South West of England Regional Development Agency

Wave Hub Appendix I to the Environmental Statement

June 2006

Subtidal Benthic Survey of the Wave Hub: Interim Report.

Report to Halcrow Group Limited

Precision Marine Survey Limited

15th June 2006

Precision Marine Survey Ltd Church Farm, Main Street, Thorngumbald, Hull HU12 2NE UK

Tel: ⁺44 (0)1482 711395 or (0)1964 624423

Fax/Tel: ⁺44 (0)1964 623352

E-mail: <u>nigel@precision-marine.co.uk</u> or dave@precision-marine.co.uk

Web site:WWW.precision-marine.co.uk

Author(s): N. Proctor

Report: PM002/06/06-I

PRECISION MARINE SURVEY LTD

Marine Surveyors and Environmental Consultants

Halcrow Group Limited

Subtidal Benthic Survey of the Wave Hub: Interim Report

15th June 2006 Reference No: PM002/06/06-I

For and on behalf of Precision Marine Survey Limited
Approved by:
Signed:
Position:
Date:

This report has been prepared by Precision Marine Survey with the skill and attention to detail as set within the terms of the Contract with the client.

This is a confidential report to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such parties rely on the report at their own risk.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

TABLE OF CONTENTS

TAE	BLE OF		NTS	I								
1.	Intro	ODUCTIO	N 1	ł								
2.	METH 2.1. 2.2. 2.3. 2.4.	ODOLOG Genera Subtida Field Ba Laborat 2.4.1. 2.4.2. 2.4.3. 2.4.4.	GY 3 Il Survey Requirements 3 al Benthic Survey 3 ased Rapid Assessment 4 tory Analysis 4 Sorting 4 Taxonomic Identification 5 Biomass 5 Laboratory Rapid Assessment 6	3344555								
	2.5.	Particle	e size analysis (PSA) and Loss on Ignition (LOI)6	3								
3.	RESU	JLTS	7	7								
	3.1.	Sedime	entary Overview7	7								
	3.2.	Biotope	es7	7								
		3.2.1.	SS.SMX.OMx. overlain by SS.SCS.CCS.Blan7	7								
		3.2.2.	SS.SMX.OMx. overlain by SS.SCS.CCS.PomB									
			& SS.SCS.CCS.MedLumVen	3								
	3.3.	Subtida	al Benthic Communities)								
4.	Disc	USSION.		2								
5.	5. References											
Apr	PENDI	× 1		5								

1. INTRODUCTION

Precision Marine Survey Limited (PMSL) have been commissioned by Halcrow Group Ltd to evaluate the subtidal benthic communities within the revised Wave Hub deployment area and along the offshore section of the cable route. The original deployment area and cable route was surveyed by Fugro Survey Limited during October and November 2005.

Due to inclement weather and poor sea states throughout May 2006, offshore survey works were delayed until the end of the month, when PMSL were able to mobilise to the site in order to carry out the subtidal benthic survey and epifaunal assessment. The survey schedule is shown in Table 1.

Date	Action	Wind & Sea State
29 th May 2006	Prepare for survey mobilisation	North Westerly force 4 – 5 Sea state – 2.5m swell
30 th May 2006)	Mobilisation to Newlyn	North Westerly force 5 – 6 Sea state – 2.5m swell
31 st May 2006	Travel to survey area and commence survey	North Westerly force 4, occasionally force 6 at first Sea state – 1.5m swell
1 st June 2006	Complete Survey and return to Newlyn	Westerly Force 3 – 4, becoming variable Sea state – 0.7m swell
1 st /2 nd June 2006	Return to Hull	N/A
2 nd June 2006	Demobilise	N/A

Table 1. Survey Schedule

The vessel employed to carry out the survey was the MFV Valhalla, temporarily based in Newlyn during the summer, but its home port is Brixham. The vessel is a 20m stern trawler and both the master and crew are familiar with the area, although due to the hard nature of the seabed they rarely fish within the site or adjacent waters, preferring to fish south towards and beyond the Scilly Isles.

This report outlines the methods used during the survey and within PMSL's laboratory. The results set out in this report are based on a rapid assessment of the samples on board the survey vessels with the results verified under laboratory conditions. This approach allows the biotopes of the surveyed area to be classified and described in the context of those present in the wider area as identified by Fugro Survey Ltd. Fully quantitative analysis of all the samples will subsequently be undertaken and the methodology that will be adopted is

described in this report (it should be noted that at the time of writing, seven of the samples have been fully analysed.

2. METHODOLOGY

2.1. General Survey Requirements

Ten benthic stations were established within the survey area with two replicates taken at each station, producing a total of 20 subtidal benthic samples. Due to the coarse nature of the seabed sediments, a 0.1m² Hamon grab was employed to ensure sufficient material was collected at each sampling station.

