forward in time along-
side the moving window. By this approach, the moving window is comparing the current

behaviour to the animal’s behaviour immediately prior to this.

27



2.2. Introduction

Each time the window is moved, the amount of window overlap with previous calcula-
tions can vary. If the time windows have no overlap (see Figure 2.2(a)(c)), at each time
step the moving window contains a completely new set of data observations. This pro-
vides a Mahalanobis distance calculation at the same resolution as the window size. If
the moving windows overlap (i.e. the new moving window position still contains some
of the observations from the previous moving window calculation; Figure 2.2(c)(d)), Ma-
halanobis distance can be calculated at a finer resolution than that of the window size.
Different amounts of overlap will provide Mahalanobis distance measurements at different
resolutions, and the width (duration) of the windows can be varied to contain different

numbers of observations (Figure 2.2(e)).

Alternatively, the window overlap is sometimes presented as the slide amount of the win-

dows. The two are linked by the formula

s=w— o (2.2)

where s is the slide amount (in time or data units, e.g. seconds, number of dives), w is
the window width (in time or data units) and o, is the amount of overlap (in time or data
units). The proportion of overlap (0 to 1) with previous windows o, can be calculated by

op = o¢/w.

The covariance matrix

In addition to the observations from the time windows (x and y), the other input required
for the Mahalanobis distance calculation is a covariance matrix (denoted S in Equation
2.1). There are two different possible approaches to calculating this: (1) the covariance
matrix can be calculated across the entire dataset for the individual (including baseline,
exposure, and post-exposure periods), or (2) the covariance matrix can be calculated across
the individual’s baseline data only. In general, including all of the data (approach 1) is
considered to be a more conservative approach (Stimpert et al., 2014) to limit false positive

detections, especially when there is limited baseline data available.

Identifying responses by randomisation test

Once the chosen inputs, time windows and covariance matrix have been specified, Maha-
lanobis distance can be calculated across the time windows by Equation 2.1. To identify
unusual behaviour changes and possible behavioural responses, a randomisation test is typ-
ically used to compare behaviour change during the sound exposure to behaviour during

the baseline period. For each known exposure period, a number of “mock exposure periods”
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(of the same duration as the true exposure) are sampled randomly from the baseline data
for that animal. The maximum Mahalanobis distance during the exposure period is then
compared to the Mahalanobis distances observed across each of the mock exposure periods.
The mock exposure period measurements are used to determine a response threshold (e.g.
the 95" percentile of Mahalanobis distances). The probability of a behaviour change of
this magnitude occurring in the baseline data is low, and therefore if the animals’ behaviour
exceeds this threshold during the exposure period it is interpreted as being in response to

the disturbance.

2.2.3 Knowledge gap

Despite widespread use of the Mahalanobis distance approach in studies of cetacean re-
sponses to sonar, and the application of these results to manage future human activities,
there has currently been no formal assessment of how well these methods perform. There
is a lack of information on how often these methods may exhibit a false positive (detect
a behavioural response when none is present) or how often behavioural responses present
in the data are undetected by this methodological approach. Different studies have also
implemented the method in different ways (e.g. different time window structures), and so
it may be unclear which approach to use and whether these differences affect performance.
This knowledge gap limits the ability of current studies to robustly identify responses to
stimuli, and could limit the potential for this method to be applied with confidence to other
species, data types and disturbance sources. With the exception of one study, which used
focal follow methods to determine the animal’s location approximately every two minutes
(Antunes et al., 2014), the data used for this method has typically been based around
high-resolution accelerometer tags. These tags collect information on the animal’s move-
ment and posture multiple times per second. It is unclear how these methods may perform
with lower resolution biologging data, such as individual dive summaries or location data

collected at ~10-20 minute intervals.

2.2.4 Aims

The majority of pinniped biologging data consists of long-term deployments with dive data
from time-depth recorders, or location data from tags which use GPS or ARGOS satellites.
In this chapter, I aim to evaluate the performance of Mahalanobis distance as a method

to detect behavioural responses in two types of seal biologging data: GPS locations and
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dive records. Specifically, this chapter will develop a simulation study to (1) estimate the
detection and false positive rates of the method, (2) compare different implementations of
the method, and (3) provide recommendations for future use. To do this, performance will
be quantified by applying Mahalanobis distance to both simulated GPS location data and
simulated dive records, and a variety of implementation options will be compared to test
detection of different simulated behavioural responses. The results will be used to inform

advice for future studies using Mahalanobis distance in behavioural response detection.

2.3 Methods

Two simulation studies were designed and conducted to test the performance of Maha-
lanobis distance in detecting behavioural responses. The first simulation considered seal
horizontal movement, focussing on GPS location data. The second simulation considered
vertical movement, focussing on the dive-by-dive measurements (e.g. dive depth, duration)
recorded by most marine mammal biologging devices. In each case, the aim was to simulate
data that replicate those recorded by the tag. By this approach, I was able to simulate
data both with and without behavioural responses, and then use this simulated data to

quantify the ability of the method to pick out these behaviour changes.

In both simulations, it was assumed that the behavioural response of the animal did not
alter the quality of the (simulated) data itself. In theory, it is possible that behavioural
changes may alter the duration or frequency of seal surfacings (or movement/behaviour
at the surface), leading to different availabilities and qualities of location data between
different behaviours. With developments in GPS technology (such as Fastloc GPS), this
difference is likely to be minimal, but could be more substantial for ARGOS tracking data
which is highly reliant on achieving multiple satellite links to obtain a high-quality location
estimate (Carter et al., 2016). At present, there is no evidence to suggest substantial
differences in biologging data quality exist between different animal behaviours; however,

this is an important area for further research development.

2.3.1 Horizontal movement: Seal location data
A framework for simulating seal locations

A simulator for seal location data was developed, building on the general framework pre-
sented in McClintock et al. (2012). Here, the simulator was a (correlated and biased)
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Table 2.1 Summary of key parameters and notation used in horizontal movement simulation.

Parameter Definition
Behavioural states

(% State transition probability (from state k to 7)

n Switch strength (from state 1 to 2) near attraction points
Attraction and repulsion

dot Distance to attraction point (at time t)

dry Distance to repel point (at time t)

Wq Attraction source strength

Wy Repel source strength

ay Attraction weighting (effect on animal’s behaviour)

By Repel weighting (effect on animal’s behaviour)

s Probability of retaining the same attraction point
Step lengths (speed)

St Step length (at time ¢)

Vit Expected mean speed (at time ¢ and behavioural state )

€ Standard deviation of speed (for behavioural state 7)

v; Mean speed for behavioural state 4

Umaaz,i Maximum mean speed during a response (for behavioural state )

Ki Correlation with previous step length (for behavioural state 7)
Headings (movement direction)

o1 Heading direction (at time t)

it Expected mean heading direction (at time ¢ and behavioural state )

Pit Heading concentration (at time ¢ and behavioural state )

Pz Mean heading concentration (for each behavioural state)

i Direction towards current attraction point (at time ¢)

¢ Direction away from repulsion point (at time ¢)

Ya Concentration constant for attraction strength

Y Concentration constant for repel strength

discrete-time, multi-state random walk, where animal tracks were able to exhibit attrac-
tion to points in space, as well as repulsion from a disturbance point. Below, I outline the
general structure of the simulator, before describing how the simulator was parameterised
and how it was used in the simulation study. A summary of the key notation used is
provided in Table 2.1.

Behavioural states

At any time ¢, an individual is assumed to be in one of Z behavioural states, which describe

its general movement behaviour. Here, I considered two states:
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e State 1: Travel (characterised by larger movement steps and lower variability in

heading);

e State 2: Encamped (characterised by smaller movement steps and higher variability

in heading).

The sequence of behavioural states over time for an individual is a first-order Markov

process, where animals switch between states based on transition probabilities:
VYri = Pr(z = ilz1 = k)

where 1)y, ; is the probability of an individual switching to state i at time ¢, given it was in
state k at time ¢ — 1. The transition probability matrix Gg contains the initial transition

probabilities (at time ¢ = 0) between the two behavioural states:
0 0
Go = 01,1 Y012 ‘
Y021 Y022
I include attraction points in the simulated landscape to mimic the expected behaviour
of a central-place forager, where animals travel between different points of attraction (e.g.
foraging areas, haul-out sites) to search for prey and/or haul out. Therefore, seals may

be more likely to switch into state 2 (encamped) as they approach one of these attraction

points. In order to simulate this, at every timestep ¢ I update the transition probability

o — (wu(t) ¢1,2(t)>
-
Y021 022

where the probability of encamped animals changing state remains constant, but the prob-

matrix:

ability of travelling animals changing their behavioural state varies over time. The prob-
ability of switching from state 1 to 2 (12(¢)) increases as distance d,; to the attraction

point at time ¢ decreases:

P1o(t) = logit_1 <logit(1/1172) + dnt)

where 7, the switch strength, controls the relationship between distance to the attraction
point (dq ) and the probability of switching to state 2 (1 2), logit denotes the logit function
(i.e. logit(p) = log(p) — log(1 — p)), and logit™! denotes the inverse logit (or logistic)

function. Thus, the minimum probability of switching into state 2 is the baseline transition
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rate 1001 2, and this increases to 1 as distance d,; decreases to zero. The corresponding

probability of staying in state 1, ¢ 1(¢) is the complement of 1y 2(%).

Attraction and repulsion

The importance of attraction can vary with distance d, ¢ from the attraction point. In this
case, one may expect the strength of attraction towards a location to be strong further
away (to bring the animal close, even from long distances) and weaker nearby (to allow
animals to move around loosely within the vicinity of the attraction point). The attraction
weighting oy (effect of attraction on the animal’s behaviour) increases with distance dg ;
from the attraction point:

oy = tanh(w,dq ;)

where wy, is the strength of the attraction source in the landscape. This attraction weighting
ranges from 0 to 1, where if a; = 0 there is no effect of attraction and if o = 1 the animal’s
movement is completely dependent on its attraction to a source. The effect of attraction
on the animal’s behaviour is therefore a function of both the source strength and the
distance from the source. In this case, I consider two sources of attraction, where only one
attraction point is active at a time. In order to emulate a seal residing at an attraction
point for a reasonable duration, every time the seal switches from state 2 (encamped)
to state 1 (travel), there is a probability 7 that it keeps the same attraction point, and

probability 1 — 7 that it switches.

Similarly, one would expect the importance of repulsion (where points of repulsion represent
noise sources) to vary with distance. The strength of repulsion would be highest close to
the point of repulsion, and lower further away from the source. The repulsion weighting S;

(effect of repulsion on the animal’s behaviour) decreases with distance d,.; from the point

Wy
ﬁt = tanh (dm>

where w, is the strength of the source of repulsion in the landscape. The repulsion weighting

of repulsion:

ranges from 0 to 1, where if 8; = 0 there is no effect of repulsion and if 3; = 1 the animal’s
movement is completely dependent on its repulsion from a source. Whilst an attraction
point is always present in the simulation, a point of repulsion can appear and disappear over
time. During a response simulation, the source of repulsion appears a set distance d,.o away
from the animal (at a random location around the circumference of the animal’s current
location) and remains in this location for the duration of the simulated exposure. By this

approach, repel sources could appear when animals were near or far from their sources
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of attraction, enabling the simulations to average over multiple possibilities of response

scenario.

Step lengths (speed)

At each timestep ¢ I simulate a movement step length s; for the animal:
(st | st—1, 2t = 1] ~ Gamma(a; ¢, b; 1)

where a;; and b; ; are the shape and scale parameters (respectively) of a gamma distribution
of possible step lengths. The simulated step length depends on the step length in the
previous timestep s;_1, the behavioural state i, and the effect of repulsion at the animal’s
current location. The shape and scale parameters (a;, b; ;) of the Gamma distribution are
calculated from an expected mean speed v;; at time ¢ and a standard deviation ¢; for each

. . . _ 2 2
behavioural state ¢. (The conversions are a;; = (v;/€;)” and b;; = €; /v 4.)

The expected mean speed v;; depends on the behavioural state 4, the repulsion weighting

B; at the animal’s location, and the correlation x; between sequential movement steps:

Normal behaviour Response
——
vig = (1= Be)( KiSt—1 + (1 —ri)vi )+ BrVmax,i (2.3)
—— ——

Correlated movement  Behavioural state

where s;_1 is the step length at the previous timestep, v; is the mean speed for each
behavioural state 4, and vmax,; is the maximum mean speed during a behavioural response
in state ¢. In this formulation, if the repulsion weighting 8; = 1 the animal is responding
fully and exhibits its maximum response speed, and if 5; = 0 (there is no centre of repulsion
or the animal is very far away from the source) the animal’s expected speed reduces to
its mean speed for the behavioural state it is in (i.e. normal behaviour). In this way, I
simulate a seal increasing its movement speed during a behavioural response. As attraction
is a long-term process influencing the animal’s simulated movement between geographically
separated points, here it assumed that attraction only influences movement direction and

behavioural state, and not the speed of movement within each of the behavioural states.

Headings (movement direction)

At each timestep t I simulate a heading direction ¢; from a wrapped Cauchy distribution:
[0t | pt—1, 2 = i] ~ wCauchy(A; ¢, pi)

where \;; is the mean (“expected”) heading and p;; is the heading concentration (di-
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rectedness of movement). The wrapped Cauchy is a circular distribution and so enables
simulation of absolute headings in any direction in space (relative to points of attraction
and repulsion). The simulated heading therefore depends on the heading in the previous
timestep ¢:_1, the behavioural state ¢, and the effects of attraction and repulsion at the

animal’s current location.

The expected heading A; ; depends on the relative weightings of attraction «; and repulsion

B¢ at the animal’s location:

Normal behaviour Response

=
Xit=010=06)( aupr + (I —ar)pe—1 + PBroy
N —

Attraction  Correlated movement

where p; is the heading towards the current attraction point, o; is the heading away from
a repulsion point, and ¢;_1 is the heading in the previous timestep. In this formulation,
if the repulsion weighting 8; = 1 the animal is responding fully and its expected heading
is directly away from the centre of repulsion, and if 8; = 0 the animal’s expected heading
reduces to its normal behaviour, which depends on attraction and correlation with the
animal’s previous heading. In this way, I simulate a seal exhibiting correlated movement
paths, with attraction towards possible foraging or resting sites, and repulsion away from

centres of possible disturbance.

The concentration parameter p;; determines how directed the animal’s movement is. If
p¢r = 1, there is no variability in heading and I simulate a movement heading ¢; equal to
the expected heading A;. If p, = 0, there is no directness and any heading is equally likely.
One would expect differences in concentration between different behavioural states, with
higher concentration in state 1 (travel). One would also expect higher concentration further
from the attraction point (to bring animals towards the centre, and allow exploration near
the attraction site), and higher concentration closer to the repulsion point (more directed

movement in response to disturbance). Therefore, the concentration p;; is calculated by:

logit(logit ™' (p.) + Vaday) if By =0

Pit =
logit(logit ™' (p.) + =) if B >0

where p, is the mean concentration for each behavioural state, v, is a concentration con-
stant for attraction strength, and ~, is a concentration constant for strength of repulsion.
In this way, the variability in heading depends mainly on behavioural state, but can be

altered slightly by attraction or repulsion.
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Parameterising normal (baseline) behaviour

The parameters for the seal dive simulator were based on GPS location data collected
from SMRU Instrumentation GPS telemetry tags (hereafter GPS/GSM tags; SMRU In-
strumentation, University of St Andrews, Fife, UK) on 24 harbour seals tagged in The
Wash, south-east England, UK. These data were collected during intermittent pile driving
as part of construction of a nearby offshore wind farm (Hastie et al., 2015; Russell et al.,
2016; Whyte et al., 2020), and so location data that overlapped with the times of pile

driving construction activity were removed from the dataset.

All location data were linearly interpolated to regular 15-minute intervals. Known data
gaps (due to pile driving and haulouts) were removed from the interpolated data for each
individual, to produce separate complete segments of movement tracks. Only track seg-
ments containing at least 100 data points (~25 hours) and observations of both types of
movement behaviour (travel, encamped) were retained to inform simulation parameters.
For each individual, a hidden Markov model (HMM; Zucchini et al., 2016) with two be-
havioural states was fit to the track segments to obtain parameter values for each of the
behaviours, using the R package momentuHMM (McClintock and Michelot, 2018). Move-
ment step lengths were fit using a Gamma distribution and turn angles using a wrapped
Cauchy distribution with a mean of 0. Estimated mean step lengths, standard deviations
of step length, and concentrations of heading angle were averaged across models to obtain
an overall mean across individuals for each behavioural state. These values were used as
the simulation parameters for the mean speed v;, standard deviation of speed ¢; and mean
heading concentration p; for each behavioural state i. The fitted HMMs were also used to
obtain transition rates between the two states, used for the initial transition probability

matrix Gy.

The step length correlation parameter x; and the parameters involved in simulating at-
traction (behavioural state switch strength 7, attraction source strength w,, probability of
retaining the same attraction point 7, and concentration constant for attraction strength
va) were obtained by gradually increasing the influence of each parameter until the simu-
lated tracks resembled those of the real data used in this study and other studies of seal

tracking data.
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Parameterising a response

For this simulation study, I aimed to simulate a fleeing response, where the animal generally
speeds up and moves away from the disturbance source. A study of tagged harbour seals
exposed to acoustic deterrence devices detected modest increases in speed and directed
movement away from the sound source in some animals (Gordon et al., 2019). In practice,

simulating this response involved the following.

e Increasing the probability of switching into the “travelling” state.

I'increased the probability 1 2 of switching from state 1 to state 2 during a response.

e Increasing the speed (simulated step lengths) of the animal.
This was implemented by increasing the maximum mean speed vy« which is used

in Equation 2.3 to generate the speed at each timestep.

¢ Simulating movement which is more directed, and moving away from the
disturbance source.
This was implemented by increasing the strength w, of the simulated repel source
in the landscape, which influences the animal’s movement direction away from the
repulsion point. The directedness of the animal’s movement during the response is
implemented by the concentration parameter ,, which makes the movement heading

less variable.

These simulation input parameters were modified to generate possible responses that might
be observed in real data. I ran a series of different simulations by modifying the strength
of the disturbance point (weak or strong), the initial starting distance of the animal from
the disturbance point (5, 15 or 25 km), and the length of the response (0.5 or 3 hours).

Simulation setup

Timeline setup

I ran 500 simulations of individual seal horizontal movement data for each type of response,
with locations simulated at a 15-minute time resolution. For each simulation, I generated
30 days of baseline (pre-exposure) data, followed by one day of data containing both the
exposure and post-exposure period. As above, for each simulated response type, movement
data after the baseline period were modified to emulate responses of different types and

durations. In order to estimate the false positive rate of the method, a control set of
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Table 2.2 Mahalanobis distance options for horizontal simulations. All 48 combinations of options
were compared.

Mahalanobis distance specification Values and options used
Inputs (same for all simulations): Speed (m s~1)

Easting

Northing

Circular heading variation
Baseline data availability: 5 days; 20 days
Covariance matrix used: All data; Baseline only
Reference window position: Fixed; Consecutive
Window size (minutes): 15; 20; 25; 30

Window overlap (proportion of window size): 0.1; 0.5; 0.9

500 simulations was also generated in which no response was inserted (i.e. no simulation
parameters were modified from baseline). In each simulation, the simulated seal began
at the x, y coordinate of (0, 0) and two attraction points were positioned at (0, 0) and
(30 km, 30 km). In response simulations, the location of the centre of repulsion is randomly
generated at the start of the simulated response and remains static throughout the rest of
the simulation. The centre of repulsion is randomly placed on a circumference of a circle
around the animal’s current location, where the radius is specified by the initial starting

distance d, g.

Inputs for Mahalanobis distance

In all analyses of the simulated location data, the metrics used as inputs for the Maha-
lanobis distance analyses were: speed, easting, northing, and heading variation (Table 2.2).
After calculation of the movement metrics, the metrics were interpolated to a five-minute
resolution (Antunes et al., 2014) for use in analysis. A standard set of input variables
were chosen for all simulations and it was not investigated how using different inputs may
affect the performance of the method. Instead, it is recommended that individual studies
carefully consider the inputs they choose to use for the type of behaviour change they are

trying to detect.

Comparison of different method implementations

For each simulated dataset, a variety of implementations of Mahalanobis distance were
applied. I varied the size of the windows used (15-30 minutes), the overlap proportion of
the windows (0.1-0.9), the position of the reference window (fixed or consecutive), and the

covariance matrix used (all data or baseline data only) (Table 2.2). In total, this resulted
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Table 2.3 Summary of key parameters and notation used in dive simulation.

Parameter Definition

Behavioural states

Yk Dive transition probability (from dive type k to )
Dive metrics
my Maximum depth of dive (for dive t)
dy Descent duration of dive (for dive )
by Bottom duration of dive (for dive )
at Ascent duration of dive (for dive t)
St Surface duration after dive (for dive t)

in 48 different implementations of Mahalanobis distance that were investigated. I also
investigated the effect of having different amounts of baseline data available, by running
analyses with 5 days and 20 days of baseline data for all response simulations, and 1-30

days for the control simulation.

2.3.2 Vertical movement: Seal dive data
A framework for simulating seal dives

Here, a simulator for seal dive data was developed. The simulator was structured as a
Markov-chain of different dive types, with the dive metrics simulated from a multivariate
gamma distribution for each dive type. This simulator was based on the dive data collected
from SMRU GPS-GSM tags, but the framework and metrics used are applicable to a wide
range of time-depth recorder tags. Here, I first describe the structure of the simulator,
before detailing how the simulator was parameterised and how it was used in the simulation

study. A summary of the key notation used is provided in Table 2.3.

Behavioural states

Each individual’s data consists of a sequence of dives over time. At each dive ¢, individuals
can be in one of K dive types (behavioural states), which describe the general properties
of the dive. The sequence of dive types over time is a first-order Markov process, where

animals switch between dive types based on transition probabilities:

W;,i = PT(Zt = Z'|»th1 = k)
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where v, ; is the probability of an individual switching to dive type 4 in dive ¢, given its
previous dive ¢t — 1 was of dive type k. The transition probability matrix G,, contains the

transition probabilities between the K dive types during normal behaviour:

Yiq Y2 ... Uik

G — @,1 1/?,2 ¢2.,K

Yr1 VK2 ... VKK

State-dependent dive metrics

For each dive ¢, I simulate five properties of the dive:

e m; — Maximum dive depth in metres;
e d; — Descent duration in seconds;

e b, — Bottom duration in seconds;

e a; — Ascent duration in seconds;

e s; — Surface duration (post-dive) in seconds.

All of the dive properties depend on the current dive type ¢, and are simulated jointly using

a multivariate gamma distribution

Qm 5 6m,i
ag; B
an .
[y, dy, by, ag, s | 2 = i) ~ MV Gamma bi Poi
bl
Qg g 5(1,1'
Qg i /Bs,i
| Ri i

where o and [ are the shape and rate parameters respectively of a gamma distribution for
each of the five dive properties in each dive type ¢. For example, a,,; and 3,,; are the
shape and rate parameters for the maximum depth of a dive of type i. k; is the correlation
matrix between all five dive properties in dive type i. The R package 1lcmix (Dvorkin,
2012) was used to simulate the multivariate gamma distributions. This package uses a

normal (Gaussian) copula (Song, 2000) to combine the univariate gamma distributions. In
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this way, I was able to simulate dives with different properties for each unique dive type,

whilst retaining the realistic correlations that exist within each dive.

Simulating a response

During a behavioural response, the transitions between different dive types are likely to
change. Thus, the transition probability matrix changes from G,, to G, a matrix containing
the probabilities of switching between the K dive types during a response to disturbance.
The properties of the dive types are also likely to be different during a response. In order
to simulate different types of response, the shape parameter «, rate parameter 3, and
correlation matrix k used to simulate particular dive properties were modified during the
simulated response. Full details of responses simulated and values of the parameters used

are described later in this chapter.

Parameterising normal (baseline) behaviour

The parameters for the seal dive simulator were based on dive data collected from the same
24 harbour seals described in the horizontal simulation above. Dives which overlapped
with pile driving construction activity were removed from the dataset. The dive data used
consisted of 686,151 dives in total. Dives were recorded when the tag was submerged below
1.5 m for eight seconds, and each dive record contained a measurement of the maximum
dive depth reached (in metres), duration of the dive (in seconds) and duration of the post-
dive surface interval (time shallower than 1.5 m, in seconds). There were also nine depth
points recorded per dive, giving more detailed information on the approximate shape of
the dive.

Dividing dives into phases

To quantify the overall shape of the dives, each dive was divided into four phases of different
durations: descent, bottom, ascent and surface. Interpolation between the recorded depth
points was used to determine the overall dive profile at a time resolution of 0.1 seconds.
Seals were considered to start the bottom phase of a dive when their dive depth was
>85% of the maximum depth of that dive (Baechler et al., 2002; Wilson et al., 2014). It
was assumed that the bottom phase ended when the seal swam shallower than this 85%
threshold for the last time in that dive, i.e. if a seal went up and then back down again,
this was all considered to be part of the bottom phase. The descent and ascent phases
were considered to be, respectively, the time periods before and after this identified bottom
phase (Figure 2.3). The surface phase was the post-dive surface interval which is already

recorded separately on the tag.
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Percentage of time through dive (%)

Figure 2.3 An example seal dive (from individual pv42-162-12) divided into phases: descent,
bottom and ascent. Shown are the nine recorded depth points (black dots) and the resulting
interpolated dive profile between them (grey solid lines). The maximum depth of the dive was
22.0 m (blue solid line), and the bottom phase occurs at >85% of the maximum at 18.8 m (orange
dotted line). The tag begins and ends recording the dive at 1.5 m depth (green dashed line).
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Clustering to identify dive types

Once the dives in the example dataset were divided into phases, a series of metrics were
chosen to summarise the overall dive shape. These chosen metrics were based on the data
available and previous studies of pinniped diving behaviour and dive classification (Baechler
et al., 2002; Blanchet et al., 2015; Lesage et al., 1999; Wilson et al., 2014). The metrics

that were calculated for each dive were:

e Maximum depth of the dive (m);

Total dive duration (s) — sum of descent, bottom and ascent phases;

Surface phase duration (s);

Descent rate (m s™!);

Ascent rate (m s71);

Proportion of the dive in the bottom phase.

These six metrics were then used to perform K-means clustering to split the dives into
different groups, using the R package cluster (Maechler et al., 2019). K-means clustering
aims to group data observations into separate clusters based on minimising the multi-
variate distance between each of the observations and the mean of the proposed nearest
group (Hartigan and Wong, 1979). To determine the optimal number of clusters, the over-
all within-cluster sum-of-squares was compared between runs with different numbers of

clusters (from 2-10 clusters).

Extracting the parameters of each dive type

Once dives were divided into clusters, the parameters of each identified cluster were ex-
tracted for use in the dive simulator. Within each cluster, a gamma distribution was
fit to each dive metric required for the simulator, using the R package fitdistrplus
(Delignette-Muller and Dutang, 2015). This provided a shape and rate parameter for each

of the following metrics, for each dive type:

Maximum dive depth (m);

Descent duration (s);

Bottom duration (s);

Ascent duration (s);
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e Surface duration (post-dive) (s).

The correlation matrix between the metrics within each cluster was also extracted for use
in the simulator. The time series of transitions between the identified dive types was used
to extract the transition rates between each pair of dive types, accounting for known gaps
in the data set (due to missing data, removed dives during wind farm construction). This

was used to parameterise a full transition probability matrix for the simulator.

Parameterising a response

In the simulation study, I aimed to simulate three different types of possible behavioural
response. Each type was considered to be a potential response one may expect to see in

the dive data of a seal exposed to noise disturbance.

1. Surface dive type.
During the response, the seal exhibits one “surface-type” dive (one of the identified
dive clusters) with an extended surface duration. I simulated both a weak response,
where the surface duration is extended slightly (~40% increase), and a strong re-
sponse where the surface duration is more extreme (~80% increase). Captive studies
have observed increased time at the surface in harbour seals exposed to playbacks of
pile driving sounds (Kastelein et al., 2018a) and acoustic deterrent sounds (Kastelein
et al., 2017), and hooded seals exposed to sonar signals (Kvadsheim et al., 2010).

During these responses, seals may be stationary at the surface or actively swimming.

2. Surfacing after a normal dive.
During the response, the seal carries out a dive (of any dive type) as normal, but
afterwards has an extended surface duration for one dive. I simulated both a weak
response, where the surface duration is extended slightly (~40% increase on the
surface dive type mean surface duration), and a strong response where the surface
duration is more extreme (~80% increase on the surface dive type mean surface

duration).

3. Travelling.
Compared to baseline periods, during the response the seal is more likely to switch
into the “travel-type” dive (one of the identified dive clusters), and the travel dives
have a shallower depth, lower descent rate, and a lower proportion of the dive in

the bottom phase (relative to travel dives in baseline periods). The aim was to
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emulate dives which contain more horizontal than vertical movement (similar to a
flee response), even though horizontal movement is not recorded explicitly in the dive
data. I simulated both a weak response, where the travel dive is moderately likely
(transition probabilities of up to ~80%) and moderately modified (~50% reduction
in maximum depth and ~75% reduction in bottom duration), and a strong response
where the travel dive is highly likely (transition probabilities of up to ~90%) and
highly modified (~75% reduction in maximum depth and ~90% reduction in bottom
duration). I also simulated both a short (6 dives) and long (36 dives) response of
this type. Tagged grey seals (Halichoerus grypus) in the Netherlands were observed
to show changes in their dive behaviour during pile driving, in particular decreased

descent speeds and shallower dives (Aarts et al., 2018).

To generate each of the response types, I modified the parameters of the multivariate
gamma distributions and/or the transition probability matrix in one or more of the dive

types, to generate biologically realistic responses.

Simulation setup

Timeline setup

I ran 500 simulations of seal diving data for each type of response. For each simulation,
I generated 30 days of baseline (pre-exposure) data, followed by 300 dives (~1 day). As
above, for each simulated response type, dives after the baseline period were modified to
emulate responses of different types and durations. To estimate the false positive rate of
the method, a control set of 500 simulations were also generated where no response was

inserted (i.e. no dive parameters were modified).

Inputs for Mahalanobis distance

In all analyses of the simulated dive data, the metrics used as inputs for the Mahalanobis
distance analyses were: maximum dive depth, total dive duration, surface duration, pro-
portion of dive in the bottom phase and descent rate (Table 2.4). As in the horizontal
simulations, here I chose a standard set of input variables for all simulations and did not
investigate how using different inputs may affect the performance of the method. Instead,
it is recommended that individual studies carefully consider the inputs they use are appro-

priate and informative.

Comparison of different method implementations

For each simulated dataset, a variety of implementations of Mahalanobis distance were
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Table 2.4 Mahalanobis distance options for vertical simulations. The window sizes and overlap
amounts are presented as the number of dives within each window. All combinations of options
were compared, resulting in 40 total options.

Mahalanobis distance specification Values and options used
Inputs (same for all simulations): Maximum depth (m),
Total dive duration (s),
Surface duration (s),
Proportion of dive in bottom phase,
Descent rate (m s~ 1)

Baseline data availability: 5 days; 20 days
Covariance matrix used: All data; Baseline only
Reference window position: Fixed; Consecutive
Window size (and overlap) in number of dives: 1 (0);

2 (0, 1);

3 (0,1, 2);

4(0,1,2,3)

carried out. I varied the size of the windows used (14 dives), the overlap amount of the
windows (0-3 dives), the position of the reference window (fixed or consecutive), and the
covariance matrix used (all data or baseline data only) (Table 2.4). In total, this resulted
in 40 different implementations of Mahalanobis distance that were investigated (see Table
2.4). T also investigated the effect of having different amounts of baseline data available,
by running analyses with 5 days and 20 days of baseline data for the response simulations,

and 1-30 days for the control simulation.

2.3.3 Detecting simulated responses and quantifying performance

In both the horizontal and vertical movement simulations, Mahalanobis distance (Equation
2.1) was calculated over the entire timeline of each simulated dataset. Different implemen-
tations of the method were applied to compare the performance in each scenario, as detailed

in Table 2.2 and Table 2.4 for the horizontal and vertical data respectively.

In each case, a randomisation test was used to attempt to identify simulated responses by
sampling 1000 mock exposure periods from the baseline data for each simulated animal. All
exposure and mock-exposure periods were two hours long. For each individual simulation,
the maximum Mahalanobis distance of each of the mock exposure periods was used to

5th

determine the 9 percentile of Mahalanobis distances. If the maximum Mahalanobis
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distance observed during the exposure period was greater than this value, this was identified

as a behavioural response.

For each simulated scenario and Mahalanobis distance option, I calculated the number of
simulations (out of 500) in which a response was detected. For simulations involving a

simulated response, the response detection rate was therefore:

Number of responses detected

Response detection rate = - -
P Total number of response simulations

For control simulations involving no simulated response, the false positive rate was simi-

larly:
Number of responses detected

False positive rate =
P Total number of control simulations

In both cases the denominator was n = 500.

2.3.4 Software used

All analyses were conducted in R (version 4.0.4, R Core Team, 2020), with additional
packages CircStats (Agostinelli and Lund, 2018), cluster (Maechler et al., 2019), dplyr
(Wickham et al., 2020), fitdistrplus (Delignette-Muller and Dutang, 2015), momentuHMM
(McClintock and Michelot, 2018), Lemix (Dvorkin, 2012), and StatMatch (D’Orazio, 2019).
The R packages ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2020), raster (Hijmans,

2020), and viridis (Garnier, 2018) were also used for data visualisation.

2.4 Results

2.4.1 Horizontal movement: Seal location data
Simulation parameters used

The HMMs fit to the regularised tracks provided a good fit for the two states proposed
by the simulation model: one state with longer step lengths and lower variability in turn
angles (state 1), and one with shorter step lengths and higher variability in turn angle
(state 2)(see Figures S1 and S2 in Appendix). Overall, across all animals, the models
estimated a mean step length of 691 metres and mean heading concentration of 0.70 for

state 1, and mean step length of 291 metres and heading concentration of 0.58 for state 2.
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(a) (b)

______

______

Figure 2.4 Two example simulated seal tracks of baseline behaviour (simulation length = 30
days). The two attraction points are positioned at the x-y coordinates of (0,0) and (30000,30000).

The transition probabilities of switching between the two states during baseline were also
obtained for use within the simulation (Table 2.5). Full details of all the parameter values
chosen for the simulation are provided in Table 2.5. Using these parameters, simulated
tracks were considered to resemble normal central-place foraging behaviour (Figure 2.4),

as well as possible behaviour during a behavioural response (Figure 2.5).

Simulation results

The false positive rates of all Mahalanobis distance implementation options were generally
low (mean of 6%, maximum of 24%) and were similar across the different options. False
positive rates were highest when limited baseline data were available, and decreased as
baseline duration became larger (Figure 2.6). In general, the rates settled around the
expected error rate (~5%) with at least 5 days of baseline data. A 95% threshold was
used to identify responses and so, by chance, only 5% of baseline behaviours would be
more extreme than this threshold. False positives were slightly higher when the covariance
matrix was used on baseline data only (Figure 2.6(b)), but only when the baseline data

were extremely limited (1 day).

Response detection rates differed by simulated response (Figures S4, 2.7). Detection rates
were higher when simulated responses were strong (up to 79%), compared to when simu-
lated responses were weak (up to 64%). Longer simulated responses also had higher de-

tection rates (up to 79%) than shorter simulated responses (up to 54%). When responses
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Table 2.5 Summary of horizontal movement simulation setup for baseline data, weak disturbance
data, and strong disturbance data. Detailed below are the parameter values used for each simu-
lation, as well as the duration and initial distance of each scenario. It should be noted that the
extremely large (and small) values required to parameterise the simulations are likely due to the
differences in scale being accommodated in the simulation: simulations at the individual step level
are in metres, but the attraction and repel points operate over 10’s of kilometres.

Weak Strong
Baseline Disturbance Disturbance

Behavioural states
Gy Transition probability <0.93 0.07> <0.93 0.07> <0.93 0.07)

0.07 0.93 0.75 0.25 0.95 0.05
n Switch strength 1,000 no change no change
Attraction and repulsion
wg Attract strength 3 x107° no change no change
w, Repel strength - 5,000 8,000
7 Keep attraction point 0.7 no change no change
Step lengths (speeds)
v; Mean speed (£ €1) 691 (£ 210) no change no change
vy Mean speed (£ €2) 291 (£ 146) no change no change
k1 Correlation 0.8 no change no change
ko Correlation 0.7 no change no change
Umaz,1 Max mean speed - 1400 1400
Umaz,2 Max mean speed - 291 291
Headings (movement direction)
p1 Mean concentration 0.70 no change no change
p2 Mean concentration 0.58 no change no change
o Concentration attract 2 x107° no change no change
~» Concentration repel - 5,000 8,000
General setup
CEE duration 2 hrs 2 hrs 2 hrs
Response duration - 0.5; 3 hrs 0.5; 3 hrs
dy o Initial distance - 5; 15; 25 km 5; 15; 25 km
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Figure 2.5 Two example simulated tracks of responses. Each seal track shows 200 simulated
locations of normal behaviour (purple) followed by a simulated response track (yellow). The red
dots denote the location of the simulated repel centre. Both (a) and (b) are strong, long responses
with an initial distance of 5 km from the centre of repulsion.
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(a) Covariance matrix: all data (b) Covariance matrix: baseline only
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Figure 2.6 The false positive rate of Mahalanobis distance methods with varying baseline data
durations for horizontal data. Each dot represents the false positive rate for one of the 24 Maha-
lanobis distance method implementation options, when the covariance matrix is calculated across
all the data (a) and across the baseline data only (b). The annotated numbers give the mean false
positive rate across all methods. Each Mahalanobis distance option is detailed in Table 2.6. The
dashed line denotes 5%.
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Table 2.6 Mahalanobis distance options for horizontal simulations.

Mahalanobis Reference Window size Window
distance option = window (minutes) overlap
1 Consecutive 15 0.1
2 Fixed 15 0.1
3 Consecutive 20 0.1
4 Fixed 20 0.1
5 Consecutive 25 0.1
6 Fixed 25 0.1
7 Consecutive 30 0.1
8 Fixed 30 0.1
9 Consecutive 15 0.5
10 Fixed 15 0.5
11 Consecutive 20 0.5
12 Fixed 20 0.5
13 Consecutive 25 0.5
14 Fixed 25 0.5
15 Consecutive 30 0.5
16 Fixed 30 0.5
17 Consecutive 15 0.9
18 Fixed 15 0.9
19 Consecutive 20 0.9
20 Fixed 20 0.9
21 Consecutive 25 0.9
22 Fixed 25 0.9
23 Consecutive 30 0.9
24 Fixed 30 0.9
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Figure 2.7 Response detection rates for horizontal simulated responses, with the covariance ma-
trix calculated over the baseline data for the simulated animal. Each dot is the response detection
rate (out of 500 simulations) for responses to centres of repulsion of different strengths (weak,
strong), durations (short, long), and initial distances (5, 15, 25 km; coloured dots). All simulations
had 20 days of baseline data. Each Mahalanobis distance option is detailed in Table 2.6. The
dashed line denotes 5%.

were simulated to begin at closer initial distances to the centre of repulsion, responses were
detected more reliably (up to 79% at 5 km, up to 55% at 10 km, up to 42% at 25 km).
In most simulations, detection rates were slightly higher when the covariance matrix was
used on the baseline data only (Figure 2.7), compared to when all data were used (Figure
S4). Using only the baseline data increased the number of responses detected (out of 500

simulations) by a mean of 12 (min = —4, max = 94).

