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PREFACE

The California Energy Commission Public Interest Energy Research (PIER) Program supports
public interest energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy services and
products to the marketplace.

The PIER Program conducts public interest research, development, and demonstration (RD&D)
projects to benefit California.

The PIER Program strives to conduct the most promising public interest energy research by
partnering with RD&D entities, including individuals, businesses, utilities, and public or
private research institutions.

PIER funding efforts are focused on the following RD&D program areas:
¢ Buildings End-Use Energy Efficiency
e Energy Innovations Small Grants
e Energy-Related Environmental Research
¢ Energy Systems Integration
¢ Environmentally Preferred Advanced Generation
¢ Industrial/Agricultural/Water End-Use Energy Efficiency
¢ Renewable Energy Technologies

e Transportation

Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities is the final
report for the Energy Commission, Project Award Number PIR-08-028, conducted by California
Wind Energy Association (CalWEA). The information from this project contributes to PIER’s
Energy-Related Environmental Research Program.

For more information about the PIER Program, please visit the Energy Commission’s website at
www.energy.ca.gov/research/ or contact the Energy Commission at 916-654-4878.
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ABSTRACT

The California Wind Energy Association (CalWEA) evaluated the procedures in the California
Guidelines for Reducing Impacts to Birds and Bats from Wind Energy Development (the Guidelines)
for estimating fatality of birds and bats associated with wind energy facilities. The research
sought to improve the accuracy of methods for estimating the number of bird and bat fatalities
by evaluating the effect of time dependency on the probability of scavenging and removal of
bird and bat carcasses (carcass persistence) and detection by searchers (searcher proficiency).

Researchers used data collected from the Altamont Pass Wind Resource Area from January 7 to
April 30, 2011, to calculate traditional carcass persistence and searcher proficiency functions and
to create new functions in which searcher proficiency and carcass persistence are modeled as a
function of time and carcass age. This study is the first to document quantitatively that searcher
proficiency and carcass persistence are time-based processes. The report offers lessons and
implications for experimental designs and the field monitoring recommendations provided in
the Guidelines.

The study also investigated the fatality estimation equation provided in the Guidelines and
three other prominent equations from the literature that are used to adjust fatality observations
for searcher proficiency and carcass persistence. The report examines both the common and
equation-specific assumptions inherent in these fatality estimators, evaluates them in light of
data from the field experiment, and finds that each of the fatality estimation equations can
result in positive or negative bias, depending on the length of search interval relative to carcass
persistence time. A new equation incorporating carcass persistence from one search interval to
the next is proposed. This project will help reduce conflict in the siting process and make sound
wind project permitting decisions easier by improving the accuracy of fatality estimates and the
ability to accurately compare them with those from other wind facilities.

Keywords: Estimation methods, birds and bats, wind energy facilities, time dependence,
searcher proficiency, carcass persistence, monitoring design, equations, statistical bias

Please use the following citation for this report:

Warren-Hicks, William, James Newman, Robert Wolpert, Brian Karas, Loan Tran. (California
Wind Energy Association.) 2013. Improving Methods for Estimating Fatality of Birds
and Bats at Wind Energy Facilities. California Energy Commission. Publication
Number: CEC-500-2012-086. '
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EXECUTIVE SUMMARY

Introduction

Wind energy holds great promise as a clean, renewable energy resource, provided that siting
and development can reasonably avoid or reduce impacts on already stressed wildlife
resources. In 2007, the California Energy Commission and California Department of Fish and
Game released California Guidelines for Reducing Impacts to Birds and Bats from Wind Energy
Development (the Guidelines) to provide recommended procedures for assessing and
minimizing impacts from wind energy development on birds and bats. The Guidelines provide
an equation, attributed to Dr. Kenneth Pollock of North Carolina State University, that estimates
the true number of fatalities at the wind facility from the number of bird or bat carcasses
visually observed during a monitoring survey. The equation corrects for the inability of a -
searcher to locate all carcasses on the survey plot at the time of observation (searcher
proficiency), and for the probability of removal by scavengers (such as crows and coyotes) or
other processes before the time of observation (carcass persistence).

The California Wind Energy Association (CalWEA) rigorously evaluated the methods and
procedures proposed by the Energy Commission for estimating the true number of fatalities of
birds and bats (including the equation in the Guidelines) associated with collisions with wind
turbines in California.

Purpose

This project sought to improve the accuracy of methods for estimating the number of bird and
bat fatalities at wind energy facilities.

This report describes the sites selected for study, the experimental design for evaluating and
testing approaches for estimating the true bird and bat fatalities at a wind facility from
observational evidence of collision mortality, and the data collection procedures. This report
also looks at the fatality estimation equation provided in the Guidelines and at three other
prominent equations from the literature that are used to adjust mortality observations (hereafter
referred to by their respective authors: Erickson & Johnson, Shoenfeld, and Huso). It examines
the assumptions common to all four estimation equations as well as those assumptions specific
to each. It then evaluates the validity of the assumptions with data from the field experiment,
given various field conditions, and fatality observation parameters. Based on the field study
findings and a thorough analysis of assumptions underlying the published equations, this
report offers lessons and implications for experimental designs and the field monitoring
recommendations provided in the Guidelines.

Objectives and Findings
The project was designed to meet the following objectives:

e  Refine and test experimental designs, under representative actual field conditions, that
accurately generate site-specific data for estimating survey error rates.
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e  Rigorously evaluate the ability of various equations to accurately estimate fatalities of
birds and bats at a variety of wind energy facilities within California.

The Field Study. Design and Findings

CalWEA rigorously designed and implemented a field survey to collect site-specific data under
a variety of environmental conditions. Researchers obtained bird and bat carcasses from various
labs and agencies and placed them at selected locations within the Altamont Pass Wind
Resource Area near Livermore, California. Over periods of up to 60 days, independent and
experienced biologists without prior knowledge of carcass placements searched strings of
turbines weekly and recorded the location of marked bird and bat carcasses that project field
managers had placed in the study area, as well as carcasses not associated with the study.
Project field managers recorded the movement and removal of trial bird and bat carcasses
roughly every three days during the study when trial birds and bats were on the ground, so
that the true number and location of the trial carcasses were known. Consistent with current
practice, it was assumed that carcass persistence and detection rates for marked carcasses
placed at the site are representative of rates for bird and bat fatalities otherwise occurring at the
wind energy facility.

Researchers used data generated by the field study to calculate traditional carcass persistence
and searcher proficiency functions and to create new functions in which both carcass
persistence and proficiency are modeled as a function of time and carcass age. Of the 104 small
bird carcasses placed in the field, 32 unique carcasses (31 percent) were found over the course of
223 search opportunities (number of placed carcasses times the number of searches in which a
trial carcass was present). However, field biologists detected carcasses in only 17 percent of all
small bird search opportunities. Of the 78 bat carcasses placed, 15 unique bat carcasses (19
percent) were found over the course of 248 search opportunities, but only 8.1 percent of search
opportunities yielded detections. All six of the large birds were detected, with 68 percent of 31
search opportunities yielding detections.

Researchers examined the rate of carcass removal by scavengers in strings (a group or row of
adjacent wind turbines), blocks of strings with similar ecological conditions, and the entire
study area. They also examined relationships between carcass persistence and key variables.
The carcass removal rate followed a Weibull distribution, with the highest removal rates early
in the trial. Scavengers removed most small birds and bat carcasses within six weeks of
placement. The data also show that it was common for a carcass to persist into subsequent
search intervals beyond the interval during which it was deposited (called “bleed-through”).

The study found both searcher proficiency and carcass persistence to depend on time. Other key
findings with implications for selection of fatality-estimating equations and equation input
variables include:
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Carcass persistence fits better with a Weibull distribution, where the attractiveness of a
carcass to scavengers declines as it ages, than with an exponential distribution where
fresh and old carcasses are equally likely to be attractive to scavengers.

Vegetation height affects searcher proficiency. Therefore, when creating a survey design,
researchers may want to consider random selection of turbines within blocks. The study
found that topographical (for example, slope) and meteorological variables (for example,
precipitation) were not correlated with mortality at the study site. They may be
important predictors at other sites, however.

Searcher proficiency was considerably lower for bats than for small birds during the
study, pointing to the need for extensive long-term searcher proficiency trials for bats to
ascertain if this holds true at other sites.