Station	Latitude	Longitude	No of replicates	Depth (m)	Survey area
Bst 1	N 50 22 24.8	W 5 37 29.4	2	30	Deployment
Bst 2	N50 22 18.3	W5 36 26.8	2	30.9	area
Bst 3	N50 21 52.4	W5 37 13.0	2	31.2	
Bst 4	N50 20 53.8	W5 37 05.6	2	30.5	
Bst 5	N50 21 25.4	W5 36 29.1	2	27.8	
Bst 6	N50 22 51.8	W5 36 24.5	2	31.7	
Bst 7	N50 21 06.5	W5 35 49.6	2	29	
Bst 8	N50 20 16.5	W5 37 29.2	2	28.4	Cable Route
Bst 9	N50 19 40.1	W5 37 17.7	2	21.5	
Bst 10	N50 18 57.9	W5 37 08.0	2	19.8	

Table 2. Subtidal Benthic Stations (WGS 84 Decimal Degrees)

2.2. Subtidal Benthic Survey

At each pre-determined sampling station the 0.1m² Hamon grab was lowered to the seabed and the resulting sample recovered. To ensure adequate material was retained for analysis, sample volumes were checked prior to the grab sample being accepted with the sediment sample measured by volume. Any sample containing coarse shelly sands/gravel that did not attain a volume of 10 litres was rejected. Similarly, samples comprising hard substrata e.g. broken shell, rocks, cobble or gravel were rejected if a sample volume of 6 litres was not achieved. When samples were within these limits, each sample was photographed (digital image) and sub-sampled for subsequent Particle Size Analysis (PSA) and Loss On Ignition determination (LOI). Replicate samples (replicate B) were checked against the original (replicate A) sediment type and rejected if dissimilar. Approximately 50ml of sediment was removed from the sample and stored in a pre-labelled sealable plastic bag in cool, dark conditions, the remainder of the sample was placed into a sample container prior to a rapid assessment of fauna present and subsequent sample processing.

Two replicate grab samples were taken for macrofaunal analysis at each station with a single PSA sample at each station as per the client's specification. A full survey log was maintained throughout the survey detailing time of sampling, position (DGPS), station and station number (replicate), water depth, physical characteristics of the sample, digital image number (cross referencing (QA)) and presence of any other relevant features. Sample processing was undertaken on a sequential basis utilising a nested sieving technique. Each acceptable sample was removed from the Hamon grab and placed into a hopper and sieved onboard through a 5mm and 1mm sieve in order to separate large sediment types and reduce damage to invertebrates. Following a rapid assessment of the sieved residues the samples were gently back-washed into sealable containers and borax buffered 4% formosaline solution was added as a fixative. Each sample was labelled clearly on the lid and an additional waterproof label placed in the container, e.g. Halcrow/Wave Hub/May06/Bst3/A for Client-survey, date, station number and replicate.

2.3. Field Based Rapid Assessment

To enable biotopes to be assigned, a rapid assessment was carried out following sieving, and prior to the sample being fixed. A 10-minute period was set to remove as many faunal organisms as could be identified under a magnifying lens. The full sample was examined as a monolayer under water in the sample box, by eye under a fluorescent bench light and 1.5x illuminated magnifier. The fauna derived from this process was retained and stored in an appropriately labelled container, preserved and stored for verification, obvious taxa were provisionally identified and enumerated.

2.4. Laboratory Analysis

A single person undertook the sample sorting, conducting all the sieving, sorting work and sample description. A second member of staff carried out standard sorting quality control. Similarly, a single person carried out the identification of the sorted fauna. A second member of staff carried out standard identification quality control. A standard sample tracking procedure is followed throughout the analysis period.

All members of the taxonomic analysis and data manipulation staff have at least 10 years marine biological experience with wide range of experience in the field of benthic sample analysis and interpretation.

2.4.1. SORTING

Each sample was sieved in freshwater and then rinsed with running tap water through a nest of 20cm diameter 5mm and 1mm stainless steel sieves. The sieve contents were backwashed over a white tray to catch any potential spillage, into pre-labelled 10 litre plastic storage buckets. A borax buffered 4% formo-saline solution containing Rose Bengal vital stain was then added to the samples. The samples were well mixed and stored at a constant temperature of 10°C for at least 48 hours to ensure adequate staining and preservation, shaking once during the period.

After this, each sample was again washed through a through a nest of sieves, with the smallest mesh aperture of 1mm, to remove the preservative and partition the sample for ease of sorting. The residue from each sieve was then gently washed into white trays. Water was added to the tray and the contents agitated. Immediately after agitation, the light fraction was decanted to another tray. This procedure may be repeated up to 3 times, and each tray of light fractions examined as a sub-sample of the heavy fraction.