Response detection rates also differed by Mahalanobis distance implementation option (Fig-
ure 2.8). For all simulation scenarios, increasing the window size increased detection rates,
although the benefit of increasing window size was less apparent when a shorter response
was simulated (~28% to ~48%), compared to a longer response (~43% to ~76%) (Figure
2.8(a)(b)). Using a reference window that was fixed in position prior to the exposure pe-
riod also had markedly higher detection rates (up to 79%) than using a pair of consecutive
sliding windows (up to 15%) (Figure 2.8). The overlap amount of the windows chosen
did not appear to have a substantial effect on the overall detection rates (detection rates
generally did not differ more than 5% between different window overlap amounts). The

detection rates and differences between implementation options were also similar when only
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Figure 2.8 Response detection rates by Mahalanobis distance implementation option, for three
example scenarios with horizontal data: (a) a strong and long response with 20 days baseline data,
(b) a strong and short response with 20 days baseline data, and (¢) a strong and long response with
5 days baseline data. Shown are the detection rates by window size, window overlap proportion
(colours), and reference window position (symbols). All examples used the covariance matrix on
the baseline data only. The dashed line denotes 5%.

5 days of baseline data were available (Figure 2.8(c)). Overall, each of these observed pat-
terns between implementation options were consistent across different simulated response

strengths, durations, distances, and baseline durations.

2.4.2 Vertical movement: Seal dive data
Simulation parameters used

Clustering of the dive data identified five dive types as the most optimal grouping of the
data (Figure 2.10). The first dive type was characterised by an extremely long post-dive
surface interval (Table 2.7; Figure S5). The second and third dive types both consisted of
a high proportion of time spent in the bottom phase (Figure S7), as well as a moderate
depth and long dive duration. It was most likely that these clusters represented two
different types of foraging dive (Table 2.7). Dives in type four were generally very shallow
(Figure 2.9) and short (Figure S6), suggesting they may represent some sort of resting
behaviour (Table 2.7). Dives in type five were most similar to the foraging dive types (two
and three), but generally were shallower (Figure 2.9), shorter duration (Figure S6), and
spent less time in the bottom phase (Figure S7; Table 2.7). Dive type five is therefore
most likely to represent dives used in travelling. Examining the original locations of these

recorded dive types further supports these potential functions (Figure S3). Dive types one
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Figure 2.9 Histograms of maximum dive depth for each dive type (1-5) for original (a) and
simulated (b) dive data. (a) The original data are all recorded dives from 24 tagged harbour seals
in the UK. (b) The simulated data consist of 5000 simulated dives of each dive type.

(surface) and four (rest) were mostly found clustered near land and the known haulout
sites, whereas the other types were more widely spread offshore and across the study area.
Dive metrics simulated directly (e.g. surface duration, Figure S5; maximum depth, Figure
2.9) and derived from the simulated dive metrics (e.g. total dive duration, Figure S6;
proportion bottom time, Figure S7) resembled the distributions of the original data. The
final parameters used to simulate baseline dive behaviour as well as response types 1, 2
and 3 are detailed in Tables 2.8, 2.9 and 2.10 respectively.

Simulation results

The false positive rates of all dive Mahalanobis distance implementation options were
generally low (mean of 6%, maximum of 15%) and were similar across the different options.
As observed with the horizontal movement simulations, false positive rates were highest
when limited baseline data were available, and decreased as baseline duration increased
(Figure 2.11). In general, the rates settled around the expected error rate (~5%) with at

least 10 days of baseline data. False positives were marginally higher when the covariance
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Figure 2.10 Elbow plot used to determine the number of clusters of dive types from K-means
clustering. Shown is the total within sum-of-squares for when dives are clustered into different
numbers of clusters (2-10). The reduction in within sum-of-squares levels off when 5 or more
clusters are used.
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Figure 2.11 The false positive rate of Mahalanobis distance methods with varying baseline data
durations for vertical data. Each dot represents the false positive rate for one of the 20 Mahalanobis
distance method implementation options, when the covariance matrix is calculated across all the
data (a) and across the baseline data only (b). The annotated numbers give the mean false positive
rate across all methods. Each Mahalanobis distance option is detailed in Table 2.11. The dashed
line denotes 5%.

matrix was used on baseline data only (Figure 2.11(b)), but only when the baseline data

were extremely limited (1 day).

In most simulations, detection rates were higher when the covariance matrix was calculated
from the baseline data only (Figure 2.12), compared to when all data were used (Figure
S8). Using only the baseline data increased the number of responses detected (out of 500
simulations) by a mean of 19 (min = —4, max = 309). This improvement was particularly
apparent for simulated response type 3 (travel), with a mean increase of 31 detected re-
sponses (min = —3, max = 309) across all scenarios, compared to a mean increase of 6 for
response type 1 (min = —2, max = 26) and a mean increase of 7 for response type 2 (min
= —4, max = 33). Response detection rates differed by the simulated type of response be-
haviour (Figure 2.12). For response type 1 (changing to an unusual surface-type dive) and
type 2 (a long surface interval after a normal dive), strong responses were detected with
high certainty (~95-100% of simulations). Weak responses of type 1 and 2 had relatively
lower detection rates (~55-98% of simulations). For dive response type 3 (altered travel
dives), detection rates were higher for longer responses (up to 100%) than shorter responses

(up to 97%), and higher for stronger (up to 100%) than weak (up to 68%) responses.
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Table 2.11 Mahalanobis distance options for vertical simulations.

Mahalanobis Reference Window size Window overlap
distance option = window (dives) (dives)
1 Consecutive 1 0
2 Fixed 1 0
3 Consecutive 2 0
4 Fixed 2 0
5 Consecutive 2 1
6 Fixed 2 1
7 Consecutive 3 0
8 Fixed 3 0
9 Consecutive 3 1
10 Fixed 3 1
11 Consecutive 3 2
12 Fixed 3 2
13 Consecutive 4 0
14 Fixed 4 0
15 Consecutive 4 1
16 Fixed 4 1
17 Consecutive 4 2
18 Fixed 4 2
19 Consecutive 4 3
20 Fixed 4 3
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Figure 2.12 Response detection rates for simulated vertical responses, with the covariance matrix
calculated over the baseline data for the simulated animal. Each dot is the response detection rate
(out of 500 simulations) for responses of different strengths (coloured dots) and types: (a) Type 1:
surface dive; (b) Type 2: surface after a normal dive; (c¢) and (d) Type 3: travel. All simulations
had 20 days of baseline data. Each Mahalanobis distance option is detailed in Table 2.11. The
dashed line denotes 5%.
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Response detection rates also differed by Mahalanobis distance option (Figure 2.13). For
response types 1 and 2, detection rates were highest when the time window size was only one
dive (up to 100%). Detection decreased with increasing window size (to ~55-75% for time
windows containing four dives), and there was a negligible difference between consecutive
or fixed reference windows (Figure 2.13(a)(b)). In contrast, for type 3 responses, detection
rates increased as window size increased (Figure 2.13(c)), from ~5% for time windows of
one dive to ~50-100% for time windows of four dives. Using a fixed reference window
also generally improved detection rates for this type of response (up to 100% for fixed
windows vs. up to 92% for consecutive windows). In the simulations, the overlap amount
of the time windows generally did not have a clear effect on detection rates; however, in
response type 3 the detection rate appears to increase with window overlap amount (Figure
2.13(c)(d)). The detection rates and differences between implementation options were also
similar when only 5 days of baseline data were available (e.g. Figure 2.13(d)). Overall,
each of these observed patterns between implementation options were consistent across the

different response strengths, response durations, and baseline durations simulated.

2.5 Discussion

In this chapter, a simulation study was designed to quantify the performance of Maha-
lanobis distance, a statistical approach used to detect behavioural responses in biologging
data. To do this, two data simulators were developed to generate realistic (1) harbour
seal GPS locations and (2) harbour seal dive summary records. Different implementations
of the Mahalanobis distance approach were applied to the simulated data to investigate
the performance of the method in detecting different types of behaviour change. In this
discussion, I summarise the main findings of this simulation study, highlight recommenda-
tions for future behavioural response studies aiming to use this approach, and discuss the

limitations of the seal data simulated in this study.

2.5.1 Performance of Mahalanobis distance

This study used simulated data to quantify both the ability of Mahalanobis distance to
detect behavioural responses, and the false positive rate of the method. The false positive
rate (proportion of times the method detected a response when none was present) was
generally low for both types of data considered (Figures 2.6, 2.11). Over all the control

(non-response) simulations, the maximum false positive rate recorded was 24%; however,
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Figure 2.13 Response detection rates by Mahalanobis distance implementation option, for four
example scenarios with vertical data: (a) a weak Type 1 response with 20 days baseline data, (b)
a weak Type 2 response with 20 days baseline data, (¢) a strong and long Type 3 response with 20
days baseline data, and (d) a strong and long Type 3 response with 5 days baseline data. Shown are
the detection rates by window size (number of dives), window overlap (number of dives; colours),
and reference window position (symbols). All examples used the covariance matrix on the baseline
data only. The dashed line denotes 5%.
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this was for simulations which had only one day of baseline data. As the duration of base-
line data available in the simulations increased, the estimated false positive rate decreased.
When the baseline duration is larger, there is more information on what the individual’s
normal behaviour is and it is more likely to have exhibited its full range of natural be-
haviours, meaning that the method is less likely to identify normal behaviour changes as
unusual. In both the movement and dive simulation studies, when there was at least five
days of baseline data the maximum false positive rate across all method implementation
approaches was 8%. For most seal tagging studies, five days of baseline data is a feasible
target as tags will typically remain attached to the individuals for several months. For
cetacean studies with suction-attached tags, the availability of baseline data is likely to
be more challenging and in some studies there is only 30 minutes of data recorded before
exposure (Miller et al., 2014; Southall et al., 2019a). In order to counteract this limitation,
some studies have pooled baseline data from across different individuals in the study pop-
ulation (DeRuiter et al., 2013; Wensveen et al., 2019). Whilst this approach will increase
the baseline duration and likely reduce false positives, it is important to be cautious about
variation between individuals. With this modification, the method would be attempting
to identify behaviour that is unusual across all individuals, rather than behaviour that is
unusual for a particular individual. It is recommended that, in order to minimise false pos-
itives, future studies using Mahalanobis distance aim to maximise the amount of baseline

data collected prior to disturbance.

The choice of how to calculate the covariance matrix affected the performance of Maha-
lanobis distance. In general, when the method was switched from using all of the data to
only using the baseline data for each individual, response detection rates increased while
false positives remained relatively stable (e.g. Figure S4 to 2.7). When the covariance
matrix is calculated over all the data, this includes the exposure period and any response
behaviour within that. The estimated variability in measured behaviours will therefore be
larger, making it more challenging for the method to detect a response when one is present.
This supports the findings of Brownie et al. (1990), who examined the power of statistical
tests used in biological studies attempting to detect the effect of some treatment. They
proposed, and demonstrated, that using only control data to estimate variances (and not
the pooled variance of the whole data) improved the power of the test. Previous studies
with Mahalanobis distance have typically used the covariance matrix over all the data,
stating this to be a more conservative approach, as false positives are less likely (Southall
et al., 2019a; Stimpert et al., 2014). In contrast, these simulations have highlighted that

taking this approach may not always be optimal as many true responses can be missed. It
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is recommended that future studies consider using the covariance matrix across the baseline

data only, except perhaps in cases where baseline data are extremely limited.

The choice of time window structure also led to different detection rates. In the horizontal
simulations, increasing the time window size increased detection rates (Figure 2.8). The
window sizes tested were 15-30 minutes, and all simulated responses were at least 30
minutes long. Therefore, as time window size increases, the likelihood of a time window
containing more data from the response increases. The mean movement parameters for
that window therefore become more extreme, making it more likely to be identified as a
response. This pattern was also seen for the dive simulations with a travel response (type
3), where detection increased as window size increased (Figure 2.13(c)). The opposite trend
was seen for dive responses type 1 and 2 (Figure 2.13(a)(b)), as the simulated surfacing
responses were only 1 dive long and therefore smaller window sizes performed better (as
the time windows were not diluted with data points from non-response times). Overall,
the choice of overlap between sliding time windows did not appear to have a consistent
or substantial effect on detection or false positive rates. This modification affects the
resolution with which a response can be detected or reported. There were differences in
detection rates between the choice of a consecutive or fixed reference window approach. By
some method implementation combinations, the difference between the two approaches was
minimal, but the fixed reference window frequently performed better (e.g. Figure 2.8). The
fixed approach enables users to identify if the animals behaviour was unusual compared
to its average behaviour during baseline, whereas the consecutive approach identifies if
the behaviour was unusual compared to its behaviour in the previous time window. The
consecutive approach could prove better for some types of behaviour change, depending
on the type of response that is trying to be detected (e.g. snap changes in behaviour, see
Antunes et al. (2014)). It is recommended that future studies consider carefully the type
and duration of potential responses they are interested in detecting, and use this to inform
the choice of window size and structure for analysis. The choice of window size should
also consider the natural variability in the baseline data, in order to pick a biologically
meaningful resolution for the particular species and data type (aiming to minimise variation
between baseline time windows). In addition, the choice of overlap amount should consider
both computational feasibility and the resolution with which one could identify and report
a response (e.g. if the data are at a 15-minute resolution, testing for a response every 15

seconds would probably be inappropriate).

As expected, when simulated responses were stronger or longer, they were more likely to

be detected by the method. Increasing the magnitude of an unusual metric or increas-
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ing the occurrence of unusual values, increases the likelihood of the time window being
unusual overall. In the horizontal simulations, responses which began further away from
the repel centre were equivalent theoretically to responses which began closer to the repel
centre but were of a short duration (e.g. Figure S4(b)(d)). For responses further away,
as the animal moves away from the repel centre, the effect of the repel centre decreases
with distance (weighting parameter f(;), meaning there is only a limited amount of time
before the response effect becomes undetectable and it decays back to normal behaviour.
Similarly, for the simulations of close-range responses, the short duration means the re-
sponse is only detectable for a limited time. Some simulated response types were easier to
detect than others. For example, the dive simulations with response Types 1 and 2 (mod-
ified surfacing durations) had consistently high detection rates. Mahalanobis distance is a
statistic which is designed to identify extreme values (e.g. unusually long surface duration),
and so reductions in values towards the mean (e.g. decreased dive depth) or changes in
time budgets (e.g. more time spent travelling than usual) may not be as straightforward
to detect. For studies which are interested in broader time allocation between different
behaviours, a state-specific approach such as HMMs (e.g. Isojunno et al. (2017)) may
be more appropriate. Additionally, it may be more challenging to identify responses in
animals (or particular metrics) which naturally exhibit behaviour close to their biological
and physiological limitations (cost of transport speeds (Gallon et al., 2007), aerobic dive
limits (Kooyman et al., 2021), etc.), as there is limited potential for it to increase during

a respomnse.

Although the methods tested here were focussed on the surface locations (GPS) and dive
data from harbour seals, the strong trends found across the simulations are likely to be
applicable across systems (see Appendix E for additional work on beaked whales). Further
simulations could be conducted for different species and/or biologging data types, in order
to estimate the corresponding false positive and response detection rates. Further simula-
tions could also investigate the effects of including different input metrics for Mahalanobis
distance calculations. However, similar to model selection advice, it is recommended that
studies continue to consider carefully which metrics may be biologically important or in-
formative and that studies do not automatically include every metric that is available.
If it is expected that a response may comprise a lack of a particular behaviour, studies
should consider whether they can include a metric to represent this (e.g. a short dive
may not be unusual, but an extended time resting at the surface might be). At present,
Mahalanobis distance methods calculate the multivariate distance between the means of

each time window (Equation 2.1). Further developments could consider whether another
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metric could be used instead (e.g. maximum or median value of the windows) that might
be less sensitive to dilution from non-response data points; however, it is possible that this
may also increase noise in the baseline data and reduce overall performance. One aspect
not considered in this simulation study was the accuracy of the method in identifying the
precise timing of the response; this could be explored in further work, as it is of importance

when attempting to relate behavioural changes to a known level of stimulus.

2.5.2 Simulating seal biologging data

Simulated data were used in order to quantify the performance of Mahalanobis distance
methods in this study. This approach was beneficial as it enabled complete knowledge of the
presence and timing of behavioural responses in the data. It also provided the flexibility to
modify the strengths and types of responses present, ensure consistency between iterations,
and generate a large sample of data on which to perform the tests. Whilst it is not possible
for simulations to capture the full complexities of animal behaviour and decision-making,
the data generated here were informative for answering the research questions considered

in this study.

The horizontal simulator developed in this study was a multi-state, discrete-time, correlated
random walk, with bias towards simulated attraction points and away from a repulsion
point. Here, the simulation was constructed with two behavioural states: (1) a travel state
characterised by high step lengths and low heading variability, and (2) an encamped state
characterised by small step lengths and high heading variability. The simulated encamped
state encapsulates both resting and foraging (area restricted search) behaviours. Whilst
these behaviours serve at least two different biological functions, they can be challenging
to differentiate in pinniped horizontal tracking data (Carter et al., 2016; McClintock et al.,
2013). Previous studies of seal movement have included additional measurements of dive
behaviour to distinguish resting from foraging (Carter et al., 2020a; McClintock et al.,
2013; Russell et al., 2015). In this chapter, the aim was to estimate the average detection
rates across all behaviours. In future, extending the simulator to contain three (or more)
distinct behavioural states could allow investigation into whether response detection rates
differ by behavioural context. Switching between behavioural states was assumed to be a
first order Markov process, where the probability of being in a behaviour was determined
by the behaviour in the previous time step. Incorporating a longer term memory within
the simulation, such as the behaviour over the last five time steps, or including a count of

the amount of time spent in a particular state, could further improve the quality of the
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simulated data. For example, Langrock et al. (2014) modelled different states of beaked
whale dives as a hidden semi-Markov model, where the dwell time within a particular state
is taken into account for behaviour switching. For central-place foragers such as seals,
which invest energy in travelling to and from foraging patches, including a state dwell
time once individuals have switched to foraging would be a natural development of the
simulator. Here, I simulated movement between two attraction points. These attraction
points had a dual function as potential foraging or resting locations, due to the combined
simulated encamped state discussed earlier. Future work could explore the inclusion of
multiple attraction points, with different attraction strengths and/or functions, to explore
if and how the motivation to reach an attraction point may impact the probability of

detecting a response.

The dive simulator developed here generated multivariate state-dependent dive measure-
ments, with a dive type state sequence simulated as a first order Markov process. By this
formulation, each dive metric is independent of the metrics of the previous dive (conditional
on behavioural state). In reality, it is likely that dive metrics (e.g. depth, duration) may
exhibit subtle patterns over time, within behavioural state, but this is currently poorly
understood. Further work would be required to identify and quantify this in the real data,
and then the simulator could be extended to include correlation between dive metrics of
successive dives to incorporate this. Similar to the horizontal simulator, another possible
extension is to incorporate state dwell times (e.g. Langrock et al. (2014)) for the different
dive types. Given the observed variability in seal movement behaviour between regions
(Hastings et al., 2004), seasons (Crawford et al., 2019), ages (Carter et al., 2020a), sexes
(Wilson et al., 2014), and individuals, expanding and parameterising dive and horizontal
simulations to explore these differences are possible extensions of this work. Both of the
simulators developed here could also be used to simulate data to address different research

questions, for example to test other statistical methods.

The behavioural responses simulated here were chosen to be representative of a range of
possible reactions by seals to disturbance. Horizontal flee responses to noise disturbance are
often reported in cetaceans, but for pinnipeds there is a lack of individual tracking data on
responses. Many studies have reported changes in the distribution of pinnipeds as a result
of noise disturbance (e.g. Harris et al., 2001, Hastie et al., 2015, Russell et al., 2016), which
could be as a result of an initial fleeing reaction. Dive responses of pinnipeds to sound have
been reported in captivity (e.g. Kastelein et al., 2018a, Kvadsheim et al., 2010), but how
individuals may change their dive behaviour in the wild is relatively unknown. Collecting

and analysing tracking data on how wild pinnipeds move and react to a variety of sound
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sources remains a key area for future research.

2.5.3 Conclusions

This chapter developed a simulation study to quantify the performance of a statistical
method used for biologging data in behavioural response studies: Mahalanobis distance. It
was found that the amount of baseline data available was an important factor in controlling
false positives, and so it is recommended that future studies make efforts to maximise the
duration of data collected before disturbance events. The simulations showed that using
the covariance matrix across only the baseline data improved detection rates, whilst false
positives remained relatively stable. Future users of this method should consider using
this modified approach. There were also marked differences in detection rates between
different window structures, and so it is recommended that future studies choose a window
structure that is appropriate for the duration and type of response they are attempting to
detect. Overall, there were consistent patterns in method performance across the different
simulated scenarios, suggesting that this general advice is applicable across species and

data types.
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Chapter 3

Horizontal responses of harbour

seals to pile driving sounds

The acoustic propagation models (described in Section 3.3.4) were produced by Bas Bin-
nerts and Sander von Benda-Beckmann at TNO (Acoustics and Sonar Expertise Group,
TNO, The Hague, Netherlands), in consultation with myself, Gordon Hastie and Carol

Sparling. The rest of the analysis described in this chapter is my own work.
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3.1 Abstract

Transitioning to renewable energy is essential to mitigate climate change; however, it is
important to consider the potential impact of new technologies on wildlife. For animals
that spend extended time periods underwater, such as marine mammals, a key environ-
mental concern are the high intensity sounds produced during pile driving for offshore
wind farm construction. While it is known that reductions in harbour seal density occur
near to active pile driving (Russell et al., 2016; Whyte et al., 2020), how individual seals
behave and move during exposure to these sounds is currently unclear. In this chapter,
I used GPS tracking data from 24 tagged harbour seals (Phoca vitulina) to investigate
how individual seals behaved during pile driving sound exposure. To do this, I calculated
biologically informative metrics summarising the seals’ movements, and used Mahalanobis
distance randomisation tests to identify statistically unusual instances of movement be-
haviour during pile driving. Predictions from an acoustic propagation model were used to
understand the relationship between the probability of these behavioural changes and the
estimated received sound level from piling, using a Bayesian hierarchical model. Using es-
timates of seal density across the study area, the total number of seals likely to be affected
was also estimated. In total, there were 216 encounters between seals and pile driving
activity, and 15 unusual movement responses were detected. The detected changes in hor-
izontal behaviour consisted of either (1) unusually high movement speeds, (2) cessation of
horizontal movement, or (3) suddenly initiating travel after a long stationary period. The
mean population-level response threshold at which these changes were estimated to occur
was 186 (95% CI: 169-199) dB re 1Pa? - s, with a standard deviation between individuals
of 14 dB re 1uPa? - s and between encounters of 24 dB re 1uPa? - s. The estimated sound
level at which there was a 50% probability of response, psg, was 175 (95% CI: 166-181)
dB re 1uPa? - s. Across the study area, this was equivalent to an estimated 311 seals
responding per pile driving bout. The dose-response relationships estimated in this chap-
ter provide an important tool for estimating the probability of these behavioural changes
for offshore developments using pile driving. Overall, the individual behavioural changes
observed in this chapter provide important insights into how seals may react to in-situ
sound disturbance events, enabling improved biological and quantitative understanding of
the differences between individuals and encounters, and ultimately contributing towards

important knowledge gaps in predicting the population-level consequences of disturbance.
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3.2 Introduction

The rapid expansion of the offshore renewable energy sector brings increased levels of
human development into the marine environment (Bailey et al., 2014). Understanding
the potential effects of this activity on marine wildlife, and being able robustly to predict
impacts at the individual and population level, are critical steps in ensuring that new
renewables developments are built and operated in an environmentally-responsible manner.
In the last 30 years, 25 GW of offshore wind capacity (5,402 turbines) have been constructed
in European waters; a further 29 GW of offshore wind capacity is predicted to be installed
over the next five years (WindEurope, 2021). This expansion is predicted to continue
as countries convert to renewable energy sources in order to meet global climate change

targets.

For animals that spend extended time periods underwater, such as marine mammals, one
of the main environmental concerns of offshore wind farm developments are the high levels
of sound produced during the construction phase. Pile driving, a common method used
in installation of the wind turbine foundations, has been reported to produce source levels
of up to 250 dB re 1yPa @ 1 m (peak-peak) (Bailey et al., 2010). Installation typically
consists of repeated hammering (~ every 1-2 seconds) of foundations into the seafloor,
and can last for several hours at a time (Bailey et al., 2010; Graham et al., 2019). The
potential effects of this activity on marine mammals include hearing damage from exposure
to sound from pile driving (Hastie et al., 2015; Schaffeld et al., 2020; Whyte et al., 2020),
exclusion of individuals from important areas of their natural habitat, and disruption to
natural behaviour and distribution (e.g. Brandt et al., 2011; Graham et al., 2019; Whyte
et al., 2020).

The at-sea distribution of seals, and the requirement for individuals to regularly return
to haul-out sites, can lead to high spatial and temporal overlap between seals and areas
of human activity in the coastal environment (Jones et al., 2017; Russell et al., 2014;
Sharples et al., 2012). Visual observations of ringed seals (Phoca hispida) present around
construction and pipe driving at an oil production site appeared to show little or no reaction
to construction activity (Blackwell et al., 2004), with individuals occasionally swimming
or sitting on ice within 2 km of the construction site. Culloch et al. (2016) also found no
evidence of construction-related activities (seismic surveys, dredging, rock breaking, etc.)
for an offshore gas pipeline affecting the occurrence of grey seals (Halichoerus grypus)
from shore-based marine mammal observations. Visual surveys of seals (ringed, bearded

(Erignathus barbatus), and spotted (Phoca largha)) found similar sightings rates between
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different levels of seismic activity; however, the mean radial distance of seal sightings was
larger during “full-array” (8-11 airguns) seismic activity compared to no activity (234 m
vs. 144 m) (Harris et al., 2001). Both Edrén et al. (2010) and Skeate et al. (2012)
investigated patterns in the numbers of grey and harbour seals hauled out near pile driving
construction, for offshore wind farms in Denmark and the UK respectively. Aerial surveys,
visual observations, and time-lapse photography showed that there was a 20-60% decline in
the numbers of seals (both species were considered together) hauled out on the sandbanks
during pile driving at the Danish Nysted wind farm; it was highlighted that the sound
produced from the pile driving may deter seals from returning to the haulout site (Edrén
et al., 2010). Aerial surveys of seals near the Scroby Sands wind farm in the UK detected a
significant decline in the number of hauled out harbour seals during the year of construction;
in contrast, the number of hauled out grey seals increased (Skeate et al., 2012). In general,
studies of the at-sea behaviour and distribution of seals during exposure to sounds from
human activity have produced mixed results; however, many studies have relied on visual
observations alone, making it difficult to follow how individuals responded (Edrén et al.,
2010).

For pile driving sounds in particular, tracking data from tagged harbour seals have been
used to estimate seal density during times of piling and non-piling during the construction
of an offshore wind farm (Russell et al., 2016; Whyte et al., 2020). It was estimated that seal
density significantly reduced during piling up to distances of 25 km, or above single-strike
sound exposure levels (SELss) of 145 dB re 1uPa®-s (Whyte et al., 2020). The spatial
modelling approach used in these studies necessarily pooled across all piling events, to
make a binary comparison between baseline vs. all piling events. Therefore, all predicted
changes in seal density were made relative to the centre of the wind farm, and not to
the respective piling locations. Additionally, sound propagation models were averaged to
produce an single estimated soundscape across all 27 piling locations. Importantly, at this
offshore wind farm in particular, the maximum distance between turbines was ~13 km,
and so there was considerable uncertainty in the true relationship between seal behaviour
and the corresponding sound levels from pile driving activity (Whyte et al., 2020). There
is a need to further understand how individuals may respond and change their movement
behaviour during pile driving, to facilitate robust estimation of population-level effects and

quantify variation in responses between and within individuals.
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3.2.1 Aims

To improve understanding of individual behavioural impacts, and the mechanisms by which
these may accumulate to population-level effects, in this chapter I use biologging data to
examine how individual seals respond to in-situ anthropogenic sound exposure. Using the
same data as described above (Hastie et al., 2015; Russell et al., 2016; Whyte et al., 2020)
on 24 GPS-tagged harbour seals, I aim to investigate the effect of pile driving activity
on the horizontal movement behaviour of individuals through four objectives. First, to
objectively identify potential responses, unusual events of horizontal movement behaviour
will be identified by Mahalanobis distance randomisation tests, which compare behaviour
observed during pile driving to that observed during baseline periods. Second, this chapter
will quantify the relationship between received pile driving sound level and the probability
of response, using a Bayesian hierarchical model to combine the identified behavioural re-
sponses with estimated sounds levels from an acoustic propagation model. Third, variation
in response thresholds between, and within, individuals will be estimated, and a suite of po-
tential covariates will be included in the model to explore their effect on the dose-response
relationship. Fourth, using the best fitting model of the dose-response relationship and es-
timates of seal density across the study area, the effective response range and total number
of seals predicted to respond will be estimated to provide further context to the obtained

results.

3.3 Methods

3.3.1 Data collection
Seal tag data

To record the movement behaviour of seals around pile driving activity, tags were deployed
on harbour seals in the intertidal sandbanks of The Wash, south-east England, UK. In
January 2012, 25 harbour seals were caught and fitted with a SMRU Instrumentation GPS
telemetry tag (hereafter GPS/GSM tag; SMRU Instrumentation, University of St Andrews,
Fife, UK). Seals were first anesthetized using Zoletil® or Ketaset® in combination with
Hypnovel®, and GPS /GSM tags were attached to the fur at the back of the neck using a
fast-setting two-part epoxy adhesive or Loctite® 422 Instant Adhesive. All seal handling
and procedures were carried out under Home Office Licence 60/4009. The fitted GPS/GSM
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tags can only attempt to measure the seals’ locations when they are at the surface and the
tag is sufficiently above the water. Fastloc GPS allows quick (~100 ms; Carter et al., 2016)
recording of the information required to estimate the location, which is later transmitted
via the GSM phone network.

Out of the 25 deployed tags in The Wash, three tags collected data for less than two
days and so were excluded from further analyses. Two seals from a concurrent study
approximately 200 km to the south (in the Thames) moved into The Wash during pile
driving, and so were included in the dataset. This resulted in a total sample size of
24 individuals (11 males, 13 females; Table 3.1). The data were cleaned and erroneous
locations removed based on thresholds of residual error and the number of satellites. For
more details of the data collection and study site, see Hastie et al. (2015) and Russell
et al. (2016). Excluding haulout periods, the median time interval between received GPS
locations was 10 minutes. For ~86% of GPS locations, the time intervals between successive
locations were less than 20 minutes; for ~94% of locations, time intervals were less than

30 minutes.

Pile driving operations

Operational data on pile driving at Lincs offshore wind farm were provided by Centrica
ple. Throughout the period of the seal tag deployment, 27 (of a total of 75) monopiles
were installed at Lincs by pile driving (Figure 3.2(b)). Between 28" January and 11"
May 2012, a total of 77,968 piling strikes occurred, with a mean strike energy of 1,202 kJ

(SD= 613) (Figure 3.2(a)).

Pile driving at Lincs occurred intermittently across the study period, with a maximum
gap of 19.5 days with no piling activity. To compare time intervals of piling and non-
piling, individual records of piling hammer blows were divided into bouts, where piling was
considered as a separate bout if successive hammer blows were more than one hour apart.
This resulted in 64 piling bouts across the study period and the 27 piling locations. Piling
bouts had a mean duration of 1.0 hour (min = 0.2, max = 3.2), containing an average of
1,218 hammer blows each (min = 132, max = 3,772), and a median inter-strike interval

(time between successive hammer blows) of two seconds.
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Table 3.1 Details of the 24 tagged harbour seals. Deployment is the date that GPS/GSM tags
were attached to each individual. The time period covered is the duration of days that data were
available for each individual within the study period, excluding the first week of deployment. The
baseline duration is the effective duration of that data available for use as baseline, incorporating
data removed by chosen spatial constraints, pile driving times, and haulouts. Individuals with the
prefix ‘pv42-’ were tagged in The Wash; individuals with the prefix ‘pv40-’ were tagged in the
Thames.

Seal Deployment Time period Baseline Sex Age
reference date covered data duration class
(days) (days)
pv42-162-12 23/01/12 110 39 F Adult
pv42-165-12 21/01/12 57 10 F  Juvenile
pv42-194-12 23/01/12 107 20 M Adult
pv42-198-12 24/01/12 110 32 M Adult
pv42-220-12 24/01/12 110 34 M Adult
pv42-221-12 24/01/12 44 12 M Adult
pv42-266-12 24/01/12 78 32 F Adult
pv42-277-12 23/01/12 110 43 F Adult
pv42-287-12 24/01/12 12 7 M Adult
pv42-288-12 21/01/12 110 48 F Adult
pv42-289-12 25/01/12 74 14 M Adult
pv42-290-12 25/01/12 53 17 F Adult
pv42-291-12 23/01/12 102 37 F Adult
pv42-292-12 24/01/12 99 38 M Adult
pv42-293-12 25/01/12 65 13 F Adult
pv42-294-12 25/01/12 97 32 M Adult
pv42-295-12 25/01/12 64 26 F Adult
pv42-316-12 22/01/12 98 36 M  Juvenile
pv42-317-12 23/01/12 105 37 F Adult
pv42-318-12 23/01/12 110 38 F Adult
pv42-319-12 22/01/12 106 43 M Juvenile
pv42-320-12 21/01/12 96 38 F Adult
pv40-268-12 18/01/12 114 33 F Adult
pv40-270-12 18/01/12 86 11 M Adult
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Figure 3.1 Overview of movement tracks collected around The Wash (UK) in 2012 from 24
harbour seals fitted with GPS/GSM tags (lines coloured by individual). Also shown are the outline
of Lincs offshore wind farm (solid black line), and a line representing 100 km from the centre of the

wind farm (dashed black line).
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Figure 3.2 Pile driving activity at Lincs offshore wind farm in 2012. (a) The date, time of day,
and piling hammer energy (kJ; colourscale) of each of the 77,968 piling strikes. (b) Map of Lincs
wind farm with active piling locations (purple triangles) and locations of the previously installed
wind turbine foundations on the site (grey circles). The wind farm site is ~13 km by ~3 km.
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3.3.2 Quantifying movement behaviour

For each tagged individual, GPS locations recorded in the first week of deployment were
removed to ensure that any potentially altered behaviour following the tagging procedure
(sedation, disturbance) were not included in the analyses (McKnight, 2011). GPS locations
recorded more than one week after the last pile driving bout were also removed. This
approach enabled comparisons of seal behaviour during piling and non-piling periods to be
limited to the same time of year (January—May), and in particular excluding data collected
during the harbour seal breeding period (June-July) when movement behaviour is likely
to be different (Thompson et al., 1994; Van Parijs et al., 1997).

Seal locations from the GPS/GSM tags were used to calculate several informative move-
ment metrics, quantifying movement behaviour between successive GPS locations (e.g.

between locations agy and byy):

e Speed: The average horizontal speed (displacement) since the previous recorded

location (m s~ !):
_ D(azy, bay)
ty — tq

where v is the estimated speed, D(agy,bsy) is the horizontal distance between the
pair of locations, and ¢, and #;, are the times of locations a;, and b,, respectively. It
should be noted that this is an estimate of the minimum speed travelled at by the
animal, as it assumes a straight line distance between GPS locations and the true

path is unobserved.

e Acceleration: The absolute value of acceleration, i.e. the difference in speed since

the previous recorded location (m s2):

o — |Ut - Utfly
At
where a is the estimated absolute acceleration, v; is the horizontal speed at time t,
v;_1 is the horizontal speed at time t — 1, and At is the difference in time between

the two locations.

¢ Heading variability: The circular variance in heading (Mardia and Jupp, 1999),

i.e. a measure of the difference in heading between successive movement steps:

V/ (cos(ty) + cos(1r—1))2 + (sin(¢y) + sin(iy—1))?
2

c=1-
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where 1y = arctan(bsy, agy) is the heading angle of a GPS location at time ¢, and
¥y—1 is the heading angle at the previous GPS location ¢t — 1. The circular variance
in heading c ranges between 0 and 1, where similar angles results in values near 0,

and pairs of angles which are highly different results in values near 1.

¢ Radial avoidance rate: A measure of the rate at which the seal is moving away

from (or towards) the centre of the wind farm:

Ar
Atvr

RAR =

where RAR is the estimated radial avoidance rate, r is the current radial distance
between the centre of the wind farm and the seal’s location (km), Ar is the change
in the radial distance between the two GPS locations (m), At is the difference in
time between the two locations (s), and v is the current speed (m s~!). This metric
measures the amount of the seal’s movement which is directed directly away from the
wind farm, accounting for the current speed of the animal. Positive values signify
movement away from the wind farm, negative values signify movement towards the

wind farm.

If the time between two observed GPS locations was greater than two hours, movement
metrics were not calculated or used in further analysis. Similarly, metrics were not calcu-
lated for GPS locations which overlapped with haulout times recorded on the GPS/GSM
tag.

3.3.3 Identifying a behavioural response
Specifying baseline data

To make comparisons of seal behaviour during piling and non-piling periods, it was neces-
sary to specify a subset of the tracking data which could be considered as baseline. As pile
driving activity took place intermittently over (and prior to) the study period, baseline
data was also pooled from intermittent periods across the study period. For all individ-
uals, movement data collected during the 6 hours prior to, and 24 hours following, any
pile driving bout was excluded from the baseline. This was a conservative approach to
ensure that any potential disturbance during the setup and operation of pile driving was
not considered as baseline, as well as allowing time for recovery to normal behaviour after

potential disturbance. From Russell et al. (2016), it was estimated that seal distribution
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returned to normal within two hours of the cessation of pile driving (i.e. there was no
detectable difference in seal density). For each individual, any sections of track which were
more than 100 km away from the wind farm site (Figure 3.1) were also excluded from the
baseline. Comparisons were therefore carried out for movement behaviour within the same

spatial area and types of habitat.

Summarising movement metrics by Mahalanobis distance

Mahalanobis distance was used to summarise the chosen movement metrics into a single
variable (DeRuiter et al., 2013) representing the overall difference in movement behaviour
(see Chapter 2; Equation 2.1), using a custom-written R function mdist_xy. Following
the findings of the simulation study for horizontal movement data described in Chapter 2,
Mahalanobis distance implementation options were chosen that would best detect relatively
short-term movement responses in the available data. For each individual, time windows of
20 minutes in duration were constructed across the timeline of available data, with windows
sliding along the data every 10 minutes. Using Equation 2.1 (Chapter 2), the Mahalanobis
distance was calculated between the mean value of movement metric observations in the
baseline period (a fixed reference window approach), and the mean value of movement
metric observations in each 20 minute time window. For each individual, the covariance
matrix used in the Mahalanobis distance calculation was from the baseline period only,
following the findings of Chapter 2. The movement metrics used were speed, absolute
acceleration, heading variability, and radial avoidance rate, and all comparisons were made

within individual only.

As seal GPS locations occurred irregularly in time, and due to the data removals mentioned
above (e.g. haulouts), not all of the 20 minute windows contained data. When no data
observations were present within a time window, no Mahalanobis distance calculation was

possible and so the window slid on 10 minutes to the next position.