Small bird carcasses are removed by scavengers more quickly than bat carcasses. This
finding supports the need for long-term carcass persistence trials for both small birds
and bats.

Evaluation of the Fatality Estimation Equations

As proposed, the second part of this project was to use the field study data to test how
accurately the Pollock equation recommended in the Guidelines and the three other prominent
equations estimate the true number of fatalities from observed fatalities. Because the equations
assume that fatalities occur at random times, while this study involved placing all carcasses at
the beginning of each experimental time block, a direct “test” of the equations using the study
data was not appropriate. Instead, the authors analyzed the estimating equations (“estimators”)

mathematically and tested the validity of their common and individual assumptions against the
findings from the field study.

Key findings from this analysis were that:

All of the four traditional fatality estimation equations examined assume constant
searcher proficiency, rather than the observed condition that searcher proficiency is a
function of time, as carcasses age. The inconsistent ability to detect a bird or bat over
time can greatly affect the expected accuracy of resulting mortality estimates.

Three of the equations examined (Erickson & Johnson, Shoenfeld, and Huso) assume an
exponential distribution), whereas a Weibull statistical distribution fits the data best.

Current estimators either assume that “bleed-through”— whether carcasses not removed
during one search interval are considered “discoverable” during later searches — occurs
all of the time or none of the time. Incorrect bleed-through assumptions can distort
estimates.

In the general case, and for exponential removal, the equations will generate mortality of
the following order from lowest to highest: Erickson & Johnson < Shoenfeld < Pollock<
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Huso. When choosing a single equation, investigators should keep the expected rank
order in mind.

The degree of systematic error or “bias” among the equations is a function of many
issues, but in all cases, it is a function of the inherent assumptions underlying the
equation characteristics. Even when biased, if search intervals are long relative to mean
persistence times, all four estimators give about the same answers. But if search intervals
are short relative to mean persistence times, large differences among the equations are
possible. In fact, with the condition of short interval relative to mean carcass persistence,
the results of the equations could differ by a factor of 3 or 4.

Even correcting for the biases, the relationship of the results of the estimators to true
mortality is unknown. However, if the assumptions in the equations are wrong (that is,
where exponential distributions and constant searcher proficiencies have been
assumed), then the results of the equations could differ significantly from actual
mortality.

Short search intervals increase the chance of bias:

(a) Short intervals do not allow the system to reach equilibrium, which is
inconsistent with the Erickson & Johnson equation. Erickson & Johnson assume
the number of carcasses remains relatively constant over the long-term.

(b) The Huso and Pollock equations assume zero percent bleed-through; therefore,
bias will occur if true bleed-through is greater than zero.

(c) Shoenfeld assumes 100 percent bleed-through; therefore, bias will occur if true
bleed-through is less than 100 percent.

The new partially periodic equation proposed in this report allows for the estimation of
a site-specific bleed-through rate. Paired with new field sampling procedures to
generate time-dependent carcass persistence and searcher proficiency probabilities, this
new equation will produce unbiased results using either short or long search intervals.

Conclusions and Recommendations

CalWEA'’s study provides new insights that could enhance the existing methods and
procedures found in the Guidelines and other pre- and post-construction fatality monitoring
guidelines used in the United States and internationally. Four major implications of this work
and the corresponding recommendations are outlined here.

(1) Traditional fatality estimators do not account for time-dependence of carcass persistence

and searcher proficiency, or for “bleed-through.”

Recommendation: Use the proposed new Partial Periodic Estimator and integrated
detection probability trial method (proposed in Appendices A and B, respectively).

(2) Traditional estimators can have high degrees of bias depending on the search interval,

mean carcass persistence, and bleed-through rate of the field data collected.
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Recommendation: Do not use traditional estimators in conditions that produce levels of
bias that are unacceptable for the intended purpose. Caution is particularly warranted
where short search intervals have been used.

(3) Use of traditional estimators has resulted in an unknown degree of bias in the literature.

Recommendation: Carefully consider the value of metrics like “industry average” before
applying them in policy or project-specific decisions.

(4) Previously generated fatality estimates used for project evaluation or broader purposes
could be recalculated using the proposed new Partial Periodic Estimator, provided the
key input variables (search interval, mean carcass persistence, and so forth) can be
collected from the original studies and reasonable assumptions made about searcher
proficiency probability distributions and bleed-through values.

Recommendation: Going forward, use a standardized approach to generate unbiased,
project-specific results that may be compared with each other, and to generate
meaningful and unbiased industry averages and totals.

This project will help reduce conflict in the siting process and make sound wind project
permitting decisions easier by:

Providing guidance on methods for generating observer bias and carcass removal rates and
reducing ambiguity in recommended avian study methods.

Exploring time-dependent relationships, including observer bias and carcass removal.

Providing guidance leading to improved field procedures for mortality monitoring and
improving efficiency and efficacy of surveys.

Enabling better forecasting of anticipated mortality at wind facilities based on site
characteristics.
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CHAPTER 1: Research Plan

Statementof Need

California pioneered large-scale wind energy development beginning in the 1970s. As a clean,
renewable energy resource, wind energy holds great promise provided that it can be sited and
developed in such a way as to reasonably avoid and (if necessary) mitigate impacts on already
stressed wildlife resources. To this end, wind energy and wildlife stakeholders have
collaborated to survey avian/bat activity and study the impacts of wind project operations, and
policymakers have incorporated research protocols into the permitting process.

In 2007, the California Energy Commission (Energy Commission) and California Department of
Fish and Game released California Guidelines for Reducing Impacts to Birds and Bats from Wind
Energy Development (the Guidelines) to provide recommended protocols for assessing and
minimizing impacts from wind energy development to birds and bats. The Guidelines
recommend protocols for assessing, evaluating, and determining the effects of wind projects on
birds and bats, and also recommend impact avoidance, minimization, and mitigation measures.
In addition, the Guidelines provide an equation, suggested by Dr. Kenneth H. Pollock (personal
communication, 2012), that can be used to adjust the number of bird or bat carcasses that are
visually observed during an environmental monitoring survey of a wind facility, in an attempt
to estimate the true fatalities at the wind facility. The equation, one of four analyzed in this
report, adjusts for the inability of a searcher to locate all carcasses on the survey plot at the time
of observation, and for the probability of removal by scavengers or other processes before the
time of observation.

The California Wind Energy Association (CalWEA) received funding from the Energy
Commission to rigorously evaluate the equations and associated procedures and studies
recommended in the Guidelines for estimating fatalities of birds and bats associated with
collisions with wind turbines in California. Information gathered from this study will apply to
wind development projects in California, and the fundamental principles evaluated and
discovered in this project may apply to wind development in other parts of the United States
and internationally.

CalWEA'’s study provides new insights leading to improvements in the methods and
procedures for estimating fatalities at wind facilities. This report offers recommendations on
methods, including computations and data requirements, for estimating the true bird and bat
fatalities at wind facilities. This section of the report details the goals of CalWEA’s project and
reviews statistical and ecological considerations in the project design.

Study Goal and Objectives

The overall goal of this project was to conduct research to improve the accuracy of methods for
estimating the number of bird and bat fatalities at wind energy facilities. The project was
designed to meet the following objectives:
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1. Empirically test and calculate the influence of carcass removal and searcher
proficiency under representative actual field conditions.

2. Mathematically evaluate the inherent characteristics and assumptions of existing
equations to accurately estimate fatalities of birds and bats at representative wind
energy facilities within California.

The study generated information to enable the evaluation of existing fatality estimation
methods and the development of advanced models.

To meet the first project objective, CalWEA implemented a rigorously designed field survey at a
wind facility within the Altamont Pass Wind Resources Area (APWRA) near Livermore,
California. Site-specific data were collected under a variety of environmental conditions. Simply
stated, birds and bats were placed at selected locations within the site. The implicit assumption
in this approach is that marked birds and bats are representative of birds and bats killed at the
wind facility. Over periods of up to 60 days, “blind” independent and experienced biologists
without prior knowledge of carcass placements searched turbine strings and recorded the
location of both marked bird and bat carcasses that project field managers had placed in the
study area as well as carcasses not associated with the study.

Data generated during the experiment were collected and stored in a quality assured data set.
The research team then analyzed the resulting data and evaluated the relationships among the
number of found birds, bats, and environmental conditions over time. A description of the
available statistical models evaluated in this study is found in the following discussion. The
models and methods were evaluated for their inherent ability to accurately estimate the true
number of bird and bat carcasses.