The trays are marked with the appropriate sample code (relating to the Client, date, specific site, sample and replicate no.). All fractions were then examined as a monolayer under water in white trays, both by eye under a fluorescent bench light and 1.5x illuminated magnifier. The fauna derived from this process is retained and stored by group in appropriately labelled containers, preserved and passed on for identification. Each tray would be check sorted by another member of staff.

2.4.2. TAXONOMIC IDENTIFICATION

The procedure for the identification of the sample material was as follows:

Identification is carried out using Olympus SZ40 zoom microscopes with 10X and 20X eyepieces, giving a maximum magnification of up to 80X. An additional 2X objective can occasionally be used to increase the potential magnification to 160X. Olympus BX41 compound microscopes are used for further magnification, up to 800X.

Identification of infaunal samples is to the lowest possible taxonomic level (i.e. species), during identification, all individuals are initially separated into families, with part animals being assigned to families where possible. The macrofaunal animals are identified to species level using standard taxonomic keys, low and high power stereoscopic microscopes and dissection, when necessary, for identification. Incomplete animals without anterior ends are not recorded as individuals to be included in the quantitative dataset. However, they were identified where possible and recorded as present. Similarly, motile and colonial sessile epibenthic taxa and meiofauna may only be recorded as present and not included within the infaunal quantitative data set.

Fish species not identified in the field will be identified back in the laboratory using Wheeler, (1969) and Whitehead *et al* (1989). Regular cross-reference identification would be carried out by the projects manager Mr Nigel Proctor as part of the standard QA procedure. Each sample residue will be described textually with the residue retained for possible further analysis and AQC. All fauna will be retained under the standard codes for 2 years or returned to the clients representative for further analysis and AQC should this be required.

The taxonomic literature used is essentially as given in Rees et al (1990) and reporting nomenclature will use Howson, C.M. & Picton, B.E., 1997.

2.4.3. BIOMASS

Biomass analysis will be performed by wet weight (tissue blotted) and carried out for individual species in each sample. Each taxa are placed on blotting paper for 30 seconds, to allow absorption of preservative into the blotting paper, following this time period the individuals are placed on the microbalance and the reading taken. The macrofaunal

organisms are then placed back in their respective pots and stored. Biomass calculations include all identifiable fragments and calculated to \pm 0.0001g, all biomass data will be recorded in grams or fractions thereof.

2.4.4. LABORATORY RAPID ASSESSMENT

Those faunal organisms removed during the on-board rapid assessment were checked for accuracy of identification, using the protocol described in section 2.4.2. These fauna were then checked against the fauna derived from the laboratory sorted sample, to ensure that they were representative of the station and formed the dominant taxa.

2.5. Particle size analysis (PSA) and Loss on Ignition (LOI)

The particle size analysis will be carried out by a combination of dry sieving and laser particle size analysis (for the fraction<1mm) using a Malvern Mastersizer 2000. Prior to analysis, the sediment samples will be split with one sub-sample being passed through a 1mm sieve to remove the larger size classes of sediment. The <1mm fraction of the sample analysed using the Malvern Mastersizer 2000 and the >1mm fraction put aside.

The second sub-sample will be oven dried (85°C) for 24 hours, weighed, then passed through a nest of sieves (8mm, 5.5mm, 4mm, 2mm, 1.4mm & 1mm). The residue in each sieve, including the <1mm fraction will be then weighed. Data generated from these methods of analysis were merged and used to derive statistics such as mean grain size, bulk sediment classes (%silt, sand & gravel), skewness and sorting coefficient.

Total organic carbon will be determined by a 600°C loss on ignition methodology. To ensure that carbonate matter is removed before analysis the samples are treated with diluted hydrochloric acid. The samples are then agitated and further acid is added until effervescence has ceased. The sample is then cooled and oven dried at 105°C until the weight stabilises (\pm 0.001g). The weight of the sample is recorded and the sample is placed into a kiln at 600°C for four hours. Once the sample has cooled the sample is re-weighed and the difference between the two weights is expressed as a percentage of the total sediment.

3. RESULTS

3.1. Overview of sediment characteristics

Table 3 provides an overview of the sediments recorded at each sampling station based on a visual assessment undertaken during the survey and at the laboratory.

Station	Sediment Characteristics
Bst 1	Coarse sand with shelly gravel & large shell
Bst 2	Coarse sand with shelly gravel & large shell
Bst 3	Coarse sand with shelly gravel & large shell
Bst 4	Cobbles, stones and gravel on coarse shelly gravel with large shell
Bst 5	Cobbles, stones and gravel on coarse shelly gravel with large shell
Bst 6	Coarse sand with shelly gravel & large shell
Bst 7	Cobbles, stones and gravel on coarse shelly gravel with large shell
Bst 8	Cobbles, stones and gravel on coarse shelly gravel with large shell
Bst 9	Cobbles, stones and gravel on coarse shelly gravel with large shell
Bst 10	Cobbles, stones and gravel on coarse shelly gravel with large shell

 Table 3. Visual description of Sediment Characteristics at Sampling Stations

3.2. Biotopes

Using the above sediment characterisation, in conjunction with the fauna derived from the rapid assessment, and verified from the samples analysed thus far (7 number), two biotope complexes are identified, although one is considered a complex of two specific biotopes.