Identifying unusual behaviour by randomisation tests

To identify movement behaviour changes that were unusual, Mahalanobis distance values
observed during pile driving were compared to those observed during baseline periods by
randomisation tests. For each pile driving bout, each individual that was estimated to
have a received level of piling sound above the ambient sound level (see next Section) was

considered to have had an “encounter” with pile driving. For each encounter, responses

83



3.3. Methods

were investigated within the period of pile driving plus a 30 minute buffer afterwards. This
buffer allowed for delayed responses to be identified; this was important as the irregular
timing of the GPS locations and the time required for an individual to change its behaviour
in a significant way meant that it was possible that an individual responding towards the
end of the pile driving bout would only be detectable in the data after the bout had ended.
For each encounter, 1000 randomly sampled “mock exposure periods” were taken from the
baseline data for that individual, where each mock exposure is of the same duration as
the piling bout. The maximum Mahalanobis distance Dy, observed in each of the mock
exposures was then compared to the Mahalanobis distance values observed in the true
exposure encounter. The 95" percentile of the Dpax samples across the mock exposures
was used as a threshold Dyy,, above which it is considered unlikely that behaviour changes of
this magnitude will occur by chance. Mahalanobis distance values exceeding this threshold
during a piling encounter are considered to be a response to the pile driving activity itself,

as they occur with low probability (<5%) in the baseline data.

3.3.4 Estimating the received sound level
Acoustic modelling of pile driving sounds

To estimate the sound levels resulting from piling across the study area, the Aquarius pile
driving model (for detailed description of the model and its validation see de Jong et al.
(2019)) was used to model source characteristics and acoustic propagation loss. The Aquar-
ius model uses information on the properties of the hammer and the pile to determine a
source excitation spectrum, which is integrated into a range dependent propagation model
to predict acoustic propagation loss across the study area, incorporating information on
seabed characteristics and water depth. Here, the bathymetry was set to Mean Sea Level
(MSL) and the seabed was assumed to be homogeneous, with properties corresponding
to medium sand (Table 4.18 in Ainslie, 2010), the most common value in the considered
modelling area (using data from the EMODnet Bathymetry Data Portal). Water depths
relative to Mean Sea Level (MSL) were derived by applying the United Kingdom Hydro-
graphic Office Vertical Offshore Reference Frame (VORF) correction for the study area
(Lliffe et al., 2013), as the original bathymetry data were relative to chart datum at Lowest
Astronomical Tide (LAT). Full details of the parameters used in the acoustic modelling
are described in Whyte et al. (2020).

Depth specific model predictions were output as estimated single strike sound exposure
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Figure 3.3 Predicted piling sound levels (single-strike sound exposure levels, SELss, dB re 1uPa?-
s) across the study area for one of the piling locations (pile identification 1.S22). Shown is the median
SELss across all modelled depth bins. Predicted SELss below the estimated ambient noise level of
118 dB re 1uPa? - s were set to 118 dB re 1uPa? - s.

levels (SELgs ref, dB re 1uPa? - s) at a reference piling strike energy of 1000 kJ. These
were calculated across a series of spatial grids within the study area at ~279 m resolution
(Longitude: from —1° to 3° with a 15 s resolution, Latitude: from 52° to 55° with a 9 s
resolution) for each of the 27 piling locations. Individual grids were produced for each 2.5
m depth bin (from 2.5 to 107.5 m depth); sound levels below the seabed were indicated
by a “NaN” value. Frequencies from 16 Hz to 20 kHz were modelled, using third octave

centre frequency bands.
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Acoustic exposure of the tagged seals

The acoustic “dose” of received piling sound was estimated for all seal encounters, including
both responses and non-responses (as identified by the randomisation test). For identified
responses, the response interval (the time window within which a detected response first
occurred) was considered to be from the start to the end of the first 20-minute window
exceeding Dy, (the Mahalanobis distance threshold used to determine a response). For
encounters with a data gap prior to the time window exceeding Dy, the start of the
response interval was extended back to the end of the previous time window (the last
recorded window not exceeding Dy ), to account for uncertainty in the time at which the
response began. This accounted for sound levels that may have been received in between

available GPS locations and contributed to a behavioural response.

For each piling strike that occurred within the response interval, seal tracks were linearly
interpolated to estimate the location of the seal at the time of each piling strike. Each of
these seal locations was matched to the corresponding spatial grid cell in the acoustic model
(for the corresponding piling location), and the median received SELg, o across all depth
layers was identified. Information on the blow energy of each strike was then used to scale
the modelled reference SELgg ref (at 1000 kJ strike energy) to obtain final estimates of the
received SELg at each seal location. This was carried out through energetic (broadband)

scaling of the SELg spectrum:

SELgs = SELg, ref + 10logyq b (3.1)
’ Erer

where E is the energy (kJ) of the pile driving strike, E,ef is the reference strike energy (1000
kJ), SELg, rer is the modelled single strike exposure level at the reference strike energy,
and SELg, is the resulting scaled single strike sound exposure level (dB re 1uPa? -s). The
estimated distance between the piling location and the seal’s location for each piling strike
was also calculated, as well as the received levels in the quietest and loudest depth bins.
Measurements by Nedwell et al. (2011) of ambient noise in The Wash during construction
of Lincs wind farm gave a median ambient sound level of 118 dB re 1uPa? - s, and so any

estimated SELss below this value were assigned to 118 dB re 1uPa? - s.

For encounters in which seals were not identified to respond, seal tracks were linearly
interpolated to estimate the location of the seal at the time of all piling strikes within
the piling bout. Using the same approach as above, these piling strikes were matched to

the acoustic models and scaled by Equation 3.1 to estimate the received acoustic dose for
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encounters in which seals did not respond.

3.3.5 Modelling the dose-response relationship
A Bayesian hierarchical model of response thresholds

A Bayesian hierarchical model (based on that proposed by Miller et al., 2014) was used to
estimate the relationship between the piling sound level (acoustic dose) and the likelihood
of a behavioural response, using information from all piling encounters (both responses
and non-responses). The model is structured around the concept that all seals will have
a sound level at which they will respond in an encounter with pile driving. Seals that
respond have reached their response threshold, whereas seals that do not respond have
simply not exceeded their response threshold for that encounter. The response threshold
can vary between and within individuals, and depend on individual-level and encounter-

level covariates.

Let 41 be the mean response threshold (in dB re 1uPa?-s) for the population, where response
thresholds across individuals in the population are assumed to be normally distributed.

Each individual ¢ is assumed to have a mean response threshold p;,

i ~ N(p+ 2], ¢?) (3.2)

where z; is a vector of individual-level covariates (which can be continuous covariates or
factor levels), a is a vector of model parameters, and ¢? is the variance between individuals.
Individual-level covariates (e.g. sex) can be included to account for factors that may alter
the response threshold between different groups of individuals. Within each individual,
response thresholds can vary between each encounter j. The true (but unobserved) response

threshold ¢; ; for a given individual ¢ and encounter j, is assumed to be normally distributed,

tig ~ N(ui + 2] ;8,0%) (3.3)

where z; ; is a vector of encounter-level covariates, 3 is a vector of model parameters,
and o? is the variance between encounters. Encounter-level covariates (e.g. time of day)
can be included to account for factors that may alter the response threshold between
encounters. When no covariates are included in the model, Equations 3.2 and 3.3 reduce

to wi ~ N(u, ¢?) and t; j ~ N(u;, 0%) respectively.
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To account for uncertainty in the estimated acoustic dose eliciting the response, it was

assumed that the true response threshold ¢; ; is observed with error:

yi,j ~ N(ti7j, 62) (34)

For encounters in which the individual was detected to respond, y;; and € are the esti-
mated median and standard deviation respectively of all received SELss from piling blows
within the initial response interval. It should be noted that this measure of uncertainty
in the observed dose only accounts for uncertainty in which piling blow contributed to
the response, and not uncertainty in estimated SELss from the acoustic modelling stage
(Whyte et al., 2020). For encounters in which the individual was not detected to respond,
there is no observation of the response threshold and so these encounters are considered
to be right-censored. The maximum of the received SELss across the piling bout is taken
to be the observed dose yi i and the true response threshold ¢; j, which has not yet been

reached, is assumed to be above this value, such that ¢; ; > y¢ '

Prior distributions for model parameters were set so as to be generally uninformative, but
aimed to ensure that the model remained within biologically reasonable limits. A uniform
prior with a lower limit of 115 dB re 1uPa?-s and an upper limit of 200 dB re 1uPa?-s was
used for the mean population response threshold p. It was assumed that no individuals
would respond to sound below the lower limit (as it is below the median level of ambient
noise), and that all individuals would respond by the upper limit of this interval (the
approximate maximum received level at 0 m away from pile driving). To accommodate
this within the model, ¢; ; was assumed to follow a truncated normal distribution (Antunes
et al., 2014; Miller et al., 2014), with a lower limit of 115 dB re 1puPa? - s and an upper
limit of 200 dB re 1uPa? -s. Priors for the standard deviation between individuals ¢ and
between encounters o were set to be uniform between 0 and 30 dB re 1uPa? - s. Standard
deviations of 30 dB would be equivalent to a mean response threshold +60 dB; response

thresholds are unlikely to differ more than this between or within individuals.

Models were fit in JAGS (version 4.3.0; Plummer (2003)) via the R package rjags (Plum-
mer, 2019). JAGS uses Markov Chain Monte Carlo (MCMC) to estimate values for the
parameters in the model and produce a posterior distribution for each parameter. Here,
model parameters were estimated from 400,000 iterations, across 4 chains of 100,000 it-
erations each. A conservative burn-in period of 10,000 iterations was used and discarded
for each chain. Starting values were set at the midpoint of each prior range (1 = 150,

o =15, ¢ = 15). A range of starting values across the spread of the priors were tested to
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Table 3.2 Covariates considered in the dose-response model of harbour seal responses to pile
driving. Covariates were either of type factor (F, with number of levels in brackets) or continuous
(C), and applied at either the individual (Ind) or encounter (Enc) level of the model.

Name Type Level Description
Sex F (2 Ind  Sex of seal (male; female)
Age class F (2 Ind  Age class of seal (adult; juvenile)

Exposure history F (3 Enc  Number of previous encounters (<4; 5-14; >15)
Behavioural state F (3 Enc  Estimated state pre-piling (travel; forage; rest)
Bout length Enc  Total length of piling bout (hours)

Initial distance Enc  Initial distance at start of piling encounter (km)

)
)
Daylight F (2) Enc  Time of day (day; night)
)
)

ensure that the final posterior distributions were not sensitive to the starting values chosen.
Chains were assessed for convergence by visual inspection of the chains and checking that

the Gelman and Rubin convergence diagnostic was <1.1 (Gelman and Rubin, 1992).

Including covariates on estimated response threshold

A suite of potential covariates were considered in the dose-response model (Table 3.2).
Individual-level covariates (sex, age class) were obtained during the seal tagging procedure,
whereas exposure-level covariates (e.g. exposure history, bout length) were estimated or
measured for each piling encounter. The R package suncalc (Thieurmel and Elmarhraoui,
2019) was used to compare piling times to local sunrise and sunset times. Piling bouts
that began before sunrise or after sunset were categorised as night; all other piling bouts
were considered to take place during the day. For each individual, the order and number
of piling encounters were calculated. For each encounter, the number of previous known
encounters an individual had with pile driving (within the study period) was used a mea-
sure of exposure history; this was divided into a low (<4), medium (5-14), and high ( >15)
number of previous encounters. Russell (2016) used movement and activity data within a
state-space modelling framework to infer behavioural states (interpreted as travelling, for-
aging, or resting), on a 2 hour resolution, of tagged harbour seals (including the individuals
in this study). Estimated state in the previous 2-hour interval before each pile driving bout
was used as an estimate of the behavioural state of the individual before each encounter.
The total duration of the piling bout and the initial distance of the individual from pile

driving were also included as potential covariates that may influence response threshold.
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A maximal model with all covariates and a simple model with no covariates were both
fitted. In the maximal model, covariates were included at both the individual (Equation

3.5) and encounter level (Equation 3.6), by expansion of Equations 3.2 and 3.3 respectively:

L ~ N(M + gexS; + OéageAi, ng) (3.5)

tij ~ N(i + BaayDi,j + BexpBij + BoehavBij + Biengthbout Li,j + Bmitdist Rij, 02)  (3.6)

Here, each o term is a model parameter for each individual-level covariate, and S; and A;
are, respectively, the sex and age class of each individual . Each § term is a model param-
eter for each encounter-level covariate, and D; ;, E; ;, B; ;, L; ; and R; ; are, respectively,
the daylight, exposure history, behavioural state, piling bout length and initial distance
for each encounter j (Table 3.2). The parameters Bexp and Bpehay are vectors as both
exposure history and behavioural state were factor covariates with three levels, requiring

two [ parameters each to estimate.

Gibbs variable selection (O’Hara and Sillanpaa, 2009) was used to assess the level of support
for including each of these covariates within the final dose-response model. This was
implemented by using an indicator parameter I for each covariate, e.g. the sex covariate
was IgexgexSi- The indicator parameter I was binary, and took value 1 when the parameter
was included in the model, and 0 when it was not included. This enabled the model
to include and exclude different covariates throughout the iterations. The proportion of
MCMC samples in which the term was included is an estimate of the posterior probability
that this term is present in the true model. Models without indicator variables were also
fit to examine what effect each o and S term might have, assuming all covariates were
included. Prior distributions for each of the indicator term I were Bernoulli with a mean
of 0.5, indicating the initial uncertainty on whether the covariate should be included or
excluded. Prior distributions for each of the o and S terms were normal, with a mean of

zero and a standard deviation of 10 dB re 1uPa? - s.

Estimating the dose-response function

The posterior samples from the Bayesian hierarchical model were used to estimate a dose-
response function. The estimates of u, ¢ and o for each posterior sample were used to
construct a cumulative distribution function in 1 dB increments. The mean dose-response

function was estimated by taking the mean values of these cumulative distribution functions
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across all posterior samples, and 95% credible intervals were estimated by taking the 2.5%
and 97.5% quantiles across all posterior samples for each dB increment. Due to truncation
of the probability distribution, the dose-response function may not be symmetric and so
the dose at which the probability of response is 0.5, psg, was also calculated. For the
maximal model containing covariates, the posterior samples were used to estimate a series
of potential dose-response functions to illustrate the effect of each covariate. To do this,
posterior samples of the a and 3 term(s) for each covariate, as well as u, ¢ and o were used
to calculate the mean and 95% credible interval of the dose-response function, as above.

This approach assumes that all other covariates are present in the maximal model.

3.3.6 Estimating an effective response range (ERR) and the total num-

ber of seals affected

Due to the spreading of sound away from a source, the area that has moderate or low levels
of piling sound is much larger (and therefore contains more individuals) than the area with
the highest levels of sound. Using the psp estimate alone can lead to underestimation of
the numbers of animals affected (Tyack and Thomas, 2019), and in particular can ignore
the most sensitive individuals which will respond at the lower thresholds further from the
source. To increase the applicability of these results to management where a single number
is preferred, and to estimate the total number of seals likely to respond, an effective response
range (ERR) was estimated using the dose-response curve. The effective response range is
the distance at which the number of animals responding beyond this distance is equal to
the number not responding within this distance (Tyack and Thomas, 2019). Thus, it can
be a relatively straightforward approach to estimate the total number of animals affected
across the study area. Due to the spread of piling locations (the wind farm is ~13 km in
length and ~3 km in width) and variation in bathymetry of the habitat surrounding each

piling location, each piling location was considered separately.

For each of the 27 piling locations, a spatial grid with 250 m by 250 m resolution was
constructed across the study area. At each grid cell, the predicted received SELss from
piling (median across all depths) was extracted from the acoustic model, at the maximum
strike energy of 2,000 kJ (Equation 3.1). Grid cells that were on land were removed. By
comparing the SELss at each each grid cell g to the mean dose-response function, the
probability of response p, at each grid cell was calculated. Theoretically, if each grid cell
contained n individuals then, on average, the number of individuals in that grid cell that

would respond would be npy. The effective response range (ERR) is the distance at which
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the number of individuals that are predicted to respond in grid cells beyond the ERR is
equal to those that failed to respond in grid cells within the ERR distance:

Z (1—-pg) = Z Pg (3.7)

rg<ERR rg>ERR

where 1y is the distance between each grid cell g and the piling location. If a uniform
animal density is assumed, then animal density is not required to estimate the ERR as
it would cancel out on both sides of the equation. Here, the ERR was determined by
increasing the radius around the piling location in increments of 250 m until the sum of
the probabilities of non-response for grid cells within the radius were equal to the sum of
the probabilities of response for grid cells outside the radius. The median estimated ERR

across the 27 piling locations was used to determine the overall ERR.

The overall ERR was compared to estimates of harbour seal density to illustrate the total
number of seals potentially affected in the study area. Carter et al. (2020b) produced
predictions of the proportion of the harbour seal at-sea population in 5 x 5 km grid cells
across the UK and Ireland. Here, as an example, the mean predicted proportional density
of the population across the four nearest 5 x 5 km grid cells around Lincs wind farm was
calculated using the predictions from Carter et al. (2020b). This was multiplied by the
estimated total at-sea population (42,800; Carter et al. (2020b)) to estimate the number
of seals in this grid. This was then converted to the average density D per km?. The total
number of seals affected N was then estimated by N = D m ERR?.

3.3.7 Software used

All analyses were conducted in R (R Core Team, 2020), with additional packages dplyr
(Wickham et al., 2020), lubridate (Grolemund and Wickham, 2011), maptools (Bivand
and Lewin-Koh, 2021), raster (Hijmans, 2020), rgdal (Bivand et al., 2021), rjags (Plum-
mer, 2019), sp (Pebesma and Bivand, 2005), StatMatch (D’Orazio, 2019), and suncalc
(Thieurmel and Elmarhraoui, 2019). The R packages ggplot2 (Wickham, 2016), ggpubr

(Kassambara, 2020) and viridis (Garnier, 2018) were also used for data visualisation.
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Figure 3.4 (a) The baseline data available for each tagged individual, and (b) baseline data
duration against the full time period covered by each tag. Note that both measurements exclude
the first week of deployment and any data collected after the end of the study period (18" May).

3.4 Results

3.4.1 Seal responses to pile driving sounds

Across all 24 tagged seals, the median baseline duration for each individual was 33 days
(min = 7, max = 48; Figure 3.4(a); Table 3.1). In general, ~ 35% of the full data duration
was at-sea behaviour which could be used as baseline (Figure 3.4(b)). In total, 20 out of
24 (83%) of the tagged seals had encounters with pile driving, i.e. they were estimated
to have received SELss from piling above a median ambient sound level during a piling
bout. The mean number of encounters per seal was 11 (min=1, max=36), with the initial

distance between seals and pile driving during these encounters ranging from 4.2-45.1 km.

Out of a total of 216 encounters between seals and pile driving activity, 15 responses were
identified by the Mahalanobis distance randomisation test (Table 3.3). Nine seals responded
to pile driving at least once during the study (Table 3.3). The initial distance of seals to
pile driving in these identified responses ranged from 5.0 to 28.6 km, and the maximum
values of Mahalanobis distance calculated appeared to decline with distance (Figure 3.5).
Estimated median received SELss (median across depths) at the identified time of response
ranged from 119 to 169 dB re 1uPa? - s; however, had the individuals always been present
in the quietest or loudest parts of the water column, the range of maximum received SELss
across all response intervals may have been 118-162, or 121-172 dB re 1uPa?-s respectively
(Table 3.3).
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Figure 3.5 Maximum Mahalanobis distance during all encounters between tagged seals and pile
driving. By randomisation test, each encounter was identified as either a detected response (black
triangles) or a non-response (orange circles).
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Table 3.3 Summary of the identified horizontal responses by Mahalanobis distance. For each
identified response time interval, the median SELss across all depths was calculated for each received
piling hammer blow, and the median y; ; and standard deviation € of these piling blows was used
in the dose-response model (Equation 3.4). Shown here also are the initial distance between the
seal and pile driving, the estimated maximum SELss the individuals may have received had they
always been present in the quietest or loudest parts of the water column, and the percentile of the
Mahalanobis distance values corresponding to each response. All measurements of SELss are in dB
re 1uPa? - s.

Seal Pile Median (+SD) Max Max Initial  Percent
ID bout SELss across SELss at SELss at distance of
ID depth & time quietest loudest (km) MD
yij (Fe) depth depth values
pv42-162-12 LS75.3 146 (£1.6) 144 148 10.5 0.018
pv42-162-12 L.S65.5 136 (+0.1) 129 138 204 0.043
pv42-266-12 LS54.2 135 (£1.4) 127 137 25.0 0.011
pv42-277-12 LS75.2 156 (£3.7) 155 162 10.3 0.034
pv42-277-12  LS65.4 168 (£1.0) 162 170 8.1 0.016
pv42-290-12 LS74.1 139 (£1.5) 134 142 21.0 0.035
pv42-293-12 LS74.2 119 (£0.7) 118 121 28.6 0.050
pv42-295-12  LS56.1 144 (£1.8) 137 146 21.5 0.019
pv42-295-12 LS54.1 137 (£2.9) 133 144 17.4 0.014
pv42-316-12 LS66.1 160 (£+1.3) 152 163 6.3 0.001
pv42-316-12  1.S20.1 153 (£0.2) 143 155 11.9 0.040
pv42-320-12 LS75.3 169 (42.6) 162 172 5.0 0.025
pv40-268-12  1.S69.2 132 (£2.2) 132 136 12.4 0.002
pv40-268-12 1.S56.1 135 (£1.7) 127 138 22.2 0.047
pv40-268-12 LS34.3 156 (+1.6) 145 157 12.5 0.033
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Figure 3.6 Example track and recorded metrics from one of the identified behavioural responses
(seal pv42-162, initial distance of 10.5 km). Top panel: GPS locations (black dots) of a tagged
individual moving south-west past Lincs offshore wind farm (black outline) during piling at pile
LS75 (black dot within wind farm outline). Estimated received SELss (dB re 1uPa® - s; median
across depth) for each piling blow are also shown (coloured dots). Tracks are shown for one hour
before and one hour after piling. Bottom panel: horizontal speed (m s~1), absolute acceleration (i.e.
change in speed, m s~2), heading variation, radial avoidance rate (RAR), Mahalanobis distance,
and piling blow energy from 1 hour pre-piling to 1 hour post-piling. The red dashed line denotes the
Mahalanobis distance threshold (identified from randomisation tests) used to identify responses.
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During one of the detected responses (Figure 3.6), the seal is travelling south-west at
~1.7 m s~! past the wind farm at a distance of approximately 10 km. As pile driving
begins, the seal accelerates to a speed of ~2.5 m s~!, and continues travelling at a relatively
high speed (>2 m s~!) for approximately an hour as it moves away from the wind farm.
Further plots and a brief description of each identified horizontal response are provided
in the supplementary material for this chapter (Appendix C). Overall, the behavioural
responses identified could be divided into three broad categories. First, encounters in
which seals moved at unusually high speeds (n = 6). Seals either increased their speed
while already travelling away from the wind farm, or turned around and then moved at
a higher speed away from the wind farm. Second, encounters in which seals appeared to
decelerate suddenly and reduce movement during pile driving (n = 6). Third, encounters
in which seals suddenly initiated travel behaviour (n = 3), after a substantially long (3—
12 hours) period of remaining relatively stationary. Responses were identified across the
length of the study period in both sexes, both age classes, at different times of day, and

during different estimated seal behavioural states.

3.4.2 The dose-response relationship

Both the full maximal model and the reduced simple model showed rapid convergence
of the MCMC chains, with a Gelman-Rubin of 1.0. Gibbs variable selection indicated
a low level of support for including covariates (sex, age class, daylight, exposure history,
behavioural state, bout length, initial distance) within the dose-response model, estimating
probabilities of 6-48% that each of these covariates are included in the true model (Table
3.4). Tllustrative dose-response relationships of all considered covariates are shown in Figure

3.7.

As overall there was not enough evidence to support inclusion of covariates in the model,
the reduced model (no covariates) was chosen to produce the final dose-response function
(Figure 3.8; Table S1). Using this model, the mean estimated population response threshold
1 was 186 (95% CI: 169-199) dB re 1uPa?-s, with a standard deviation between individuals
¢ of 14 dB re 1uPa? - s and between encounters ¢ of 24 dB re 1uPa? - s (Table 3.4). The
estimated pso for the final model was 175 (95% CI: 166-181) dB re 1uPa® - s. Posterior
distributions from both of the considered models are presented in Appendix C (Figures
S24; S25).

There was evidence of a sex-related difference in the encounters of harbour seals with pile

driving (Figure 3.9). Across all 216 encounters, only 20 of these encounters occurred in
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Figure 3.8 Estimated dose-response relationship for horizontal movement responses in harbour
seals as a function of single-strike sound exposure level (SELss in dB re 1uPa? - s; median across

depth) of pile driving. The mean estimated function (black) and the 95% credible intervals (grey
dashed) are shown.

99



3.4. Results

Table 3.4 Estimated model parameters from posterior samples of the maximal model, and the
final model with no covariates. Also shown are the results of Gibbs variable selection (GVS p), where
the posterior probability of inclusion is the proportion of MCMC samples in which the candidate
covariate (and associated a and f terms) is included. Factor covariates with three levels required
two 8 parameters to estimate; Gibbs support was estimated for inclusion of the factor variable as
a whole.

Maximal model Final model
Mean SD GVSp Mean SD
7 187 10.4 - 186 8.3
¢ 14 7.8 - 14 7.1
o 26 3.1 - 24 3.7
Sex: Olgex -0.5 7.7 0.42 - -
Age class: Qlage 1.0 8.0 0.42 - -
Daylight: Bday  -5.6 5.2 0.45 - -
Exposure history: Bexpl -9.0 6.1 0.48 - -
Bexp2 3.3 6.0 - -
Behavioural state: Bbehavl 4.3 6.7 0.36 - -

Bbehav2 -3.7 6.6 - -
Bout length:  Biengthbout 2.4 6.3 0.37 - -
Initial distance: Binitdist 0.3 0.7 0.06 - -

males, and the number of encounters per individual was higher in females (median = 7,
SD = 13) than males (median = 1, SD = 2). When encounters did occur in males, they
tended to be at further initial distances from piling (median = 28.4 km) than in females
(median = 20.2 km). Both sexes had similar temporal coverage of tag data (median =
98 days in males, 102 days in females; Table 3.1) and a near equal sex ratio was present
in the tagged individuals used in analysis (11 males, 13 females). Therefore, it is possible
this pattern may have been driven by sex-related differences in the distribution of seals
across the study area (Figure S26). According to the haulout records on the GPS tags, the
proportion of time spent hauled out was also slightly larger in males (median = 0.23, SD
= 0.04) than in females (median = 0.18, SD = 0.02).

3.4.3 Effective response range and estimated numbers of seals affected

Using the final mean dose-response function (Figure 3.8), the predicted probability of
response across the study area was estimated for each piling location (e.g. Figure 3.10(a)).
The effective response range (ERR) estimated for each piling location ranged from 7.75 to
9.00 km, with a median ERR of 8.75 km (SD = 0.35 km; Figure 3.10(b)). It should be
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Figure 3.10 (a) Predicted response probability across the study area for one piling location (pile
LS22) using the final mean dose-response relationship. (b) The estimated effective response range
for each of the 27 piling locations. The median effective response range across all piling locations
is shown by the red line.

noted that this uncertainty only accounts for variation in the probability of response among
piling locations, and does not account for uncertainty in the dose-response relationship. The
average density of harbour seals in The Wash near Lincs farm was estimated to be 1.30
seals per 1 km squared (Carter et al., 2020b). If a median ERR of 8.75 km is assumed, then
this would correspond to, on average, 311 harbour seals exhibiting movement responses to

a single pile driving bout.

3.5 Discussion

This study used GPS tracking data from 24 tagged harbour seals to examine the individual
movement responses of seals to pile driving sounds during offshore wind farm construction.
Twenty (83%) of the tagged seals were estimated to be exposed to pile driving sounds at
levels above the median ambient sound level, and in nine seals (38%) a horizontal move-
ment response was detected at least once during the study. Overall, the mean estimated
population response threshold was at a single-strike sound exposure level (SELss) of 186
dB re 1pPa? s, with high variability between (SD = 14) and within (SD = 24) individuals.
The estimated psy sound level at which there is a 50% chance of a horizontal movement
response was 175 dB re 1uPa?-s (95% CI: 166-181). There was limited evidence to support
inclusion of individual-level or encounter-level covariates in the dose-response relationship;

however, there was a difference in the number of times male (median per individual = 1)
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and female (median per individual = 7) individuals were exposed to pile driving sounds.
The median effective response radius (ERR; the distance at which the number of seals
predicted to respond beyond this radius is equal to the number of seals failing to respond
within this radius) for this study was estimated to be 8.75 km, equivalent to approximately

311 harbour seals responding per pile driving bout.

Metrics of seal horizontal movement behaviour (speed, acceleration, heading variability,
radial avoidance rate) were used to identify times when individuals exhibited significantly
unusual movement behaviour. The approach used here was multivariate, i.e. all variables
were considered together, and so the identified responses are unusual with respect to the
combination of all of the movement metrics. In the detected responses in this study,
three broad types of unusual horizontal movement behaviour were observed. During pile
driving, seals were either observed to (1) exhibit unusually high travel speeds, (2) suddenly
decelerate and reduce horizontal movement, or (3) initiate travel away after a long time
period of limited horizontal movement. There are a variety of possible reasons why seals
may respond in these ways. Seals which respond by approach 1 or 3 are increasing their
movement away from the pile driving source, either by increasing their speed when they
are already intending to pass the wind farm, or by initiating movement when they were
previously relatively stationary. The initial burst of speed observed in some of the detected
responses could be as a result of an initial startle response to the sound itself. Captive
playback studies of sounds with a sudden onset have been found to elicit a startle reflex
in grey seals (Go6tz and Janik, 2011). Repeated playbacks of the sound led to sensitisation
(increased responsiveness over time), with responses consisting of rapid fleeing and spatial
avoidance of the sound source (Gotz and Janik, 2011). Seals that increase the rate at which
they move away from the sound source are also reducing their potential noise exposure, and
theoretically escaping from a perceived threat or nuisance sound. In contrast, seals which
respond by approach 2 appear to stop horizontal movement altogether. Seals which behave
in this way may be ceasing their current behaviour to assess the potential threat situation,
or waiting to resume their intended behaviour once the disturbance is over. Whilst these
seals are not clearly reducing their potential noise exposure by moving away, if they are
spending more time near the surface they would have a reduced noise exposure. The dive

behaviour of harbour seals during pile driving is analysed separately in Chapter 4.

Overall, data on the individual movement responses of pinnipeds to underwater sounds are
relatively limited. An unpublished report by Aarts et al. (2018) examined tagged grey seal
movement behaviour during pile driving in the North Sea. On at least one occasion, grey

seals were observed with a persistently high swim speed (1.8 m s~!) during piling; sudden
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changes in heading direction were observed on several occasions, as well as changes in dive
behaviour. In Aarts et al. (2018), each movement metric (e.g. dive depth, speed) was
considered separately (in contrast to all metrics considered together in this Chapter), and
only the behaviour 4 hours pre-piling and 2 hours post-piling was considered (in contrast
to the ~33 days of combined baseline data per individual here). Gordon et al. (2019)
also observed some increases in swim speed and changes in heading in free-ranging tagged
harbour seals exposed to playbacks of different acoustic deterrent devices. During sound
exposure, seals that were assumed to be previously foraging showed significant increases in
swim speed; however, the increase in speed was only slight (~7%) for seals travelling prior
to exposure (Gordon et al., 2019). In Gordon et al. (2019), each movement metric was also
considered separately, and these results were part of a targeted exposure experiment, rather
than the in-situ disturbance events examined in this Chapter. Considered together, these
initial findings (this Chapter; Aarts et al., 2018; Gordon et al., 2019) of individual seal
movement responses to sound disturbance are broadly consistent with studies of harbour
porpoise (Phocoena phocoena), where changes in horizontal movement behaviour and swim
speed (Kastelein et al., 2018b; Mikkelsen et al., 2017; van Beest et al., 2018) have been
observed during noise exposure. Further data collection and further understanding of
individual responses by both pinnipeds and small cetaceans is required. Understanding
behaviour at the individual level is a critical step in understanding population-level effects,
and in informing simulation-based approaches (Chudzinska et al., 2021; Nabe-Nielsen et al.,

2018), which are increasingly being used in environmental impact assessments.

As multiple Mahalanobis distance randomisation tests were carried out, it is possible that
some of the identified responses were false positive detections (Chapter 2). The approach
used in this chapter provided a mechanism to identify the most unusual instances of move-
ment behaviour, and it was assumed that these changes were related to the sound level
of pile driving activity. The relatively few detected responses in this chapter is likely be-
cause, from the available data observations in this study, the measurements of movement
behaviour during behavioural responses are not highly extreme, when compared to a long
duration (weeks—months) of baseline data. This does not, however, mean that these be-
havioural changes are not biologically important. For example, seals which increase their
movement speed may incur increased energetic expenditure, seals which are prompted to
move away may be leaving important resting or foraging areas, and seals which reduce
movement may be delaying their intended behaviour (e.g. travelling to a foraging area).
The observational approach used in data collection in this study also meant that there

were relatively few close-range encounters (<10 km) between seals and piling, and that
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the baseline data may have included other potential sources of disturbance (e.g. shipping,
predator encounters). The benefits and challenges of using observational data in this way
are discussed further in the General Discussion. From the simulations conducted in Chap-
ter 2, it is clear that weaker horizontal responses were not detected as well (up to 64%),
and even strong responses were not detected all of the time (up to 79%). It is therefore also
likely that there are other undetected horizontal responses within the data. As the data
considered in this chapter were from GPS locations only, there are also possible response
behaviours that would never be detected by this approach (e.g. porpoising out of the water
during fast swimming). Furthermore, whilst the variable frequency of GPS locations over
time makes this challenging, estimation of the true duration of behavioural responses is an

important area of further work.

The detected horizontal responses in this chapter provide likely mechanisms for the seal
density changes described in Russell et al. (2016) and Whyte et al. (2020). Although the
approach used here was focussed on identifying sudden individual change-points in be-
haviour, the resulting changes to movement could contribute to different patterns in seal
density over space. Seals which increase their speed or decide to move away from the sound
source during piling will lead to lower densities of seals closer to the wind farm. Seals which
pause in their current movement trajectory may reduce the number of seals entering areas
closer to the wind farm. Additionally, the observed responses highlight that seals can re-
spond to pile driving sounds by increasing swim speeds (up to 2.5 m s~!). In particular,
Figure 3.6 shows an individual that responded by sustaining swim speeds of over 2 m s~}
for approximately one hour. This highlights a potential concern for data cleaning prac-
tices, which sometimes assume a maximum swim speed of seals of 2 m s~ when removing
erroneous locations (Carter et al., 2017; McConnell et al., 1999). Typically this approach
is only used for lower-resolution ARGOS satellite locations; however, careful consideration
of the maximum swim speed and time interval over which this speed is assumed is required
in order to avoid bias and the removal of potential disturbance behaviours from biologging

datasets.

In estimating the acoustic dose received by seals, there were several sources of potential
uncertainty. Due to the resolution of the tagging data, and the duration of behavioural
responses expected, the Mahalanobis distance analysis used to identify responses was car-
ried out using 20-minute time windows. The received level of sound at the seal will vary
during this 20-minute interval as a result of the seal’s changing location and the hammer
energy of the pile driving itself (Figure 3.2). Here, the median and standard deviation of

the received levels for all blows within the response interval was used to account for this;
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however, in practice, the received dose did not vary highly within this interval (maximum
SD of 2.18; Table 3.3) and was more strongly determined by the seal’s initial location and
whether the response was detected in the ramp-up phase or full energy pile driving. Varia-
tion in potential received level across depth was accounted for by using the median sound
level across all modelled depth bins for each location. This dose therefore represents the
acoustic dose available at a given location (and therefore reflects the information typically
available in impact assessments), but not necessarily the exact sound level received by the
seal at that time. Incorporating information on dive behaviour or using biologging devices
which record acoustic information (Mikkelsen et al., 2019) would be important steps to
examine this in further detail; however, the possible sample size and study longevity with
high-resolution tags such as these is typically more limited. Uncertainty in the predictions
from the acoustic model will also contribute to uncertainty in the estimated doses. A com-
parison of the acoustic predictions to opportunistic recordings of pile driving in the study
area gave an estimated mean absolute error of 4 dB re 1uPa? - s across all measured piling
blows (Figure S27; Whyte et al., 2020). These acoustic comparisons were not part of a
formal acoustic validation exercise, and were relatively limited in spatial and temporal cov-
erage. Future studies should aim to conduct more comprehensive acoustic measurements
across the study area to validate predicted estimates. Expanding the hierarchical model
to account for this uncertainty in modelled sound level across the study area would be a
key extension to this work, and may reduce the estimated variability between encounters,

which appears to be constrained by the upper limit of the prior distribution (Figure S24).

A Bayesian hierarchical model was used to estimate the distribution of response thresholds
across the population, and quantify the dose-response relationship between piling sound
level and the probability of horizontal response. This approach gave an estimated mean
population response threshold x in SELss of 186 dB re 1uPa? - s, with an estimated psg of
175 dB re 1uPa? -s. The estimated standard deviation between individuals ¢ and between
encounters o was high at 14 and 24 dB re 1uPa? - s respectively. Other studies using this
approach have estimated similar levels of variation for pilot whale (¢=18; 0=21; Antunes
et al., 2014) and killer whale (¢=17; 0=26; Miller et al., 2014) responses to sonar, although
it should be noted that different units of acoustic measurement (SELcyy; dB re 1uPa? - s)
were used in their analysis. Overall, the results highlight that the levels of sound that can
initiate behavioural responses in seals can be highly variable. It is likely that behavioural
responses are dependent on both individual variability and the ecological, behavioural, and
exposure context (Ellison et al., 2012; Isojunno et al., 2017) of the encounter with sound;

considering the relative role of both of these factors are important areas of future research.
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A suite of candidate covariates were included in the dose-response model to assess whether
response thresholds differed by individual and encounter-level conditions; however there
was insufficient evidence to support inclusion of them within the final model (Table 3.4).
[lustrative dose-response curves (Figure 3.7) of the estimated effect of each of these covari-
ates suggested that the difference in response probability between individuals of different
sexes and age classes (Figure 3.7(a)(b)) was very limited. There was weak evidence that
animals were more likely to respond during daylight hours, which may have suggested they
tolerate higher sound levels during pile driving at night. When individuals had a lower
previous exposure history, there was weak evidence that they were more likely to respond
(Figure 3.7(d)). Responses of harbour porpoises to pile driving sounds have been found
to decline over time (Graham et al., 2019), highlighting the value of long-term studies of
disturbance and responses to sound. These changes could be a result of habituation to
the sounds, or potentially sound-related hearing damage as a result of repeated exposures.
There was also weak evidence that individuals were more likely to respond when they were
previously in an estimated resting state. It is possible that individuals which have higher
behavioural motivation to continue foraging or continue travelling would tolerate higher
levels of noise before responding. Gibbs variable selection showed very low support (0.06
probability of inclusion in the model) for inclusion of distance as a covariate. Distance is
highly correlated with predicted sound exposure level. In this analysis, the inclusion of dis-
tance in the dose-response relationship does not appear to provide additional information,
compared to using sound level alone. All of these observed patterns should be interpreted
with caution, as in practice the support for all of these variables was very low (GVS p
scores of 0.09-0.48). Similar studies that have included covariates in dose-response models
have not identified GVS support above 0.54 (Antunes et al., 2014; Miller et al., 2014). The
relatively small number of detected responses likely provides low statistical power to detect
the effect of additional covariates on the dose-response relationship. It is also likely that
additional contextual factors are present in reality which are not captured by the covariates

available in this study.