Once the study team evaluated the data, tested existing models and created new models, the
team developed general guidance for (1) generating site-specific data used to parameterize
equations, (2) selecting existing or new equations based on site-specific conditions, and (3)
interpreting the results generated by the statistical methods.

This project provides insights into several other issues that are important to risk assessments of
wind facilities. Specifically, this project generates information that can be used to:

¢ Evaluate existing fatality estimation methods.

e  Test and evaluate the shape of carcass persistence curves (those not removed by
scavenging, weather and other processes) under a variety of environmental conditions,
as represented during the January — April grass height and weather conditions at the
Altamont.

e Evaluate the effect of time-dependency on the probability of bird and bat carcass
persistence and on the probability of detection by searchers (searcher proficiency).

e  Develop recommendations for advanced models that link observational data with
measurements of ecological conditions.
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Success Measures
This project succeeded by achieving the following goals.

e Evaluation of the existing fatality equations provides practitioners information useful
for choosing an estimating equation, and an understanding of the advantages and
disadvantages of various equations with differing survey designs.

e Datagenerated from the project are of such quality that guidance for implementing site-
specific studies leading to effective fatality adjustment procedures can be developed.

e  Peer-reviewed publications can be generated that enhance the existing state of the
science.

o Effective communication of the project findings was undertaken.

e  Observational data at the planned wind turbine strings were obtained in a cost-effective
manner within the timeframe of the project.

The following narrative discusses the statistical and ecological issues that influenced the design
of the study, and presents the experimental design.

Statistical Considerations in the Experimental Design

Although standardized long-term monitoring procedures are available in the literature, there is
currently no standard operating procedure for generating and evaluating data used to estimate
fatalities at wind project sites. Statistical simulations of this issue have been conducted (e.g.,
Huso 2010). In practice within the industry, searcher bias and scavenger removal studies are
generally implemented in conjunction with long-term monitoring studies. However, based on
an informal review and the experience of the authors of this report, there is little consistency in
survey design and analysis of the resulting data among agencies, industry, or their consultants.
Searcher bias studies are typically implemented independently from studies of removal by
scavenging and other processes, and the study timeframes generally differ. In some cases,
searcher bias studies are conducted once under site-specific conditions, and are not repeated
during the course of a year. Carcass persistence studies are generally implemented over a few
days to several weeks; however, the study time period is not standardized within the industry.

For both study types, fresh (or sometimes frozen) carcasses of various sizes are placed on an
experimental plot at the beginning of the experiment. During searcher bias experiments,
searchers search plots where trial carcasses have been placed and record the number of
carcasses found. The searcher proficiency rate is then calculated and recorded. During
scavenger removal studies, the known locations of the carcasses are observed frequently and
removals are noted. Analysis of the resulting data generally provides a simple constant
representing the probability that a bird or bat is removed by scavenging and other processes,
although some time-series models resulting in the probability of scavenger removal as a
function of time have been proposed (Smallwood 2007).

There is little consistency across searcher bias and scavenger removal studies in terms of plot
area, number of carcasses used, carcass species, number of searchers tested, size of carcasses
used, habitat considerations, or study timeframes. The relationship between searcher
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proficiency and carcass persistence is not evaluated. Finally, the monitoring techniques
employed during the searcher studies (e.g., random searches, transect searches, search interval,
etc.) are sometimes inconsistent with those employed during long-term site-specific monitoring
studies at operating wind turbine facilities.

A number of equations are found in the peer-reviewed literature for adjusting the observable
fatality counts to estimate the true number of killed birds and bats. This report reviews selected
equations found in the literature, compares the properties of each of the estimators, and
provides recommendations for improving their accuracy. The equations were chosen based on a
review of literature that indicated that these equations have been commonly used within the
wind industry. The equations are heavily cited in past and current peer-reviewed literature.

Ecological Considerations in the Experimental Design

The following discussion reviews the importance of key ecological variables in the estimation of
survey error. In addition, key procedural and other experimental design variables are
described.

Ecological Variation

Ecological variation associated with specific wind energy development sites within the State of
California was an important consideration in the design of the experiments. Variation in habitat
condition was considered a key variable affecting the change in survey error among locations.
Variation in vegetation type and density, scavenger species and associated activity levels,
climate conditions, geographic conditions associated with turbine placement, and a host of
other site-specific variables also could influence the overall survey error rate for a specific site.

Size of the Carcasses

Carcass size is a key variable that influences both searcher detection proficiency and carcass
persistence. Generally, larger birds (e.g., golden eagles) are easier to see and are considered to
have smaller survey error rates than smaller birds (or bats). The smaller birds (or bats) are more
difficult to see over large distances, and may be more easily covered by vegetation. Also,
smaller carcasses are more subject to removal by scavengers (see references found at
http://www.altamontsrc.org/alt rl.php).

The study’s experiments were focused on smaller birds and bats based on the assumption that
those carcasses are harder to find and therefore will have higher error rates. Carcasses
representing similar size classes were used in the experiments.

Scavenger Type and Density

The activity level of scavengers at the test site(s) was an important consideration in the selection
of the locations in which the experiments were conducted. Types of scavengers noted at the
Altamont include birds (e.g., ravens, crows, golden eagles, turkey vultures), and mammals (e.g.,
foxes, coyotes, bobcats, raccoons, skunks, opossums, shrews, deer mice). Although scavenger
activity was not monitored, the large number of scavenger species at the Altamont is expected
to be representative of wind facilities across the United States.
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CHAPTER 2: Field Sampling Procedures and Results

As discussed in detail below, field sampling involved marking bird and bat carcasses, placing
them randomly at turbine strings at an operating wind farm, and collecting information on
carcass persistence and searcher proficiency. Turbine strings were selected to represent varied
environmental conditions, including vegetation type and height and slope.

Figure 1: Location of Aitamont Pass Wind
Resource Area (APWRA)

Description of Study Area

The field study was conducted in NextEra Energy’s
Contra Costa County portion of the Altamont Pass
Wind Resource Area (APWRA), which is located in
north-central California approximately 56 miles (908
kilometers) east of San Francisco (Figure 1). Steady
winds of 15-30 miles (2545 kilometers) per hour
blow across the APWRA during the mid-afternoon
and evening periods between April and September,
when 70-80 percent of the wind turbine power is
generated in the APWRA (Smallwood and
Thelander 2004).

The Altamont landscape consists of rolling hills
ranging mostly between 150 and 300 feet (61-91 m)
in elevation above sea level. Permits have been
granted for a total of 5,400 wind turbines in the
APWRA, rated at a capacity of approximately 580 megawatts (MW), distributed over 50,000
acres (150 square kilometers) of rolling grassland hills and valleys. Turbines are arrayed along
ridgelines and other geographic features. The actual number of turbines available at any one
time for power generation is thought to range from 4,500 to 5,000.

Source: NextEra Energy Resources

The APWRA supports a broad diversity of resident, migratory, and wintering bird species that
regularly move through the wind turbine area (Orloff and Flannery 1996). Diurnal raptors
(eagles and hawks), in particular, use the prevailing winds and updrafts for soaring and gliding
during daily movement, foraging, and migration. Multiple studies of avian fatality at the
APWRA show that golden eagles, red-tailed hawks, American kestrels, burrowing owls, barn
owls, and a diverse mix of small birds and non-raptor species have been killed in turbine-
related incidents (Howell and DiDonato 1991; Orloff and Flannery 1996; Howell 1997;
Smallwood and Thelander 2004). All native species are protected by either federal and state
wildlife legislation or both.