3.2.1. SS. SMX. OMX OVERLAIN BY SS.SCS.CCS.BLAN

This biotope is classified by offshore circalittoral mixed sediment overlain by *Branchiostoma lanceolatum* in circalittoral coarse sand with shell gravel. Benthic stations Bst1, Bst 2, Bst3 and Bst6 were assigned to this biotope based on sediment characteristics (visual description), depth, dominant taxa and other faunal species associated with the complex. These sites are located predominantly farthest offshore within the turbine area and to the north. The 4 stations placed within this biotope have undergone full laboratory analysis and

the assignation is considered to be certain. Table 4 provides further detail for each benthic station in relation to the dominant taxa identified.

Figure 1. Typical circalittoral coarse sand with shell gravel with large Glycymeris glycymeris

3.2.2. SS.SMX.OMX. OVERLAIN BY SS.SCS.CCS.POMB & SS.SCS.CCS.MEDLUMVEN

This biotope is classified by offshore circalittoral mixed sediment overlain by *Pomatoceros triqueter* with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles. It should be noted that in the samples identified to date, the density and diversity of barnacle and bryozoan species is not as high as recorded during survey's within adjacent waters (Fugro 2005), and there appears to be a high incidence of exoskeleton with no live material, this is also the case with *Pomatoceros*. The number of other faunal taxa, especially polychaetes, would indicate that the area may be transitory between specific biotopes, especially where mixed sediments are in close proximity to hard compact substrata. There are similarities between the infauna recorded, especially polychaetes and amphipods, in both biotope complexes and as a consequence the biotope *Mediomastus fragilis, Lumbrineris* spp. and venerid bivalves in circalittoral coarse sand or gravel is considered to be representative. A particular species that features heavily in these samples is *Pisidia longicornis*, and although it is not assigned a specific biotope niche, it is nevertheless the dominant faunal species within the samples, and representative of the sediment type.

Benthic stations Bst 4, Bst 5 and Bst7, Bst 8, Bst 9 and Bst 10 are assigned to this biotope based on sediment characteristics (visual description), depth, dominant taxa and other

faunal species associated with the complex. These sites are located predominantly south and east within the deployment area (Bst 4, Bst 5 and Bst7) and solely along the cable route (Bst 8, Bst 9 and Bst 10). Stations 4, 5 and 7 have undergone full laboratory analysis and the assignation is considered to be certain, whereas samples collected from the newly aligned cable route have yet to be fully analysed, the data provided are from the rapid assessment. Table 4 provides further detail for each benthic station in relation to the dominant taxa identified.

Figure 2. Typical mixed cobble and pebble on coarse sand/shell gravel

3.3. Subtidal Benthic Communities

From the samples analysed so far, the subtidal faunal communities appear to be relatively diverse and moderately abundant, ranging from 49 to 75 species per $0.1m^2$, and 155 to 251 individuals per $0.1m^2$. The coarse shelly gravel sediments generally have a slightly lower mean species number (49 spp. – 64 spp.) and total abundance (155 to 247 individuals) in comparison to the more mixed sediment samples (64 spp. to 75 spp. and 161 to 251 individuals), although station 6 (shelly gravel) was comparable in terms of species diversity (64 spp.) and total abundance (247 individuals) to the mixed sediments.

Once the analysis of the samples has been completed, multivariate statistical analysis will better define any particular groups/stations with regard to similarities. However, at present table 4 provides an indication of the dominant taxa within each biotope and samples provisionally assigned to the specific biotope.