In this study, tagged female seals were exposed to pile driving bouts more often than
males. The observed distribution of GPS locations across the study area (Figure S26)
suggests that females, in general, tend to be spend more time close to the coastal wind
farm site, compared to males which appear to spend more time further offshore. Sex-
related differences in activity budgets of grey and harbour seals have been described in
Russell et al. (2015); in particular, the proportion of time spent in different behavioural

states (travelling, foraging, resting) depended on the combination of sex, age, and time of
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year. In contrast, Sharples et al. (2012) found that sex was a relatively poor predictor of
trip duration and distance travelled from the haulout site in harbour seals, compared to
factors such as geographic region or time of year. Further investigation into sex-related
differences in habitat use of proposed offshore development sites is required to understand
how any potential differences may influence population-level predictions of noise exposure
and potential impact. Sex-related differences may also differ by region, and so it is unclear
if this observation is more widespread to other harbour seal populations. It is important to
note that this study was limited to a single four-month period of the year (January—May),
and therefore it is likely that differences between the sexes may be more extreme during

the breeding season (June-July).

The dose-response curve produced in this chapter (Figure 3.8) can be used by offshore
developments to predict the probability of horizontal movement responses for a given sound
exposure level of pile driving. In doing so, the provided credible intervals (Table S1) should
be used to account for uncertainty in this relationship. It should be noted that this dose-
response curve was produced based on harbour seals from a single population in the UK
and at a particular time of year (January—May). The wind farm construction took place
near the only entrance to the main haulout site, and so individuals had to pass within
~20 km of the wind farm to return or leave the haulout site. Further particulars of this
study population, and potential implications for the observed findings, are discussed further

in the General Discussion.

3.5.1 Conclusion

This study identified unusual changes in the movement behaviour of individual harbour
seals during exposure to pile driving sounds, and presented a dose-response function that
can be used to predict these behavioural responses for different levels of sound exposure.
The detected horizontal responses improve our understanding of how individual seals may
react to the presence of in-situ anthropogenic sounds, and, in particular, provide insights
into the mechanisms which contribute to population-level changes in density over space
(Russell et al., 2016; Whyte et al., 2020). By investigating movement and behaviour at the
individual level, variation between individuals and between piling events was accounted for,
and it was possible to observe sex-related differences in predicted sound exposure. Overall,
this chapter provides an important contribution towards estimating a direct link between
predicted sound exposure, behavioural changes, energetic consequences, and ultimately

population-level effects of sound disturbance.
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Chapter 4

Dive behaviour of harbour seals
during pile driving for offshore

wind farm construction

The acoustic propagation models (in Section 4.3.3) were produced by Bas Binnerts and
Sander von Benda-Beckmann at TNO (Acoustics and Sonar Expertise Group, TNO, The
Hague, Netherlands), in consultation with myself, Gordon Hastie and Carol Sparling. The

rest of the analysis described in this chapter is my own work.
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4.1 Abstract

For many aquatic mammals, diving is an essential behaviour to obtain food; however, in
pinnipeds, the potential effects of human disturbance on dive behaviour are poorly under-
stood. In particular, pile driving activities for offshore wind farms produce high intensity
sounds in areas which overlap, spatially and temporally, with seals. Understanding how
the dive behaviour of seals may be affected during exposure to these sounds is critical
in predicting how pile driving may affect both individual fitness and the population-level
consequences of disturbance. In this chapter, I used dive records from biologging tags de-
ployed on 24 harbour seals (Phoca vitulina) to examine changes in dive behaviour during
pile driving at an offshore wind farm. Metrics summarising dive behaviour were calculated.
These metrics were used to identify times of unusual dive behaviour (by Mahalanobis dis-
tance randomisation tests) and quantify the relationship of these dive behaviours with
piling sound level (by a Bayesian hierarchical model). Hidden Markov models (HMMs)
were also used to investigate the effect of pile driving on the probability of seals switching
between different dive types. There were 232 encounters between diving harbour seals and
pile driving, and in 16 of these encounters unusual dive behaviour was detected. Twenty
of the tagged seals (83%) were predicted to have been exposed to pile driving sounds dur-
ing the study, and nine seals (38%) were identified as exhibiting unusual dive behaviour
at least once. The detected unusual dive behaviour consisted of dives that had a shorter
dive duration, a longer post-dive surface duration, used a lower proportion of the available
water column, spent a lower proportion of the dive in the bottom phase, and had a slower
descent rate. The mean population-level response threshold at which these changes were
estimated to occur was 188 (95% CI: 172-199) dB re 1uPa? - s, with a standard deviation
between individuals of 16 dB re 1uPa? - s and between encounters of 25 dB re 1uPa? - s.
The estimated sound level at which there was a 50% probability of response, psg, was 175
(95% CI: 167-180) dB re 1uPa? - s. Pile driving was also found to have a significant effect
on dive behaviour-switching in ten (42%) of the tagged seals. In general, seals were more
likely to switch between dive types during pile driving than during baseline (non-piling)
periods. Overall, this chapter contributes the first in-depth study of seal dive behaviour
during anthropogenic disturbance. The observations that seals may dive less fully (e.g.
shorter, shallower) and more irregularly (e.g. switch dive types more often) during dis-
turbance provide key insights into the potential impacts of anthropogenic sound on diving

animals, information which is critical for the future management of human activities.
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4.2 Introduction

When air-breathing animals dive to forage, they must balance the importance of accessing
potential prey with the need to access oxygen at the surface (Doniol-Valcroze et al., 2011;
Thompson and Fedak, 2001). For marine mammals, diving is often the main mechanism
by which they can search for and obtain food; however, diving can also serve other impor-
tant biological functions. Diving below the water surface may aid in predator (or threat)
avoidance (Heithaus and Frid, 2003), enable animals to engage in social behaviour with
conspecifics (Hanggi and Schusterman, 1994), and reduce the effects of surface currents
or adverse weather when animals are travelling or resting (Lyamin, 1993). Understanding
changes in dives can therefore provide important insights into both the natural drivers of

this behaviour, and into how disturbances may alter animal activity.

For phocid seals in particular, diving constitutes a large proportion of their time. Whilst
at sea, phocids can spend ~80-90% of their time submerged in dives (Bekkby and Bjorge,
2000; Carter et al., 2020a; DeLong and Stewart, 1991; Ries et al., 1997) and are highly
adapted for prolonged periods of diving (Blix, 2018). Harbour seals (Phoca vitulina), a
common species in the northern hemisphere, have a primarily coastal distribution (Sharples
et al., 2012) and are considered to be generalist predators, feeding on a variety of fish and
marine invertebrates including sandeel, gadids and flatfish (Tollit et al., 1998; Wilson and
Hammond, 2019). Foraging for these prey is typically thought to involve seals diving close
to the seafloor, but in some cases mid-water (“pelagic’) and opportunistic foraging, for
example whilst travelling to a foraging site, may also occur (Blanchet et al., 2015; Planque
et al., 2020; Tollit et al., 1998). Harbour seals typically dive for ~1-10 minutes per dive,
with a wide variety of different shapes of dive profile (Baechler et al., 2002; Blanchet et al.,
2015).

The coastal distribution of seals, driven by the requirement to regularly haul out, places
seals in close proximity to a range of human activities, including fishing (Oksanen et al.,
2014), shipping (Jones et al., 2017) and industrial activity. In the last few decades, the
rapid expansion of the renewable energy sector has led to the construction of a variety of
new structures in the marine environment. In particular, offshore wind developments are
expanding across the globe, with 14 GW of offshore wind capacity in 2016 predicted to
increase to 41 GW by 2022 (Diaz and Guedes Soares, 2020). In the UK, wind farms have
so far been built at a mean water depth of ~16 m and at a mean distance to shore of
~12 km (Diaz and Guedes Soares, 2020), resulting in a high spatial overlap with harbour
seal distributions (Carter et al., 2020b; Sharples et al., 2012). Impact pile driving, used
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to construct many offshore wind farms, produces high intensity sounds for several hours
at a time during the installation of each turbine (Bailey et al., 2010). For animals present
near to pile driving, these sounds have the potential to cause hearing damage (Hastie et al.,
2015; Whyte et al., 2020), and disrupt movement and behaviour (Benhemma-Le Gall et al.,
2021; Brandt et al., 2011; Whyte et al., 2020).

Disruptions or changes to dive behaviour during human activity have been observed in a
number of marine mammal species. Cuvier’s beaked whales (Ziphius cavirostris), a species
in which strandings have been associated with the timing of naval sonar activities (Simo-
nis et al., 2020), have been shown to undertake longer dives and longer surface intervals
during exposure to active sonar (DeRuiter et al., 2013; Falcone et al., 2017). Killer whales
(Orcinus orca) have been shown to respond to sonar by switching from deep dives to shal-
low dives at the onset of the sound, and long-finned pilot (Globicephala melas) and sperm
whales (Physeter macrocephalus) may also reduce dive depth and duration (Sivle et al.,
2012). Studies of diving behaviour in wild pinnipeds during human disturbance have been
relatively more limited. Anecdotal observations of biologging data from grey seals (Hali-
choerus grypus) exposed to shipping noise indicate that dive patterns may be disrupted
during these encounters (Mikkelsen et al., 2019). For pile driving sounds in particular,
there are no published studies on the potential effect of these sounds on marine mammal
diving behaviour; however, an unpublished report by Aarts et al. (2018) observed signifi-
cant decreases in the descent rate of dives in grey seals during pile driving at an offshore
wind farm in the North Sea. Overall, a more comprehensive understanding of how seals
may alter their dive behaviour during sound disturbance is required, as it is an important
step towards understanding how populations may be affected by different sources of human

activity.

The challenge of detecting alterations in dive behaviour as a result of disturbance is two-
fold. First, dive behaviour can be highly variable, even within the same individual. Often,
each individual can exhibit a wide repertoire of dive shapes and durations, with different
intervals between them (Baechler et al., 2002; Lesage et al., 1999). During undisturbed
periods, the dive behaviour of marine animals will change over varying timescales, as
animals pass through different environments and need to balance different biological needs
(e.g. oxygen, feeding, resting). Approaches to detect unusual dive behaviour must therefore
incorporate some assessment of what dive behaviours and/or patterns are normal, before
attempting to identify potential disturbances. Second, dives recorded on animal-borne
tags typically consist of long, continuous time series of data on a few individuals (e.g.

1,000 to 50,000 dive records per individual). Methods to analyse and quantify these data
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must therefore be efficient. Methods that take account of the temporal nature of this
data (repeated measures on individuals over time) may also provide added insight into the
drivers and patterns of dive behaviour. There are currently two main statistical methods
used to detect disruptions in dive behaviour of marine mammals. One approach, aimed
at detecting unusual or extreme behaviours, uses the multivariate statistic Mahalanobis
distance to summarise dive behaviour metrics (DeRuiter et al., 2013; Kvadsheim et al.,
2017). Values are compared between dives observed during disturbance to those observed
during baseline (non-disturbance) to identify particular dives (or groups of dives) that are
statistically unusual. An alternative approach uses hidden Markov models (HMMs) to first
classify dive behaviour into a given number of behaviour types, called ‘states’. These can
then be used to model the transitions between these different dive states over time, and
quantify whether disturbance affects the switching between states (DeRuiter et al., 2017)
or the overall time budget within each state (Isojunno et al., 2017). Here, both methods

were used to assess whether pile driving disrupted different aspects of seal dive behaviour.

4.2.1 Aims

This chapter aims to investigate the effects of pile driving activity on the dive behaviour
of individual harbour seals. Dive records from 24 animal-borne tags are used to calculate
metrics summarising dive behaviour and use these metrics to (1) identify times of unusual
dive behaviour, (2) quantify the relationship of this unusual behaviour with pile driving
sound level, and (3) determine the effect of pile driving on individuals switching between

different dive behaviours.

4.3 Methods

4.3.1 Data collection
Seal tag data

To record the dive behaviour of seals present near wind farm construction activity, GPS/GSM
tags (SMRU Instrumentation, University of St Andrews, Fife, UK) were deployed on
harbour seals in The Wash, south-east England, UK. Seals were first anesthetized using
Zoletil® or Ketaset® in combination with Hypnovel®, and GPS /GSM tags were attached
to the fur at the back of the neck using a fast-setting two-part epoxy adhesive or Loctite®
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422 Instant Adhesive. All seal handling and procedures were carried out under Home Office
Licence 60/4009. A total of 24 tagged harbour seals (11 males, 13 females) were present in
The Wash during this study (Hastie et al., 2015; Russell et al., 2016; Whyte et al., 2020).
This included 22 seals tagged on intertidal sandbanks in The Wash, and two seals from a
concurrent study tagged in The Thames, UK.

The deployed GPS/GSM tags recorded GPS location data and summary information on
dive behaviour. Dive recording on the tag was derived from on-board pressure sensors and
was initiated when seals were 1.5 m below the water surface for at least 8 seconds, and raw
depths (‘diving depth points’) were recorded at 4-second intervals with 0.1 m resolution
within each dive. To accommodate transmission limitations of telemetry, the dive data
were then summarised on-board the tag. Once each recorded dive ended (i.e. the seal was
shallower than 1.5 m), the dive profile was interpolated between all the recorded diving
depth points. Using the interpolated dive profile, the depth at nine given time proportions
of the dive (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%) was recorded, resulting in
nine pre-defined depth points evenly spaced in time throughout each recorded dive. Each
depth point was then assigned to a depth bin for transmission; depth bins were 0.4 m wide
for depths recorded from 1.5 — 50.7 m, and 0.8 m wide for depths recorded from 50.8-153.0
m. The resulting dive data reported from the tag consisted of the depth bin entries for
each of the nine time points during the dive, the total dive duration, and the duration of

the post-dive surface interval (Figure 4.1).

The location data were cleaned and erroneous locations removed based on thresholds of
residual error and the number of satellites (n > 5). Dive locations were estimated from
linear interpolation between available GPS locations at the surface. Dives which had no
recorded GPS locations within one hour of the dive time were removed to ensure that dives
were not included when the location of the dive was potentially uncertain. The median
dive duration was 3 minutes, with a median time interval between GPS locations of 10

minutes.

Pile driving operations

Operational data on pile driving at Lincs offshore wind farm were provided by Centrica
ple. Throughout the period of the seal tag deployment, 27 (of a total of 75) monopiles
were installed at Lincs by pile driving. Between 28" January and 11*» May 2012, a total
of 77,968 piling strikes occurred, with a mean strike energy of 1,202 kJ (SD= 613).
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Figure 4.1 An example sequence of five dives (from individual pv42-194-12 on 30" January
2012). Shown are depth bins recorded at nine equally-space time points during each dive (black
dots), and the start and end times of each dive (purple crosses). The tag begins and ends recording
the dive at 1.5 m (green dashed line); depths shallower than 1.5 m are recorded as a post-dive

surface interval.
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Pile driving at Lincs occurred intermittently across the study period, with a maximum
gap of 19.5 days with no piling activity. To compare time intervals of piling and non-
piling, individual records of piling hammer blows were divided into bouts, where piling was
considered as a separate bout if successive hammer blows were more than one hour apart.
This resulted in 64 piling bouts across the study period and the 27 piling locations. Piling
bouts had a mean duration of 1.0 hour (min = 0.2, max = 3.2), containing an average of
1,218 hammer blows each (min = 132, max = 3,772) and a median inter-strike interval

(time between successive hammer blows) of two seconds.

4.3.2 Quantifying dive behaviour

For each tagged seal, dives recorded in the first week of deployment were removed to
ensure that any potentially unusual dive behaviour following the tagging procedure (due to
sedation or disturbance) was not included in the analysis (McKnight, 2011). Dives recorded
more than one week after the last pile driving bout were also removed. This ensured that
comparisons of dive behaviour were limited to the same time of year (January—May),
and excluded data collected during the harbour seal breeding season (June-July) when
movement behaviour and dive behaviour is likely to be different for breeding individuals
(Thompson et al., 1994; Van Parijs et al., 1997).

As seals often dive close to the seafloor (Tollit et al., 1998), observed dive depths may be
more representative of seafloor topography than behavioural choices to adjust dive depth.
To examine meaningful metrics of dive behaviour, dives were matched to environmen-
tal data on water depth across space and time. The location of each dive was matched
to bathymetry data from the EMODnet Data Portal (~115 m resolution) to obtain the
bathymetric water depth b,, at Lowest Astronomical Tide (LAT) for each dive. The UK
Hydrographic Office Vertical Offshore Reference Frame (VORF) correction factor v,, was
obtained for each dive location (Iliffe et al., 2013), to estimate the difference in water depth
between LAT and Mean Sea Level (MSL). To account for changes in water depth across the
tidal cycle, tidal height data from POLPRED (for one central location in the study area;
National Oceanography Centre, 2020) was used to calculate the difference in tidal height
hzy: at the time of each dive within the study area. The resulting estimated available water

depth at the time and location of each dive A,,; was calculated by Azyr = byy + Vay + Raye-

Dives were divided into phases using the recorded depth points. As each of the nine depth
points per dive were recorded in depth bins, the midpoint of each depth bin was used as

the estimated depth for use in analyses. Interpolation between the recorded depth points
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was used to estimate the overall time-depth dive profile at a time resolution of 0.1 seconds.
Seals were considered to start the bottom phase of a dive when their dive was > 85% of the
maximum depth of that dive (Baechler et al., 2002; Wilson et al., 2014). It was assumed
that the bottom phase ended when the seal swam shallower than this 85% threshold for
the last time in that dive, i.e. if a seal ascended and then descended again, this was all
considered to be part of the bottom phase. The descent and ascent phases were considered
to be, respectively, the time periods before and after this identified bottom phase (Figure
2.3).

For each dive, the following metrics were calculated. These metrics were chosen as they
represented several biologically meaningful aspects of dive behaviour, following previous
studies (Blanchet et al., 2015; Photopoulou et al., 2014; Wilson et al., 2014):

e Dive duration: The total duration of each dive (seconds). This duration refers to

the time spent more than 1.5 m below the water surface.

e Surface duration: The duration of the post-dive surface interval following each
dive (seconds). This duration includes any time spent shallower than 1.5 m, and so

includes both very shallow diving and time at the surface.

e Proportion of water column used: The proportion of the available water column

used by the dive, calculated by gizt where Dy, is the maximum depth reached within

t

the dive at location z,y and time ¢. The available water depth A,,; for each dive
accounted for spatial changes in bathymetry and temporal changes during the tidal
cycle, as described above. Dive depths recorded that were greater than the estimated

seabed depth were assigned to a value of 1.

¢ Bottom phase proportion: The proportion of the dive duration spent within the

estimated bottom phase of the dive (see Figure 2.3).

e Descent rate: The rate of change in depth (m s~!) during the descent phase of the
dive. The descent phase occurs between the start of the dive (at 1.5 m) and the start
of the estimated bottom phase of the dive (Figure 2.3).

4.3.3 Acoustic modelling of pile driving sounds

To estimate the sound levels resulting from piling across the study area, the Aquarius
pile driving model was used. The model and its specifications are described in Chapter 3
(Section 3.3.4).
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4.3.4 Using Mahalanobis distance randomisation tests to identify un-
usual dive behaviour and Bayesian hierarchical models to estimate

dose-response
Specifying baseline data

To evaluate whether seals exhibited unusual dive behaviour during pile driving, it was
necessary to first specify baseline periods where it was assumed that the individual was
exhibiting normal dive behaviours. For each individual, only dives that took place within
100 km from the central location of active pile driving were included in the baseline. This
approach ensured comparisons of dives observed during baseline and pile driving took place
within the same spatial area. Dives that occurred in the 6 hours prior to any pile driving
bout were excluded from baseline to ensure that any potential disturbance from the setup
of pile driving activity was not included as baseline behaviour. Dives that took place in
the 24 hours following any pile driving bout were also excluded from baseline to allow time

for seals to return to normal behaviour after any potential disturbance.

Summarising dive metrics by Mahalanobis distance

To quantify how dive behaviour during pile driving compared to pile driving during base-
line periods, the multivariate statistic Mahalanobis distance was used to summarise dive
behaviour (DeRuiter et al., 2013) into a single number. Five metrics summarising dive
behaviour (described above) were used: dive duration, surface duration, proportion of the
water column used, bottom phase proportion and descent rate. For each individual, the
baseline period was used to calculate the average of each metric across the entire baseline
period (a fixed reference window approach), as well the covariance within and between
each of the dive metrics. Using Equation 2.1 (Chapter 2), the Mahalanobis distance was
calculated between the mean values of dive metrics in the baseline period and the mean
values of dive metrics in a moving time window. Each time window contained three dives
and moved along the dataset one dive at a time. Comparisons were made within each
individual only. This selected analysis approach was based on the dive simulation findings
of Chapter 2; in particular, a time window of three dives was chosen to maximise the
performance of detecting both singular unusual dives, and sequences of several unusual
dives. To ensure that within each time window dives that occurred either side of a data
gap (e.g. due to haulouts, dives which occurred >100 km from the wind farm) were not

grouped together, if there was more than 15 minutes between the end of the first or sec-
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ond dive (including the post-dive surface interval) and the start of the next recorded dive,
the Mahalanobis distance for that three-dive window was not calculated. It would not be
biologically meaningful to calculate the average dive behaviour over windows containing
data gaps (potentially consisting of several hours or days between recorded dives), and it
would not be comparable with the remainder of the time windows (the majority of which
were <1 hour in duration). These calculations were implemented using a custom-written

R function mdist_dive.

Identifying unusual dive behaviour by randomisation tests

Mahalanobis distance provided a single number representing how much each three-dive
window differed from the average baseline behaviour. Higher values of Mahalanobis dis-
tance represented dives that were unusual, and so this metric could be used to examine
when individuals exhibited the extremes of their dive behaviour. To identify periods of
unusual behaviour during pile driving, Mahalanobis distance values observed during piling
were compared to those observed during baseline periods by a randomisation test. Each
seal was considered to have an “encounter” with pile driving when they had an estimated
received level of pile driving sound above ambient sound level (see next Section) during
a pile driving bout. For each encounter, 1000 “mock exposure” encounters were sampled
randomly from the baseline period for that seal, each of the same length as the pile driving
bout. The maximum Mahalanobis distance Dy, observed in each mock exposure period
was then compared to the Mahalanobis distance values observed in the true exposure. The
g5th quantile of all the Dy,,x values observed in the mock exposures was used as a threshold
Dy, above which the seal’s behaviour was considered to be significantly unusual. If the
Dax observed in the true exposure exceeded Dy, it was considered to be statistically

unusual and therefore a possible response to the pile driving activity.

Estimating received piling sound doses

For each encounter between seals and pile driving, the acoustic propagation model was
used to estimate the received acoustic “dose” by each seal. For encounters in which the
randomisation test identified a significantly unusual dive behaviour (a response), the first
three-dive time window with a Mahalanobis distance exceeding Dy, was considered to be
the time interval in which the seal changed its behaviour (the “initial response interval”).

For each piling strike that occurred within the initial response interval, seal tracks were
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linearly interpolated between GPS locations to estimate the horizontal location of the seal
at the time of each piling strike. For encounters in which seals were not identified to
respond, seal tracks were linearly interpolated to estimate the horizontal location of the

seal at the time of all piling strikes within the piling bout.

Seal horizontal locations were matched to the predictions from the acoustic propagation
model, and scaled by the blow energy of each piling strike to obtain final estimates of
the received SELgs at each seal location. This process is described in detail in Chapter 3
(Section 3.3.4).

For all encounters, the estimated acoustic dose was therefore an estimate of the average
dose available (median across all depths) at the horizontal location of each dive. In general,
estimated piling sound levels were lower nearer the surface of the water and higher at depth.
If a seal responded to piling sound by diving to more shallow depths or staying near to
the surface, this could be in response to the high levels of piling sound available across the
water column, not only to the low levels experienced in shallow depths. The acoustic doses
used and modelled here were therefore estimates of the median sound level available at the
seal’s location; this approach was also chosen to improve applicability of the results to the
spatial predictions of piling noise used in environmental impact assessments (Thompson
et al., 2013).

A Bayesian hierarchical model of response thresholds

A Bayesian hierarchical model was used to estimate the relationship between the piling
sound level and the probability of a change in dive behaviour, using information from all
piling encounters (both responses and non-responses). The model used was the same as
that described in detail in Chapter 3 (Section 3.3.5). To recap the relevant notation and

pertinent aspects of the model, a brief summary is provided here.

The Bayesian hierarchical model assumes that each individual ¢ has a mean response thresh-
old p; (in dB re 1uPa? -s),

pi ~N(p+ 2] a, ¢?) (4.1)

where y is the mean population response threshold, z; is a vector of individual-level covari-
ates, o is a vector of model parameters, and ¢? is the variance between individuals. The

true (but unobserved) response threshold t; ; for individual ¢ and encounter j is specified
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as

tij ~ N(pi + 2] ;8,0%) (4.2)

where z; ; is a vector of encounter-level covariates, 3 is a vector of model parameters, and
o? is the variance between encounters. It is also assumed that the true response threshold

t; j is observed with error,

yi,j ~ N(ti7j,€2) (43)

where y; ; is the estimated median received SELss from piling and € is the standard de-
viation of all received piling blows. Non-response encounters are considered to be right-
censored, whereby the model assumes that the true response threshold ¢; ; is greater than

the maximum observed dose of piling energy y; ;.

Prior distributions were the same as those specified in Chapter 3, with a uniform prior
with a lower limit of 115 dB re 1uPa? - s and an upper limit of 200 dB re 1uPa? - s for the
population mean threshold p, and uniform priors of 0-30 dB re 1uPa? - s for the standard
deviations ¢ and o. Model fitting and checks are described in detail in Chapter 3; in this
Chapter models were also fit in JAGS and rjags (version 4.3.0; Plummer, 2003; Plummer,

2019) using the same starting values and by running 4 chains of 100,000 iterations each.

Including covariates on estimated response threshold

As described in detail in Chapter 3 (Section 3.3.5), a suite of potential covariates were con-
sidered in the dose-response model: sex, age class, daylight, exposure history, behavioural
state, piling bout length, and initial distance from piling (Table 3.2). A maximal model
with all covariates and a simple model with no covariates were both fitted. In the maximal
model, covariates were included at both the individual (Equation 4.4) and encounter level
(Equation 4.5):

Mg~ N(ﬂ + OsexSi + OéageAi, ¢2) (4'4)

tij ~ N(i + BaayDij + BexpBij + BoehavBij + BiengthboutLi,j + Bmitdist Rij, 02)  (4.5)

Here, each « term is a model parameter for each individual-level covariate, and S; and A;
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are, respectively, the sex and age class of each individual <. Each § term is a model param-
eter for each encounter-level covariate, and D; ;, E; ;, B; j, L; ; and R, ; are, respectively,
the daylight, exposure history, behavioural state, piling bout length and initial distance for
each encounter j (Table 3.2). Gibbs variable selection (O’Hara and Sillanpad, 2009) was
used to assess the level of support for including each of these covariates within the final

dose-response model, as described in Chapter 3 (Section 3.3.5).

Estimating the dose-response function

As described in detail in Chapter 3 (Section 3.3.5), posterior samples from the Bayesian
hierarchical model were used to estimate a mean dose-response function and associated
95% credible intervals. The dose at which the probability of response is 0.5, psg, was also
calculated. For the maximal model containing covariates, the posterior samples were used
to estimate a series of potential dose-response functions to illustrate the effect of each

covariate, assuming that all other covariates were present in the maximal model.

4.3.5 Behaviour-switching during pile driving: wusing hidden Markov
models (HMMs) to model different types of dive behaviour

A HMM of dive types

To investigate the occurrence of different dive types for harbour seals in the vicinity of the
wind farm, and to evaluate the effect of pile driving on the probability of seals switching
between these behaviours, hidden Markov models (HMMs; Zucchini et al. (2016)) were
also fit to the seal dive data. HMMs can be used to classify different types of animal
movement behaviour and model the transitions between them (Langrock et al., 2012),
allowing inference on the underlying behaviours driving the data observations. As HMMs
model data in discrete time, they are often fit to regularly spaced observations in time. For
air-breathing marine animals, each dive can be considered to be a biological time unit of
behaviour, with animals required to return to the surface at the end of each dive; HMMs
can therefore be used to model behaviour switching between individual dives (DeRuiter
et al., 2017; Hart et al., 2010; Quick et al., 2017).

Here, three types of seal dive behaviour were considered following initial data exploration.
Preliminary models were fit with three, four, or five states using some or all of the five dive

metrics calculated (see Section 4.3.2); however, models fit with greater numbers of states
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did not converge for some individuals, and did not consistently identify the same states,
limiting comparability of behaviour and behavioural effects across individuals. In order to
fit models that were stable, biologically interpretable and comparable across individuals
(see Discussion and Pohle et al., 2017), the three-state model emerged as the most practical
option to model broad changes in dive behaviour among seals. These were modelled as
three latent behavioural states Z; € {1,2,3} where Z; is the behavioural state for dive ¢
in a sequence of dives t = 1,...,T. Across all dives, the probability of a seal switching

behaviour can be described by a transition probability matrix I,

71,1 V1,2 1,3
= 72,1 V2,2 2,3
Y31 V32 733

where ; j = Pr(Zy41 = j | Zy = i) and 7, ; is the probability of a seal switching to state j

at dive t + 1, given they are currently in state ¢ at dive t.

Three metrics were chosen as informative observations of the underlying dive state for each
dive t: dive duration D;, surface duration Sy, and proportion of the dive in the bottom
phase B; (as described in Section 4.3.2). Measurements of dive depth were not used as dive
depth is strongly correlated with available water depth, and would not be an informative
metric in identifying the same behaviour in different locations, particularly within the
shallow study area (<100 m water depth). Dive duration D; and surface duration S; were

assumed to be Gamma distributed as they were continuous and positive values,
Dy | Zy = i ~ Gamma(jid,i, 04,:)
S| Zy =i ~ Gamma(ps;, 05;)

where the state-dependent distributions were defined by the mean dive duration p,;, stan-
dard deviation of dive duration o4;, mean surface duration p,;, and standard deviation of
surface duration oy ; for each dive state i. The proportion of the dive in the bottom phase

B; was assumed to follow a Beta distribution as it was constrained between zero and one,

B, | Z; =i ~ Beta(a, 5, €)

where «; and (; are the first and second shape parameters for each state i. A point mass
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parameter ¢; was also specified for each state ¢ as the data contained some values of 1 which
are not normally allowed under a Beta distribution. Values of 1 generally occurred during
very shallow dives where all measured depth points are equal (or close to) the maximum
depth of the dive.

Dives beyond 100 km from the centre location of pile driving were excluded from analyses.
This ensured that only dive behaviour within the vicinity of the wind farm was considered,
reducing any potentially different dives (e.g. very deep dives only seen far offshore) which
could obscure comparisons of dive behaviour between baseline and times of piling sound
exposure. Time gaps were present in the data due to dives observed beyond 100 km from
the wind farm and dives observed before and after haulouts. Any time gaps of more than
15 minutes between dives (following the end of the post-dive surface interval) were input
as missing observations, to ensure that transition probabilities were not directly calculated
for dives that did not immediately succeed the previous dive. Dive behaviour was observed
to have high variability between individuals, and individuals may respond differently to

pile driving sounds. All HMMs were therefore fit to each individual separately.

Including covariates on the dive transition probabilities

Different factors may affect the probability of a seal changing its dive behaviour. Dive
behaviour is likely to be strongly related to the habitat the seal is in, either because the
animal chose to travel to (or through) a particular habitat to exhibit that behaviour, or
because they opportunistically are in in a habitat that is suitable for a particular type of
dive behaviour. Thus, to control for these natural changes in dive behaviour as the seal
moves horizontally through its environment, bathymetry was included as a covariate affect-
ing the transition probabilities between the different dive states (as a proxy for habitat).
Bathymetry was calculated as the available water depth (in metres) at the starting time
and location of each dive, accounting for changes in water depth due to the tidal cycle
(Section 4.3.2).

To test whether pile driving affected the probability of switching between dive types, the
model described above was also fit with pile driving included as a factor covariate (1 or
0) on the transition probabilities. Preliminary models containing piling sound level as a
continuous covariate did not contain enough information to estimate a relationship between
each of the transition probabilities and received sound level. This is because, as HMMs
were fitted to each individual and piling was included as a covariate on all six transition

rates between the states, there was a high number of parameters to estimate and relatively
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limited variation in some of the received sound levels. The acoustic propagation model
was used to estimate the average sound level available in the water column at the starting
time and location of each dive. For dives which occurred during pile driving, dive locations
were matched to the corresponding spatial grid cell in the acoustic model (for the current
piling location), and the median received SELgg, o across all depth layers was identified.
This reference sound level was then scaled by the median blow energy of pile driving strikes
during each dive, using Equation 3.1, to estimate the median sound level during each dive.
Dives in which the median sound level available during the dive was greater than 118 dB re
1uPa?-s (estimated median ambient sound level; Nedwell et al., 2011) were considered to be
during exposure to pile driving sounds and so were set to 1. Dives which occurred outwith
piling times, or in which the estimated median sound level received from pile driving was

less than 118 dB re 1uPa? - s, were set to 0.

Covariates were included by a multinomial logit link on the between-state transition prob-
abilities,

exp(Bijo + Bijvbe + Bijppr)
14322 exp(Bio + Buwbe + Bippr)

’yi7j7t =

Here, 7; j ¢ is the probability of switching from dive type i to j at dive ¢ (for ¢ # j), where by
is the value of bathymetry at dive ¢, and p; = 1 if the seal was exposed to pile driving during
dive t and p; = 0 otherwise. The 3 parameters are model parameters for the intercept 3;;o,

effect of bathymetry f3;;, and effect of pile driving 3;j,.

Implementation and model checking

To test the hypothesis that transitions between seal dive behaviours are affected by pile
driving, two HMMs, each with three behavioural states, were constructed and fitted for
each seal. In the first model (reduced model), bathymetry was included as a covariate
influencing all of the transition probabilities between the states. In the second model
(full model), both bathymetry and pile driving activity (a factor variable) were included
as covariates influencing the transition probabilities. A range of starting values for the
three states were tested to ensure that the resulting state distributions were not influenced
by these values. During preliminary model fitting, using the nlm optimiser sometimes
led to the model becoming stuck in local optima. For each model, an iterative approach
was therefore taken to ensure that models converged on the global maximum likelihood
estimate. Each model was first fit using the Nelder-Mead optimisation method for the first

500 iterations to get broad estimates for what the parameter space should be. The working
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estimates from this model were then used to refit the model using the nlm optimiser to
achieve fast convergence. All models were fit using the R package momentuHMM (McClintock
and Michelot, 2018).

Models were assessed by visual inspection of the dives classified within each dive type,
as well as checking of Q-Q plots and pseudo-residuals. For each seal, models with and
without pile driving were compared by AIC to determine whether pile driving had an
effect on switching between different dive types. If the piling model AIC was lower, and
the model without pile driving had AAIC > 2 (Burnham and Anderson, 2002), this was
considered to be evidence that pile driving should be included in the model for that seal.
The Viterbi algorithm was used to estimate the most likely sequence of dive types from

the best-fitting model.

4.3.6 Software used

All analyses were conducted in R (R Core Team, 2020), with additional packages data.table
(Dowle and Srinivasan, 2021), dplyr (Wickham et al., 2020), lubridate (Grolemund
and Wickham, 2011), maptools (Bivand and Lewin-Koh, 2021), momentuHMM (McClintock
and Michelot, 2018), raster (Hijmans, 2020), rgdal (Bivand et al., 2021), rjags (Plum-
mer, 2019), sp (Pebesma and Bivand, 2005), StatMatch (D’Orazio, 2019), and suncalc
(Thieurmel and Elmarhraoui, 2019). The R packages ggplot2 (Wickham, 2016), ggpubr
(Kassambara, 2020), plot.matrix (Klinke, 2021), RColorBrewer (Neuwirth, 2014) and

viridis (Garnier, 2018) were also used for data visualisation.

4.4 Results

4.4.1 Unusual dive behaviour during pile driving

In total, across the 24 tagged harbour seals, 543,011 seal dives were recorded during the
study period. Of these, 325,636 were categorised as occurring within baseline periods (Fig-
ure 4.2). Across all seals, the median duration of baseline data available was approximately
14,400 dives (min = 5,000; max = 24,600; Figure 4.2(a)). In general, ~ 60% of recorded

dives were included in the baseline dataset for each seal (Figure 4.2(b)).

There were 232 encounters between diving harbour seals and pile driving, i.e. when it was

estimated that they had received levels of piling noise above ambient sound level. Out of
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Figure 4.2 Duration of dive data available for each tagged seal. (a) Number of dives per individual
during identified baseline periods. (b) Number of dives per individual during baseline periods vs.
the total number of dives recorded for each individual.

the 24 seals tagged, 20 seals experienced encounters with pile driving and 18 seals had more
than one encounter each (median = 6). From the Mahalanobis distance randomisation test,
16 encounters were identified as containing unusual dive behaviour (Table 4.1). The initial
distance of seals from pile driving during these 16 encounters ranged from 10.9 to 32.8
km, and the estimated received sound exposure level (SELss) of pile driving at the time
when the unusual dive behaviour was identified ranged from 124 to 160 dB re 1uPa? - s
(Table 4.1). Nine individuals were identified as exhibiting unusual dive behaviour during
pile driving; four individuals were identified more than once. In 12 of the pile driving
encounters, the seal dive behaviour observed was more unusual than the 99" quantile of
the baseline distribution (p<0.01; Table 4.1); the significance level used to define unusual

5th

dives was the 95*" quantile.

Two examples of detected dive responses, selected at random, are presented here in more
detail. During one of the identified encounters, seal pv42-162-12 was making regular U-
shaped dives to ~20 metres depth prior to pile driving (Figure 4.3). Pile driving at site
LS57 began at 14:11 when the seal was approximately 20.5 km away. Over the following
20-30 minutes, the seal made one more U-shaped dive, followed by one shallower V-shaped
dive and several dives less than 5 metres depth. During this sequence of dives, there is
a gradual decrease in dive duration, proportion of the available water column used and
descent rate. On the 7' dive after pile driving began, the seal exhibited an extended

surface duration. The seal did not dive again until 15:50, 52 minutes after pile driving
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Table 4.1 Summary of the identified dive responses by Mahalanobis distance. For each identified
response time interval, the median SELss across all depths was calculated for each received piling
hammer blow, and the median y; ; and standard deviation € of these piling blows was used in the
dose-response model (Equation 4.3). Shown here also are the initial distance between the seal and
pile driving, the estimated maximum SELss the individuals may have received had they always been
present in the quietest or loudest parts of the water column, and the percentile of the Mahalanobis
distance values corresponding to each response. All measurements of SELss are in dB re ].ILLPa2 - S.