From an experimental perspective, the geographical unit of interest at the Altamont is a turbine
string (a line of turbines). More than 400 of these strings have been monitored on a regular
basis. The monitored strings are located over the extent of the APWRA, and therefore cover a

11

Google



Original from
UNIVERSITY OF CALIFORMIA

Digitized by (:;(:}()Eglfi

SOATLRATISQON-1LTIJSWWOIUON-UOTINGTII]Y SUOWWO) SATIEII) / 066EECYEEOZZOTE  TON/LZ07/13U a1puey 1py// sdi1y
1W9 0T:TZ 0€-ZI-S20Z U0 IsnJLTyley ybnodyl palesaudn



Original from
UNIVERSITY OF CALIFORMIA

[Mgﬁuedtw'(:;{:}()églf:

SSAT1EATISQON-1BTOIBWWOIUON-UOTINGTILLY SUOWWO) SATIEI) / O6GECY6EOZZSTE TON/LZ0Z/1dU a1puey 1py//:sdi1y
LW9 0T:TZ 0€-2T-GZOZ U0 1SnJTyleH ybnoayy paledausn



Project field managers marked and randomly placed birds and bats and oversaw the recording
of the carcasses and reporting of the data collected. The project field managers visited the
strings every two days in order to verify the presence or absence of individual birds and bats.
All birds and bats were uniquely marked, and any displacement of a bird or bat from the
original location was observed and the new location noted for future reference. At the location
of each bird or bat, project field managers took measurements of vegetation height. Project field
manager observations provided an independent measure of the “true” number of birds and
bats available for detection. Generally, six bats and eight birds were placed along each string.
Halfway through the study, one large-sized bird was placed at each string within the block
along with the standard six bats and eight small birds.

Once a week, a field technician searched an area around the study strings at a typical sampling
walking pace, looking for any bird or bat carcasses.? On a typical day, a field technician
conducted two string searches, averaging two to three hours per string, covering three to six
acres. The field technicians were ignorant of the presence or absence of birds and bats at any
specific string location. The field technicians recorded the position of observed carcasses. Project
field manager status checks were timed to include checks on days that field technicians
searched study strings in order to establish the true presence of carcasses available for detection
by the field technicians. (To minimize false negative detections while maintaining field
technician “blindness,” a cryptic system of marking carcass positions for project field managers
was used.) Table 1 lists the field equipment used by the 11 field staff employed in the study.

Table 1: Equipment Used in the Field Study

Study Field Equipment
4WD Trucks Compasses
Clipboards Cell phones
Data forms Maps
Pen/Pencil/Sharpies Hard hats
Camera/Scale card/Memory cards Backpacks
Global Positioning System receivers (4m accuracy) Yardsticks
Range finders Markers (wooden stakes)

Source: EcoStat, Inc.

The Data Dictionary in Appendix C lists all the variables recorded, including weather
information collected from January 1, 2011 through May 1, 2011 from the weather station at the
Livermore, California, airport, and topographical variables recorded at each sampling location.

2Variable walking speed and direction across or along the ridge were not taken intoaccount in this
study, but would be interesting to consider in a future study.
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Specific Study Sampling Procedures
Three procedures comprised the field study sampling methods:

e The placement of carcasses at study strings by project field managers.
e Blind carcass searches of study strings by field technicians.
e Status checks of placed carcasses at study strings by project field managers.

Carcass Placement

The purpose of the carcass placement procedure is to generate known random positions of
marked carcasses at study strings.

Sources of Carcasses

Carcasses were provided by the following. For a variety of reasons, not all carcasses received
were used during the field study.

e Bat carcasses: the Michigan Department of Community Health, Lansing, Michigan;
Texas Christian University Department of Biology, Fort Worth, Texas; the Idaho State
Department of Agriculture, Boise, Idaho.

e  Brown-headed cowbird (Molothrus ater) carcasses: TW Biological Services, Fillmore,
California; U.S. Department of Agriculture Animal and Plant Health Inspection
Service/Wildlife Service, National Wildlife Research Center, Bismarck, North Dakota;
Griffith Wildlife Biology, Calumet, Michigan.

o Large bird carcasses: Altamont Infrastructure Company, Livermore, California.

Carcass Position

The search area was defined by a 50 meter buffer created around turbines at study strings. A
grid of 10-meter by 10-meter cells was projected over this search area. Topographical
information was recorded for each cell (see Data Dictionary, Appendix C).

Grid cells were randomly selected for carcass placement. After grid cell selection, a project field
manager would go to the approximate position of the selected grid cell and toss the marked
carcass. The precise location of the carcass was recorded, including distance and bearing to the
nearest turbine including the Global Positioning System (GPS) coordinates. In addition, the
vegetation height immediately around the carcass position was measured. To help the project
field managers find these selected carcass positions on future visits, a marker (small wooden
stake) was cryptically placed 10 meters away from the carcass in such a way that a line segment
was created by the position of the nearest turbine, carcass, and the marker.

Marked Carcasses

In order to maximize the project field managers’ ability to identify individual trial carcasses,
trial bird and bat carcasses were marked. Bird carcasses had a small amount of black tape
attached to each leg marked with a unique obscured carcass identification number. In addition,
the tips of the trial birds’ flight feathers were cut. The tips of the trial bat carcasses’ wings were
taped and marked with a unique carcass identification number.
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Table 2 shows the schedule for monitoring of the strings. The project field managers placed six
bats and eight brown-headed cowbirds - referred to below as “small birds” - at each string, and
placed one additional large bird at each string in Blocks 3 and 4. The goal was to run each block
experiment for a six-week period, but logistical constraints sometimes shortened the time
period, so that the actual durations ranged from 29 to 47 days. The first block experiment
started on January 7, 2011, and the last block experiment ended on April 30, 2011.

Table 2: Summary of Sampling Design

Small bird Bat Incidentally
= = Turbine carcasses | carcasses found . Trial
'§ %o Address placed at | placed at carcasses Tr:;:);i;tes Length
= A Range start of start of added to (days)
trial trial study?

1 280 2206-2209 8 6 2 Jan 7-Feb 12 36

1 288 2038-2041 8 6 0 . Jan 7-Feb 17 41

1 293 2075-2081 8 6 1 Jan 14-Feb 21 38

1 302 2166-2171 8 6 2 Jan 7-Feb 17 41

Block 1 Subtotal 32 24 5 Jan 7-Feb 21 45

298 2757-2761 1 Feb 18-Apr 4 45

683.1 | 2347-2354 8 6 10 Feb 18-Apr 4 45

5046 | 2542-2546 8 6 1 Feb 18-Mar 21 31

Block 2 Subtotal 24 18 12 Feb 18-Apr 4 45

286 2317-2322 2 Mar 11-Apr 22 42

289 2099-2103 0 Mar 11-Apr 22 42

507 2458-2463 0 Mar 11-Apr 27 47

Block 3 Subtotal 273 18 2 Mar 11-Apr 27 47

504 2418-2423 94 0 Apr 1-30 29

505 2514-2518 9 0 Apr 1-30 29

5047 | 2377-2381 9 2 Apr 1-30 29

Block 4 Subtotal 27 18 2 Apr 1-30 29

TOTAL, All Blocks 90 78 21 Jan 7-Apr 30 113

L Species included big brown bats, little brown bats, silver-haired bats, unidentified Pipistrellus,and ,
unidentified Myotis bats.

2 Mix of small and large birds (no bats), including some skeletal remains [note: evidence of skeletal remains
are not used in the calculations presented in this report].

3. One complete red-tailed hawk carcass placed at each string in Block 3.

4 One complete common raven carcass placed at this string.

5. One complete Califomia gull placed at this string.

Source: EcoStat, Inc.
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known carcass identification number was assigned to the carcass position based on its
proximity to plausible known marked carcass positions.

Negative Detections

In order to maximize the certainty of a carcass position’s removal, project field managers
checked the negative presence (absence) multiple times before recording the removal of a
carcass position. After a project field manager conducted three consecutive status checks,
including flushing searches, with negative presence outcomes, the carcass position was declared
removed and no longer part of future status checks. Once the carcass was confirmed removed,
the time of removal was set consistent with the first observation time (this time is needed for the
determination of the carcass persistence curve).

Quality Assurance/Quality Control
High frequency of data entry and field checks helped to assure the data was accurate:

e Datasheets from field technicians were collected after they completed their searches the
same day and checked for completeness. The positions of any fatalities they found were
also verified in the field on the same day by project field managers.

e Project field managers entered data into an Excel spreadsheet two to three times a week,
because the data was needed to determine the status checks schedule.

If any questions arose when entering data, the data was rectified by asking the observer, using
photos and GIS.

Results of the Field Sampling

Carcass Detections

Table 2 shows the number of trials in which abird or bat carcass was truly on the ground, and a
searcher had a chance of detecting the carcass. Carcasses that persisted over time contributed
more to the number of trials than those that were removed from the study quickly.