Subtidal Benthic Station	Biotope	Dominant Taxa
Bst 1	SS.SMX.Omx. Overlain by; SS.SCS.CCS.Blan	Polygordius sp., Ehlersia cornuta, Typosyllis spp., Glycera lapidum, Echinocyamus pusillus, Pisione remota, Pseudomystides limbata, Sphaerosyllis bulbosa & Branchiostoma lanceolatum
Bst 2	SS.SMX.Omx. Overlain by; SS.SCS.CCS.Blan	Nemertea, Polygordius sp., Ehlersia cornuta, Typosyllis spp., Protodorvellea kefersteini, Notomastus spp., Pisione remota, Kefersteinia cirrata, Pseudomystides limbata Sphaerosyllis bulbosa & Branchiostoma lanceolatum
Bst 3	SS.SMX.Omx. Overlain by; SS.SCS.CCS.Blan	Polygordius sp., Ehlersia cornuta, Typosyllis spp., Glycera lapidum, Protodorvellea kefersteini, Pisione remota, Kefersteinia cirrata, Marphysa bellii, Aonides paucibranchiata & Branchiostoma lanceolatum
Bst 4	SS.SMX.Omx. Overlain by; SS.SCS.CCS.PomB & SS.SCS.CCS.MedLumVen	Harmothoe impar., Typosyllis spp., Notomastus spp., Juvenile Terebellidae and Sabellidae spp., Leptocheirus tricristatus, Pisidia Iongicornis & Echinocyamus pusillus
Bst 5	SS.SMX.Omx. Overlain by; SS.SCS.CCS.PomB & SS.SCS.CCS.MedLumVen	Typosyllis spp., Mediomastus fragilis, Notomastus spp., Pomatoceros triqueter., Eulalia aurea, Pisidia longicornis & Echinocyamus pusillus
Bst 6	SS.SMX.Omx. Overlain by; SS.SCS.CCS.Blan	Nemertea, Glycera lapidum, Polygordius sp., Ehlersia cornuta, Typosyllis spp., Protodorvellea kefersteini, Juvenile Sabellidae spp., Kefersteinia cirrata, Marphysa bellii, Leptocheirus tricristatus & Branchiostoma lanceolatum

Table 4. Dominant taxa within samples

Bst 7	SS.SMX.Omx. Overlain by; SS.SCS.CCS.PomB & SS.SCS.CCS.MedLumVen	Typosyllis spp., Mediomastus fragilis, Notomastus spp., Aonides paucibranchiata, Caulleriella alata, Pomatoceros triqueter, Pisidia longicornis & Ophiothrix fragilis					
Bst 8 (full dataset incomplete, provisional assignment following rapid assessment)	SS.SMX.Omx. Overlain by; SS.SCS.CCS.PomB & SS.SCS.CCS.MedLumVen	Typosyllis spp., Lumbrineris sp., Mediomastus fragilis, Notomastus spp., Pomatoceros triqueter, Psammechinus miliaris & Pisidia longicornis					
Bst 9 (full dataset incomplete, provisional assignment following rapid assessment)	SS.SMX.Omx. Overlain by; SS.SCS.CCS.PomB & SS.SCS.CCS.MedLumVen	Typosyllis spp., Lumbrineris sp Mediomastus fragilis, Notomastu spp., Pomatoceros triquete Psammechinus miliaris & Pisidu longicornis					
Bst 10 (full dataset incomplete, provisional assignment following rapid assessment)	SS.SMX.Omx. Overlain by; SS.SCS.CCS.PomB & SS.SCS.CCS.MedLumVen	Typosyllis spp., Lumbrineris sp., Mediomastus fragilis, Notomastus spp., Pomatoceros triqueter, Psammechinus miliaris & Pisidia Iongicornis					

Stations 8, 9 and 10 may be subject to slight change in terms of the dominant taxa once the whole samples have been analysed, the dominant taxa highlighted following the rapid assessment are offered as an indication of fauna identified thus far.

4. DISCUSSION

To describe the nature of the benthic communities of the revised deployment area, a subtidal benthic survey was undertaken. However, due to prolonged poor weather, surveys were unable to be carried out until late May/early June 2006. Given the time constraints, and the period required for full analysis of the benthic samples, a rapid assessment was carried out to enable the determination of biotopes present within the revised deployment area and along the re-aligned section of the offshore cable route. The samples were analysed in full following verification of the rapid assessment, and these analyses are ongoing.

Two clear biotope complexes have been identified from the samples analysed thus far, and the provisional data from the rapid assessment. These biotopes indicate offshore circalittoral mixed sediments with relatively high diversity and moderate abundance. The shelly gravel biotope with *Branchiostoma lanceolatum* (SS.SMX.OMx. overlain by; SS.SCS.CCS.Blan) has been identified at 4 benthic stations sited predominantly in the northern and offshore sector of the deployment area, this agrees with the findings of the Fugro survey (Fugro, 2006) who also found this biotope in the northern offshore regional area. Those species identified as a result of the full analysis of the samples confirm that the assignation fits with the marine habitat classification (JNCC, 2004), and that the characterising species such as *Pisione remote, Polygorius spp., Echinocyamus pusillus, Glycera lapidum* and *Branchiostoma lanceolatum* were present in moderate abundance.