Seal Pile Median (+SD) Max Max Initial  Percent
ID bout SELss across SELss at SELss at distance of
ID depth & time quietest loudest (km) MD
vij (Ee) depth depth values
pv42-162-12 LS21.1 135 (£2.3) 133 138 17.1 0.000
pv42-162-12 LS55.1 134 (£1.7) 128 138 22.1 0.007
pv42-162-12  LSH7.2 139 (£1.8) 134 141 20.9 0.012
pv42-277-12 LS73.2 137 (£0.9) 134 140 24.3 0.001
pv42-290-12 LS21.2 126 (£1.6) 118 128 24.6 0.003
pv42-290-12 LS75.2 153 (40.5) 144 154 17.1 0.020
pv42-291-12 LS75.2 153 (£0.2) 145 155 17.4 0.001
pv42-293-12 LS21.2 126 (£1.2) 122 128 32.8 0.001
pv42-295-12  LS55.2 158 (+8.3) 153 161 16.3 0.017
pv42-317-12 LS58.1 125 (£2.8) 120 127 32.2 0.000
pv42-318-12 LS21.2 124 (£1.4) 118 127 22.7 0.005
pv42-318-12 LS75.2 147 (£0.7) 136 150 15.1 0.041
pv42-318-12 LS73.1 135 (£1.4) 124 138 13.8 0.006
pv40-268-12 LS59.2 160 (40.9) 154 162 11.4 0.007
pv40-268-12 LS57.2 151 (£0.1) 140 152 10.9 0.000
pv40-268-12 LS34.2 155 (£1.4) 145 157 11.9 0.005
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ceased. Throughout the pile driving encounter, the seal moved away from the pile driving

location.

During another encounter, seal pv40-268-12 was alternating between short (~1 minute) and
shallow (~7 metre) dives, and U-shaped dives of ~4 minutes and ~30 metres depth (Figure
4.4). Pile driving at site LS34 began at 18:53, when the seal was approximately 12 km
away and was in a shallow dive. After this dive, the seal exhibited a slightly longer surface
interval of ~5 minutes. It then made a V-shaped dive to 31 metres depth, followed by a
surface interval of 45 minutes. Two short and shallow dives were made at 19:45, before pile
driving had ended. Five V-shaped dives with moderate surface post-dive surface durations
(median=9 minutes) were recorded in the hour after pile driving ceased. Throughout the

encounter, the seal was travelling away from the pile driving location.

Across all identified dive responses (Figure 4.5; Table 4.1), the dives observed during
responses to pile driving were generally shorter than those observed across baseline periods
(median of 0.7 minutes vs 3 minutes). Seal dives recorded during responses typically used
less of the available water column (median of 0.32 vs. 0.95), and had longer post-dive
surface intervals (median of 7.2 vs. 0.7 minutes). Dives during responses also had lower
descent rates (median of 0.25 vs. 0.45 m s~!) and a lower proportion of the dive was spent
in the bottom phase (median of 0.33 vs. 0.74). Plots of dive metrics recorded for each
individual are included in Appendix D (Figures S29, S30, S31).

4.4.2 The dose-response relationship

Both the full maximal model and the reduced model showed rapid convergence of the
MCMC chains, with a Gelman-Rubin of 1.0. Gibbs variable selection indicated a low level
of support for including the majority of the covariates (sex, age class, exposure history,
behavioural state, bout length, initial distance) within the dose-response model, estimating
probabilities of 22-45% that each of these covariates should be included in the true model
(Table 4.2). The only covariate that was estimated to have moderate support was daylight
(Gibbs p of 0.73), with estimates indicating a higher probability of response during the
night (Figure S34(c)). Illustrative dose-response relationships of all considered covariates

are included in Appendix D (Figure S34).

As overall there was not enough evidence to support inclusion of covariates in the model,
the reduced model (no covariates) was chosen to produce the final dose-response function

(Figure 4.6, Table S2). Using this model, the mean estimated population response threshold
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Figure 4.3 Example of an identified behavioural response from seal number pv42-162-12 at pile
location LS57 (on 17" April 2012). The top six panels show metrics of dives observed from one
hour pre-piling to one hour post-piling: depth profile (m), duration of dive (mins), duration of post-
dive surface interval (mins), proportion of water column used, proportion of dive within estimated
bottom phase, and descent rate (m/s). Dive metrics are plotted at the start time of the dive they
correspond to. The “M-dist” panel shows the calculated Mahalanobis distance for each group of
3 dives; the red dashed line corresponds to the threshold used to identify a response. Horizontal
distance (km) between the seal’s location and pile driving, and the corresponding estimated received
levels of piling sound (colourscale, SELss, dB re 1,uPa2 - 8) for each piling stike (energy in kJ) are
also shown in the bottom two panels.
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Figure 4.4 Example of an identified behavioural response from seal number pv40-268-12 at pile
location 1.S34 (on 8" May 2012). The top six panels show metrics of dives observed from one hour
pre-piling to one hour post-piling: depth profile (m), duration of dive (mins), duration of post-
dive surface interval (mins), proportion of water column used, proportion of dive within estimated
bottom phase, and descent rate (m/s). Dive metrics are plotted at the start time of the dive they
correspond to. The “M-dist” panel shows the calculated Mahalanobis distance for each group of
3 dives; the red dashed line corresponds to the threshold used to identify a response. Horizontal
distance (km) between the seal’s location and pile driving, and the corresponding estimated received
levels of piling sound (colourscale, SELss, dB re 1,uPa2 - 8) for each piling stike (energy in kJ) are
also shown in the bottom two panels.
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Figure 4.5 Dive metrics for all dives within baseline periods (blue; left column) and dives during
identified behavioural responses to pile driving (green; right column). Shown are histograms of the
duration of each dive, the duration of the post-dive surface interval, the proportion of the available
water column used, the proportion of the dive duration identified as the bottom phase, and the
descent rate. Values are pooled across all tagged seals.
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Table 4.2 Estimated model parameters from posterior samples of the maximal model, and the
final model with no covariates. Also shown are the results of Gibbs variable selection (GVS), where
the level of support for the covariate is the proportion of MCMC samples in which the candidate
covariate (and associated a and f terms) is included. Factor covariates with three levels required
two 8 parameters to estimate; Gibbs support was estimated for inclusion of the factor variable as
a whole.

Maximal model Final model
Mean SD GVSp Mean SD
I 192 7.0 - 188 7.5
10) 12 7.0 - 16 6.5
o 24 3.8 - 25 3.2
Sex: Qsex 3.4 7.2 0.45 - -
Age class: Qage 1.7 7.9 0.44 - -
Daylight: Bday 6.7 4.6 0.73 - -
Exposure history: Bexpl -1.8 5.5 0.24 - -
ﬁexp2 0.4 5.3 - -
Behavioural state: Bbehavi 3.2 5.4 0.42 - -

ﬁbehan 5.7 5.7 - -
Bout length:  Biengthbout 5.3 6.4 0.41 - -
Initial distance: Binitdist -0.7 0.5 0.22 - -

1 was 188 (95% CI: 172-199) dB re 1uPa?-s, with a standard deviation between individuals
¢ of 16 dB re 1uPa? - s and between encounters o of 25 dB re 1uPa® - s (Table 4.2). The
estimated pso for the final model was 175 (95% CI: 167-180) dB re 1uPa® - s. Posterior

distributions from both of the considered models are presented in the Appendix D (Figures
S32; S33).

4.4.3 Behaviour-switching during pile driving
Model selection and behavioural states

Twenty of the tagged seals were recorded diving during exposure to pile driving sounds,
and so the full model (pile driving and bathymetry) and reduced model (bathymetry only)
HMDMs were fit to each of these individuals. Pile driving was retained as an effect within
the model for ten of the twenty seals, following comparison by AIC (Table 4.3). Five
of the seals which retained pile driving as a covariate had also been identified to exhibit
behavioural responses in the Mahalanobis distance analysis (Table 4.3). All of the models

converged; however, there was evidence of residual autocorrelation in the observed dive
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Figure 4.6 Estimated dose-response relationship for vertical responses in harbour seals as a
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pile driving. Shown are the mean estimated function (black) and the 95% credible intervals (grey
dashed).
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Table 4.3 Summary of HMM results for each of the 20 seals which encountered pile driving.
Individuals for which pile driving was retained as a covariate on the HMM transition probabilities
are highlighted in grey, along with the difference in AIC (AAIC) between the full model (piling
and bathymetry) and the reduced model (bathymetry only). Individuals which were borderline
(AAIC < 2) on retaining pile driving in the model are highlighted by asterisks. Also shown are
the individuals in which dive behavioural responses were identified by the Mahalanobis distance
analysis.

Seal ID Piling retained AAIC M-Distance
in HMM by AIC Dive Response
pv42-162-12 - - Y
pv42-165-12 Y 8.2 -
pv42-194-12 - - -
pv42-221-12 Y 25.8 -
pv42-266-12 - - -
pv42-277-12 Y 41.6 Y
pv42-288-12 - - -
pv42-289-12 Y 4.5 -
pv42-290-12 Y 10.1 Y
pv42-291-12 Y 701.6 Y
pv42-292-12 - - -
pv42-293-12 - - Y
pv42-294-12 - - -
pv42-295-12 Y 16947.56 Y
pv42-316-12 Y 9.6 -
pv42-317-12 Y 11.1 Y
pv42-318-12 * (0.4) Y
pv42-319-12 Y 8.8 -
pv42-320-12 - - -
pv40-268-12 * (0.6) Y

metrics used (Figure S35), suggesting that dive patterns were not fully captured by the
simple three-state model. Given the aim of the study was to assess whether pile driving
had an effect on overall behaviour switching, and not on interpreting seal activity budgets,
the three-state model was deemed a pragmatic approach for this research question (Pohle

et al., 2017; see Discussion).

Across all seals, each of the HMMs fitted identified three distinct behavioural states (Figure
4.7). Variability between individuals was apparent, both in the values corresponding to
the different state-dependent distributions and in the abundance of each of the estimated

behavioural states (Figures S36, S37, S38). There was, however, high consistency in the
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three estimated states across individuals. As dives beyond 100 km from the wind farm were
excluded and different durations of data were available for each individual, interpretation
of activity budgets from these models is not recommended. State 1 consisted of the longest
dives (pq1 = 254, 041 = 50), with a consistently short post-dive surface duration (us1 =
48, 051 = 8). Dives in state 1 had a narrow distribution for proportion of the dive in
the bottom phase, centred around ~0.8 (o = 312945, B; = 68704, ¢; = 5.9 x 107%).
State 2 consisted of dives of a moderate dive duration which was more variable in duration
(a2 = 204, 042 = 66), and surface durations which were short but also more variable
(ts,2 = 53, 052 = 16). In state 2, the proportion of the dive in the bottom phase had a
wide distribution from 0 to 1, but it was more common for seals to spend more than half
of the dive in the bottom phase (s = 8.1, B2 = 4.1, ea = 5.4 x 1073). State 3 consisted of
dives of a very short duration (ug3 = 78, 043 = 60), with longer and more variable surface
durations (us3 = 142, 043 = 192). For state 3, the proportion of the dive in the bottom
phase also had a wide distribution from 0 to 1, but it was more common to spend less than
half of the dive in the bottom phase (a3 = 2.3, #3 = 3.1, e3 = 0.15). Some of the dives
in state 3 were estimated to have 100% of the dive time in the bottom phase, due to the
short duration of the dives meaning that the maximum depth (and therefore 85% of the
maximum depth, see Figure 2.3) was close to the surface. Values presented in the text are
averaged across all 20 individuals for the full model; see the Appendix D Figures S36, S37,
S38 for graphical results by individual.

Decoding of the estimated states revealed the different dive shapes associated with each
behavioural state (Figure 4.8). Dives in state 1 were U-shaped, with a steep descent, flat
bottom, and steep ascent. Dives in state 3 were typically very shallow in depth (<10 m;
despite depth not being used in the HMM state estimation), with dive profiles which were
either V-shaped or dives in which the seal stayed very close to the surface for the entirety
(near to 1.5 m, the threshold at which dives are recorded). State 2 contained the most
variation in dive shape, consisting of dives which were either evenly V-shaped, skewed, or

undulating in dive profile.

Behaviour switching during baseline

Over all 20 of the full models, there was persistence within each behavioural state during
baseline (non-piling) periods. Averaged across all individuals, the estimated probabilities
of staying within the same state ¢ on dive ¢ + 1 (at the mean bathymetry value of 20 m)

were highest in state 1 (71,1 = 0.86), moderate in state 3 (33 = 0.83), and lowest in state
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Figure 4.7 Fitted state-dependent distributions of dive duration, surface duration and proportion

of the dive in the bottom phase for one example seal (pv42-165-12). Shown are the estimates from
a 3-state HMM with bathymetry and pile driving as covariates on the transition probabilities.
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Figure 4.8 Example of dive profiles observed in each of the three estimated behavioural states.
States were decoded (using the Viterbi algorithm) from the full HMM containing bathymetry and

pile driving for each seal. For each behavioural state, 30 randomly selected dives across all 20 seals
are shown.

Table 4.4 Average estimated transition probability matrix across all 20 seals. Probabilities were
estimated from the full model, with the covariates of piling=0 and bathymetry=20 m.

State
1 2 3
1|08 0.12 0.03
0.13 0.77 0.10
3 10.03 0.15 0.83

[\V]

2 (72,2 = 0.77; Table 4.4). There was limited switching between states 1 and 3 (7,3 = 0.03,
v31 = 0.03), with seals more likely to switch to state 2 first.

The effect of bathymetry on the transition probabilities differed by individual (Figure S39).
Seals travelled to different areas within the study region, and seals which used the same
areas did not necessarily use them for the same types of dive behaviour. Notably, some
individuals never travelled near to the 100 km distance limit used to examine dive behaviour
in the vicinity of the wind farm; others spent a significant proportion of their time near
or beyond this limit, excluding some of their behaviours from the analysis. Thus including

bathymetry represented an important control for patterns in dive behaviour within each

individual.
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Effect of pile driving on behaviour switching

Across the 10 seals in which piling was retained in the model, the average probability
of remaining in any of the behavioural states was lower overall when seals were exposed
to pile driving (Figure 4.9). There was substantial variation in this between individuals,
with some seals having increased probabilities of staying in behavioural states or showing
limited change. Six of the ten seals showed decreased probabilities of state persistence for
all states; eight of the ten seals had decreased probabilities of state persistence for at least
two of the states (Figures 4.9, 4.10). There was also high individual variability in the effect
of pile driving on the states which seals switch to (Figure 4.10). The only individual which
showed increased persistence within all behavioural states during piling (pv42-295-12) was
an old female (estimated age of 20.5 years; Lucke et al. (2016)).

4.5 Discussion

In this chapter, data from animal-borne tags were used to track the diving activity of 24
harbour seals during the construction of an offshore wind farm. Twenty of the tagged seals
were estimated to have been exposed, on at least one occasion, to pile driving sounds during
wind farm construction. Seals were found to exhibit unusual diving behaviour in response
to wind farm construction, with nine individuals identified as carrying out significantly
unusual dive behaviour during some pile driving bouts. These unusual dives were typically
of shorter duration and slower descent rate, with seals using less of the water column,
spending less of the dive within the bottom phase, and spending increased time at the
surface between dives. The mean response threshold for the population was estimated at
piling single-strike sound exposure levels (SELss) of 188 dB re 1pPa?-s, with high variability
between (SD=16) and within (SD=25) individuals. There was limited evidence of the effect
of individual or encounter-level covariates on the dose-response relationship. Pile driving
activity was also found to have a significant effect on behaviour-switching in ten of the
tagged seals. In general, most seals showed lower persistence within dive behaviour types

(states) and were more likely to switch dive behaviour during piling than during non-piling.
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Figure 4.9 Estimated probabilities of staying in a given behavioural state. Probabilities (mean
and 95% confidence intervals) were calculated for each of the 10 seals in which pile driving was
retained as a covariate in the full model, at the mean bathymetry value of 20 m, for times when
piling was inactive (blue) and active (green). Yellow stars denote changes in which the confidence
intervals do not overlap. The mean probabilities across all individuals are shown in the top panel.
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Figure 4.10 The absolute difference in transition probabilities in times of piling exposure, relative
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4.5.1 Unusual dive behaviour during pile driving: Mahalanobis distance

analyses

During pile driving, shorter dive durations and longer periods at the surface were observed
for some encounters. This is consistent with the findings of several captive studies of sound
playback to pinnipeds. Playbacks of pile driving sounds to two captive harbour seals found
seals to spend approximately 19-24% of their time at the surface during control periods,
and 42-53% of their time at the surface during sound playback periods (Kastelein et al.,
2018a). During these playbacks, the seals were often seen swimming actively at the surface,
rather than remaining stationary. Similar responses have been observed in captive studies
of harbour seals exposed to acoustic deterrent sounds, with seals surfacing more often
(Kastelein et al., 2006) and spending increased time swimming with their head above the
surface (Kastelein et al., 2017). An increase in jumping behaviour has also been reported
(Kastelein et al., 2017, 2018a). Captive studies of other pinniped species during sonar
playback have observed increased haulout behaviour in grey seals (Hastie et al., 2014), and
rapid swimming at the surface in hooded seals (Cystophora cristata) (Kvadsheim et al.,
2010).

In this chapter, differences in dive shape were also observed during pile driving, including
decreased descent rate, decreased time within the bottom phase of the dive, and decreased
use of the water column. In a previous unpublished study, Aarts et al. (2018) recorded the
movements and dive behaviour of twenty tagged grey seals during pile driving activity at
wind farms in the North Sea (Netherlands). Grey seals were estimated to have significant
decreases in dive descent speed, and the most typical dive behaviours included decreases in
dive depth, decreases in bottom time (a combination of the proportion of the water column
and bottom phase metrics used here), and irregular diving patterns. In Aarts et al. (2018),
each metric of dive behaviour was considered separately; in this chapter, I incorporated
multiple metrics of dive behaviour together (using Mahalanobis distance), accounting for
correlation between different metrics and considering changes in dive behaviour as a whole.
This chapter presents important evidence of how wild seals dive during exposure to sound
from human activity. The consistency between the responses observed here in harbour
seals with the responses observed in grey seals (Aarts et al., 2018) suggests that these
behavioural changes may also be observed in other pinniped species and/or in response to

other types of sound disturbance in marine environments (e.g. shipping, sonar).

Understanding how seals respond to sound can provide insights into the behavioural mo-

tivations for the responses, and there are several possible reasons why seals may respond
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in this way. First, diving shallower and shorter, with more time at the surface and less
time at the bottom, is likely to directly reduce the level of sound exposure. Sound from
sub-surface activities, such as pile driving, is typically louder at depth and quieter towards
the surface. Received levels of piling sound at depth may come close to the pain threshold
or be unpleasant to experience (e.g. Gotz and Janik, 2010). By not diving to the seafloor,
seals stay further away from areas of high noise exposure and reduce the risk of temporary
or permanent hearing damage (Southall et al., 2019b). Second, coming to the surface more
frequently or for longer durations could provide a mechanism for seals to assess the nature,
distance, and direction of the potential threat and/or exhibit curiosity towards the sound
source. Australian fur seals (Arctocephalus pusillus doriferus) exposed to playbacks of ves-
sel noise at a breeding colony were most alert during the playback periods (Tripovich et al.,
2012). The majority of responses by fur seals, particularly at low and medium sound levels,
consisted of looking or orienting their body towards the sound source. Playback studies
of anthropogenic sounds (including white noise) to captive pigs (Talling et al., 1996) and
horses (Christensen et al., 2005) also led to increased alertness and attention towards the
sound source, and wild polar bears (Ursus maritimus) can respond to snowmobile pres-
ence by stopping moving and looking (Andersen and Aars, 2008). It is conceivable that
coming to the surface to visually assess potential threats, such as oncoming vessels, may
be a useful tactic for seals in urbanised environments. Third, in some cases, the reduced
diving behaviour observed may be a type of flee response (e.g. such as those seen in beaked
whales; Tyack et al., 2011), with seals travelling near the water surface, and perhaps “por-
poising” (leaping out of the water; e.g. Yoda et al. (1999)) as they move away from the
sound source. In practice, responses may be motivated by a combination of these factors,
be short (e.g. 1 dive) or long-term (e.g. several hours), and these proposed functions are
likely a small part in a long and complex sequence of behaviour observed before, during

and after sound exposure.

In this chapter, dive responses were detected as far as 33 km from pile driving. This is
supported by an unpublished report on grey seals and pile driving, which reported changes
in dive behaviour up to 36 km away (Aarts et al., 2018). In this chapter, the piling sound
level at which a random individual from the population has a 50% chance of exhibiting a
dive response (psg) was estimated at a SELss of 175 (95% CI: 167-180) dB re 1uPa?-s. The
high variability observed in the likelihood of a response contributes to the long tail in the
dose-response relationship, with low (but above zero) probabilities of response predicted
for low-moderate sound levels (Figure 4.6; Table S2). At these lower sound levels, the

probability of response may be more closely related to the context in which the exposure
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occurred (e.g. current behaviour, hunger and energy levels) than the level of sound received
(Ellison et al., 2012). Here, there was not enough evidence to support the inclusion of
context-related covariates on the dose-response relationship, for the selection of covariates
tested (Figure S34; Table 4.2); however, this is not unexpected as drivers of responses
are likely to be multifaceted, change over time (due to habituation or experience), and
potentially differ between individuals. The relatively low number of detected responses
also provided limited statistical power to examine the effects of additional covariates. This
study showed that, in harbour seals, measurable changes in dive behaviour can occur across

a wide range of piling sound levels and in a variety of contexts.

Mahalanobis distance randomisation tests were used to compare the average dive behaviour
observed in baseline to that observed during pile driving encounters. By this approach, it
is assumed that unusual or extreme dive behaviours (above the 95" percentile) observed
during pile driving are associated with the disturbance effect of this activity. A more
stringent approach would be to assume that responses to pile driving must be more extreme
than all behaviours observed during baseline periods (above the 100" percentile). In
practice, this stringent approach would assume that a seal’s response to pile driving is
the most extreme behaviour ever observed over a 2-5 month period. This assumption
seems unrealistic, in particular given that seals could potentially be exposed to variety
of other threats and stimuli during this period (e.g. boats, killer whales) which may
alter their behaviour in similar, or more extreme, ways. Undertaking the assumption that
seal behaviour was likely to be unusual, but not the most extreme behaviour observed,
was determined to be a practical compromise in using this method to identify periods of
unusual dive behaviour. The relatively low number of dive responses identified was likely to
be a combination of a variety of factors (see General Discussion), including low numbers of
observed encounters at high piling sound levels, the baseline periods potentially containing
other sources of disturbance, and limitations in detecting responses which are present (see
Chapter 2). As multiple randomisation tests were carried out, it is possible that some of the
detected responses were false positives (see Chapter 2) as, by chance, ~5% of behaviours
will be above the 95 percentile used to identify unusual behaviour. In this chapter, more
encounters than would be expected were above the 99" percentile (~5% compared to
an expected ~1%), highlighting the truly unusual dive behaviour observed. As the dive
metrics recorded here only measure one aspect of behaviour, at a dive-by-dive resolution,
some type of behavioural change (e.g. horizontal movement, Chapter 3; or changes in body

posture) would never be detected by this approach.
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4.5.2 Behaviour-switching during pile driving: HMM analyses

HMMs were used to investigate whether pile driving activity also influenced behaviour-
switching. In the absence of pile driving, the average persistence within each of the
three states was relatively high (0.77-0.86), indicating the presence of dive bouts. For
air-breathing animals, it is commonly observed that dives occur in bouts, where animals
conduct sequences of similar dives separated by gaps at the surface, resting on land, or
switching to a different type of dive (Boyd et al., 1994; Ramasco et al., 2014). Diving in
bouts may be an optimal strategy to, for example, manage oxygen stores to enable foraging
opportunities to be maximised once prey is discovered. Bouts of dive behaviour have been
observed from biologging studies in a number of species including short-finned pilot whales
(Globicephala macrorhynchus) (Quick et al., 2017), narwhals (Monodon monoceros) (Ngbd
et al., 2019), grey seals (van Beest et al., 2019) and harbour seals (Ramasco et al., 2014).

The HMM approach clustered dives into three behavioural states. State 1 consisted of
U-shaped (flat-bottomed) dives, state 2 consisted of more irregular curved, V-shaped and
skewed dives, and state 3 consisted of short and shallow dives with longer post-dive sur-
face durations. Although HMMs cannot determine the true biological function of each
behavioural state, the observed state-dependent dives can be used to infer the potential
activity (or activities) associated with each estimated state. In pinnipeds, U-shaped dives
are widely considered to be associated with foraging activity (Carter et al., 2016; Lesage
et al., 1999). During these dives, seals travel directly to a depth (often near to the seafloor),
remain at that depth for the majority of the dive, and then travel directly to the surface.
This type of dive may be an efficient strategy to maximise time at depth when prey are
present. Ground-truthing of foraging activity, whilst not possible in this study, can be
attempted through the use of stomach temperature sensors which record a decrease in
temperature when prey is consumed. Lesage et al. (1999) showed that feeding was ob-
served in all dive types in harbour seals; however, most (75%) of the observed foraging
(from stomach sensors and behavioural observations) was during U-shaped dive types.
Kuhn et al. (2009) also detected an association between U-shaped dives and feeding in
northern elephant seals (Mirounga angustirostris), where feeding was observed in all dive
types but most often (74%) during a U-shaped dive. The use of accelerometer tags can
also provide insights for improving ground-truthing, by recording the fine-scale movement
and posture of seals during diving. Vance et al. (2021) used measurements of acceleration
to estimate prey capture attempt rates in harbour seals; comparable rates of prey capture

were observed both offshore and during transits to and from the potential foraging site.
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Overall, current research suggests that U-shaped dives have a strong association with for-
aging; however, it is worth noting that (1) successful feeding may not occur in all dives, (2)
these dives may incorporate other activities associated with feeding such as prey search,

and (3) foraging may occur opportunistically in other dive types.

The dives observed in state 3 were short and shallow, with longer periods at the surface.
The true biological function of these types of dives is not fully understood, and could be
one of a variety of functions including resting, digestion, and prey handling (Carter et al.,
2016; Watanabe et al., 2015). In general, these dives were considered a distinct dive type
as they were times when seals spent the majority of their time in a relatively low activity
state, near the surface and not diving fully. The dives observed in state 2 were the most
variable of the states fitted. Dives were of a moderate duration (~2-5 minutes), but dive
shape was not always consistent (Figure 4.8). Dives assigned to state 2 were often more
V-shaped or curved, a dive type often associated with travel or transit behaviour (Carter
et al., 2016; Kuhn et al., 2009). Some of the dives observed in state 2 were also right or
left-skewed (asymmetrical), indicating that seals may be passively drifting within the water
column. Drift dives, seen in a variety of pinnipeds including harbour seals, may represent
an opportunity for resting or digestion at sea (Mitani et al., 2010; Ramasco et al., 2014;
Watanabe et al., 2015). Alternatively, in some cases, irregular dive shapes may represent
failed or aborted attempts at foraging dives (e.g. due to irregular bathymetry or prey not
being located). Future work to subdivide state 2 into two (or more) states may therefore
provide added insight into behavioural-switching and activity budgets of harbour seals

during pile driving and baseline periods.

The decision to model harbour seal diving as three behavioural states was a compromise
between biological interpretability, statistical stability, and taking account of differences
between individuals. Data exploration and initial modelling identified two clear dive types
present in all seals: U-shaped dives (state 1) and short dives (state 3). The number of other
potential dive types differed by individual, with limited consistency between seals; dive
types observed regularly in one seal were limited (or never observed) in others within the
study area, leading to duplicate or spurious states being identified. To make comparisons
across individuals, the models needed to identify the same numbers and types of states.
An alternative approach would be to fit all individuals within the same model (complete
pooling; Langrock et al. (2012)); however, this would not respect the individual variability
in dive behaviour (observed in data exploration) and would assume that all transition rates
were the same between individuals (for baseline and piling exposure). Therefore, HMMs

were fit to each individual separately (no pooling) with the aim of identifying the same
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three states that could be compared post-hoc (Langrock et al., 2012). In general, AIC can
be used to determine the appropriate number of states in a HMM; however, in ecological
data AIC typically favours higher numbers of states (Pohle et al., 2017). In practice,
these large numbers of states can become biologically uninterpretable. Fitting models with
fewer, interpretable states may be used as a pragmatic compromise, at the expense of
poorer model fit (DeRuiter et al., 2017; Pohle et al., 2017; Quick et al., 2017). Overall,
the choice of the number of states to fit generally depends on the aim of the study (Pohle
et al., 2017); in this case, as the aim was to examine whether pile driving affected state
switching, a simpler model which fit consistently across individuals was chosen. Here, the
residual autocorrelation observed is likely an indication that more states would improve
model fit, or that the switching between states is not strictly first-order (i.e. the next state
only depends on the previous state). A natural development of the model presented in
this chapter would be to determine the number of potential sub-types of dive within state
2, and identify more sophisticated dive metrics (potentially related to dive shape) to aid
in state characterisation and identification across seals. van Beest et al. (2019) accounted
for residual autocorrelation in a HMM of grey seal diving by dividing dives into groups
using the average metrics across each batch of 10 dives; however, this is at the expense of
reduced interpretability in state inference and a loss of fine-scale information on behaviour-

switching, a factor that is potentially important in behavioural response detection.

Overall, pile driving was found to have a significant effect on behaviour-switching (i.e.
piling was retained in the model by AIC) in ten (42%) of the tagged seals and, in most
cases, led to decreased persistence within each behavioural state. In nine of the ten seals,
overall persistence decreased, leading to more variable and erratic dive behaviour. This
is consistent with the findings of Aarts et al. (2018), which found that grey seal diving
patterns became more irregular during pile driving. There are two possible behavioural
patterns which may contribute to these observed patterns. Seals may be directly disturbed
by the sound source, leading to behaviour-switching as a result of a startle reaction (Gotz
and Janik, 2011), an attempt to assess the “threat” of the sound source, or a change to
reduce sound exposure (see previous Discussion Section 4.5.1). Alternatively, the observed
changes may also represent aborted attempts at switching into different behaviours later
in the pile driving bout (e.g. state 1 is attempted for a couple of dives and then the seal

switches back to another type of dive).
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4.5.3 Overall findings and implications for renewable developments

Overall, some seals were observed to spend less time at depth and dive more irregularly
during pile driving. In the short-term, modifying dive behaviour in this way could provide
benefits, in particular a reduced risk of hearing damage, to individuals close to pile driving
activity. For example, it has been predicted that harbour seals may experience piling sounds
at a level high enough to cause a temporary threshold shift in hearing (Hastie et al., 2015;
Whyte et al., 2020). However, in the long-term, if individuals were exposed to sustained
noise activity, or regularly exposed to noise from a variety of sources, establishing sustained
and efficient bouts of behaviour (e.g. foraging, resting, travelling) could be challenging.
If individuals spend less time at the bottom and/or exhibit less sustained behaviours,
opportunities to successfully forage or rest may be limited. Understanding how responses
to noise may accumulate to impact the health of individuals, and ultimately populations,
is a key area of future research (Booth et al., 2020; New et al., 2014).

To inform the assessment of the potential impacts of renewable energy developments, the
dose-response relationship presented (Figure 4.6; Table S2) can be used to predict the
probability of seals exhibiting unusual dive behaviour in response to pile driving activity
at different sound levels. The 95% credible intervals provided could be used in these
assessments to account for the uncertainty in the probability of response at each sound
level. It should be noted that these doses are single-strike sound exposure levels (SELss)
averaged across depths, and that uncertainty in predicted received levels from acoustic
modelling may lead to additional uncertainty in response prediction. Comparison of the
acoustic models used here with field measurements of piling sound are presented in Whyte
et al. (2020) and discussed in the previous Chapter. Whilst this analysis was restricted
to a single population and study site (discussed further in General Discussion), the use
of these results as an initial estimate of the impact of pile driving sounds on individual
dive behaviour fills an important knowledge gap in environmental impact assessment. This
population was not naive to pile driving sounds (they occurred prior to the tagging study),
the habitat was relatively shallow and constricted around a highly used haulout site, and
the study was restricted to ~half of the year (January—May); consideration and caution
should be applied if applying these results to seals within the breeding season (June-July),
to populations that differ strongly from these characteristics, or to piling operations that

differ strongly from those measured here.
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4.5.4 Conclusions

In conclusion, this chapter used tag data to provide the first insights into the effects of
pile driving sounds on harbour seal dive behaviour. By comparing the dive behaviour
of individuals during pile driving to their behaviour during baseline periods, there was
evidence that some seals may dive less fully (shallower, shorter, decreased bottom time,
increased surface time) and dive more irregularly (switch between different dive behaviours
more often). Understanding how changes in behaviour may translate into impacts on
the stress, health and fitness of populations is critical for future management of wildlife
populations and human activities in the increasingly urbanised marine environment. The

findings from this study are a key step in achieving this goal.
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5.1 Thesis summary

This thesis was motivated by a need to understand the effects of offshore renewable energy
developments on seals, with a focus on the high intensity sounds produced during pile driv-
ing for offshore wind farm construction. More broadly, this thesis aimed to fill a knowledge
gap in understanding how individual seals move and behave during at-sea anthropogenic
disturbance. This thesis was also motivated by a relative paucity of appropriate analytical
methods to quantify behavioural responses by seals, and so the work of this thesis aimed

to develop and evaluate potential approaches to do this.

In Chapter 2, a comprehensive simulation study was designed to test the performance of
Mahalanobis distance methods in biologging studies of behavioural responses. The de-
tection and false positive rates of the approach were quantified for a variety of simulated
responses and for different implementations of the method. Performance of the approach
varied by the response simulated; critically, the simulation study highlighted (1) the impor-
tance of sufficient baseline data in minimising false positives, (2) the need for the covariance
matrix used in calculations to only include the baseline period, and (3) the need for bi-
ological understanding of the potential duration of responses prior to analysis. Overall,
Mahalanobis distance can be used to effectively detect extreme events in movement data
(up to 79% of simulated extreme horizontal responses, up to 100% of simulated extreme
dive responses) but, as with any statistical method, should always be coupled with biolog-
ical knowledge and sense-checking. Simulated weaker and shorter responses were detected
less reliably. As part of the work of this chapter, the theoretical and computational frame-
works for two data simulators were also developed. The resulting R functions (see Appendix
A) can generate realistic seal GPS locations and dive summary data, with customisable
options for specifying the nature, severity, and duration of behavioural responses to simu-
late. These functions can be used in future simulation studies, e.g. to test the performance
of other statistical methods. As the parameters underpinning the baseline and response
behaviour (e.g. step length, dive duration, state transition probabilities) are specified by
the user as input parameters, these functions present a valuable tool for studies interested

in adapting the simulators for different study species.

In Chapters 3 and 4, I examined the individual movements (Chapter 3) and dive behaviours
(Chapter 4) of 24 tagged harbour seals during intermittent exposure to in-situ pile driving
sounds. Mahalanobis distance-based approaches were used to identify responses, in the
form of statistically unusual instances of movement and dive behaviour. The detected hor-

izontal responses consisted of either (1) instances of unusually high speed, (2) the cessation
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of horizontal movement, or (3) initiating travel after a long period of stationary behaviour.
The detected dive responses generally consisted of reduced dive depths, durations and de-
scent rates, increased post-dive surface intervals, and reduced time in the bottom phase of
dives. Using provided estimates of the acoustic propagation of pile driving sounds across the
study area, Bayesian hierarchical models were used to estimate the dose-response relation-
ship between received sound levels and the probability of behavioural response, accounting
for variability between and within individuals. These dose-response relationships can be
used in future environmental impact assessments to predict the probability of horizontal
and dive behavioural changes as a function of piling sound level. Classification of the dive
behaviour into different dive types (using hidden Markov models) also revealed that seals
were generally more likely to change dive type during pile driving, highlighting that seal

dive behaviour may be more erratic during disturbance.

Although the estimated dose-response relationships for each type of response were similar
(estimated psg of horizontal response of 175 (95% CI: 166-181) dB re 1uPa?-s; estimated ps
of dive response of 175 (95% CI: 167-180) dB re 1uPa?-s), none of the encounters between
seals and pile driving were identified as having both a significant horizontal response and
a significant dive response (by Mahalanobis distance). Changing horizontal movements or
reducing dive behaviour may both potentially reduce the sound exposure experienced by the
seal. It is theoretically possible that seals may adopt different strategies depending on the
context of the disturbance event (e.g. Ellison et al., 2012). For example, if a seal intended
to forage when pile driving starts, it may make sense to move away horizontally from the
sound source so that diving and foraging can continue. Alternatively, if the seal is in a high
quality foraging area, it may be beneficial to cease diving, remain stationary and wait until
the pile driving activity has ended so that foraging can resume. If a seal was travelling past
the wind farm, the best approach may be to continue travelling, but at a faster horizontal
speed to get past and away from the sound quicker. Alternatively, the best approach may
be to continue travelling, but dive shallower to reduce noise exposure. The choice of which
approach to take may depend on the direction of travel (i.e. whether they are travelling
out to forage, or in to the haulout site), and the current energetic and motivational state of
the individual (e.g. hunger levels, energy levels, oxygen management levels). Speculatively,
seals which have lower energy levels (e.g. after a long foraging trip) may be more likely
to change their dive behaviour than increase their travel speed. Alternatively, if the seal
is aware that it is almost approaching its haulout site, it may be sensible to spend a final
burst of energy in getting to an area of perceived safety, compared to a seal travelling out

which may be preserving its energy for a long foraging trip. If a seal was resting at-sea,
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it may make sense to continue this behaviour but reduce dive depth (if they were indeed
underwater). Alternatively, as resting can potentially take place elsewhere, it may make

sense to move horizontally away from the sound source to resume resting later.

Seals may also adopt different behavioural response strategies depending on their interpre-
tation of the sound source. Seals which interpret the sound source as a potential threat or
predator sound (e.g. Deecke et al., 2002; Tyack et al., 2011) may, theoretically, be more
likely to respond by moving horizontally away from the sound. This would be an effec-
tive anti-predator response if the sound was associated with a predation risk. Seals which
respond by either reducing dive behaviour or ceasing horizontal movement, may be curi-
ous or uncertain of how to interpret this sound cue (e.g. Blackwell et al., 2004; Kastelein
et al., 2012; Kastelein et al., 2018a). By pausing their current behaviour, or coming to the

surface, they may be attempting to assess the nature of the sound and its direction.

The findings of this thesis substantially improve understanding of the potential effects of
pile driving on seals. For example, Russell et al. (2016) only examined changes in broad
patterns of seal density across the study area. In this thesis, the horizontal movement
behaviours of individual encounters between seals and pile driving were quantified and ex-
amined in detail, providing information on the nature of individual behavioural responses.
Additionally, Russell et al. (2016) did not consider the dive behaviour of the tagged seals.
In this thesis, the dive behaviour of seals was analysed using both Mahalanobis distance
and HMMs, identifying unusual events of dive behaviour and quantifying the probabilities
of seals switching dive types during pile driving. In Russell et al. (2016), a binary com-
parison was made between piling and non-piling, combining multiple pile driving events
together. In this thesis, the specific sound levels and durations of each piling event were
accounted for separately, and differences between individuals and between encounters could

be considered and examined.

Overall, the work of this thesis contributes the first in-depth study on the individual move-
ment behaviour of seals exposed to in-situ sound disturbance. In the remainder of this
chapter, I discuss the wider significance of this work and highlight key areas of future
research in relation to the use of observational data in disturbance studies (Section 5.2),
behavioural response research (Section 5.3), renewable energy generation (Section 5.4), and

seal movement ecology and disturbance (Section 5.5).
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5.2 Using observational data as disturbance experiments:

challenges and benefits

During the course of this thesis, observational data on the horizontal movement and dive
activity of tagged seals were used to examine the effects of pile driving on these behaviours.
As data were not collected as part of a designed experimental protocol using controlled
exposures (in contrast to studies such as Miller et al. (2014)), the analysis approach neces-
sarily required dividing the data into times of possible disturbance (so-called ‘encounters’
with pile driving), and selected times of non-disturbance (baseline). Undertaking this
approach highlighted a number of potential challenges and benefits; these insights are dis-
cussed further here. While primarily based on studies aiming to examine the effects of
sound disturbance on animal behaviour, these insights may prove useful to any biological
study aiming to use observational animal tracking data to examine the effects of a potential

disturbance source.