Differences in the habitat types of the blocks may account for differences in carcass persistence,
as well as the number of days on which a search occurred. Blocks are representative of changes
in grass height over time; however, blocks were not selected based on specific ecological or
habitat conditions. The chance of detecting a bird or bat was not equal for each search, and was
found to be a function of vegetation height and carcass age. Topographical variables (e.g., slope)
and meteorological variables (e.g., precipitation) were evaluated in addition to vegetation
height, but were not found to be correlated to mortality at this site.

Table 3 summarizes the percentage of search opportunities with carcasses detected over the
entire study. In practice, a single trial is implemented in which a fixed number of carcasses are
observed. Each carcass has one chance of observation.
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Table 2: Percent of Birds and Bats Observed for Each Block

Number of individual
. Average
. observations where the | Percent N
Block Species Vegetation
carcass was truly Detected . .
Height (inches)
present!
1 Bat 83 16.9 2.2
2 Bat 63 4.8 3.4
3 Bat 60 1.7 5.6
4 Bat 42 4.8 7.6
1 Small Bird 72 18.1 2.6
2 Small Bird 63 17.5 3.5
3 Small Bird - 38 7.9 6.1
4 Small Bird 50 22.0 6.1
3 Large Bird 17 58.8 6.3
4 Large Bird 14 78.6 8.4

Note: individual carcasses could have several chances for observation during the study
Source: EcoStat, Inc.

Table 3: Percent of Birds and Bats Observed in Study

Number of individual Average Vegetation
Species observations where the age ¥ <8 Percent Detected
Height (inches)
carcass was truly present!
Bat 248 4.3 8.1
Small Birds 223 4.2 17.0
Large Birds 31 7.2 67.7

'Note: individual carcasses could have several chances for observation during the study

Photo Credit: EcoStat, Inc.

Table 4 shows the chance that a carcass was observed on the first observation date. The number
of bat carcasses observed on the first observation date is 14 percent. Note that the percentages
observed on the first date are larger than found over all possible observation dates. This finding

could be linked to increased difficulty with observing older carcasses.
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Table 4: Percent of Birds and Bats Observed on First Observation Date

Percent Detected
Bat 14.1
Small Birds 221
Large Birds 83.3

Source: EcoStat, Inc.

Table 5 shows average vegetation height by month and block. The vegetation in the study area
is predominantly grass, with an average height of 2.7 inches (maximum 10 inches) at the start of
the study in January and an average height of 6.4 inches (maximum 23 inches) at the end of the
study in April.

Table 5: Average Vegetation Height (inches) Observed by Month and Block

Jan 2011 | Feb 2011 | Mar 2011 | Apr 2011
Block 1 2.7 23
Block 2 23 3.2 4.3
Block 3 3.3 5.9
Block 4 6.4

Source: EcoStat, Inc.

Table 6 shows the number of individual carcasses detected for each block over the course of the
entire study.

Table 6: Percent of Unique Carcasses Detected per Block (7-day interval)

Found Placed Percent Detected
Small | Large Small | Large Small | Large
Block # | Bats Birds | Birds | Bats | Birds | Birds | Bats | Birds | Birds
1 10 11 - 24 32 - 41.7 40.6 -
2 3 - 18 24 - 16.7 29.2 -
3 3 18 24 3 5.6 12.5 100
4 1 10 3 18 24 3 5.6 37.5 100
Total 15 32 6 78 104 6 19.2 30.8 100
Source: EcoStat, Inc.
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Carcass Persistence Probability

In this section, the scavenging rate at the level of string, block, and entire study area is
examined. Relationships between carcass persistence and key covariates, such as vegetation
height, are also examined. The persistence of a carcass on the field was modeled using a two-
parameter Weibull distribution with the following model structure.

The density function for Weibull® distributed carcass persistence times is the following:
p(tila,2;) = at;"" exp(A; — exp(2;)t;")

Where A is the scale parameter, ti is the time of event i, and a is the shape parameter of the
Weibull probability density function.

The corresponding carcass persistence function can be written as follows:
S(tila, 2;) = exp(—exp(4;)A])

Where S is the probability of carcass persistence (survival or non-removal from the field), and ¢;
is the time (days) that the carcass was observed on the field since the start of the study.

If covariates (i.e., grass height, distance to bird or bat from the searcher, topographical features,
etc.) are linked to A with A i = xi3, where xi is a vector of covariates corresponding to the ith
observation (here, an observation is a survey date) and B is a vector of random parameters, the
log-likelihood function is written as:

l(a,Blt,x) = Z v;(log(a) + (a — 1) log(t;) + x;B) — exp(x;B) t¥
i=1

The above model was implemented using a Bayesian paradigm with prior distributions:
B: N(0,10000)
a: Gamma(0.001, 0.001)

Also, in some cases, the model was implemented without A linked to covariates. Note that v
indicates whether the observation is an actual failure time (v=1) or a censoring time (v =0). An
observation is considered censored if the event of interest (in this case, the carcass is removed)
does not occur within the timeframe of the study. A censored observation is defined as a record
where the event (removal), has yet to occur (but, may occur if the record was tracked through
time for a longer period). Results of the carcass persistence modeling exercise are shown below
in Figures 10-13. These graphical presentations of the carcass persistence curves display the
variability in probability within the data base. The curves are not adjusted for grass height, or
other possible covariates.

3 The Weibulldistribution is a continuous probability distribution used in survivalanalysis, which
involves the modeling of time to event data.
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Figure 10: Carcass Persistence Probability for All Bats in the Study

Persistence Probability
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With 90 percent Credible Intervals, dashed line
Two-Parameter Weibull Survival Model

Red dots indicate a removal; Black dots indicate a censored* record
Note: A single bat can be viewed more than once during the course of the study

Source: EcoStat, Inc.

The carcass removal rate was high over the first two weeks and then the removal rate
exponentially decreased. Red dots in Figure 10 indicate a constant rate of removal.
Approximately 30 percent of bats were not removed (black dots).

Changes to grass height and other biological metrics over the study period may explain some of
the differences in Figure 11. (However, no formal analysis of this subject is possible due to lack
of rigorous field measurements). The statistical model does not result in a probability curve for
large birds due to the low removal rate (one carcass).

+“Censored” means that the carcass remained on the ground (was not removed) when the trial ended.

24

Google



Figure 11: Block-Specific Persistence Probability for All Bats in the Study
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Figure 12: Persistence Probability for Small Birds in the Study
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Figure 13: Block Specific Persistence Probability for Small Birds in the Study
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These curves confirm that the rates of carcass removal were greater in the first two weeks, and
that most carcasses were removed within six weeks.

Searcher Proficiency

The magnitude of the searcher proficiency rate will be site specific, and will be a function of
environmental and topological variables. In this study, searcher proficiency was significantly
related to vegetation height (Figure 14). In addition to showing that searcher proficiency is a
time-dependent process, Figures 14 and 15 clearly indicate that the shape of the searcher
proficiency curves (with time and vegetation height) differ for birds and bats, and for small and
large birds.

A key contribution of this study is the findings associated with bats. Statistics derived from this
study indicate that, on average, searcher proficiency of bats is roughly half that of small birds.
Large birds in this study were detected approximately 70 percent of the time. From a specific
carcass perspective, approximately 30 percent of all small birds in the study were detected at
least once, while only 19 percent of the bats were detected at least once.

The above rates for small birds are consistent with published literature values. For bats,
however, the incorporation of time-based functions of searcher proficiency will have a
significant impact on the resulting bat fatality estimation.
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Figure 15: Searcher Proficiency of Small Birds and Bats Over Time,
Integrated Over All Other Covariates
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Table 7: Distance Between Observed Carcass and Field Technician
Species Minimum Mean Distance Maximum
Distance (meters) | (meters) Distance (meters)
Bat 1.0 1.7 8.0
Small Birds 1.0 2.2 10.0
Large Birds 1.0 9.0 41.0

Source: EcoStat, Inc.

One problem with most estimators is that they must address a mix of species and ages of
carcasses, which is complex. The time and age of carcasses matter for detection; the datareveal
an often overlooked time dependency to searcher bias, combined with persistence.

Questions that could be explored with further research include whether increasing the searcher

time per string (decreasing walking speed) results in higher detection rates, and whether it

would be better to search one area thoroughly or search more areas.
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CHAPTER 3: Fatality Estimation Equation Analysis

The objective of this section of the compare commonly used equations. Based on the
assumptions underlying each equation, and the mathematics inherent in the equations,
computer simulation is used to compare and contrast the expected true fatality rates among the
equations evaluated. The equations are explored and evaluated using the concept of statistical
bias and variance.