The second biotope identified is slightly more complex in that it is an aggregation of more than one biotope, and is likely as a result of the close proximity of other soft sediment substrates and hard compact substratum on relatively moderate tidal streams along with a moderately exposed wave action. The characterisation of this biotope included offshore circalittoral mixed sediment overlain by *Pomatoceros triqueter* with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles (SS.SMX.OMx. overlain by SS.SCS.CCS.PomB). Whilst *Pomatoceros triqueter* is a dominant faunal feature of these samples the density and diversity of barnacle and bryozoan species is not as high as recorded during the Fugro survey (Fugro 2006), and the substrata appear to be dominated by exoskeleton with no live material, this is also the case with *Pomatoceros*, although to a lesser degree.

As discussed previously, the relatively high diversity of other faunal taxa, especially polychaetes, would indicate that the area may be transitory between specific biotopes. There are similarities between the infauna recorded, especially polychaetes, to the biotope SS.SCS.CCS.MedLumVen, and as a consequence the biotope *Mediomastus fragilis*, *Lumbrineris* spp. and venerid bivalves in circalittoral coarse sand or gravel is provisionally considered to be representative. A particular species that features heavily in these samples is *Pisidia longicornis*, and although it is not assigned a specific biotope niche, it is nevertheless the dominant faunal species within the samples, and representative of the sediment type.

The remaining benthic stations were all classified within the SS.SMX.OMx. overlain by SS.SCS.CCS.PomB and SS.SCS.CCS.MedLumVen biotope complex, these stations covered the southern inner and mid areas of the revised deployment area and cable route. This compares with the data collected by Fugro who recorded the similar SS.SMX.OMx.

overlain by SS.SCS.CCS.PomB biotope complex within the cable route and southern area of the original deployment area.

Once the remaining samples have been fully analysed in terms of macrofauna and sedimentary analyses, statistical analysis will be carried to include the data collected by Fugro and confirmation of biotopes and community analysis will be provided.

5. **REFERENCES**

Fugro Survey Limited, 2006. Halcrow Wave Hub Project Biotope Classification. Report Number 68-8695. Volume II Environmental Biotope Classification Report. Draft Report.

Howson, C.M. & Picton, B.E. (EDS), 1997. The species directory of the flora and fauna of the British Isles and surrounding seas. Ulster Museum and The Marine Conservation Society, Belfast and Ross on Wye. Ulster Museum Publication No. 276

David W. Connor, James H. Allen, Neil Golding, Kerry L. Howell, Louise M. Lieberknecht, Kate O. Northen and Johnny B. Reker. 2004. The Marine Habitat Classification for Britain and Ireland Version 04.05 JNCC, Peterborough. ISBN 1 861 07561 8 (internet version)

Rees, H.I., Moore, D.C., Pearson, T.H., Elliott, M., Service, M., Pomfret, J. and Johnson, D., 1990. Procedures for the Monitoring of Marine Benthic Communities at UK Sewage Sludge Disposal Sites. Scottish Fisheries Information Pamphlet No. 18. DAFS 79pp.

Wheeler, A. (1969). *The Fishes of the British Isles and North West Europe*. Michigan State University Press

Whitehead P.J.P., Bauchat, M.L., Hureau, J.L., Nielsen, J. and Tortonese, E. Eds., (1989). *Fishes of the North Eastern Atlantic and the Mediterranean.* Volumes I, II and III. Unesco, Paris

APPENDIX 1

Subtidal Benthic sample Matrix

		Stati	ion 1	Stati	ion 2	Stat	ion 3	Stat	on 4	Stat	ion 5	Stat	ion 6	Stat	ion 7	17 Statio		Station 9		Station 10	
MCS Code	Taxon	01FA	01FB	02FA	02FB	03FA	03FB	04FA	04FB	05FA	05FB	06FA	06FB	07FA	07FB	08FA	08FB	09FA	09FB	10FA	10FB
	PORIFERA																				
C133	Scypha ciliata			1				1		1											
C475	Cliona sp.													Ρ							
	CNIDARIA																				
D390	Halecium sp.									Ρ				Ρ							
D424	Hydrallmania falcata													Р							
D435	Sertularia cupressina							Р						Р							
D463	Nemertesia antennina							Р		Р				Р							
D662	ACTINIARIA											2									
D759	Edwardsiidae sp. Indet											1									
	PLATYHELMINTHES																				

F2	TURBELLARIA					3				
	NEMERTEA									
G1	NEMERTEA	5	3	2	3	12	2			
	NEMATODA									
HD1	NEMATODA 1	1	2	1	2	3	1			
	CHAETOGNATHA									
L9	Sagitta sp. Indet 2									
	SIPUNCULA									
N11	Golfingiidae juv. 1	1	2	1		3				
N14	Golfingia elongata		1		1					
	ANNELIDA									
P15	Pisione remota 6	5	7			4				
P50	Harmothoe sp. Indet						1			
P50	Harmothoe juv. 1	2	1			4				
P50.1	Malmgrenia juv.	3	1	1						