5.2.1 Challenges

The challenges encountered by observational studies are likely to vary in nature and severity
between different studies, species, data types, locations, and types of disturbance; however,
the key challenges presented here are generally applicable to a range of circumstances. In
combination, some or all of these factors likely contributed to the relatively low numbers

of detected behavioural responses in Chapters 3 and 4.

Defining a standardised trial

When conducting a traditional experimental approach, the disturbance activity can be
designed to take place (once or multiple times) at a defined level over a defined duration
of time. In contrast, using observational data often requires these decisions to be made
post-hoc, once it can be examined what disturbances the animals have potentially been
exposed to. In practice, this can lead to challenges in defining what constitutes a potential
disturbance event, and increased variability in the nature of these events. For example, in
this thesis, quantitative decisions were made to divide the data into different encounters
between seals and pile driving; however, each resulting encounter was unique in that it
was of a different duration and sequence of piling energies, different initial distance and

behaviour of the seals, different times of day and year, etc. There can also be challenges
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in determining when these potential disturbance events start and finish. In this thesis,
as animals were continually moving around an environment with intermittent pile driving
activity, the threshold of 118 dB re 1uPa?-s was chosen to divide seal behaviour into times
when they could potentially hear the sounds from pile driving, and times when it was
likely below the median ambient noise level of 118 dB re 1uPa?-s. It is recommended that
future studies using this observational approach devote time to determining careful rules,
such as these, for deciding what portions of the data can be considered as disturbance
trials. Sensitivity analysis could be used to examine whether the choice of rule affects the
conclusions drawn. Scientists should also aim to work closely with the relevant industry
or noise source to obtain complete and detailed datasets of the timing and extent of the
human activities of interest, and, if possible, work together to standardise some of these

potential disturbance events.

Contents of the baseline period

When using observational animal tracking data, animals are assumed to be undisturbed
and interacting normally with their environment between potential disturbance events.
Understanding what the animal potentially experienced during these ‘baseline’ periods is
another challenge (with the tag types used here), as it is possible that the animal experi-
enced other unknown types of disturbance, altering its behaviour in a manner that means
the baseline dataset does not only contain their “natural” behaviours. For example, the
area surrounding The Wash (the study area considered in this thesis) is an area of shipping
activity, and it is has been predicted that harbour seals may have a high number of encoun-
ters with vessels in this area (>100 total daily occurrences per 5x5 km grid square (across
multiple individuals); Jones et al., 2017). Seals may alter their movement behaviour in
response to these encounters (Mikkelsen et al., 2019), as well as encounters with competi-
tors or predators such as grey seals (Brownlow et al., 2016) or killer whales (Bolt et al.,
2009). Future studies should consider, in addition to the required data on the animals
of interest and the disturbance source, conducting concurrent data collection on pertinent
aspects of the environment. Microphone or hydrophone arrays, and animal-attached tags
capable of recording sound (Johnson and Tyack, 2003; Mikkelsen et al., 2019), can be used
to measure levels of background noise (to determine if disturbance sounds are audible at
different locations, see ‘Defining a standardised trial‘) and to detect the presence of animal
vocalisations (e.g. Riera et al., 2019) or human activities (e.g. Kline et al., 2020). Visual

surveys, camera traps and time-lapse photography can be used to monitor the presence of
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conspecifics, as well as potential competitor and predator species.

Moderate and weak responses by animals

When reacting to disturbances, animals may not always respond by exhibiting extreme
behaviours; instead, they may respond by modifying their behaviour in more minimal
ways. Alternatively, animals may respond in ways which are not easy to measure with
the resolution and nature of the data collected. For example, in this thesis, the median
gap between GPS locations was 10 minutes; detecting very short-term responses would be
challenging with this data. While, to an observer, weaker responses may seem less extreme,
these responses may still be important in terms of the potential biological impacts on the
animal (e.g. induced stress, missed feeding opportunities). If the available measured re-
sponses by animals are relatively weak, then statistical testing may have limited ability
to distinguish behavioural responses from normal baseline data. For example, in Chap-
ter 2, the simulation study of Mahalanobis distance performance showed that simulated
strong horizontal responses were detected up to 79% of the time, whereas weak and short
horizontal responses were only detected up to 43% of the time. For studies which expect
animals to exhibit more subtle behavioural modifications during disturbance, these studies
should consider using statistical methods which look at broader patterns of behaviour and
activity (e.g. HMMs or other movement models) and not solely on methods which focus on
identifying extreme events (e.g. Mahalanobis distance). Future research into incorporating
the effects of context (see Section 5.3.1) may also aid in the detection of moderate and

weak responses.

Limited observations at high disturbance levels

In an experimental setup, trials can be designed so that there are even sample sizes across
different levels of disturbance (e.g. for trials with difference source levels of a disturbance
sound). Animals can be targeted with a disturbance stimuli when they are a fixed distance
away (e.g. Gordon et al., 2019), and/or the disturbance stimuli can be ramped up until
a high “dose” of the disturbance stimuli has been experienced by the animal (e.g. Miller
et al., 2014). In the observational data of this thesis, there were limited observations of
encounters at the highest sound exposure levels; ~ 50% of the encounters did not exceed
estimated recieved levels of 137 dB re 1uPa?-s, and ~ 75% of the encounters did not exceed

151 dB re 1uPa? -s. This challenge may be encountered in observational studies due to
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the inability to control spatial and temporal overlap with animals and high disturbance
events (and so resulting in low sample sizes), or due to animals already having responded
to low levels of disturbance and therefore not coming closer to the disturbance source to
experience the higher levels. In this study, if seals exhibited long-range subtle changes
in heading to avoid the sound source, these types of responses would also be unlikely
to be detected. Prior to data collection, it is recommended that future studies examine
the predicted spatial and temporal overlap of the intended study population with the
disturbance source, through examining historical data sets, conducting pilot studies, or
designing simulation studies and power analyses to check the ability of the intended data
collection (and sample size of tags) to answer the intended research questions. For studies
which are likely to experience low sample sizes at high disturbance levels, researchers may
need to consider whether the observational study should be complemented with a few high-
level disturbance experiments, to confirm that the behaviours seen at moderate levels of

disturbance can be extrapolated to high disturbance scenarios.

5.2.2 Benefits

Using observational data also provides a number of key benefits and opportunities for

improving studies of animal behaviour and disturbance.

Long study periods

Compared to an experimental trial approach (that often requires intensive human involve-
ment), using observational data provides the opportunity to collect data over longer study
periods (weeks—months vs. hours—days). Longer study periods mean that disturbance ef-
fects can be observed over a wider range of conditions, such as across different seasons,
times of day, and habitats. For example, in this thesis, pile driving and seal data collection
took place over a four-month study period and across all hours of the day, and confirmed

that seal responses to pile driving take place across a variety of external conditions.

Large sample sizes

As observational tracking studies using tags do not need to actively follow individual ani-
mals during the study (as data collection is remote), they have the capacity to deploy tags

on larger numbers of animals. Larger sample sizes mean that a larger proportion of the
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study population is included in data collection, aiding in ensuring that the animals that
have been studied are representative of the wider population. Larger sample sizes also en-
able animals with different individual-level characteristics (e.g. age, sex) to be sufficiently
represented in data collection. In this thesis, tags were deployed on 24 harbour seals (20 of
which were considered to have encounters with pile driving), compared to sonar exposure
experiments which typically involve < 5 individuals (DeRuiter et al., 2013; Miller et al.,
2015) or < 10 individuals (Antunes et al., 2014; Miller et al., 2014). Here, having this
sample size revealed the substantial difference in the number of exposures between male
and female seals, with females encountering pile driving a factor of 10 greater times than

males, possibly due to differences in distribution and movement patterns.

Improved understanding of behavioural repertoires

Long-term observational data also allows improved understanding of natural behavioural
variation, both between and within individuals. As illustrated in the simulation study
in Chapter 2, having a longer baseline period leads to less false-positives in behavioural
response detection. This is partly because the animal has more time to exhibit its full
behavioural repertoire (its range of behaviours), and therefore studies can be more confident
that the changes observed during disturbance are indeed unusual. Understanding the
types, durations and activity patterns of different baseline behaviours is an important

consideration for any study and statistical approach.

In-situ disturbance

Perhaps one of the most significant benefits of observational studies is that they can take
place in-situ, with the real disturbance source, in the intended environment, with wild
animals that are undertaking their natural behaviours. In-situ studies generally require
less extrapolation and assumptions about how results observed in experiments may be
transferable to real-life situations, e.g. compared to captive studies such as Kastelein
et al. (2018a). While experimental approaches with wild animals are considerably closer
to an in-situ approach, these studies may still have to make compromises that could alter
how animals perceive or respond to the disturbance. For example, experimental studies
of sound disturbance may have to use artificial versions or recordings of sounds (Hastie
et al., 2018; Koschinski et al., 2003) or play sounds at quieter levels than normal operation

(Mikkelsen et al., 2017). In this thesis, the pile driving activity that took place was part
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of the construction activity of the wind farm, providing insights into how wild free-ranging

seals behave during this potential disturbance period.

5.3 Behavioural response studies

5.3.1 The importance of context

This thesis is part of a growing field of research aiming to examine the effects of different
stimuli or events on animal behaviour (Doherty et al., 2021; Dominoni et al., 2020; Harris
et al., 2018). In any behavioural response study, it is essential to consider the context,
i.e. the intrinsic and extrinsic factors which may affect when, how and why animals alter
their behaviour. Intrinsic factors are features of the individual animal which may affect
their response (e.g. age, sex, current behaviour, previous experience with the stimuli).
Extrinsic factors include the spatial context (e.g. habitat), temporal context (e.g. time of
day), and features of the stimuli itself (e.g. duration and pattern of its presence, distance
to the animal, sound level and characteristics). Here, a number of contextual factors were
considered as candidate variables in the dose-response Bayesian modelling in Chapters 3
and 4; however, in this study, there was not enough evidence to support the inclusion of
these extra variables. Detecting a clear effect of contextual variables is challenging, likely

because context is multi-faceted and unique to each disturbance encounter.

Some studies have found quantitative evidence of the role of context in behavioural response
studies. Goldbogen et al. (2013) investigated the behavioural responses of tagged blue
whales to playbacks of simulated mid-frequency active sonar signals and pseudo-random
noise. They found that the responses observed depended on the current behavioural state
of the whale, with individuals more likely to respond when they were deep-feeding or not
feeding, compared to responses being rare when whales were surface feeding. Zoratto et al.
(2014) measured the behaviours of European starlings (Sturnus vulgaris) during video play-
backs of predator (peregrine falcon; Falco peregrinus) attacks on starling flocks. Starlings
responded to the predator video by decreasing the amount of body turns (remaining still),
but increasing the amount of head turns (increased vigilance), relative to a control video
without a predator. The response of the exposed starlings depended on social context,
with individual starlings remaining still for longer than when starlings were in a mini-flock
with other birds. Investigating the effects of context can also produce more unexpected
results. For example, Beale and Monaghan (2004) conducted disturbance experiments on

turnstones (Arenaria interpres), where some bird groups were provisioned with supplemen-
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tary food in their normal habitat. Birds which were provided with supplementary food
were more vigilant and responded to the disturbance at a greater distance; therefore, birds
in greater need of acquiring food took greater risks to tolerate disturbance and continue
foraging. In Ellison et al. (2012) it was proposed that although responses to sound are
likely to be dependent on both the received level of sound and the signal-to-noise ratio
(relative to background noise), when sound (or disturbance) level is lower, contextual fac-
tors such as these are likely to become more important in driving responses. Particular
contextual factors which should be investigated in future studies of seal responses to sound
include aspects of the foraging trip (e.g. proportion of trip elapsed, travelling in vs. out),
information on foraging success, estimates of habitat quality, energetic and physiological
state of the animal, and the estimated exposure of the seal to other disturbance events

(e.g. in pristine vs. polluted environments).

Biologging technology opportunities

New developments in biologging technology present key opportunities for further under-
standing behavioural responses and their context (Figure 5.1). Accelerometers, devices
which record fine-scale and high-frequency (>once per second) measurements of activity
levels and body posture, may provide more detailed information on the current behaviour
of animals prior to disturbance. In particular, accelerometers can be used to monitor
sudden body, head, and jaw movements (‘jerks’), which can indicate foraging and prey
capture attempts in seals (Adachi et al., 2019; Vance et al., 2021; Volpov et al., 2015). In-
corporating these measurements into behavioural response studies may provide important
information on the motivation for, and disruption of, foraging during disturbance events.
Recent technological developments have led to non-invasive animal-attached devices which
can now record aspects of seal physiology underwater (McKnight et al., 2019, 2021). In
particular, the ability to measure oxygen concentration levels within the animal may pro-
vide improved understanding on whether oxygen management during dives is an important
contextual factor in behavioural responses. Tags which record aspects of the environment
(e.g. sound, Mikkelsen et al., 2019; water temperature and salinity, Photopoulou et al.,
2020) can be used to measure the presence of other natural and anthropogenic drivers of
behaviour. Future studies may also wish to consider the use of wearable video technology,
which can be used to verify the types of prey being consumed by seals (Adachi et al.,
2021; Yoshino et al., 2020), or wearable sonar devices which can be used to measure prey
encounters (Goulet et al., 2019).
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Figure 5.1 Biologging tools to understand context in future behavioural response studies for
pinnipeds. (a) Acceleration jerks of harbour seals measured over time, using a threshold (red
line) to determine prey capture events (PCAs). (b) Measurements of harbour seal physiology over
time, including tissue saturation index (TSI; red line), blood volume (green line), and haemoglobin
oxygenation (black line). (c¢) Recorded sound over time on a grey seal tag, plotted as the received
power spectrum density level. (d) Ocean temperatures recorded by biologging devices on southern
elephant seals. (e) Video footage of prey encounters in foraging dives of northern elephant seals.
Figures adapted from (a) Vance et al. (2021), (b) McKnight et al. (2019), (c¢) Mikkelsen et al.
(2019), (d) Charrassin et al. (2008), and (e) Adachi et al. (2021).
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Statistical opportunities

As context may influence both the occurrence and nature of the behavioural responses ob-
served, modelling contextual variables may be more more challenging when using two-stage
modelling approaches (e.g. Mahalanobis distance followed by Bayesian hierarchical mod-
els). One-stage ‘holistic’ models (e.g. HMMs, and other options discussed in Section 5.5.2)
may provide a stronger alternative for studies interested in context. The Mahalanobis
distance-based approach compares behaviours observed at a given time to one overall mea-
surement of “average” behaviour during baseline. One extension of the work in this thesis,
to account further for behavioural context, would be to first divide the baseline data into a
chosen number of behaviours (e.g. shallow dives, deep dives) and use Mahalanobis distance
to then examine changes within each behavioural category. In this thesis, available water
depth was used as a proxy for habitat in the fitted HMMs, to account for changes in dive
behaviour as seals move between different environments. Another extension of this work
would be to include additional context-related covariates (e.g. time of day) on the HMM
transition probabilities (as individual and interaction terms), to investigate how different

factors affect behavioural switching.

5.3.2 Challenges and future directions in behavioural response studies
Temporal mismatch of responses

A key remaining challenge of behavioural response studies is in instances of temporal
mismatch between disturbances and observed behaviour changes. If clear behavioural
changes occur during the disturbance activity, then it is relatively straightforward to relate
these changes to a known level of disturbance; however, if behavioural changes occur shortly
after the disturbance activity ends, it is challenging to assign a “dose” to these disturbances
and determine if this is a true response to the activity. For example, it is plausible to
imagine that an animal may tolerate a disturbance activity if it is carrying out an important
behaviour (e.g. foraging), but that it may exhibit a delayed response by deciding to move
away from the area after its behavioural goal has been completed. Examining this robustly
within a statistical framework is difficult, as the main tool which is used to help distinguish
normal vs. disturbed behaviour is typically the known timing of the potential disturbance
activity. In the data used in this thesis, there were anecdotal observations of a few occasions
in which seals appeared to show visibly unusual movement behaviour between two bouts of

pile driving that were several hours apart. If the seal didn’t behave unusually until after the
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first pile driving bout ended, these responses would likely be undetected. If, theoretically,
the seal responded to the first pile driving bout and was still behaving unusually by the
time of the second pile driving bout, the response was likely caused by the high received
levels of piling at the end of the first piling bout, but an incorrectly low “dose” from the
ramp-up of the second piling bout would be assigned to this response (the piling energies
are lower and the seal may also have responded and moved further away). Alternatively,
if measured changes in movement behaviour take time to reach a level of significance for

response detection (when they exceed the Mahalanobis distance 95"

percentile threshold),
the dose at the time when the response was detected may not be the same as the dose that
elicited the response. In this thesis, both of these concerns were somewhat accounted for
by using intermediate window sizes (which would record a wider range of possible doses)
and by looking for horizontal responses in an additional 30-minute period after pile driving
ceased; however, temporal mismatch remains a key statistical and practical challenge in

any behavioural response study.

The relationship between behaviour and data collection

Any biological study should consider how animal behaviour may influence the data col-
lected; however, this is particularly important for studies that aim to make inferences about
changes in behaviour. For example, Mikkelsen et al. (2017) examined the responses of har-
bour seals to playbacks of simulated acoustic deterrent device sounds, using theodolites
to track seal locations at the surface. During exposure to the sounds, there were more
sightings and seals were observed closer to sound source, relative to baseline periods. From
this result, the study proposed that seals may have been attracted to the sound source;
however, it is equally possible that seals were spending more time at (or near) the surface as
a response to the sound. This finding would be consistent with the behavioural responses
identified in Chapter 4, in which seal dives were shorter and shallower, with longer post-
dive surface intervals. If some seals respond to sound disturbance by spending more time
at the surface, then this may have important implications for visual surveys and avoiding
bias. Similarly, future research is also required into understanding whether the amount or
quality of data collected from GPS tags varies by behaviour. This could be approached
by further investigating the data used in this thesis. For diving animals, GPS fixes are
necessarily limited to times when the animal is at the surface, and so it is possible that
this limitation may bias data collection and miss important behaviours (e.g. if an animal

is fleeing with very short surface intervals).
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5.4 Sustainable renewable energy generation

In this thesis, dose-response curves were estimated in Chapters 3 and 4, which quan-
tify the relationship (and associated uncertainty) between received piling sound levels
and behavioural responses. These functions can be used to predict the probability of
behavioural changes occurring in harbour seals during at-sea pile driving for renewable
energy or other industrial developments. Environmental impact assessments using these
relationships should also use the 95% credible intervals provided to account for the esti-
mated uncertainty in the relationships. In using these functions, it should be noted that
uncertainty in the acoustic propagation modelling predictions was not accounted for in
the dose-response modelling, and that these predictions are based on a single population
of harbour seals at a particular time of year (January—May). The pertinent aspects of
this study population are discussed in more detail below (Section 5.4.1); extrapolation
of these results to populations which differ highly from this study population should be
approached with caution. It is recommended that similar studies are carried out on dif-
ferent populations, at different times of year, to validate these results more widely. If the
impact assessment only allows for one type of dose-response curve, the estimated relation-
ship presented here (Chapter 3) for horizontal responses is recommended, as it is more
conservative with higher levels of uncertainty. These relationships also provide a basis for
comparison with other similar studies examining different causes of disturbance in different
species and habitats. More broadly, this thesis provides improved understanding of how
individual seals may move and dive during encounters with pile driving. Here, a number of
key caveats and considerations for further research are discussed, in relation to the future

of environmentally-responsible renewable energy generation.

5.4.1 Representativeness of this study

The results presented in this thesis are based on 24 tagged harbour seals from populations
in The Wash and The Thames on the east coast of England, UK. In 2020, the STRANGE
Framework (Webster and Rutz, 2020) was proposed as a means of reducing sampling biases
in studies of animal behaviour, by improving data collection methods, and the declaration
and discussion of potential biases. Here, I use the STRANGE framework to highlight
important features of the study population and sampled individuals (Table 5.1), which

should be considered when applying these results more widely.
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Table 5.1 Summary of the STRANGE Framework assessment for the 24 harbour seals used within
this study. For a full description of the STRANGE Framework, see Webster and Rutz (2020).

STRANGE framework Study animals

Social background Unknown

Trappability and self-selection Possible tagging bias of bolder, less cautious animals
Rearing history Unknown; possible prior exposure to shipping
Acclimation and habituation Prior pile driving exposure; no known prior tagging
Natural changes in responsiveness | Study of one 4-month period (Jan—-May)

Genetic make-up Distinct from Scotland and N Ireland populations
Experience Possible age and sex differences in level of experience

Social background

As the tagged individuals were not visually observed prior to tagging, and were not known
to the study, the social status or background of the tagged seals in this study is unknown.
During tag deployment, it was attempted to obtain an approximately even split of males
(n=11) and females (n=13), to ensure that different demographics of the population were

represented. Three juveniles were also tagged.

Trappability and self-selection

As seals were required to be caught at or near haulout sites to deploy the tags, it is possible
that the individuals caught were of a certain behavioural type or physiological state. This
is a common concern with trapping and tagging studies (Carter et al., 2012; Webster and
Rutz, 2020), where bolder or less cautious individuals are more prone to being caught and
sampled. The seal capture method used in this study (seine netting), reduces the likely
levels of behavioural bias compared to traditional capture methods; however, there may
be biases in the availability of seals to being captured (e.g. in terms of differences in the
amount of time spent hauled out). In the data collected in this study, there was high
individual variation in the movement patterns and in the responses observed; however, it
should be noted that there may be “sensitive” or “shy” individuals (who may be more

responsive to disturbance) in the population which were not sampled.

Rearing history

While the rearing and developmental history of the tagged individuals is unknown, it is
known that shipping occurs within the study area (Jones et al., 2017), and so some or all
of the seals studied here are likely to have been previously exposed to this. The tagged

seals may therefore already be acclimatised to regular human disturbance.
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Acclimation and habituation

During tag deployment, the seals were checked for signs of other tags and marks from
previous potential captures; the seals tagged in this study had no known previous capture
or tag deployment experience. To control for the effects of potential disturbance from the
tag deployment, and to avoid biases in measuring movements when seals are first fitted
with a tag, the first week of all deployments was removed from the analysis (McKnight,
2011). Although the seals had not been tagged before, they were likely not naive to pile
driving sounds. Pile driving for Lincs wind farm construction began in May 2011 (eight
months prior to tag deployment), and other wind farms had been built in the study area in
previous years. The behaviour and responses observed in this population may therefore not
be as extreme as they were when pile driving initially began, or compared to a population
in a quieter environment. Alternatively, it is also possible that seals may have become

sensitised to pile driving sounds over time.

Natural changes in responsiveness

The data collected here covered a four-month period from January to May; however, there
were no observations of behaviour at other times of the year. Data on both baseline and
disturbance were collected across all hours of the day and across tidal states, and there

was no evidence of differences in responses between these times.

Genetic make-up (and other population-level specificities)

The genetic make-up of the individuals studied here has not been examined in detail;
however, there is evidence that the south-east England harbour seal population is distinct
from those in Scotland and Northern Ireland (using genetic, movement, and demographic
data; Carroll et al., 2020). One notable feature of this population is the geography of the
haulout site and surrounding coastlines. The Wash is a relatively enclosed area, with lots
of shallow habitats and sandbanks for seals to haul out on at low tide. In particular, the
location of the wind farm is on the edge of the only entrance to the haulout site, and thus
seals must pass within ~20 km of the site to enter and leave the haulout site. This also
means that seals are most likely to be exhibiting travel-like behaviour when within close-
range of the wind farm, which may influence the detectability and types of behavioural

responses observed in this study.

FExperience
In this study, seals of both sexes and a range of ages were tagged (ages are known from
tooth analysis of 15 individuals; a range of 2.0-23.0 years). The older individuals may be

more experienced in encountering disturbance, and it was observed that females encoun-
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tered pile driving more often than males in this study. It is unclear whether experienced
individuals would respond more weakly (habituated) or more strongly (improved knowl-
edge or sensitisation) to disturbance; however, more “experienced” individuals may also
have accumulated temporary or permanent hearing damage (Hastie et al., 2015; Whyte
et al., 2020). From the HMM analysis, the only individual which exhibited significantly
increased persistence within dive types during pile driving was one of the old females (20.5
years old). The relative hearing abilities of some of the tagged individuals was assessed
(at the time of tagging) in Lucke et al. (2016). Differences in hearing sensitivity between
individuals were observed; however, hearing sensitivities were broadly similar to those mea-
sured in captive animals (Lucke et al., 2016). Further studies of hearing sensitivity before,
and if possible after, sound disturbance are required to further understand how hearing

ability may be related to behavioural changes and avoidance of anthropogenic sounds.

5.4.2 Behaviour and pile driving: Scaling-up of possible effects
Population consequences of disturbance

To monitor and predict the non-lethal effects of disturbance on wildlife populations, it is
important to understand the mechanisms of these effects at both an individual and pop-
ulation level. The Population Consequences of Disturbance (PCoD) framework provides
a quantitative approach for assessing the effects of disturbance (Figure 5.2; Pirotta et al.,
2018a), with a particular focus on marine mammal applications. The PCoD framework
has been used to predict effects through a series of quantitative relationships, comprising
(1) the effect of a stressor on physiology and behaviour, (2) the effect of physiological and
behavioural changes on health and vital rates, and (3) the effect of individual vital rates on
wider population dynamics (Figure 5.2). Where quantitative information is limited, stages
of the framework can be supplemented with information gathered from expert elicitation
activities (King et al., 2015). For example, experts can be asked to provide an estimate
of the number of days an animal may tolerate disturbance without an effect on survival
(King et al., 2015), and groups of experts can be asked to come to a consensus on their

estimate and its associated uncertainty.

In the data on harbour seals used in this thesis, predicted impacts differed by individual
(Table 5.2). Out of the 24 tagged seals, 20 were estimated to have encountered pile driving
sounds (above ambient noise levels) at least once during the study. The four seals which

did not encounter pile driving were all adult males. Of those encountering piling sounds,
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Figure 5.2 The Population Consequences of Disturbance (PCoD) conceptual framework. As-
pects of the framework are denoted by boxes, with arrows showing the potential linkages between
different aspects. Effects are examined at the individual level (within grey dashed box), and then
accumulated across individuals to predict effects on population dynamics. Figure from Pirotta et al.
(2018a).

in 16 seals an effect on behaviour was detected, either in the form of a horizontal move-
ment response (Mahalanobis distance analysis, Chapter 3), a vertical movement response
(Mahalanobis distance analysis, Chapter 4), or an alteration to dive behaviour switching
(HMM analysis, Chapter 4). The Mahalanobis distance analyses identified responses in 12
seals, and six of these seals exhibited both horizontal and vertical responses during different
encounters with pile driving. Additionally, Whyte et al. (2020) estimated that four of the
seals received sound levels sufficient to cause temporary threshold shifts (T'TS) in hearing;
all four of these seals were adult females. Understanding whether the proportion of tagged
individuals predicted to be affected by pile driving sounds in this study is representative
of the proportion of individuals affected in the wider population remains an important
consideration for further research, and must be coupled with knowledge of the pertinent

aspects of the study population and tagged individuals (see previous Section 5.4.1).

The results of this thesis provide information for the first stage of the PCoD framework,
linking levels of piling sound to probabilities of behavioural changes in harbour seals. Gath-
ering quantitative information on the further stages of the PCoD framework is typically

more challenging, as these changes become harder to directly observe; however, understand-
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Table 5.2 Summary of the different predicted impacts on the 24 tagged harbour seals. For each
seal, shown are the proportion of encounters in which the seal was detected to respond horizontally
(Chapter 3), the proportion of encounters in which the seal was detected to respond vertically
(Chapter 4), and whether the seal was predicted to alter its dive behaviour switching during pile
driving (Chapter 4). Also highlighted are the seals which were predicted to have recieved sound
levels sufficient to cause a temporary threshold shift in hearing (T'TS; from Whyte et al., 2020), and
the sex and age class of each individual. The four individuals which did not encounter any piling
bouts above ambient sound level are denoted by dashes (-). Individuals with the prefix ‘pv42-’ were
tagged in The Wash; individuals with the prefix ‘pv40-’ were tagged in the Thames.

Seal Horizontal Vertical Dive Hearing Sex Age
reference response response switch class
pv42-162-12 0.06 0.07 - - F Adult
pv42-165-12 0.00 0.00 Y TTS F  Juvenile
pv42-194-12 0.00 0.00 - - M Adult
pv42-198-12 - - - - M Adult
pv42-220-12 - - - - M Adult
pv42-221-12 0.00 0.00 Y - M Adult
pv42-266-12 1.00 0.00 - - F Adult
pv42-277-12 0.06 0.03 Y TTS F Adult
pv42-287-12 - - - - M Adult
pv42-288-12 0.00 0.00 - - F Adult
pv42-289-12 0.00 0.00 Y - M Adult
pv42-290-12 0.14 0.25 Y - F Adult
pv42-291-12 0.00 0.17 Y - F Adult
pv42-292-12 0.00 0.00 - - M Adult
pv42-293-12 0.25 0.33 - - F Adult
pv42-294-12 0.00 0.00 - - M Adult
pv42-295-12 0.10 0.05 Y - F Adult
pv42-316-12 0.33 0.00 Y - M Juvenile
pv42-317-12 0.00 0.07 Y - F Adult
pv42-318-12 0.00 0.09 - - F Adult
pv42-319-12 0.00 0.00 Y - M Juvenile
pv42-320-12 0.14 0.00 - TTS F Adult
pv40-268-12 0.12 0.12 - TTS F Adult
pv40-270-12 - - - - M Adult
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ing how behavioural changes in seal movement and dive behaviour may affect health and
vital rates is an important area of future research. This could be approached by simulation
studies (e.g. Chudzinska et al., 2021; Farmer et al., 2018; New et al., 2014), and the ob-
served behavioural changes in this thesis provide key information to help parameterise these
simulations. Monitoring of wild populations under times of disturbance (e.g. visual and
acoustic surveys, capture-recapture) is also a useful avenue (Booth et al., 2020); however,
these methods may require long-term studies with sufficient baseline and large numbers
of sampled individuals, and may need to be coupled with concurrent individual-level mea-
surements of disturbance. A promising avenue of future data collection is in assessments of
body condition and energetic expenditure of individuals. Future work should investigate
whether pinnipeds experience changes in foraging success, energy used, and body condition
during disturbance, e.g. using drift dive assessments or measures of prey capture attempts
(Schick et al., 2013, Vance et al., 2021).

Multiple stressors

Pile driving is one of a number of potential stressors that may impact marine wildlife. Sound
pollution is produced from a variety of other human activities including shipping, seismic
surveys, and sonar (Duarte et al., 2021). Other potential anthropogenic stressors include
chemical pollutants, bycatch, and collisions with boats (Nelms et al., 2021). Humans may
also alter aspects of the natural environment, putting increased pressure on marine animal
populations, e.g. climate change, prey availability, predator and competitor presence,
and invasive species (Halpern et al., 2007). Understanding how these different potential
stressors act individually and cumulatively on marine animal populations is a key area of
further research (National Academies of Sciences Engineering and Medicine, 2017). The
interaction between multiple stressors may lead to effects which are greater (often termed
“synergism”) or smaller (often termed “antagonism”) than the effects of the individual
stressors (Folt et al., 1999; Piggott et al., 2015). For example, a population viability analysis
of Swedish-Danish harbour seals (Silva et al., 2021) indicated a low risk of extinction
during moderate levels of the single stressors considered (hunting, decreased fecundity
from chemical exposure, epizootics such as phocine distemper virus); however, there was
a high risk of extinction for the most vulnerable subpopulations when all three stressors

together occurred at low levels.
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Figure 5.3 Types of offshore wind turbine foundations. Monopile foundations were used at the
wind farm studied in this thesis, but jacket/tripod foundations are also widely used. Different types
of floating foundation structures are in initial use or development: Tension Leg Platform (TLP),
semi-submersible (Semi-sub), Spar Buoy (Spar). Figure from Bailey et al. (2014).

5.4.3 Technological and industry considerations

In the wind farm construction described in this thesis, pile driving was used to install steel
monopile turbines (diameter of 5.2 metres) during construction of Lincs wind farm in 2011
2012. Offshore renewable energy is developing rapidly, and there are a number of novel
technologies now being considered. The world’s first commercial wind farm using floating
foundation structures (Figure 5.3) was installed in Scotland and began operating in 2017
(WindEurope, 2017). Floating turbines can be constructed in deeper water than traditional
turbine foundations (Bailey et al., 2014; Breton and Moe, 2009), and construction may
produce less noise pollution than pile driving for monopiles. Floating wind may therefore
aid in increasing options for wind farm site location and reducing disturbance; however,
further research is required into the potential environmental effects of this new technology,
in particular the risk of entanglement for large cetaceans or the risk of exclusion from key

areas of habitat for marine mammals.

Noise abatement measures, such as bubble curtains, can be used to reduce the levels of
sound propagated out from a pile driving site (Ddhne et al., 2017); however, there are cur-

rently limited applications to turbines in deeper waters (> 45 m) and with larger (>8 m)
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pile sizes (Verfuss et al., 2019). Developers should consider whether noise abatement mea-
sures would be applicable at the intended construction site, and if they would effectively
reduce noise pollution for the wildlife populations concerned. Another potential mitigation
measure is the use of acoustic deterrent devices to deter marine mammals from the imme-
diate vicinity of the site, with the aim of reducing auditory injury from exposure to pile
driving. Harbour porpoises have been found to have a higher probability of response (by
decreasing their occurrence) when acoustic deterrent devices are used prior to pile driving,
in comparison to pile driving alone (Graham et al., 2019). Controlled exposure experi-
ments of acoustic deterrent devices to tagged harbour seals (Gordon et al., 2019) detected
responses in all seals within 1 km of the device; however, seals did not always move away,
and the efficacy of deterrent devices appears variable across studies (Coram et al., 2014;
Gotz and Janik, 2016; Graham et al., 2009; Mikkelsen et al., 2017). Future research is
required to understand whether the benefits of using deterrent devices prior to pile driving
outweighs the potential risks of noise pollution, disturbance, and hearing damage posed
by the device itself. Results observed from deterrence studies in aquaculture may not be
directly applicable, as seals may behave differently when there is not a clear prey source
to be attracted to (e.g. at salmon farms). For example, captive studies of grey seals found
that seals tolerated anthropogenic sound playbacks to feed at high-quality prey patches,
but not at low-quality prey patches (Hastie et al., 2021). This could be approached by in-
situ studies of seal movements at pile-driving sites that use deterrents, to examine whether
deterrence from these devices alters the predicted levels of risk from pile driving sound

exposure.

5.4.4 Short-term construction vs. long-term operation

There is currently limited evidence to suggest that operational offshore wind farms pose a
significant risk to marine mammals. Koschinski et al. (2003) conducted a playback study
of simulated operational wind turbine generator sounds to harbour porpoises and harbour
seals using theodolite location tracking. Significant differences in the distribution of both
species were detected; however, the scale of these differences was relatively small. For
example, in seals, the median distance of seals from the sound source was 284 m (relative
to 239 m during control), the closest approach was 12.0 m (relative to 9.6 m during control),
and no extreme responses such as fast swimming were observed. Notably, as part of the
processing and playback of the artificial sounds used, high-frequency components may have

been introduced into the original recording, potentially altering the behavioural responses
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Figure 5.4 Movement tracks of a tagged harbour seal at Alpha Ventus wind farm, Germany. A
state-space model was used to estimate times when seals were most likely to be foraging (red dots)
or travelling (blue dots). Figure from Russell et al. (2014).

observed (Madsen et al., 2006; Koschinski et al., 2003).

In contrast, in the long-term, it is possible that the offshore structure of the turbines
may be ecologically neutral or beneficial (Inger et al., 2009). The hard substrate of the
turbine foundation can provide a surface for biofouling species (e.g. mussels, macroalgae,
barnacles, anemones) to establish, building up over time into an artificial reef (Degraer
et al., 2020). As the community becomes established, fish can be attracted to the turbine
sites to forage, and fishing activities are likely to be excluded from wind farm sites (De
Troch et al., 2013; Inger et al., 2009). Larger marine predators may also be attracted to
the sites. Russell et al. (2014) tracked the movements of seals around offshore structures,
and found that the movement of some individuals was highly associated with the turbine
locations and undersea pipelines (Figure 5.4). State-space modelling also suggested that
some individual seals appeared to be foraging at these sites. Understanding the potential
risks and benefits of offshore renewables for different species is an important area of future
research, to ensure that new developments in technology can be appropriately assessed for
potential impact. This is essential to allow future renewable developments to be built in a

timely and environmentally-responsible manner.
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5.5 Seal movement ecology, behaviour and disturbance

5.5.1 Effects on prey

An aspect not investigated in this thesis is the effects of sound on the prey species of marine
top predators. Harbour seals are considered to be generalist predators, feeding on a variety
of fish, cephalopods and other marine invertebrates (Wilson and Hammond, 2019). In
understanding how predators such as seals respond to sound disturbance, it is important to
also consider how sound may alter the behaviour or availability of prey. A growing number
of studies are documenting the effects of anthropogenic sound on marine invertebrates.
Jones et al. (2020) examined the behaviour of longfin squid (Doryteuthis pealeii) during
captive playback experiments of different pile driving recordings. Almost all (15 out of 16)
of the squid responded to the sounds, by exhibiting alarm and anti-predator behaviours
including inking, jetting away, and changes in body pattern appearance. Squid exhibited
similar responses to both repeats of the experiment, but responses were all short-term and
constrained to the first 30 pulses (~1 minute) of the playback. In the long-term, there is the
potential for these disturbance events to alter the levels of alertness, or the response of squid
to real predator events, if individuals become habituated to disturbance. Solan et al. (2016)
also conducted captive playback studies of both pile driving sounds and shipping noise
to Manila clam (Ruditapes philippinarum), Norway lobster (Nephrops norvegicus), and
Ophiuroid brittlestars (Amphiura filiformis). The invertebrate species exhibited multiple
types of stress-related responses, including less movement activity by N. norvegicus and
the cessation of suspension-feeding by R. philippinarum; however, there was no evidence
of an effect on the organisms’ tissue chemistry and the responses differed depending on
the sound type. Hermit crabs (Pagurus bernhardus) have also been observed to spend less
time assessing which new shell to move into when they are exposed to playbacks of white
noise (Walsh et al., 2017). Overall, the understanding of how invertebrates respond to
sound disturbance is relatively limited, and therefore this is an important area for further
research. The responses observed so far suggest that sound disturbance of prey species
may have implications for the overall fitness of prey populations and important ecological

processes such as bioturbation.

A number of studies have investigated the effect of anthropogenic sound disturbance on
fish (for comprehensive reviews see Popper and Hastings, 2009 and Slabbekoorn et al.,
2010). During exposure to an air gun in a large sea cage, schooling fish (travelly, Pseu-

docaranz dentex; pink snapper, Pagrus auratus) have been seen to increase aggregation
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and move down in the water column (Fewtrell and McCauley, 2012). For pile driving
sounds in particular, captive seabass (Dicentrarchus labraz) have been found to alter their
shoaling behaviour during captive playback studies (Herbert-Read et al., 2017). During
playback, fish within groups were spaced further apart, decreased their movement speed,
and exhibited less movement coordination with the other fish in the shoal. Seabass have
also been found to increase their ventilation rates during pile driving playbacks, indicating
a stress response to these impulsive sounds (Radford et al., 2016). Studies of free-ranging
responses of fish to sound disturbance are less common, and understanding whether re-
sponses observed in captivity are applicable to wild populations is not always clear. In a
promising approach for future studies, Hawkins et al. (2014) used echosounders to track
the movements of schools of free-ranging fish during pile driving sound playbacks; sprat
(Sprattus sprattus) schools were generally seen to disperse (horizontally), whereas mackerel

(Scomber scombrus) schools generally changed their depth during playback.