Description of Analysis

Estimating the true (or actual) fatalities of a specific species of bird or bat, related to a particular
wind power generating facility during a specified time period, is a challenging task. Typical
data supporting such estimates consist of collections {C; ,-} of counts of carcasses discovered by

search teams in delineated search areas near a number of turbines (here indexed by i) at the end
of successive search periods (here indexed by j), of varying length {J; j} (in days).

The simplest approach to estimating the total number M;; of fatalities due to turbine i in time
period j would be the raw count, M;; = C;;. This would be exactly correct under the simplistic

assumptions:
S1  Each period begins with no carcasses in the search area;

S2 Each fatality caused by turbine j during period i leads to a (unique, single) carcass in the
study area;

S3  There are no other sources of carcasses in the study area;
Sa+ Each carcass remains throughout the period;

Ss The search team discovers and removes every carcass.

Under these assumptions the total number M;; of fatalities could be estimated perfectly by

M ij =C i 1..5
Each of the assumptions above is false to at least some degree, leading C;; tobe a badly
distorted estimate of M;;. Some of the reasons include:

¢ Experiments (for example, see http://www.altamontsrc.org/alt _rl.php) have shown that
search teams usually discover only a fraction of existing carcasses (estimates ranging from
13 percent to 88 percent have been reported in the literature), violating Ss. The
undiscovered carcasses will be present in the search area at the beginning of the
subsequent period, violating S1.

¢ Fatalities from turbine j may lead to carcasses outside the search area, violating Sa.

* Note the equals sign (=) indicates “defined as.”
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¢ Carcasses from fatalities caused by another turbine or from an unrelated source may fall
into the search area, or carcasses from fatalities preceding the test period may persist into
the period, violating Ss.

* Scavengers may remove carcasses before they are discovered by the search team, or
carcasses may degrade so much that they elude discovery, violating Sa.

A number of authors have published more sophisticated estimation formulas for the number
M;; of birds or bats killed, intended to correct the biases induced by these issues. The following
discussion is intended to explain the implicit assumptions that underlie four of these formulas,
illustrating how they differ, and to offer suggestions for choosing among them or alternatives
for the purpose of making reliable estimates of fatality.

The Estimating Equations

The authors study fatality by constructing a mathematical model in which the number C;; of
turbine-related carcasses discovered in the it" spatial region at the end of the j** temporal
period is treated as a random variable. Each of the estimation formulas considered here begins
as an equation expressing the expected number of carcasses counted, E[C; j] as a function of the
actual number M;; of fatalities and of some other factors (or estimates of them), under some
assumptions about how scavenging and fatality proceed. This section considers what implicit
assumptions lie behind these equations, offering some perspective on them and also some
generalizations.

The authors differ in their choice of which letters to use as variable names for which quantities.
To simplify comparing their estimation formulas, this report assigns common notation for all of
them. Upper-case letters denote quantities which are (or could be, in principle) observed; lower-
case letters denote model parameters. Table 8 presents the notation used here. “Hatted”
quantities such as “M;;” denote estimates of the corresponding quantities.

Even though observations are taken only at a few discrete times, it is useful to think of fatality
and removal as processes that occur progressively over the time interval. Time is treated as a
continuously-varying quantity t, measured in days, ranging from zero to /;; during each study
interval. The instantaneous rates of fatality and removal, and the levels of searcher proficiency,
may vary in time and may depend on a variety of covariates. In a more detailed modeling effort
the proficiency s;; (the probability of discovery of a particular carcass) would depend on the
searcher’s skill, the time lapse from fatality to search, and various covariates including the
vegetation height and lighting conditions. Carcass removal rates r;;would also change as
carcasses age, and might depend on other covariates, leading to time and covariate dependence
for persistence probabilities p;; and average durations t;;.
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Table 8: Common Notation for Observable Quantities (Upper Case) and
Parameter Values (Lower Case) for All Estimation Formulas

At turbine i in time interval j

Cij (count) = number of carcasses counted

Iyj (search interval) = search interval length (in days)

M;j  (mortality) = true number of carcasses during interval

Pij  (persistence probability) = probability a carcass remains unremoved until next
search

nj  (removalrate) = probability per day of carcass removal by scavengers and
other processes

Sij  (search proficiency) = probability a carcass will be discovered

tij (persistence time) = average number of days a carcass remains unremoved

Source: Dr. Robert Wolpert

In this discussion, each of these parameters is treated as constant during each search interval,
set to their average values in region i and epoch j. Models reflecting their dependence on time

and covariates are under development and will be described elsewhere.

Common Assumptions

All four of the estimation equations below embody some common simplifying assumptions,
most of them approximately correct or easily addressed:

Ai: Each fatality caused by turbine j during period i leads to a carcass in the study area.

o Ineach of the approaches below this can be relaxed by including an additional factor
1/#;;, where #; is an estimate of the fraction ;; of carcasses from the j th turbine that

fall into the study area during the it" time period. Most authors adjust for this.
Az2: There are no other sources of carcasses in the study area.

o Searchers are trained to distinguish turbine fatalities from others, and search areas are
sufficiently widely separated to ensure that few if any inappropriate carcasses will be
counted.

As: Carcass arrival times are uniformly distributed over the interval [0, /; ,—].
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o Actual fatality rates will vary over time due to diurnal patterns, weather dependence,
migratory patterns, and for other reasons, but the effects should average out over time
with no significant effect on estimates.

A4: Quantities that vary over the time interval or that depend on covariates are adequately
represented by their average values.

o This leads to considerable simplification, and holds approximately if the variation is
small. See Discussion below for notes on how it may affect estimates if variation is not
small, and on how it could be addressed.

Implicit assumptions specific to each particular estimation approach are described below.

Erickson & Johnson's Equation
An early attempt to reduce bias, attributed by Shoenfeld (2004, Equation (2)) to Erickson,
Strickland, Johnson and Kern (1998) and by Huso (2011, §3.2) to Johnson, Erickson, Strickland,

Shepherd, Shepherd and Sarappo (2003) is ot
7E] _ Cijly
ij - gijfij. (1)

If, on average, carcasses persist unremoved for only a fraction t;; < I;; of the search interval,
and if the search team’s proficiency is s;; < 1, it is reasonable to expect them to only discover a
portion

Cyj = (t4j/1;) (51 )My

of the carcasses, leading to the estimator (1) when the uncertain quantities s;; and t;; are
replaced with estimates and the equation is solved to construct an estimate of M; ;.

Exploring this in more detail, in the absence of intervention (i.e., removal of carcasses by
searchers) and under unchanging conditions, the long-term average number of carcasses
present on the ground in the study area would reach a steady state with no systematic increase
or decrease; denote the average number of carcasses at steady state by g;;. Since each of those
carcasses is present for an average of t;; days, the average daily fatality rate necessary to
maintain that equilibrium ism;; = g{;/t;; so
gij = myjti;.

On average the total fatality in a period of /;; days is M;; =~ m;;l;;, so

g5 = (My/13j)t;

and on average a search team that succeeds in discovering carcasses with probability s;; < 1
(the team’s proficiency) would discover a fraction s;; of these,

E[cy] = 5197 = Mijsijt/1ij, (2)
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Replacing s;; and t;; by their estimates §;; and £;; and solving for M;;leads to estimator (1),
ﬁiEj' = (Cyjl;j)/(8ijt;)- Because of its steady-state assum ption, the validity of Erickson and

Johnson’s estimator M 5] (1) requires the additional assumption:

Af lThe system is in equilibrium at each search.

This will hold approximately whenever [;; > t;j, since the removal process then brings the
system to equilibrium quickly, but in general it will be violated by any intervention such as the
removal of discovered carcasses by search teams. If Af ). fails (as in Figure 16) because of
interventions that remove carcasses, then Cj; < s;;g;; on average, leading to systematic
underestimation with 1|7liEjl < M;; (see Discussion below).

Figure 16 illustrates four /;; = 10-day periods. Simulated counts G;; (t)of carcasses currently in

the study area are shown as a stair-step curve, for Poisson fatality at constant average daily rate
m;; = 3d™! and exponential persistence times averaging t;; = 4d. The equilibrium average value
gi; = my;t;j = 12 is shown as a horizontal line.