							1	1		1	
P65	Harmothoe impar				6				2		
P55	Malmgrenia castanea			2							
P70	Malmgrenia mcintoshi						2				
P118	Eteone longa	2	4						1		
P121	Hesionura elongata	1					2		1		
P136	Pseudomystides limbata	5	5 2	2	1	2	3				
P150	Eulalia Sp. Indet (incomplete)										
P151	Eulalia aurea					5			1		
P155	Eulalia mustela					1					
P164	Eumida bahusiensis		1								
P171	Nereiphylla rubiginosa					1					
P175	Paranaitis sp. Indet (incomplete)						3				
P255	Glycera sp. juv.	2	3 :	3		1	1				
P260	Glycera lapidum agg.	6	3 1	2	1	3	5		1		

P268	Glycinde nordmanni		1	4			3				
P305	Kefersteinia cirrata	3	10	10		2	10				
P349	Ehlersia cornuta	17	7	5	4	1	9	1			
P355	Eurysyllis tuberculata		2				1				
P362	Trypanosyllis coeliaca	3	1	2	1		4	1			
P364	Typosyllis sp.	12	17	11	13	9	14	4			
P366	Typosyllis brevipennis			1							
P375	Amblyosyllis formosa						1				
P377	Dioplosyllis cirrosa					1	1				
P385	Odontosyllis sp. A	2									
P388	Odontosyllis gibba		3		4	1					
P406.1	Syllides articulocirrata	1									
P423	Exogone verrugera		1								
P425	Sphaerosyllis bulbosa	6	13			1	1				
P427	Sphaerosyllis hystrix	1	5			1	1				

P434	Autolytus sp.	1	2								
D475	Noroio Iongiasimo	2	2		1		1				
F475	Nereis iongissima	3	2		1		1				
P478	Nereis zonata				2	3					
P493	Aglaophamus rubella			1							
P494	Nephtys juv.				1						
P564	Marphysa bellii		4	5	2	1	14	1			
P579	Lumbrineris gracilis	2	1	3	3	1	1	1			
P588	Arabella iricolor		1		2						
P606	Dorvillea sp.		5	2							
P638	Protodorvillea kefersteini	5	5	7	2	1	11				
P642	Schistomeringos neglecta		1			1	1	1			
P675	Aricidea sp. Indet (incomplete)				1						
P699	Paradoneis c.f. lyra							1			
P718	Poecilochaetus serpens					1		1			
P722	Aonides oxycephala						2				

P723	Aonides paucibranchiata	2		5	3	4	4	4			
P733	Laonice bahusiensis		5		2	1		1			
P747	Minuspio cirrifera				1	1					
P748	Polydora juvenile							1			
P750	Polydora caeca					1					
P823	Aphelochaeta sp.		2								
P829	Caulleriella alata		1	1	2	2		5			
P878	Diplocirrus glaucus					1					
P889	Macrochaeta sp. Indet						2	1			
P919	Mediomastus fragilis				3	5		4			
P920	Notomastus sp.		5	4	12	7	2	3			
P999	Ophelia borealis			1							
P1026	Scalibregma celticum				3	1					
P1062	Polygordius sp. (incomplete)	26	52	17			13				
P1065	Polygordius lacteus	1									

T				1	1				1		1 1	
P1175	Terebellides stroemi					2						
P1177	Trichobranchus glacialis								1			
P1179	Terebellidae juv.	4				6	3	3	1			
P1189	Eupolymnia nebulosa					2	1	1	2			
P1195	Lanice conchilega	1	1	1		2	2	1	1			
P1235	Polycirrus sp.					2						
P1257	Sabellidae (incomplete)		4			8	1	10				
P1290	Jasmineira elegans			1		1	2	2	2			
P1316	Pseudopotamilla reniformis						1					
P1324	Serpulidae (incomplete)	1	2			2						
P1334	Hydroides norvegica	1										
P1341	Pomatoceros triqueter					2	7	2	19			
P1343	Serpula vermicularis								1			
P1524	Grania sp.							1				
	CHELICERATA											

Q5	Nymphon brevirostre				1					
Q7	Nymphon gracile		1							
	CRUSTACEA									
R77	Balanus crenatus							1		
R148	CALANOIDA	7	2	3	1	2	11	1		
S25	MYSIDACEA						1	1		
S97	Amphipoda sp. Indet (incomplete)	1				1				
S102	Apherusa bispinosa		1		1		3			
S109	Eusirus longipes			1						
S118	Oedicerotidae sp. Indet (incor	nplete)	2							
S125	Monoculodes carinatus		1							
S133	Pontocrates altamarinus			1						
S164	Gitana sarsi				2					
S213	Stenothoe marina				1	3				
S265	Parametaphoxus fultoni		5		3					