It is possible that sound disturbance of prey species may increase foraging opportunities
for predators, if prey become disorientated, or if schooling and anti-predator behaviours
are less efficient. The responses observed in this thesis do not provide any clear evidence
that this has occurred in this study; however, this aspect of predator-prey relationships
was not investigated in detail. Future research should investigate the movement patterns
(horizontal and vertical) of prey species during in-situ disturbance events, the prey capture
attempts of predators during disturbance, and the long-term population health of prey

populations that experience disturbance.

5.5.2 Movement models

Building on the work in this thesis, a useful extension for further work is in the field of
animal movement modelling. Discrete-time random walk models consider the movement
of individual animals as a sequence of movement steps and turn angles (Hooten et al.,
2017). Typically, these models are based on observations of these movement metrics over
regularly spaced time intervals. Due to ecological interest in modelling and estimating the
attraction of animals to particular landscape features (e.g. nests or haulout sites, feeding
grounds), the effects of spatial attraction have been incorporated into a variety of movement
models (e.g. McClintock et al., 2012). Movement models which also include the ability
to estimate the location of a repulsion centre, and its effect on movement parameters
such as steps and turns (e.g. Tracey et al., 2005) would be useful methods to apply to

future studies of behavioural disturbance. Continuous-time correlated random walks do not
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require regularly-spaced data observations, and instead model movement as a process on a
continuous time scale, e.g. by modelling the instantaneous velocity of the animal (Johnson
et al., 2008). As these approaches do not require interpolation (or other modification) of
the original recorded data to fit the modelling framework, they may provide additional
insights into fine-scale behavioural responses which may be lost if data were interpolated.
Another possible approach is the use of potential functions (Preisler et al., 2013); these may
prove useful for estimating the strength of different forces influencing animal movement and
improving understanding of how animals balance different benefits and risks as they move

through their environment.

Diving and flying animals move in three-dimensions. In the majority of animal movement
studies, and in the chapters of this thesis, the horizontal and vertical movement of animals
are considered separately. Both aspects of movement are part of the same fundamental
biological process, and considering these aspects separately may influence the inferences
made on both the behavioural states of animals and the overall levels of energetic ex-
penditure. This dichotomy between studies of vertical (diving or flying) movement and
studies of horizontal movement has likely been driven by previous technological limitations
allowing only one type of movement to be recorded thoroughly, and (more recently) by
the practical and statistical challenge of robustly integrating data recorded at different
temporal scales. One approach to this challenge is to incorporate both dimensions of the
data into the same discrete-time framework, by summarising or adjusting one of the data
streams so that both are available at the same temporal resolution. This approach can
increase the reliability of behavioural state classification and improve understanding of the
relationship between animal behaviour and environmental covariates (McClintock et al.,
2013, 2017). Another possible approach is the use of hierarchical hidden Markov models,
which can incorporate multiple time series of data recorded at different resolutions (Adam
et al., 2019). These models can also be used to estimate hierarchical behavioural states,
using the models to quantify both high-resolution (e.g. hourly) and low-resolution (e.g.
daily) patterns of behaviour (Adam et al., 2019; Leos-Barajas et al., 2017). More broadly,
there is a need for the development of statistical approaches which can efficiently model
the movements of animals through three-dimensional space; these approaches would be a
key step forward in examining the fine-scale interactions of animals with obstacles in their
environment (e.g. harbour porpoises and tidal turbines (Gillespie et al., 2021); marine
birds and wind turbines (Furness et al., 2013)).
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5.6 Concluding remarks

Understanding the behaviour of individual animals is a critical step in estimating the poten-
tial effects of human disturbance on wildlife populations. In this thesis, I have shown that
biologging devices present a powerful tool to do this, and that statistical approaches which
model the movement of individuals can provide quantitative and biological insights into
animal behaviour during these disturbance events. In particular, the application of these
methods to a harbour seal population exposed to pile driving activity improve our under-
standing of the movements and dive behaviour of individual seals during sound disturbance.
These results fill a key gap in environmental impact assessments, enabling future renewable
energy developments to predict the effects of offshore activities on animal behaviour, and
ensuring that decisions of development consent are supported by robust scientific infor-
mation. Overall, this thesis contributes the first in-depth study of the individual at-sea
behaviour of seals during an in-situ disturbance event, and provides advice and insights

for future studies pursuing this important area of research.
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Simulate seal tracks sealtrack_sim.R

Description
Simulate multi-state correlated random walks for seal movement, with optional attraction

and repel locations.

Usage
sealtrack sim(n, n_states, time res, tpm, repel tpm=NULL, switch_strength,
step_params, repel_step_params=NULL, turn_params, home=NULL,

attract_centres=NULL, repel _centre=NULL, repel_times=NULL)

Arguments

n the number of seal locations to simulate

n_states the number of seal movement behaviour states to simulate

time_res the time resolution of simulated data, specified as the time
gap (in minutes) between simulated locations

tpm a matrix containing the transition probabilities between the
states during normal behaviour

repel_tpm optional. The transition probability matrix between the
states during repel times

switch_strength a single number determining the likelihood of switching
from state 1 to state 2 as an attraction point becomes
closer, determined by a logistic function of distance. Larger
numbers increase switching.

Sstep_params a list with a numbered entry for the step parameters for
each state. Each state entry has a named list containing
mean and sd for a Gamma distribution, and corr (0-1) for
correlated movement.

repel_step_params same as step_params, but optional specification for step
parameters during repel times

turn_params a list with a numbered entry for the turn parameters for

each state. Each state entry has a named list containing
location (initial average movement direction, by default
set to 0) and rho (concentration parameter for wrapped

Cauchy distribution of turn angles).
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home a named list containing the location of the animal’s first
attraction centre (x and y coordinates), strength (attrac-
tion source strength, which affects movement direction),
and gamma_a (concentration constant for attraction, which
affects variability in movement direction)

attract_centres a numbered list of any additional attraction centres. Each
entry is a named list with coordinates x and y, and attrac-
tion parameters strength and gamma_a (see description for
home) for each attraction centre

repel_centre an optional named list containing distance (initial dis-
tance between seal and repel centre when generated),
strength (repel source strength, which affects movement
speed and direction), and gamma_r (concentration constant
for repel, which affects variability in movement direction)

repel_times an optional named list containing start and end (the start
and end time (in seconds) of the repel centre being active).

If this is unspecified a repel centre will not be simulated.

Output(s)

A dataframe containing simulated movement data, where each row has a recorded time,
simulated x and y location, and response indicator column (1/0). Key parameter values
used and additional outputs generated in simulation (e.g. step, turn, state, attraction/repel

strengths) are also saved for each timepoint.
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Simulate seal dives sealdive_sim.R

Description

Simulate multi-state seal dive biologging data, with optional behavioural response dives.

Usage

sealdive_sim(n, n_states, startstate, tpm, par, response_dives=NULL,
response_tpm=NULL, response_par=NULL, tagdivethreshold=1.5,
bottompercentile=0.85)

Arguments

n the number of seal dives to simulate

n_states the number of dive types (states) to simulate

startstate the initial dive state

tpm a matrix containing the transition probabilities between the
states during normal behaviour

par a numbered list containing the parameters describing the
dive metrics for each state. Each entry is a named list
containing shape, rate, and corr. shape and rate are
vectors containing the shape and rate parameters respec-
tively for a Gamma distribution, where each entry in the
vector is a different dive metric: (1) maximum dive depth
(metres), (2) duration of descent phase (seconds), (3) du-
ration of bottom phase (seconds), (4) duration of ascent
phase (seconds), (5) duration of post-dive surface interval
(seconds). corr is a 55 matrix containing the correlation
between each of the dive metrics.

response_dives an optional vector with two entries containing (1) the dive
number when the response starts and (2) the dive number
when the response ends. If this is unspecified a response
will not be simulated.

response_tpm an optional transition probability matrix for state switching
during the response dives

response_par an optional numbered list containing the parameters de-
scribing the dive metrics for each state during a response.

This should be specified as detailed in par.
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tagdivethreshold the minimum depth threshold (metres) at which dives begin
being recorded from the tag. This is used to calculate the
additional derived dive metrics of descent rate, ascent rate,
and proportion of dive in the bottom phase. Default: 1.5.

bottompercentile the proportion of the maximum dive depth used as a cutoff

for determining the bottom phase of a dive. Default: 0.85.

Output(s)

A dataframe containing simulated dive data, where each row is a dive. The columns are
divenum (dive number), max_dep (maximum depth of dive), dur_des (duration of descent
phase), dur_bot (duration of bottom phase), dur_asc (duration of ascent phase), dur_surf
(duration of post-dive surface phase), state (behavioural state), response (response indi-
cator, 1/0), total_divedur (sum of descent, bottom and ascent phases), total_eventdur
(sum of descent, bottom, ascent and surface phases), bottomthreshold (the dive depth
at which the bottom phase began for that dive), prop_bot (the proportion of the dive in
the bottom phase), des_rate (descent rate), asc_rate (ascent rate), time_start (time in
seconds at which descent phase started), and time_end (time in seconds at which surface

period ended).
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Calculate Mahalanobis distance for location data mdist _xy.R

Description

Calculate Mahalanobis distance for location data, with different user-specified options.

Usage

mdist_xy(data, inputparams, timecol, width, overlap=0, consec=FALSE,
cum_sum=FALSE, baseline_start=0, baseline_end=max(datal,timecol]),
baseline_cov=TRUE, baseline_upload=FALSE, baseline_upload.S,

baseline upload_data)

Arguments

data a dataframe containing animal locations and movement
metrics. Each row must contain a time reference (see
timecol).

inputparams a vector containing the column names of data with the
input parameters to use for the Mahalanobis distance cal-
culation

timecol the column name of data that contains the timestamp of
each observation (in seconds)

width the size of the time window (in minutes) to use for each
comparison

overlap the amount of overlap (in minutes) between sequential com-

parison time windows. Default: 0.

consec logical. If FALSE, Mahalanobis distance is calculated be-
tween sliding comparison windows and a fixed baseline. If
TRUE, Mahalanobis distance is calculated between a pair
of consecutive sliding windows. Default: FALSE.

cum_sum logical. If TRUE, Mahalanobis distance values are added

cumulatively over time. Default: FALSE.

baseline start start time (in seconds) of the baseline period. If not speci-
fied, it will be assumed to be 0 (start of record).
baseline_end end time (in seconds) of the baseline period, If not specified,

the entire dataset will be used as baseline.
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baseline_cov logical. If TRUE, the covariance matrix used in Maha-
lanobis distance calculations is calculated over the baseline
data only. If FALSE, the covariance matrix used is calcu-
lated over the entire dataset. Default: TRUE.

baseline upload logical. If TRUE, baseline data must be up-
loaded separately using baseline upload S and
baseline upload data If this is used then
baseline start and Dbaseline end are discarded.
Default: FALSE.

baseline_upload_S optional. The covariance matrix to use for the baseline pe-
riod. If this is provided then baseline_cov is discarded. If
this is missing and baseline upload=TRUE, the covari-
ance matrix will be calculated using the data uploaded by
baseline_upload_data.

baseline upload data optional. A dataframe of baseline movement data matching

the columns of data.

Output(s)
A dataframe containing t (time of comparison window in seconds) and dist (calculated

Mahalanobis distance value).
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Calculate Mahalanobis distance for dive data mdist_dive.R

Description

Calculate Mahalanobis distance for dive records, with different user-specified options.

Usage

mdist_dive(data, inputparams, starttimecol, endtimecol, width=1,
overlap=0, consec=FALSE, cum_sum=FALSE, baseline_start=0,
baseline_end=max(datal,timecol]), baseline_cov=TRUE, include_all=TRUE,
baseline_upload=FALSE, baseline_upload_S, baseline_upload_data,

max_gap_interdive=60%60, max_gap_consecwindows=60%*60)

Arguments

data a dataframe containing animal dive data and metrics. Each
row must be a dive and contain a time reference (see
starttimecol and endtimecol).

inputparams a vector containing the column names of data with the
input parameters to use for the Mahalanobis distance cal-
culation

starttimecol the column name of data that contains the starting time
of each dive observation (in seconds)

endtimecol the column name of data that contains the end time of
each dive observation (in seconds). This should include
any post-dive surface interval.

width the size of the time window (in number of dives) to use for
each comparison. Default: 1.

overlap the amount of overlap (in number of dives) between sequen-
tial comparison time windows. Default: 0.

consec logical. If FALSE, Mahalanobis distance is calculated be-
tween sliding comparison windows and a fixed baseline. If
TRUE, Mahalanobis distance is calculated between a pair
of consecutive sliding windows. Default: FALSE.

cum_sum logical. If TRUE, Mahalanobis distance values are added
cumulatively over time. Default: FALSE.

baseline_start start time (in seconds) of the baseline period. If not speci-

fied, it will be assumed to be 0 (start of record).
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baseline_end end time (in seconds) of the baseline period, If not specified,
the entire dataset will be used as baseline.
baseline_cov logical. If TRUE, the covariance matrix used in Maha-
lanobis distance calculations is calculated over the baseline
data only. If FALSE, the covariance matrix used is calcu-
lated over the entire dataset. Default: TRUE.
include_all logical. If TRUE, include all dives in “exposure” period
that overlap with any exposure. If FALSE, only include
dives that begin after the “exposure” begins. Dives that are
not included in exposure are considered baseline. Default:
TRUE.
baseline upload logical. If TRUE, baseline data must be up-
loaded separately using baseline upload S and
baseline upload data If this is used then
baseline start and baseline end are discarded.
Default: FALSE.
baseline_upload_S optional. The covariance matrix to use for the baseline pe-
riod. If this is provided then baseline_cov is discarded. If
this is missing and baseline upload=TRUE, the covari-
ance matrix will be calculated using the data uploaded by
baseline_upload_data.
baseline upload data optional. A dataframe of baseline movement data matching
the columns of data.
max_gap_interdive the maximum time gap allowed (in seconds) between
recorded dives within the same time window (between a
surface period ending and a new dive starting). Default: 1
hour.
max_gap_consecwindows the maximum time gap allowed (in seconds) between con-
secutive time windows. This is only applicable when
consec=TRUE. Default: 1 hour.
Output(s)
A dataframe containing t (time of window in seconds, midpoint), dist (calculated Maha-
lanobis distance), window2startdive (number of the first dive in the comparison window),
window2enddive (number of the last dive in the comparison window), t_start (start time

of the window, in seconds), and t_end (end time of the window, in seconds).
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Calculate movement metrics from location data __ get_speedheading.R

Description

For a sequence of animal location coordinates, calculate key movement metrics.

Usage
get_speedheading(data, time, locations_x, locations.y, speedmethod,

headingmethod, headingvarmethod, headingvartype, rar_location=NULL)

Arguments

data a dataframe containing raw animal location data. Each
row must contain a time-referenced location coordinate (see
time, locations_x, locations_y).

time the column name of data containing the timestamp of the
locations (in seconds)

locations x the column name of data containing the x-coordinate of
the location (easting in metres)

locations_y the column name of data containing the y-coordinate of
the location (northing in metres)

speedmethod logical: whether to calculate speed averaged over three lo-
cations (“average”), or relative to the previous location
only (“previous”; i.e. over two locations). If “average”
the estimated speed for location ¢ is the speed between lo-
cations t — 1 and ¢t + 1. If “previous” the estimated speed
for location ¢ is the speed between locations ¢ — 1 and ¢.

headingmethod logical: whether to calculate heading direction over three
locations (“average”), or relative to the previous location
only (“previous”; i.e. over two locations). If “average” the
heading direction at location ¢ is the average easting and
northing between locations t—1 and t+1. If “previous” the
heading direction at location ¢ is the easting and northing

between locations ¢ — 1 and ¢.
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headingvarmethod logical: whether to calculate heading variation averaged
over previous and future locations (“average”), or relative
to the previous locations only (“previous”). If “average”
the heading variation at location ¢ is the variation from
locations t — 1 to t + 1. If “previous” the heading variation
at location ¢ is the variation from locations t — 2 to ¢.

headingvartype logical: whether to calculate hearing variability as circular
variance in heading (“circvar”) or turn angle (“turnangle”)

rar_location optional. To calculate radial avoidance rate (rate at which
an animal moves away from a particular location; see Chap-
ter 3), provide a named list with x (x-coordinate of the

location) and y (y-coordinate of the location).

Output(s)

The original location dataframe with additional columns as follows: speed (speed between
locations, in m.s7!), acc (acceleration, positive or negative, in m.s2), absacc (abso-
lute value of acceleration, in m.s™2), easting (easting component of heading direction),
northing (northing component of heading direction), headingvar (heading variation, via

method specified by user in headingvartype), and (optionally) rar (radial avoidance rate).

218



Calculate dive phases and metrics from dive records ___ get_divephases.R

Description
For each dive, use interpolation between the recorded depths to calculate the phases of the

dive and derive key metrics.

Usage
get_divephases(divedf, depthlist, divedur, tagdivethreshold=1.5,
bottompercentile=0.85)

Arguments
divedf a dataframe containing raw dive data. Each row must be
a dive record.
depthlist a vector containing (in temporal order) the column names
of divedf with the recorded depth points (in metres)
divedur the column name of divedf which contains the dive dura-
tions (in seconds)
tagdivethreshold the minimum depth threshold (metres) at which dives begin
being recorded from the tag. Default: 1.5.
bottompercentile the proportion of the maximum dive depth used as a cutoff
for determining the bottom phase of a dive. Default: 0.85.
Output(s)

The original dive dataframe with additional columns as follows: dur_des (duration of
descent phase, in seconds), dur_bot (duration of bottom phase, in seconds), dur_asc (du-
ration of ascent phase, in seconds), bottompercentile (the proportion of the maximum
dive depth used to determine the bottom phase), bottomthreshold (the dive depth at
which the bottom phase began for that dive, in metres), maxdrecord (the maximum of the
depth points given in depthlist, in metres), des_rate (descent rate, in m.s™!), asc_rate
(ascent rate, in m.s™!), and prop_bot (the proportion of the dive time in the bottom

phase).
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Figure S1 Histogram of seal step lengths in metres (grey bars) with estimated state-dependent
distributions for each type of movement behaviour (solid lines) for individual pv42-291-12. Step
lengths were fit to a Gamma distribution.
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Figure S2 Histogram of seal turn angles (grey bars) with estimated state-dependent distributions
for each type of movement behaviour (solid lines) for individual pv42-291-12. Turn angles were fit
to a wrapped Cauchy distribution with mean zero.
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Figure S3 Original locations of each identified dive type (1-5). Each coloured square denotes
the count of the number of dives of that type within each 10 x 10 km grid square.
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Figure S4 Response detection rates for horizontal simulated responses, with the covariance ma-
trix calculated over all data for the simulated animal. Each dot is the response detection rate
(out of 500 simulations) for responses to centres of repulsion of different strengths (weak, strong),
durations (short, long), and initial distances (5, 15, 25 km; coloured dots). All simulations had 20
days of baseline data. Each Mahalanobis distance option is detailed in Table 2.6.
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simulated (b) dive data. (a) The original data are all recorded dives from 24 tagged harbour seals
in the UK. (b) The simulated data consist of 5000 simulated dives of each dive type.
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(b) The simulated data consist of 5000 simulated dives of each dive type.

226



(a) 1 2 3 4 5
300001 500004
6004 400001
1e+054
300001 200001 40000
< 400+
3 20000
5e+04 4
10000 200004
2001
10000
—— e e e 1 ——
0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00 . 1
Proportion of dive in bottom phase . 2
() 1 2 3 4 5 | E
500 lll 4
3001 3001 5
600 750 400+
. 200 200 300+
g 400+ 5004
(s}
@) 200
1001 2004 250 1001
100+
04 0- 04 04 0-

0.000.250.500.751.00  0.000.250.500.751.00  0.000.250.500.751.00  0.000.250.500.751.00  0.00 0.25 0.50 0.75 1.00
Proportion of dive in bottom phase

Figure S7 Histograms of proportion of dive in the bottom phase for each dive type (1-5) for
original (a) and simulated (b) dive data. (a) The original data are all recorded dives from 24
tagged harbour seals in the UK. (b) The simulated data consist of 5000 simulated dives of each
dive type.
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Figure S8 Response detection rates for simulated vertical responses, with the covariance matrix
calculated over all data for the simulated animal. Each dot is the response detection rate (out of
500 simulations) for responses of different strengths (coloured dots) and types: (a) Type 1: surface
dive; (b) Type 2: surface after a normal dive; (c) and (d) Type 3: travel. All simulations had 20
days of baseline data. Each Mahalanobis distance option is detailed in Table 2.11.
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Figure S9 Detected horizontal response 1. Prior to pile-driving, the seal is travelling south-west
past the wind farm. As pile driving begins, the seal increases its speed to ~2.5 m s~ (for reference,
99% of speeds measured for this individual were <1.65 m s~!), and continues to travel at high
speed away from the wind farm. All panels show 1 hour prior to, and 1 hour post-pile driving.
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Figure S10 Detected horizontal response 2. Prior to pile driving, the seal is meandering in a
northwards direction. During pile driving, the seal slows down and has a high variability in heading.
After pile driving ends, the seal turns around and begins travelling east away from the wind farm.
The top map panels show 3 hours before and after piling; the bottom movement metric panels show
1 hour before and after piling.
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Figure S11 Detected horizontal response 3. Prior to pile driving, the seal is milling south of the
wind farm. Near the start and end of the pile driving bout, there are sharp turns in heading. All
panels show 1 hour prior to, and 1 hour post-pile driving.
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Figure S12 Detected horizontal response 4. Prior to pile driving, the seal is travelling northwards
past the wind farm. During pile driving, there is a very high acceleration, from ~0.6 m s~! to
~1.6 m s~!, and an adjustment in heading. All panels show 1 hour prior to, and 1 hour post-pile
driving.
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Figure S13 Detected horizontal response 5. Prior to pile driving the seal is meandering near the
south-east end of the wind farm. There are no recorded GPS locations during the piling bout, but
immediately after piling ends the seal is recorded making very sharp turns (high heading variability).
The top map panels show 3 hours before and after piling; the bottom movement metric panels show
1 hour before and after piling.
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Figure S14 Detected horizontal response 6. Prior to pile driving, the seal is milling around
south of the wind farm. During and after pile driving, the seal speeds up, turns around, and travels
directly away from the wind farm. The top map panels show 3 hours before and after piling; the
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bottom movement metric panels show 1 hour before and after piling.
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Figure S15 Detected horizontal response 7. Prior to pile driving, the seal is travelling south-west,
away from the wind farm. As pile driving begins, the seal increases its speed to ~1.8 m s~ ! as it
approaches the haulout site. All panels show 1 hour prior to, and 1 hour post-pile driving.
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Figure S16 Detected horizontal response 8. For ~12 hours the seal had been milling or floating
(almost stationary) in approximately the same location. Immediately after pile driving ceases, the
seal accelerates very quickly and moves at ~1.3 m s~! away from the wind farm. The top map
panels show 12 hours before and 3 hours after piling; the bottom movement metric panels show 1
hour before and after piling.
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Figure S17 Detected horizontal response 9. For ~12 hours the seal had been milling or floating
(almost stationary) in approximately the same location. During high-energy pile driving, the seal
accelerates, with moderate heading variability, and begins to travel back towards the haulout site.
The top map panels show 12 hours before and 12 hours after piling; the bottom movement metric
panels show 1 hour before and after piling.
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Figure S18 Detected horizontal response 10. During pile driving, the seal is travelling unusually
fast directly past the wind farm in a north-east direction. All panels show 1 hour prior to, and 1
hour post-pile driving.
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Figure S19 Detected horizontal response 11. Prior to pile driving the seal is travelling north-
east past the wind farm. Halfway though the piling bout (approximately when the piling becomes
continuous, rather than intermittent ramp-up), the seal has a short burst increase in speed and
deviates from its original heading. All panels show 1 hour prior to, and 1 hour post-pile driving.
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Figure S20 Detected horizontal response 12. Prior to pile driving the seal is moving at ~0.8—
1.4 m s~! past the wind farm. During pile driving, the seal rapidly accelerates to ~2.0 m s~! and
moves away from the wind farm. All panels show 1 hour prior to, and 1 hour post-pile driving.
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Figure S21 Detected horizontal response 13. Prior to pile driving the seal is travelling through
and then past the wind farm. During pile driving, the seal stops moving, with a high heading
variability recorded. After pile driving, the seal continues travelling. The top map panels show 12
hours before and 12 hours after piling; the bottom movement metric panels show 1 hour before and
after piling.
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Figure S22 Detected horizontal response 14. Prior to pile driving, the seal is travelling north
towards the wind farm. At the end of the pile driving bout, the seal makes a deviation in heading.
The top map panels show 12 hours before and 12 hours after piling; the bottom movement metric
panels show 1 hour before and after piling.
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Figure S23 Detected horizontal response 15. Prior to pile driving the seal is heading south
past the wind farm. During piling, the seal slows down suddenly and has an increase in heading
variability. As pile driving ends, the seal heads north-west towards and into the wind farm. The
top map panels show 3 hours before and 3 hours after piling; the bottom movement metric panels
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Figure S24 Posterior (black, solid line) and prior (blue, dotted line) densities for the parameters
in the final dose-response model with no covariates.

Table S1 Estimated response probabilities against single-strike sound exposure level (SELss) of
pile driving. Shown are the mean and 95% credible intervals in 5 dB increments, estimated from
posterior samples of the dose-response model.

Probability of response

SELss Mean  2.5% 97.5%
(dB re 1uPa’-s) quantile quantile
115 0.000 0.000 0.000
120 0.006 0.001 0.018
125 0.015 0.003 0.041
130 0.028 0.006 0.070
135 0.046 0.012 0.105
140 0.070 0.023 0.147
145 0.101 0.039 0.197
150 0.142 0.064 0.256
155 0.193 0.099 0.323
160 0.255 0.146 0.398
165 0.328 0.208 0.481
170 0.411 0.284 0.570
175 0.503 0.376 0.660
180 0.602 0.483 0.748
185 0.704 0.602 0.830
190 0.806 0.730 0.900
195 0.905 0.864 0.957
200 1.000 1.000 1.000
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Figure S25 Posterior (black, solid line) and prior (blue, dotted line) densities for the parameters
in the maximal model with all candidate covariates.

246



@) (b)

Females Males

55

545

54

535 Count Count
@ ' 10000 g 6000
2 53 7500 3 4000
§ 5000 E

2000

52.5 2500

52

51.5

51

0051152 25 3 o T N L
: 0 051 15 2 25 3
Longitude Longitude

Figure S26 GPS locations by sex of 24 tagged harbour seals using The Wash in 2012 (January—
May). Coloured grids denote the number of received GPS locations in each 10 x 10 km grid cell for
females (a) and males (b).
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Figure S27 The modelled single-strike sound exposure levels (SELss, dB re 1uPa® - s) were
compared to measurements from recordings made in the study area of 2,902 piling strikes. Predicted
SELss are shown against measured SELss. Recordings were made from a moored sound recorder
9 m below the water surface at a distance of 4,900 m from piling, and boat-based recordings at 1 m
below the water surface and distances of 1,000-9,500 m from piling. Figure from supplementary
material of Whyte et al. (2020).
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Figure S28 (a) Example of the relationship between distance and predicted single-strike sound
exposure level (SELss, dB re 1 pPa? s, median across depth). Shown is an example of the predicted
SELss for four trajectories (north, south, east, west) spanning out from one of the piling locations
(LS22). (b) Example of the relationship between piling blow energy, reference SELss, and the
estimated scaled SELss. All piling strikes are modelled at a reference piling energy of 1000 kJ and
then scaled by the blow energy to estimate the true SELss.

248



Appendix D: Supplementary
material for Chapter 4

249



pv42-162-12 pv42-165-12 pv42-194-12 pv42-221-12
60 1Ak 60 1 60 60
2 z z z
£ A £ £ £
Epn{®a E 404 E 40 E 401
5 |A 5 5 5
© A © © ©
§zo- gzo- §2o- §20-
5 5 5 5
2] ‘ 7] 7] ]
0+ 01 01 0+
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Dive dur (mins) Dive dur (mins) Dive dur (mins) Dive dur (mins)
pv42-266-12 pv42-277-12 pv42-288-12 pv42-289-12
60 601w A 60 60
2 A A A
E 40 E 401 E 401 E 401
C s s s
=} > > =]
= = = =
Q Q Q Q
8 20+ G 201 S 201 S 201
£ £ € k=
> > =3 =3
%] %] %] (%]
04 0{ K 0+ 0+
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Dive dur (mins) Dive dur (mins) Dive dur (mins) Dive dur (mins)
pv42-290-12 pv42-291-12 pv42-292-12 pv42-293-12
60 1A 60 1 60 60
N z  |A 2 2 A
£ £ £ £
E 40 E 4014 E 401 E 401
5 E] E] 5
Q [0 Q Q
S 20{A S 204 S 204 S 201 A
R € € S Aa
%) o |A %) )
014 014 01 0{A
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Dive dur (mins) Dive dur (mins) Dive dur (mins) Dive dur (mins)
pv42-294-12 pv42-295-12 pv42-316-12 pv42-317-12
60 60 60 60
2 2 |a 2 2
E 4] E 401 E 401 E 401
c s s s
= > =3 =3
= © =] ©
8 201 8 201 8 201 8 201
© © © ©
£ £ € €
> > =3 =3
2] %] £ %] n -
04 01 0+ 0+
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Dive dur (mins) Dive dur (mins) Dive dur (mins) Dive dur (mins)
pv42-318-12 pv42-319-12 pv42-320-12 pv40-268-12
60 60 60 60
@ @ @ w0 A
£ £ £ £ A
E 401 E 401 E 401 E 401 A
5 5 E] E]
© © © ©
%20- §2o- §20- §20-
€ € € £ |aA
@ @ @ 7 A
0+ 01 0+ 0+
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Dive dur (mins)

Dive dur (mins)

Dive dur (mins)

Dive dur (mins)

Figure S29 Scatterplot of dive duration and surface duration for each dive in baseline data (blue
dots) and identified behavioural responses (black triangles). Analyses were conducted using groups
of three sequential dives. Shown here are the 20 seals (panels) which had encounters with pile
driving during the study period.
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Figure S30 Scatterplot of proportion of the water column used and maximum dive depth (not
used in analyses) for each dive in baseline data (blue dots) and identified behavioural responses
(black triangles). Analyses were conducted using groups of three sequential dives. Shown here are
the 20 seals (panels) which had encounters with pile driving during the study period.
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Figure S31 Scatterplot of proportion of the dive in the bottom phase and descent rate for each
dive in baseline data (blue dots) and identified behavioural responses (black triangles). Analyses
were conducted using groups of three sequential dives. Shown here are the 20 seals (panels) which
had encounters with pile driving during the study period.




Table S2 Estimated dive response probabilities against single-strike sound exposure level (SELSss)
of pile driving. Shown are the mean and 95% credible intervals in 5 dB increments, estimated from
posterior samples of the dose-response model.

Probability of dive response

SELss Mean  2.5% 97.5%
(dB re 1uPa? - s) quantile  quantile
115 0.000 0.000 0.000
120 0.007 0.002 0.018
125 0.017 0.004 0.040
130 0.031 0.009 0.068
135 0.050 0.017 0.102
140 0.075 0.030 0.143
145 0.107 0.049 0.192
150 0.148 0.076 0.248
155 0.199 0.113 0.312
160 0.260 0.162 0.384
165 0.332 0.225 0.463
170 0.413 0.302 0.547
175 0.503 0.393 0.634
180 0.599 0.497 0.721
185 0.700 0.613 0.804
190 0.802 0.738 0.880
195 0.903 0.868 0.946
200 1.000 1.000 1.000
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Figure S32 Posterior (black, solid line) and prior (blue, dotted line) densities for the parameters
in the final vertical dose-response model with no covariates.
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Figure S33 Posterior (black, solid line) and prior (blue, dotted line) densities for the parameters
in the maximal model for vertical responses with all candidate covariates.
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Figure S34 Estimated dose-response relationships for vertical responses in harbour seals as a
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Figure S35 HMM pseudo-residuals, QQ-plots, and ACF plots for an example seal (pv42-221-12).
Each row corresponds to the three observation metrics used in the full HMM (with piling and
bathymetry covariates): (1) dive duration, (2) surface duration, and (3) proportion of the dive in
the bottom phase.
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Figure S36 Fitted state-dependent distributions of dive duration (seconds) for all 20 seals. Shown
in each panel are the estimates from a 3-state HMM with bathymetry and pile driving as covariates
on the transition probabilities.
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Figure S37 Fitted state-dependent distributions of surface duration (seconds) for all 20 seals.
Shown in each panel are the estimates from a 3-state HMM with bathymetry and pile driving as
covariates on the transition probabilities.
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Figure S38 Fitted state-dependent distributions of proportion of dive in the bottom phase for
all 20 seals. Shown in each panel are the estimates from a 3-state HMM with bathymetry and pile
driving as covariates on the transition probabilities.
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Simulation study of Mahalanobis distance for beaked whale DTAG data
Katherine Whyte, Stacy DeRuiter, Catriona Harris, Len Thomas

As part of a 6-month leave-of-absence from my PhD, I worked at CREEM on the project
described briefly below. This work was funded by the Centre for Research into Ecological
and Environmental Modelling (CREEM, University of St Andrews) and the Atlantic Be-
havioral Response Study (Duke University).

Overall Aim
To assess the performance of Mahalanobis distance in detecting behavioural responses from
high-resolution accelerometer tag data (e.g. DTAGs) on Cuvier’s beaked whales (Ziphius

cavirostris).

Simulating beaked whale DTAG data

We developed and used a simulator to generate data resembling that recorded from a
DTAG, based on values observed in real data (Aguilar Soto et al., 2006; DeRuiter et al.,
2013; Tyack et al., 2006). Data were simulated by:

1. Simulating a sequence of dive types (deep or shallow), via a first-order Markov chain.

2. For each dive of each dive type, simulating the durations of the dive phases (descent,

bottom, ascent, surface), from a multivariate normal distribution.

3. For each dive phase, simulating the high-resolution tag time series data, via a multi-

variate autoregressive process.

We simulated data for baseline (normal) behaviour and behavioural responses to human

disturbance.

Simulation study design

Data were simulated containing different types of response (avoidance, foraging disruption),
different durations of response (short: 2 dives; long: 10 dives), and different strengths of
response (weak, strong). An example of a simulated response is shown in Figure S40.
Each of the eight simulated datasets contained 500 whales, and a control dataset with no
behavioural response was also simulated. Various implementations of Mahalanobis distance
based methods were then applied to the simulated datasets, to compare performance in
detecting the simulated responses. Specifically, we modified the time window size, window
overlap amount, location of the reference window, method of covariance matrix calculation,
and the duration of baseline data. From this, we were able to quantify the false positive

and detection rates of the method, and compare implementation options.
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Figure S40 Example of a simulated beaked whale response. This example is a strong avoidance
response, where the whale was simulated to have reduced variability in heading, reduced variability
in pitch, and increased mean ODBA.
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Figure S41 An example of the false positive rate (proportion of control simulations in which a
response was detected) against baseline data duration. Each dot represents the results from one
of the different Mahalanobis distance implementation options, and annotations denote the mean
detection rate for each baseline duration. In this example, the covariance matrix was calculated
using all of the simulated data for each animal.

Key findings
False positives
In general, the false positive rate (proportion of times a response was detected when none
was present) was high when there was a short baseline duration; however, this declined

with increasing baseline duration (Figure S41).

Different types of behavioural response

As may be expected, simulated responses which were stronger or longer in duration were
generally detected more reliably. Overall, the simulated foraging disruption response had
lower detection rates than the avoidance response. This method aims to detect extreme
behaviours, and therefore it may be more challenging to detect reductions in behaviours,

reduced behavioural variability, and the absence of behaviours.
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Figure S42 Example of response detection rates for an avoidance response when (a) the covari-
ance matrix is based on the full dataset and (b) the covariance matrix is from the baseline data
only. Shown are the detection rates for each Mahalanobis distance implementation option (x-axis)
and different types of simulated response (colourscale). The average detection rate for each group is
denoted by the horizontal coloured lines. This example is from simulations with 9 hours of baseline
data.

Different Mahalanobis distance implementations

Using the covariance matrix on the baseline data only (compared to the entire dataset)
generally increased the response detection rate, but had a limited effect on the false pos-
itive rate (Figure S42). Response detection rates were lower when using a pair of con-
secutive sliding windows, and the simulation study highlighted that there is a need to
carefully choose an appropriate time window size (Figure S43). Large time windows may
oversmooth data and lose information on the response, and small time windows may not
contain enough information to detect a response. The amount of window overlap used ap-
peared to have a negligible effect on the performance of the method (Figure S43). Overall,
the patterns observed were consistent across different types, strengths and durations of

simulated responses.
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Figure S43 Example of response detection rates for different Mahalanobis distance implementa-
tion options: window size (x-axis), window overlap proportion (colourscale), and whether a pair of
consecutive sliding windows was used (shape). This example is from simulations of a weak, short,
avoidance response with 9 hours of baseline data.
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ABSTRACT

Understanding the potential effects of pile driving sounds on marine wildlife is essential for
regulating offShore wind developments. Here, tracking data from 24 harbour seals were used to
quantify effects and investigate sensitivity to the methods used to predict these. The Aquarius
pile driving model was used to model source characteristics and acoustic propagation loss (16
Hz-20 kHz). Predicted cumulative sound exposure levels (SELcums) experienced by each seal
were compared to different auditory weighting functions and damage thresholds to estimate
temporary (TTS) and permanent (PTS) threshold shift occurrence. Each approach produced
markedly different results; however, the most recent criteria [Southall et al., 2019] suggests that
TTS occurrence was low (17% of seals). Predictions of seal density during pile driving (from
[Russell et al., 2016]) were compared to distance from the wind farm and predicted single-strike
sound exposure levels (SELss), by multiple approaches. Predicted seal density significantly
decreased within 25 km or above SELss (averaged across depths and pile installations) of 145 dB
re 1 uPa?-s. However, there was substantial variation in SELss with depth and installation, and
thus in the predicted relationship with seal density. These results highlight uncertainty in

estimated effects, which should be considered in future assessments.
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. INTRODUCTION

In order to meet ambitious climate change targets, the demand for renewable energy is increasing
and bringing substantial industrial activity to marine environments. In particular, the number,
size, and capacity of offshore wind farms has been growing rapidly and is expected to continue
to increase (Bailey et al, 2014; Breton et al, 2009). This expansion has been particularly
prevalent in European waters, where there are currently more than 4,500 grid-connected offShore
wind turbines across eleven countries, equivalent to a capacity of 18,499 MW (WindEurope,

2019).