The curve G;;(t) increases by one with each new fatality (at random times chosen uniformly
from each interval [0, /; j]), decreases by one with each removal by scavengers (after

independent exponentially-distributed persistence times), and decreases at the time of each
search by the number of carcasses discovered and removed. Search team proficiency for the
simulation is s;; = 0.70. Search team carcass counts appear as downward arrows, and

undiscovered carcasses remain for the subsequent search period.

Figure 16: Steady-State Value g;; = 12 for Erickson & Johnson’s Estimator Mfl’ 1)
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Horizontal line, beginning and ending each period at open and fitlled circles, respectively. One draw from
random distribution (stair-step, beginning and ending each period at open and closed squares,

respectively) is also shown, with discovered carcasses removed (in violation of Af’).

Source: Dr. Robert Wolpert
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A Variation: Shoenfeld’'s Periodic Equation
Huso (2011, §3.2) attributes to Dr. Peter S. Shoenfeld (2004) the “modified” estimation formula

s = Culy [ehl 148y

i = A A 3
8ty | el/ti—1 (3)

Shoenfeld describes this estimator as a “periodic” variation on (1), specifically intended to
address that estimator’s systematic underestimation, which he suggests is about 15-20 percent
in practice. The next section reviews the assumptions implicit in Equation (3).

Each period begins with carcasses that were not discovered and removed by the previous search

team still on the ground. As the number t of days into the period increases, the number of
carcasses G;;(t) is increased by new fatalities and decreased by the removal process, with

expected value g;;(t) = E[Gi j (t)] tending toward the equilibrium limit g;. Under the
assumptions listed below, the mean satisfies a linear Ordinary Differential Equation:

d
=95 (®) =mij—1;g;(t) =my;— g;;(O)/t;;  (4a)

where m;; = M;;/I;;is the daily fatality rate and t;; = 1/7;;is the average persistence time. The
well-known solution with initial value gJ; is

9i;(8) = gl + my;e (1 — et/t), (4b)

which begins at g;;(0) = g?j and converges exponentially at rate 1/¢;; to the equilibrium value
of gj; = my;t;;. The value at the time of the search ending the j th time period is g;; (1; ,-).

Shoenfeld’s idea is to use this relation periodically for search scenarios where the search
intervals, search proficiencies, and removal rates are approximately constant for consecutive
time periods. In that case each period will end on average with the same number g; = g; ,-(lij) of
carcasses as the preceding period. By periodicity, each must begin on average with g?j =

(1-s j)g,- carcasses, those undiscovered by the previous search team, leading to the equation

g; = (1—si;)aie™/t + my;t;;(1— e~lu/ty), ©®)
Collecting terms, this is easily solved for:

_ mijtij(l— e—lij/tij) _ Mijtij e’ij/tlj -1
1-(1-s;)e i/ Iy eli/ti -1+

i

(using m;; = M;j/I;; for the average daily fatality). The expected carcass count will beless by a
factor of the proficiency s,

E[cij]=M

sitij[ e/t -1
Y Il] e"'//t"f—1+5,-j
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Solving for M;; and replacing s;; and t;; with their estimates leads to Shoenfeld’s (2004,
Equation (1)) estimation equation,

M3 = —=
l A
T ity

Cij’ij e"'l'/f‘i -1 +§ij
e’ij/fij -1 ’

Shoenfeld’s periodic approach was based on three new assumptions (as inferred from the
characteristics of the equation):

Aj: Carcass persistence times have exponential distributions.

AS: All carcasses (both old and new) have the same probabilities of discovery s;;.

A%: Thelengths I;;, rates of mortality m;; and removal r;;, and the proficiencies s;;are
3 j j j P j
approximately constant over consecutive time intervals.

Figure 17: Mean Function g, (¢) for Shoenfeld’s “Periodic” Estimator A3 (3)
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Smooth solid curve, beginning and ending each period at open and filled circles, respectively

Steady-state limit (dashed curve at g;7 = 12), and one draw from random distribution (stair-step,

beginning and ending each period at open and closed squares, respectively) are also shown. True
mortality rate is m;; = 3d™", persistence is t;; = 4d, and searcher proficiency is si; = 0.70.

Source: Dr. Robert Wolpert

Assumption A] was needed to justify the Ordinary Differential Equation (4). Assumption A}
ensures that undiscovered carcasses from an earlier period are just as likely to be removed by
scavengers and weathering or discovered by future search teams as are fresh carcasses (see

Discussion below), justifying their inclusion for the current period. Assumption Aj justifies the
recursion of Equation (5).

If the sampling intervals /;; are long compared to the average removal times t;;, then the last
factor in square brackets above is close to one and (3) reduces to (1), so M i = M iEj] . If searches are
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more frequent, so search intervals /;; are not long compared to residence times ¢t;;, then the
estimate Misl- of (3) always exceeds M 5.1 of (1), to compensate for the smaller number of carcasses

on the ground following the previous search.

Figure 17 illustrates the model implicit in Shoenfeld’s estimation equation for four I;; = 10-day
periods. The mean value g;;(t)for the count G;;(t) of carcasses in the region is shown as a solid
curve, beginning and ending each search period with an open or filled circle respectively,
approaching but not quite attaining the steady-state g;; = 12 shown as a dashed line. One
random draw of the numbers G;(t) of carcasses currently in the study area is shown as a stair-
step curve for constant daily mortality rate m;; = 3d~? and persistence times t;; = 4d. Search

team carcass counts appear as downward arrows; undiscovered carcasses remain for
subsequent search period. As before, search team proficiency is s;; = 0.70.

Pollock’s Equation

It is worth questioning why in practice search teams find only a modest fraction s;; of carcasses.
Under Shoenfeld’s assumption A3 the undiscovered carcasses are no harder or easier to find
than those that were discovered — discovery failures are entirely random. But another
possibility to consider is that some carcasses are more difficult to find than others, perhaps
because they fell in deeper grass, or in an area with poorer light or less contrast, and that search
teams find all of the most accessible carcasses. If so, then carcasses remaining on the ground

~ after a search should not be included among those that might be found during subsequent
periods. The next equations considered are based on an assumption that each period begins
with no discoverable carcasses present.

The estimator recommended in Guidelines, suggested by Dr. Kenneth H. Pollock of North
Carolina State University (2007), is

P _  Cij

My = PijSij ()
This is the estimator one would derive from a model in which the expected carcass count for the
jth period could be expressed as the product E[C ,-j] = M;;p;js;; of the mortality count M;;,
reduced by the “persistence probability” p;; and the searcher proficiency s;;.

The difficulty in interpreting this equation and assessing its validity lies with interpreting the
persistence probability parameter “p;;”, described by this study as the “probability that a

carcass persists and is observable until the next search” and by the Guidelines as the
“probability that a carcass has not been removed in an interval.” Because some carcasses appear
much earlier in the interval than others, some will be subject to removal by scavengers and
weathering for longer times than others and so some will face a higher probability of removal.

Exponential Persistence Times
If persistence times have exponential distributions, then the probability of persisting unremoved
from any time 0 < ¢ < ;; to the end of the interval is P[zy, > (1;; —t)] = e (j-t) Under
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Common Assumption As of uniformly-distributed arrival times, the average probability p;; that
a carcass persists until the next search at time /;; and the average persistence time ¢;; is given by

Ls
pij = if " eyl gy = L [1-e7li]  (7a)
ij rijli,-

tij =[0 e—rthdT = 1/rl'j. (7b)

Combining these with (6), Pollock’s estimator for exponential persistence is

. C Cijli _1. /.11
ﬁin.E Ly _ Syl [1 ll,/f,,]
bijdij  Sijty

(with exponential persistence). (7¢)

Weibull Persistence Times

For exponentially-distributed persistence times, the probability of a carcass’s removal during a
day (assuming it is still present at the start of that day) does not vary with the age of the carcass.
This feature of the distribution, sometimes called “memorylessness” and sometimes called
“constant hazard”, may not be realistic if older carcasses appear less attractive to scavengers.

An alternative probability distribution commonly used to model failure times with decreasing
hazard is the Weibull family.