S303	Liysianassa ceratina			1					
S342	Tryphosella sp. Indet (incomp	lete)				1			
		-							
S343	Tryphosella nanoides						1		
S344	Tryphosella sarsi			2					
S384	Iphimedia spatula				1				
S397	Liljeborgia pallida	3		1			1		
S429	Ampelisca diadema		1						
S495	Melitidae sp. Indet (incomplete)		1						
S502	Ceradocus semiserratus	4	3	5		1	1		
S506	Cheirocratus sundevallii		1						
S514	Gammarella fucicola						2		
S519	Maera othonis		4	2					
S538	Gammaropsis sp. Indet						1		
S539	Gammaropsis cornuta			2				 	
S588	Leptocheirus hirsutimanus				2				

\$501	Lentocheirus tricristatus	1		2	6		30				
		-		2	0						
S615	Corophium sextonae				1			3			
S659	Pseudoprotella phasma					1		1			
S793	Gnathia praniza	1					1				
S794	Gnathia dentata	1		1			4				
S803	Anthura gracilis							1			
S849	Conilera cylindracea						1				
S892	Janira maculosa	1	1	2	1	3		1			
S1169	Tanaissus lilljeborgi			1							
S1276	Decapoda zoea	4	1	1	2		2	2			
S1360	Thoralus cranchii							1			
S1445	Paguridae juv.				3	3		1			
S1447	Anapagurus chiroacanthus					1					
S1448	Anapagurus hyndmanni				1	2		1			
S1470	Juvenile Galathea sp. Indet				2		1	2			

S1472	Galathea intermedia				1						
S1476	Galathea strigosa				1						
S1482	Pisidia longicornis juv	1	2	1	4						
S1482	Pisidia longicornis				71	34	1	68			
S1508	Ebalia tuberosa					1		1			
S1509	Ebalia tumefacta	1		1	1						
S1577	Liocarcinus sp. juv.					1					
S1620	Xantho pilipes				1	2					
	INSECTA										
	Isotomidae sp. Indet						1				
	MOLLUSCA										
W46	POLYPLACOPHORA juv.										
W53	Leptochiton asellus				4	1		1			
W86	Acanthochitona crinita				1						
W106	Emarginula fissura				2	1		1			

		1								1
W107	Emarginula rosea									
W116	Diodora graeca									
W161	Gibbula tumida			3		1				
W163	Gibbula cineraria				1					
W669	Vitreolina philippi 1									
W675	Trophon barvicensis			2						
W747	Hinia incrassata						1			
W1243	NUDIBRANCHIA (incomplete)				1					
W1270	Doto sp.						1			
W1319	Onchidorididae						1			
W1569	Nucula nitidosa				1					
W1688	Glycymeris glycymeris 1		1		1	1	1			
W1698	Modiolus sp. juv. 1									
W1708	Modiolula phaseolina			1						
W1736	Limidae juv.					2				

1				1	1		I I	 1	1	
W1741	Limaria (Limaria) hians		2				1			
W1743	Limaria loscombi					1				
W1746	Limaria subauriculata									
W1771	Pecten maximus						1			
W1773	Aequipecten opercularis						1			
W1786	Palliolum tigerinum	2								
W1805	Anomiidae juv.				1		3			
W1809	Heteranomia squamula						1			
W1875	Kellia suborbicularis		2							
W1959	Laevicaerdium crassum		1		1	1				
W2015	Arcopagia crassa									
W2023	Moerella pygmaea 1									
W2091	Circomphalus casina				2					
W2100	Clausinella fasciata 3									
W2104	Timoclea ovata				1					

W2113	Tapes rhomboides		1							
W2130	Dosinia exoleta						1			
W2233	Thracia villosiuscula				1					
	BRYOZOA									
Y504	Turbicellepora avicularis				Р					
	ECHINODERMATA									
ZB105	OPHIUROIDEA juv.	4	4	4	1	2	4			
ZB124	Ophiothrix fragilis							7		
ZB149	Amphiura sp. Indet (incomplete)				1					
ZB193	Psammechinus miliaris					3		2		
ZB212	Echinocyamus pusillus	11	4	1	6	1	1	1		
ZB219	Spatangus purpureus			1						
	TUNICATA									
ZD71	Ciona intestinalis					3	1			
ZD120	Dendrodoa grossularia				4			3		

	PISCES																				
ZE0.1	Branchiostoma lanceolatum	3		5		10						3									
ZG87	Lepadogaster juv.			1																	
ZG88	Lepadogaster candollei			1																	
ZG89	Lepadogaster lepadogaster	1																			
	Total abundance	170	0	229	0	156	0	251	0	161	0	247	0	184	0	0	0	0	0	0	0
	Total No. Taxa	49	0	57	0	52	0	75	0	67	0	64	0	64	0	0	0	0	0	0	0