In predicting and assessing the environmental impact of these offshore wind farms on the
surrounding marine life, one of the key uncertainties is the potential effects of underwater
construction noise. Of particular concern are the effects of high intensity sounds produced during
pile driving, where brief impulsive sounds with source levels of up to 250 dBre 1 pPa@ 1 m
(peak-peak) can be produced every 1-2 seconds (Bailey et al, 2010). The at-sea movements of
harbour seals (Phoca vitulina) overlap with many areas of current and proposed development
(Russell et al., 2014; Sharples et al., 2012), and so there are concerns that these sounds may
damage hearing, elicit overt behavioural responses, and/or exclude seals from areas of their
natural habitat (Hastie et al., 2015; Russell et al., 2016; Thompson et al., 2013). To accurately
predict the effects of pile driving and determine how these could be mitigated, it is critical to
understand the nature and severity of these potential effects and the sound levels at which they

occur.

Estimating the effects of anthropogenic noise on marine mammal hearing can be challenging.

Using available data on hearing sensitivities and hearing damage across species, Southall et al.
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(2007) derived estimates of the minimum noise exposure required for the onset of temporary
(TTS) and permanent (PTS) threshold shifts in hearing sensitivity. They also generated a series
of frequency-weighted hearing sensitivity curves for different functional groups of marine
mammals (M-weightings). For pinnipeds underwater, TTS was predicted to occur at M-weighted
24-hour cumulative sound exposure levels (SELcum) of 171 dB re 1 puPa?'s and PTS at 186 dB
re 1 pPa?-s for impulsive sounds such as pile driving. These weighting functions and TTS/PTS
thresholds were subsequently updated in 2019, incorporating the most recent scientific
mformation on hearing abilities and auditory damage for each marine mammal species group
(Southall et al., 2019). In general for pmnipeds, these new weightings were slightly less
conservative. Pinnipeds were also subdivided into two groupings (phocids, otariids); for phocid
pinnipeds in water, the SELcum thresholds for impulsive sounds are now estimated to be 170
and 185 dB re 1 uPa?'s for TTS and PTS respectively. It should be noted that for seals the
weighting functions and TTS/PTS thresholds for impulsive sounds described n Southall et al
(2019) are the same as those provided by the US National Marine Fisheries Service (NMFS,
2016, 2018). Faulkner et al. (2019) simulated how these two different criteria may alter the
predicted effect zones from a variety of modelled noise sources, comparing the relative
differences between Southall et al. (2007) and Southall et al. (2019). For phocids, they concluded
that the more recent weighting functions are likely to substantially reduce the estimated range of

PTS risk, e.g. from approximately 10 km to 2 km for a theoretical scenario nvolving pile driving

24-hour SELcums at offshore wind farms in the North Sea (Faulkner et al, 2019).

A limited number of studies have investigated the effects of pile driving sounds on harbour seal
hearing and behaviour. Recent playbacks of broadband piling sounds (~500-800 Hz, single-

strike sound exposure level (SELss) of 152 dB re 1 uPa?-sat 1 m depth, 2 m from the source)
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were found to cause onset of TTS at unweighted SELcums of around 192 dB re 1 uPa?'s in two

harbour seals in captivity (Kastelein et al, 2018). Small TTSs (2—4 dB) occurred in that
experiment and hearing recovered within 60 minutes. However, in the wild, animals may
encounter pile driving sounds at higher received levels than that tested therein. Two studies
(Hastie et al., 2015; Russell et al., 2016) mvestigated the predicted sound exposure and at-sea
behaviour of tagged harbour seals near pile driving activity at an offShore wind farm. Hastie et
al. (2015) calculated predictions of auditory injury in each tagged seal as a result of exposure to
piling sounds. The analysis showed that half of the tagged animals received predicted M-
weighted 24-hour SELcums that would cause PTS (based on Southall et al. (2007)). In addition,
there was a significant reduction in seal density up to 25 km from the wind farm during periods
of piling activity, relative to non-piling periods (Russell et al. (2016)). The magnitude of the
observed reduction decreased with increasing distance from the piling location, and recovery
time was relatively short, with seal density returning to pre-piling levels within two hours of the

cessation of piling.

Although both of these findings represented an important step forward in our understanding, the
direct application of these results in Environmental Impact Assessments (EIAs) may be
challenging. For example, since estimates of piling sound exposure (Hastie etal., 2015) were
completed, updated auditory weighting functions and thresholds for the onset of hearing damage
have been published (Southall et al., 2019). Further, to contextualise predicted changes in density
over space, Russell et al. (2016) illustrated how seal density changed in relation to distance from
the middle of the wind farm and in relation to predicted SELs (averaged across all pile
mstallations) for the loudest and quietest parts of the water column. However, although not

explicitly stated, both of the relationships (distance and SEL) presented in Russell et al. (2016)
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represent the expected change in seal density for cumulatively increasing zones around pile
driving. For example, the presented change in seal density at 20 km represents the change for all
spatial cells within 20 km of the wind farm, and seal density at 40 km represents the change for
all cells within 40 km. These results could be misinterpreted and such cumulative predictions are
not particularly appropriate for the finer scale quantitative analyses often required to inform
ElAs. The predicted change i seal density for any given location also reflected a wide range of
predicted SELs (across depths and pile installations). To address these potential issues and make
the results more applicable to EIAs, we use the seal tag data from the previous studies to (1)
compare how estimates of SELcum and auditory damage may differ when different weighting
functions are applied to them; (2) quantify the relationship between predicted seal density change
and distance/SEL for both cumulative and annulus zones; (3) compare five different approaches
to combining SELs across pile installations and depths; and (4) investigate the robustness of

these relationships.
II. METHODS

A. Seal tag data

In January 2012, harbour seals were caught on or near haulout sites on intertidal sandbanks in
The Wash, south-east England, UK. To record the movements and dive behaviour of seals
around active pile driving, all animals were fitted with a SMRU Instrumentation GPS telemetry
tag (hereafter GPS/GSM tags; SMRU Instrumentation, University of St Andrews, Fife, UK).
Seals were first anesthetized using Zoletil® or Ketaset® in combination with Hypnovel®, and

GPS/GSM tags were attached to the fur at the back of the neck using a fast-setting two-part
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epoxy adhesive or Loctite® 422 Instant Adhesive. All seal handling and procedures were carried

out under Home Office Licence 60/4009.

Out of the 25 deployed tags in The Wash, three tags collected data for less than two days and so
were excluded from further analyses. Two seals from a concurrent study approximately 200 km
to the south (in the Thames) moved into The Wash during pile driving, and so were included in
the dataset. This resulted in a total sample size of 24 individuals (11 males, 13 females) (details

provided in Electronic Supporting Information?).

The tags provided GPS locations approximately every 15 minutes, as well as nine depth data
points per dive and records of all haulout times. The data were cleaned and erroneous locations
removed based on thresholds of residual error and the number of satellites. For more details of

the data collection and study site, see Hastie et al. (2015) and Russell et al. (2016).

B. Pile driving

Operational data on pile driving at Lincs offSshore wind farm were provided by Centrica ple.
Throughout the period of the 2012 seal tag deployment, 27 monopiles were installed at Lincs by
pile driving between 28" January and 11t May 2012 (Table I). A total of 77,968 piling strikes

occurred during the study with a mean strike energy of 1202 (SD =613) kJ. For further information

on the pile driving, see Hastie et al. (2015).

Opportunistic recordings of pile driving were available from two sources: an autonomous moored
sound recorder (DSG-Ocean Acoustic Datalogger; Loggerhead Instruments, Sarasota, FL, USA)
at ~9 m depth and a range of 4,900 m from the pile driving location, and a series of boat-based
recordings at ~1 m depth between 1,000 and 9,500 m from pile driving (using a Reson TC 4014

hydrophone with a Briiel and Kjaer amplifier (type 2635) and a calibrated Avisoft Ultrasound gate

7
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416 digital acquisition system at a sample rate of 192 kHz)(for further information, see Hastie et
al. (2015)). These recordings covered the full range of pile driving blow energies and were

compared to the estimates made using the acoustic models.

C. Acoustic modelling

To estimate the sound levels resulting from the piling across the study area, a series of acoustic
modelling approaches were carried out. The Aquarius pile driving model (for detailed
description of the model and its validation, see de Jong et al. (2019)) was used to model source
characteristics and acoustic propagation loss. Note that this is a different sound propagation

modelling approach to the one used by Hastie et al. (2015) and Russell et al. (2016).

The Aquarius model uses information on the properties of the hammer and the pile (Table I) to
determine a source excitation spectrum using the model described by Deeks and Randolph
(1993). This source spectrum is integrated into a range dependent propagation model (normal
mode based adiabatic propagation model using the KrakenC (Porter, 2001) model to compute the
propagating modes) to predict acoustic propagation loss across the study area, incorporating
nformation on seabed characteristics and water depth. Here, the bathymetry was set to Mean Sea
Level (MSL) and the modelled receiver resolution was chosen equal to 1 m, which leads to a
smooth solution with depth such that linear interpolation can be used to obtain the received

levels at intermediate depth. The seabed was assumed to be homogenous, with properties
corresponding to medium sand (grain size parameter ®=1.5) obtained from table 4.18 in Ainslie
(2010). This was the most common value in the considered modelling area, using data from the
EMODnet Bathymetry Data Portal. The properties of the water column were set at a

compressional sound speed of 1,500 ms™! and a density of 1,024 kg/m®, and the Thorp attenuation
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model was used for volume attenuation (Ainslie, 2010; Sehgal et al., 2009). It should be noted
that the effects of losses due to sea surface scattering and absorption were not considered for the

purposes of the modelling.

Depth explicit model predictions were output as estimated single strike sound exposure levels
(SELss,ret, dB re 1 uPa?-s) at a reference strike energy of 1,000 kJ across a series of spatial grids
within the study area at ~279 m resolution (Longitude: from -1 to 3 degrees with a 15 s
resolution, Latitude: from 52 to 55 degrees with a 9 s resolution). Individual grids were produced
for each 2.5 m depth bin (from 2.5 to 107.5 m depth); sound levels below the seabed were
indicated by a “NaN” value. Model predictions included estimated SELss with three different
frequency weightings applied to them; these were (i) unweighted, (i) Pinnipeds-in-Water M-
weighted (Mpw) (Southall et al., 2007), and (ii)) Phocids-in-Water weighted (PCW) (Southall et
al,, 2019). Frequencies from 16 Hz to 20 kHz were modelled, using third octave centre frequency

bands.
D. Acoustic exposure of the tagged seals

The tag data consisted of a series of time-stamped GPS locations when the seal was at the water
surface. Further, during each dive, the tag provided dive depths at nine points distributed equally
in time throughout each dive. As seal depths were derived from pressure sensor readings on-
board the tag, they were measured relative to the water surface, leading to a potential mismatch
with the origmal bathymetry data, which were relative to chart datum at the Lowest
Astronomical Tide (LAT). Water depths relative to Mean Sea Level (MSL) were derived by

applying the United Kingdom Hydrographic Office Vertical OffShore Reference Frame (VORF)
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Lowest Astronomical Tide (LAT) correction (Iliffe etal, 2013) for the study area. These water

depths at MSL were used for the acoustic modelling and corresponding received levels for seals.

During periods of pile driving, tracks of seals were linearly interpolated between successive GPS
locations to provide estimated locations of seals at the estimated time-of-arrival of sound from
each pile driving strike (assuming a sound speed of 1,500 ms™!). Similarly, dive depths at each of
these iterpolated locations were estimated through linear interpolation between successive
measured dive depths. Together, these provided the estimated 3D locations of each seal at the

time it received the sound from all pile driving strikes for each piling location.

Each seal 3D location was matched to the corresponding spatial grid cell and the closest 2.5 m
depth bin (from 2.5 to 107.5 m depth) in the acoustic model, and the received SELssref Was
identified based on propagation loss estimates at the associated location and depth for each
individual pile driving pulse. Information on the blow energy of each strike was then used to
scale the modelled reference SELssyer (at 1,000 kJ strike energy) to obtain final estimates of
received SELss at each seal 3D location. This was carried out through energetic (broadband)
scaling of the SELss spectrum using Equation 1 to calculate the value that is added to the

modelled SELss,ref

Equation 1.

E
SEL s = SELgqrop + 10 10g197—

ref

where E is the energy (kJ) of the pile driving strike, Erer is the reference strike energy (1,000 kJ),
SELss ref 1s the modelled single strike sound exposure level at the reference strike energy, and

SELss is the resulting scaled single strike sound exposure level (dB re 1 uPa?-s).

10



218  E. Predictions of auditory damage

219  Auditory damage (in the form of hearing threshold shifts) was predicted for each tagged seal
220 using three approaches. These were based on: 1) a threshold based on results from previous

221  studies of TTS onset in harbour seals as a result of exposure to pile driving sounds (Kastelein et
222 al, 2018) (unweighted); 2) the approach developed by Southall et al. (2007) for evaluating the
223 likelihood of TTS and PTS in pinnipeds exposed to anthropogenic sound (Mpw); and 3) the

224  updated approach described by Southall et al. (2019) for evaluating the likelihood of TTS and
225  PTS in phocid seals exposed to anthropogenic sound (PCW). Previously, Hastie et al. (2015)
226  used approach 2) to estimate the potential for auditory damage in tagged seals as a result of

227  exposure to pile driving sounds during the installation of the Lincs offshore wind farm.

228  For each seal, estimated received SELss were summed over each 24-hour period (Julian day)
229  containing pile driving to calculate the 24-hour SELcum under each method (unweighted, Mpw,

230 and PCW):

231 Equation 2.

c SELy
232 SELcum = 10log,, 10 10

n=1
233 where SELcum is the cumulative sound exposure level of all N piling strikes within the 24-hour
234 period, and SEL; is the received SELss for each piling strike n. For the purposes of estimating
235  auditory threshold shifts, an ‘effective quiet’ value of 124 dB re 1 puPa (Finneran, 2015) was
236 assumed (the highest SPL of'a sound that will neither produce significant TTS nor retard
237  recovery from TTS from prior exposure to a higher level). Each 24-hour SELcum was then

238  compared to published TTS and PTS onset thresholds under each approach (Table II). It should

11
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be noted that, although the Mpw and PCW weightings are based on exposure during a 24-hour
period, the unweighted criteria (Kastelein et al., 2018) is based on the threshold at which TTS

was observed at two hearing frequencies (4 and 8 kHz) in a 6-hour experimental setting.
F. Changes in seal density in relation to pile driving

Russell et al. (2016) generated population-level predictions of the at-sea density of seals during
piling and breaks in piling. The movements of individual seals in response to piling were not
modelled directly. These population-level predictions were based on analyses of 23 of the tagged
harbour seals (individual pv42-194-12 was excluded as in one trip it travelled much further than
the other individuals, leading to issues in specifying the accessible spatial area for all seals- see
Russell et al. (2016) for details). The analyses were restricted to return trips from haulouts within
The Wash and comprised a use-availability design within a generalised estimating equation
(GEE) framework. This approach was used as it enabled the study to consider the entire
accessible area for seals m The Wash, and model seal density in an area with a complex
coastline. The GEE approach also enabled generation of uncertainty estimates robust to the
presence of residual autocorrelation within individuals. Once the optimal models for seal density
during piling and non-piling periods were fit, the differences in these two distributions on a5 x 5
km resolution (867 spatial cells) were quantified, and predictions of percentage of the at-sea
population in each cell were made. A parametric bootstrap from the GEE model was used to
calculate the 95% confidence intervals (CIs) for both the predicted density (percentage of the at-

sea population) and predicted percentage change in density (non-piling to piling).

Here, we compare how the predicted percentage change in seal density (between non-piling and

piling) relates to both the distance from the centre of Lincs wind farm and the predicted received

12
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SELss at each cell location. Predictions could not be made relative to the exact piling locations
as, for the GEE model, seal location data were pooled across piling events and so contained
several different piling locations. In Russell et al. (2016), the presented relationship was in
cumulative zones of increasing distance: each increment represents all cells equal or less than
that distance, e.g. the predicted change in seal density value at 40 km represents the change i all
cells within a distance of <40 km from the wind farm. Here, we also quantify how this
relationship changes in annulus zones with 5 km increments: each increment represents the
previous 5 km, e.g. the predicted change in seal density value at 40 km represents the mean for
all cells with distances of 35 to 40 km. We also quantify the relationship between predicted seal
density and received SELss for both cumulative and annulus approaches. In cumulative zones,
the predicted change in density at 135 dB re 1 uPa?s represents the change in all cells with a
received level of > 135 dB re 1 pPa?s. In annulus zones, the predicted change in density at 135
dB re 1 pPa?s represents the change for all cells with estimated SELss of 135 to 140 dBre 1
uPa?-s. In both the distance and SELss relationships, the first zone (that closest to the wind farm)

is the same between cumulative and annulus approaches (e.g. 0—5 km (annulus) is the same as <
5km (cumulative), 175-180 dB re 1 pPa?-s (annulus) is the same as >175 dB re 1 uPa’'s
(cumulative)). The approaches differ in how the subsequent estimates are calculated, with the
annulus approach looking at seal density in each distance/SELss increment, and the cumulative
approach increasing the zone size each time by adding in seal densities at larger distances/lower
SELss. The cumulative predictions were repeated here for clear comparison with the annulus
zones, as previous results in Russell et al. (2016) used a different acoustic propagation model. By
both annulus and cumulative approaches, it was necessary to consider estimated received levels

across piling events and depths. Therefore, the outputs of acoustic models for each of the 27
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piling locations had to be combined. To investigate the relationship between percentage change
in density and estimated SELss, we used five approaches to combining SELss across piles and

depths:
1. Mean SELss (averaged across depths and the 27 piles) (Fig. 2);
2. Lower 95% CI of SELss across piles (averaged across depths) (Fig. S2)
3. Upper 95% CI of SELss across piles (averaged across depths) (Fig. S3)
4. SELss at the quietest depths (averaged across piles) (Fig. S4)
5. SELss at the loudest depths (averaged across piles) (Fig. S5)

For each of these approaches, we considered a single blow energy of 2,000 kJ (the maximum
energy reached in each piling event; Equation 1), and all SELss were averaged onto a 5 x 5 km
grid. Measurements by Nedwell et al. (2011) of ambient noise in The Wash during construction
of Lincs wind farm estimated a median ambient sound level of 118 dB re 1 pPa?-s, and so any
estimated SELss below this value were assigned to 118 dB re 1 pPa®s. Following Russell et al.
(2016), a parametric bootstrap of the GEE model was used to calculate 95% confidence mtervals
(Cls) for each zone; these Cls represent the uncertainty resulting from the distribution model (i.e.

they do not incorporate any uncertainty in received sound levels).

All additional analyses (to that conducted for Hastie etal (2015) and Russell etal (2016)) were
carried out using R (R Core Team, 2019) within packages maptools (Bivand et al., 2017), raster

(Hiymans, 2017), rgdal (Bivand et al., 2014) and sp (Pebesma et al., 2005).
III. RESULTS
A. Acoustic exposure of the tagged seals
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Comparison of the measured SELss from the recordings of pile driving showed that median
absolute error in SELss across all measured piling blows was 4 dB re 1 uPa?'s (Fig. S6). In
general, errors were higher for the boat-based measurements made close to the surface (median
error = 14 dB re 1 pPa?-s), compared to those from the moored recorder (median error =3 dB re

1 uPa?-s).

During the seal tag deployment, the maximum estimated unweighted SELss at individual seals
varied from 113 to 173 dBre 1 uPa’-s. The maximum SELss (173 dB re 1 pPa?:s) occurred for
seal ‘pv40-268-12’ (Fig. 1) at a range of 4.7 km and a dive depth of 23.6 m. For further details of

acoustic exposure of each tagged seal, see Electronic Supporting Information (Fig. S1).
B. Predictions of auditory damage

The use of each weighting function resulted in markedly different SELcum estimates from pile
driving (Table III). In general, unweighted SELcum were highest (as it is unweighted none of the

sound is fitered) and PCW-weighted SELcum (Southall et al, 2019) were lowest.

Predicted unweighted SELcum from pile driving varied between tagged seals (Table III) with
maximum SELcum for each seal ranging from 153 to 200 dB re 1 pPa?-s. It was predicted that
five (21%) of the seals did not receive any SELss above the assumed level of effective quiet (124
dB re 1 uPa). Three (13%) of the seals exceeded unweighted sound levels (192 dB re 1 uPa?-s)
previously shown to result in TTS in harbour seals exposed to pile driving sounds (Table II). The
closest approach distance to pile driving for each of these three seals was between 3.9 and 5.0

km (Table III).

Predicted Mpw-weighted SELcum (Southall et al.,, 2007) varied between individual seals (Table

IT) with maximum SELcum (Mpw) ranging from 150 to 197 dB re 1 pPa?-s. Five (21%) of the

15



327

328

329

330

331

332

333

334

335

336

337

338

339

340

seals did not receive any SELss (Mpw) above the assumed level of effective quiet (124 dB re 1
pPa). In total, four (17%) of the tagged seals were predicted to receive SELcum (Mpw) that
exceeded the estimated PTS onset threshold of 186 dB re 1 uPa?-s for pinnipeds in water

exposed to pulsed sounds, and twelve (50%) were predicted to exceed the TTS onset threshold of

171 dB re 1 uPa?-s (Table II). For the individuals estimated to exceed PTS thresholds, closest

approach distances ranged from 3.9 to 6.9 km, and for TTS from 3.9 to 17.0 km (Table III).

Predicted maximum PCW-weighted SELcum (Southall et al., 2019) ranged from 134 to 179 dB

re 1 pPa?-s (Table IIT). Ten (42%) of the seals did not receive SELss (PCW) above the assumed
level of effective quiet (124 dB re 1 uPa). None of the tagged seals were predicted to receive
SELcum (PCW) that exceeded the estimated PTS onset threshold (185 dB re 1 uPa?-s), and four
(17%) were predicted to exceed the TTS onset threshold (170 dB re 1 pPa?-s) for phocids in

water exposed to impulsive sounds (Table II). For each of these four seals estimated to exceed

TTS thresholds, closest approach distances to piling ranged from 3.9 to 6.9 km (Table III).
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FIG. 1. (Color online) Example ofthe estimated acoustic exposure from pile driving at one of
the tagged harbour seals (ID#: pv40.268.12). The figure shows the estimated locations of the seal
(top panel) and the dive depth (middle panel) of the seal at the times it received the sound from
each piling strike. The points in both panels have been colour coded by estimated unweighted
single strike Sound Exposure Levels (SELss; dBre 1 puPa?'s). The lower panels show the
estimated cumulative sound exposure levels (SELcum; dBre 1 uPa?-s)to the tagged seal for
each 24 hr period, including the unweighted SELcums, M-weighted (Mpw) SELcums (Southall et
al, 2007), and PCW-weighted SELcums (Southall et al, 2019). The estimated onset thresholds

for TTS (dashed line) and PTS (solid line) are shown for each weighting,
C. Changes in seal density in relation to pile driving

During piling, seal density was predicted to significantly decrease (defined as when the upper CI
is a negative percentage change in density) within 25 km of the wind farm site by both cumulative
(Fig. 2(a)) and annulus (Fig. 2(b)) approaches. This decrease was detected i all 5 km distance
bands (annulus) out to 25 km (Fig. 2(b)). There was no significant change in density detected
beyond this distance, considering either cumulative or annulus zones. The predicted change in
density (and confidence mtervals) of the cumulative approach (Fig. 2(a)) converged towards zero
as the largest zone considered encompassed almost the entire study area (all cells within 100 km

of the wind farm) and so there would be no overall change in density (percentage of seals).

Seal density was also predicted to decline with increased received sound levels (Fig. 2(c)(d)).
Using the first metric (mean SELss across depths and piles), the cumulative approach revealed
significant declines when all cells > 140 dB re 1 pPa?'s are considered (Fig. 2(c)); however, when

each received level zone is considered separately (annulus), declines are only detected in each 5
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dB zone above 145 dB re 1 pPa?'s (Fig. 2(d), Table V). There was substantial variation in the
predicted SELss (Figs. S2-5(c)) with depth and pile considered, and thus in the resulting
percentage change in density-SELss relationship (Fig. S2-5(a)(b)). Due to the variation in these
relationships, there was also variation in the SELss threshold above which a significant decline in
seal density would be predicted (Table IV). Indeed, considering the lower 95% CI across piles
(averaged across depths) revealed no clear relationship with seal density for annulus zones (Fig.
S2). In contrast, the upper 95% across piles revealed a significant decrease in density for all
annulus zones from 160 dB re 1 pPa?'s (Fig. S3). Considering the quietest (Fig. S4) or loudest
(Fig. S5) depths separately, there was a significant decrease in density in all annulus zones from
145 and 150 dB re 1 pPa?'s respectively. In general, the annulus approaches did not predict
significant declines in seal density until higher received SELss levels than the cumulative approach
(Table IV). For further information on the variation in predicted density between different piling

events and water depths, see Electronic Supporting Information.
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IV. DISCUSSION AND CONCLUSIONS

This study used tracking data from 24 harbour seals near a wind farm construction site
(Hastie et al., 2015; Russell et al., 2016) to explore four questions in relation to the sensitivity
of predicted sound exposures, auditory damage, and changes in seal density to a range of
commonly used techniques and assumptions. (1) We found marked differences mn the
numbers of seals predicted to suffer auditory damage depending upon the choice of weighting
functions and thresholds (between 13 — 50%, and 0 — 17% of seals were predicted to exceed
TTS and PTS thresholds, respectively). (2) Predictions of seal density during pile driving, as
a function of both distance and predicted received levels, differed between the use of
cumulative versus annulus zones. We recommend that future studies use annulus zones, and
impact assessments use the results from the annulus predictions (Table V). (3 & 4) The
relationship between changes i seal density and predicted received level varied markedly
depending on how variations in pile installation and water depth were accounted for. These
findings have implications for the use of results from such studies (Hastie et al., 2015;
Russell et al., 2016) by policy makers and regulators. In particular, we have found that the
choice of method can lead to different estimates of effects and therefore different

recommendations for future regulation.

The use of each weighting function resulted in marked differences in estimated SELcum on
harbour seals. Specifically, unweighted SELcums from pile driving were highest (up to 200
dB re 1 uPa?s), Mpw-weighted SELcums (Southall et al., 2007) were intermediate (up to 197
dB re 1 uPa?'s), and PCW-weighted SELcums (Southall et al., 2019) were lowest (up to 179
dB re 1 uPa?s). This is to be expected given the differences in the each of the weighting
functions. The approach developed by Southall et al. (2007) was designed as relatively
conservative mitial guidance and the Mpw weighting function was therefore flat across the

hearing range frequencies of each functional species group. For seals exposed to pile driving
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sounds i the current study, this resulted in SELcums (Mpw) that are only ~1-3 dB lower than
unweighted values. More recent guidance uses information from new auditory damage
studies to develop a series of updated weighting functions for each functional species group
(Southall et al.,, 2019). This resulted in SELcum (PCW) levels that were ~20-35 dB lower

than unweighted values.

Correspondingly, the differences in acoustic exposures between the Mpw and PCW weighting
functions led to variation in the percentage of seals predicted to receive SELcums exceeding
published TTS (50 vs. 17 %) and PTS (17 vs. 0 %) thresholds. Using an unweighted
threshold, a predicted 13% of individuals exceeded values associated with TTS; no PTS
thresholds are available for unweighted pulsed sounds. These results from individual seals
exposed to sound broadly reflect the conditions simulated in Faulkner etal (2019), with the
Southall et al. (2019) criteria resulting m markedly lower effects ranges for auditory damage

from pile driving sounds.

These weighting- function specific percentages are lower than previous predictions of
auditory damage from pile driving sound exposure. Specifically, using the same seal tag data
to that analysed here, Hastie et al. (2015) predicted maximum 24-hour SELcum (Mpw) values
ranging from 171 to 195 dBre 1 uPa?-s for individual seals; 50% of seals were predicted to
exceed the PTS onset threshold (compared to 17% here) and all (100%) exceeded the TTS
threshold (compared to 50% here). The difference between these results was due to the
different sound propagation approaches used, highlighting the clear sensitivity of predicted
acoustic exposure and the associated threshold shifts, to the assumptions of commonly used

propagation models.

The acoustic modelling approach used here predicts the effects of strike energy and
bathymetry, and takes into account more information on the environment and pile driving

source (compared to Hastie et al, (2015)). Whilst this reduces uncertainty, there are still
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potential sources of variation which are not taken into account. Pile penetration depth can
affect the dynamic behaviour of the pile and so could affect the sound produced (de Jong et
al, 2019). Here, we assume a homogenous medium sand seabed and a constant water depth
at mean sea level. Although the majority of the study area is of this sediment type, variation
i this could increase uncertainty i predictions of received level and associated effects on
animals, especially for the lower frequencies modelled (< 1 kHz). Assuming a constant water
depth is a common approach for acoustic modelling. However, for areas with a strong tidal
cycle, it is possible that variation in propagation conditions over the tidal cycle (and
associated water depths) could be considerable. Investigation mto this variation across tidal
cycles would be a useful avenue for future research, although whether it would be
computationally feasible to integrate this into individual impact studies is unclear. The
uncertainties associated with the Aquarius modelling approach are discussed further in de
Jong et al. (2019). Comparisons of the model estimates with a series of measurements from
opportunistic boat-based hydrophones and a moored recorder suggests that the error in model
estimates is approximately 4 dBre 1 uPa?‘s. The boat-based recordings made near the water
surface (~1 m) all measured lower SELss than the model predictions for the shallowest depth
bin (2.5 m). Whilst not a formal validation, this comparison highlights the potential
uncertainty of received levels near the surface, and the performance of the model for
estimating near surface piling noise (although the comparison is only made above the
modelled depths). Received levels near the surface are highly variable due to interference
patterns, sound speed profile ducts and waves, and measurements are likely to be sensitive to
environmental conditions such as wind and wave activity. The measurements from the
moored recorder at ~9 m below the surface provided a close match to the model predictions.
The conditions at these depths are more representative of the majority of the water column, as

variability in propagation conditions is much less.
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Here we extended the potential utility of the results from Russell et al. (2016) by presenting
changes in seal density as a function of annulus zones of distance and five metrics of
predicted received level Using annulus distance zones confirmed significant decreased
density up to 25 km from the centre of the windfarm (as found using cumulative distance
zones; Russell et al. (2016)). To compare overall seal distribution between piling and non-
piling (a binary comparison), it was necessary to generate one received level per cell (across
all 27 pile nstallations and water depths). Russell et al. (2016), using cumulative zones,
predicted a significant decrease in seal density from received levels (averaged across all
installations) above 140 — 155 dB re 1 pPa?-s, based on the quietest and loudest part of the
water column. Here, we show these levels are affected both by the sound propagation model
used (130 — 140 dB re 1 pPa?'s for quietest-loudest depths, cumulative), and the use of
annulus rather than cumulative zones (145 — 150 dB re 1 pPa?'s for quietest-loudest depths,
annulus) (Table IV). Examining the variation in SELss across pile installations (95 % Cls)
revealed substantial variation in the level of significant decrease in density; indeed only for
the upper 95% CI could a significance level be quantified (Table IV). Annulus zones
(especially at larger distances/lower received levels) show wider confidence intervals for
changes i density than for cumulative zones. This is due to the increasing sample size
associated with the increasing size of cumulative zone; the change will converge on zero
change in percentage density as the cumulative zones encompass an increasing proportion of
the study area. Additionally, the received levels at which there is a significant predicted effect
on seal density are lower for the cumulative approach. The cumulative method always
includes the zones of highest exposure (and potential effect on behaviour) and so this likely

enables the overall density change to be detected further from the wind farm.

Here, we illustrated how the predicted SELss associated with significant decreases in seal

density varies across pile installations and depth. However, there are other sources of
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variation that we did not account for. For instance, we only considered the average maximum
piling energy reached over all piling events (2,000 kJ) and not the received levels from each
piling strike with potentially different sequences of piling energies. There may also be
changes in the seafloor between piling sites and potentially equipment changing the source
spectrum of different piling strikes. Linking population level responses to a particular sound
level necessitates averaging over a wide range of possible situations, including different
external conditions (e.g piling ramp-up sequence, time of day), and differences between and
within individual animals (e.g behavioural state, previous exposure history). These
differences may increase variability in predicted responses. Considering only the average
(population-level) response makes it challenging to identify factors which might make
animals more or less responsive to sound, information which could be used in future

assessments of noise impacts.

In summary, we use tracking data on wild harbour seals exposed to pile driving sounds to
update quantitative estimates of effects on seal hearing and behaviour. The findings of Hastie
et al. (2015) and Russell et al. (2016) remain amongst the few studies quantifying the effects
of pile driving on seals; as such, they are widely used in EIAs. While we recognise the
contribution these findings make, it is important that researchers, regulators, policy makers,
and industry recognise the inherent limitations associated with studies predicting auditory
damage and population level redistribution. Auditory damage in marine mammals is a rapidly
evolving field of research (Kastelein etal, 2018; Southall etal, 2019), and this current study
demonstrates the importance of updating the predictions as new information becomes
available. It also illustrates the sensitivity and limitations of predictions made with commonly
used acoustic propagation models. We recommend future studies, where possible, carry out a
spatially diverse set of acoustic measurements to calibrate and hence reduce the uncertainties
associated with the acoustic source and propagation modelling. These acoustic measurements

should be used to monitor noise levels during construction and help characterise the variation
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in sound produced from different strike energies. Efforts should be made to validate sound
propagation models in the environment and conditions they are proposed to be used in, for
both impact assessments and scientific studies. In particular, these measurements should
focus on the expected location and conditions (depth, habitat) of the study population.
Underwater noise monitoring is often a requirement of consent for offShore wind farm
projects and as such, should enable model verification across a large range of environments
and pile types. Researchers should also endeavour to publish updated predictions of auditory
damage following Southall et al. (2019). A clear avenue for future work would be to validate
these types of predictions through the collection of auditory threshold information pre- and
post- exposure to pile driving; this could potentially be carried out on wild seals using
auditory evoked potential measurements (Wolski et al., 2013) or in a captive environment
using controlled exposures and psychophysical methods (e.g. Kastak et al. (2005); Kastelein

et al (2012)).

Population-level redistribution studies are a key first step in determining the presence and
magnitude of potential effects, and the time to recovery (to pre-disturbance distribution).
Researchers should make their findings as applicable as possible for use by stakeholders (e.g.
using annulus rather than cumulative zones in quantitative EIA analyses). In particular,
relating changes in density to distance from a source can improve understanding of the
potential mmplications of avoidance (in terms of collision risk (e.g. tidal turbines), barrier
effects and loss of habitats or resources). However, there are a number of important caveats
associated with population level redistribution studies. For example, it is not clear whether
these changes in density are a result of more animals leaving the area, less new animals
entering the area, or a combination of both. Such studies necessarily combine multiple
potential disturbance events and animal responses, and here we showed that these also

encompass a wide range of potential received levels.
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With developments of tracking technology and on-animal long-term sound recordings (e.g.
Mikkelsen etal (2019)), information on individual behaviour and sound exposure is rapidly
improving. Analytical tools (e.g. DeRuiter etal (2013); Quick et al. (2017)) to model such
data mean that studies of responses to sound are no longer restricted to considering
population-level distribution patterns. A useful avenue for future research would be to
investigate how individual seals respond to sound exposure. Studying behaviour of
individuals may provide greater insight into the mechanisms behind the population-level
patterns seen and enable us to quantify dose-response relationships taking nto account the
variability between individuals. This will ultimately improve efforts to extrapolate and model

effects at the population level.
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ENDNOTES

I'See supplementary material at [URL will be inserted by AIP] for further plots of estimated

sound exposure, seal density, acoustic measurements, and details of tagged individuals.
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TABLES

TABLE 1. List of parameters used for the percussive pile driving source modelling.

Parameter Value
Pile diameter 5.2 metres
Wall thickness 58.35 mm*

Pile material properties

Range of strike energies
Hammer type

Ram mass

Anvil mass

Contact stiffness
Frequency range modelled

*estimated using API equation:

D (diameter) = 5,200 mm

t (thickness) = 6.35 + D/100 = 58.35 mm
Material: Steel

Density p: 7,850 kg/m?®

Elasticity E: 210 GPa

Compressional sound speed cp: 5,172 m/s
Poisson ratio v: 0.3

54 t0 2,035 kJ

MHU 1900S

95 ton

31 ton

20 GPa

16 Hz to 20 kHz
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TABLE II. List of thresholds used to estimate auditory damage in harbour seals exposed to
pile driving sounds. Shown are the cumulative sound exposure levels (SELcum, dB re 1
puPa2-s) estimated to cause temporary (TTS) or permanent (PTS) threshold shifts in hearing,
using three different methods of weighting sound frequencies. The Mpw and PCW weightings
are based on exposure during a 24-hour period, whereas the unweighted threshold is based on

observed TTS in a 6-hour experimental setting,

Frequency weighting method TTS PTS Reference
threshold  threshold
Unweighted 192 - Kastelein et al. (2018)
M, weighted 171 186 Southall et al. (2007)
(M-weighted, Pinnipeds in Water)
PCW weighted 170 185 Southall et al. (2019)

(Phocids in Water)
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714  TABLE III. Summary of the closest distance to pile driving (km) and the maximum

715  estimated 24-hour cumulative sound exposure level (SELcum; dB re 1 uPa?-s) for each
716  tagged seal, including the unweighted SELcum, Mpw weighted SELcum (Southall et al.,
717  2007), and PCW weighted SELcum (Southall etal, 2019). The asterisk (*) highlights

718  SELcums exceeding onset thresholds for TTS and double-asterisk (**) for those exceeding
719  onset thresholds for PTS (please note there are no PTS thresholds for the unweighted

720  SELcums).

721
Sealreference  Closestdistance to Unweighted M,y weighted PCW
number piling (km) weighted
pv40-268-12 3.9 194 * 191 ** 174 *
pv40-270-12 40.4 - - -
pv42-162-12 9.3 184 182 * 165
pv42-165-12 6.9 191 189 ** 170 *
pv42-194-12 26.9 172 170 -
pv42-198-12 29.9 - - -
pv42-220-12 34.2 - - -
pv42-221-12 25.3 166 163 134
pv42-266-12 249 154 152 -
pv42-277-12 4.7 200 * 197 ** 179 *
pv42-287-12 38.7 - - -
pv42-288-12 15.7 170 169 148
pv42-289-12 27.5 - - -
pv42-290-12 16.9 176 174 * 155
pv42-291-12 14.0 177 175 * 158
pv42-292-12 34.8 153 150 -
pv42-293-12 17.0 176 174 * 156
pv42-294-12 30.7 159 157 -
pv42-295-12 11.3 187 185 * 167
pv42-316-12 5.8 186 184 * 165
pv42-317-12 17.0 185 183 * 164
pv42-318-12 13.8 184 182 * 164
pv42-319-12 21.7 166 164 -
pv42-320-12 5.0 194 * 192 ** 176 *

722
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724

725

726

727

728

729
730

731
732

TABLE IV. Summary of estimated single strike sound exposure levels (SELss, dB re 1

uPa?-s) of pile driving, above which a significant decline in seal density is predicted. Five

approaches to combmning SELss across piling events and depths are shown, alongside

previously published results. Two approaches of summarising corresponding seal density

estimates over space are calculated: annulus or cumulative zones (both in 5 dB increments).

Approach

Annulus Cumulative
Mean (averaged across depths and piles)
(1) Mean 145 140
Comparison across piles (averaged across depths)
(2) Lower 95% CI of piles No clear relationship 145
(3) Upper 95% CI of piles 160 150
Comparison across depths (averaged across piles)
(4) Quietest depth 145 130
(5) Loudest depth 150 140
Russell et al. (2016) (averaged across piles)
Quietest depth - 140
Loudest depth - 155
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