Pollock’s estimator IW F. of Equation (6) can be used with a Weibull probability distribution for
persistence times exhlbltmg decreasing hazard, by introducing a new parameter a > 0 (the
Weibull “shape” parameter). The case @ = 1reduces to the exponential distribution as before,
but for 0 < @ < 1 the hazard (i.e., removal rate) falls off like the power r;; & 7*~! with
increasing persistence time 7. The persistence distribution is then given by

Plt>t] = e'(r‘f‘)a, t>0
with average persistence probability and average persistence time given by

1 [l a 1 1 1 @
py=—] e lulli-0l" g =—P(;,[r(1 +E)r""’"" ) (8a)

lijJo Tijlij

ti =f el = I‘(l + )/rU (8b)
0
where I'(a@) and P(a,x) denote the Gamma and incomplete Gamma functions, respectively
(Abramowitz and Stegun, 1964, §6.5). The resulting estimator from (6)is

P:W _ Cil _ Cyly 1 1y, A”a -1 . . .
Mi; = ot = P (a,[r (1 + a) I/t ,] ) (with Weibull persistence), (8¢)

not much less tractable than the exponential version (7c).

Other interpretations of p;; (for example, the probability a carcass present at the beginning of
the interval will persist to the end) or other persistence distributions lead to different
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expressions and may require different assumptions for validity. For any persistence
distribution, Pollock’s estimator requires the assumption:

AP: Each period begins with no discoverable carcasses.
If A: fails then M{; will consistently overestimate M,;.

Figures 18 and 19 illustrate the model implicit for # l-Pj with exponential persistence for four I;; =
10-day periods. The mean value g;;(t) for the count G;;(t) of carcasses in the region is shown in
each as a solid curve, beginning each search period with an open circleat g;;(t) = 0 and ending
each at a filled circle somewhat below the steady-state level of g‘{} = 12, indicated by a dashed
line. One random draw of the numbers G;(t) of carcasses currently in the study area is shown
as a stair-step curve for constant mortality rate m;; = 3d~! and mean persistence times t;; = 4d.
Search team carcass counts appear as downward arrows, for proficiency is s;; = 0.70. Following
searches undiscovered carcasses remain discoverable for future searches in Figure 18, in
violation of A%, to illustrate possible bias, but search intervals are sufficiently long (/; j = 2.5t;)
that estimator MJ; has a bias of only 2.5 percent.

Figure 18: Mean Function g, (¢t) for Pollock’s Estimator MZ (7c) with Exponential Carcass
Persistence Distributions

15
!

Carcasses
10

Time (days)

Smooth solid curve, beginning each search period with an open circle at g;; (¢) =0and
ending each period at a filled circle

Steady state limit (dashed cune at g7 = 12), and one draw from random distribution (stair-step,
beginning and ending each period at open and closed squares, respectively) are also shown. True
mortality rate is m;; = 3d™", persistence is t;; = 4d, and search team proficiency is s;; = 0.70.
Undiscovered carcasses are allowed to remain following searches, in violation of A%

Source: Dr. Robert Wolpert

For contrast, all carcasses are removed following searches in Figure 19, consistent with Af.
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Figure 19: Simulation lilustrating M,‘; (7c) with Exponential Persistence Distributions with
Carcasses Removed Following Searches, so A", Holds
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Source: Dr. Robert Wolpert

Huso’s Equation

Huso (2011) expresses the concern that in some study designs the interval I;; between
successive searches may far exceed the expected persistence time ¢;; of carcasses. In that case
she proposes to reduce the value used for I;; to an “effective” time interval length [;; < I;;,
sufficiently long that the random persistence times {7, } (with mean t;;) will only exceed this
effective time with small probability Pz, > I ,-] < 1 percent, and regard the carcass count as
appropriate for just the last [;; days of the interval. The resulting estimate is then scaled by the
factor (1;;/ I;j) to achieve an estimate )W{} for the full interval of /;; days. Under her assumption
of exponential distributions for persistence times {7, } ; j = ti;1og(100) (about 4.6 times the
estimated mean persistence time ), leading to Huso’s estimator

Ciilii -
s 1 < I
7 guiu(l-e_ y t“) Cij lij
MY = = . 9)
Y Cijlij ° §Ufij[0.99A(1—e-,ijﬁi1)]
———— lll > [U
Siltij(0.99)

This is expressed quite differently, but is mathematically identical to the “Proposed Estimator”
of (Huso, 2011, §3.2, p.7). This estimate always exceeds Pollock’s estimator M iPI-’E (7¢) for

exponential persistence
. C .I. :
M = MEE = - (10)

U= $ij€ij 1-e~lultij|

The two never differ by more than one percent, and coincide whenever I;; < 4.6{;;, so M 3 may
be viewed simply as a complicated way of expressing M fj for exponential persistence times.
Huso’s estimator will be valid and nearly unbiased under the assumptions:

AY: Each period begins with no discoverable carcasses.

AY: Carcass persistence times have exponential distributions.
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The estimation equations considered here —

E} _ CU IU (1)

ij

)

8yt
_Cyly [e'if/fu —1+3;

elij/fii -1 (3)

_ Cij
Mipj = ﬁ_z— (6)
ijoij
Cu’u e —lij/Ej] ! : :
s [1-ehi/ty] for exponential persistence (7¢c)
ijtij

Cl}’lj AN
. P [1" (1 + ) i ,/ t; ,] for Weibull persistence (8c)
ijtij
Cyjly Ciilii

ﬁ.H. ijlij 1— —Ii‘/fi' -1 o
I SamaG-erm] Tagl e ©

— are all intended to adjust for the gross underestimation of mortality M;; by simple carcass
counts C;;. Each of them relies on the Common Assumptions A1—As(see p. 31) and each isa
valid estimator of M;; under some additional assumption (Af', A - A A and AY & A,
respectively).

Discussion

The Figures
Figures 16-19 illustrate the models for fatality and removal implicit in the estimators. Each
figure shows simulated counts G;;(t) of carcasses in the area as solid black stair-step curves that

increase by one with each new fatality, decrease by one with each scavenger removal, and
decrease by C;;j at the end of the jt*interval upon the discovery and removal of C;; carcasses by

the search teams (each C;; is indicated by a red downward arrow). In Figures 16-18,
undiscovered carcasses remain present and may be discovered by later searches. To simplify
comparison by focusing attention on what is different about the models (and not just random

variation), the same fatality and removal times are used for each, so the functions G(t) are
identical in Figures 16-18. (In Figure 19, necessarily featuring different removal times, carcasses

are removed following searches.)

The mean value functions g;; (t) implicit in the models are shown as solid blue curves,
beginning each interval at an open circle and ending it at a filled circle (these overlap in Figure
16, where g;; (t) takes a constant value). Simulations and mean value calculations all use a daily
fatality rate of m;; = 3d~1, 50 10dx 3d~! = 30 fatalities would be expected in each interval, or
120 overall (113 appeared in the simulation). Rate of removal by scavengers was 7;; = 0.25d77,
so persistence times averaged t;; = 1/1;; = 4d and, at steady-state, m;;t;; = 3d™! x 4d = 12
carcasses would be present. The search teams, whose proficiency was s;; = 70 percent,
discovered 35 carcasses in the four intervals of the simulation.
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Comparing the Estimators

The estimators fall into two groups. Estimators M, ; 7% and M;; 2. each assume that some or all
carcasses remain across searches, and that undlscovered carcasses from earlier time periods are
removed or discovered at the same rates as fresh carcasses. In contrast, estimators M}; and M}

assume that each search period begins with no discoverable carcasses. For a fixed searcher
proficiency and carcass persistence rate under the same site-specific characteristics, the ordering
of the estimators is consistently:

M < M5 < Mf, < Ml (11)

for exponential persistence probability distributions. Note that then ﬂﬂ = M unless [;; > 4.6¢;),
in which case they differ by at most 1.01 percent.

Choosing an Estimator

Which group of estimation equations is more appropriate for a particular species and
experimental design — one of those (MS', M3 7) in which carcasses from earlier periods persist?
Or one of those (like M, ;) in which each perlod is assumed to begin with no carcasses present?

Imagine sending two search teams with the same proficiency (say, 50 percent) into the same
area in which, say, 20 carcasses are present, one after the other. The first team should find about
50 percent x 20 = 10 carcasses, on average — but what would the second team find?

If they would be expected to find nothing, because all the discoverable carcasses would have
been removed by the first team, then the Erickson & Johnson and Shoenfeld estimators

M 5’, M3 ;) would not be appropriate. Both would underestimate M;; by a factor of about

[1- ’U /tj], leading to a negative bias.

If they would find about 50 percent x 10 = 5 carcasses (half those not found by the first team),
then Pollock’s and Huso’s estimators would be inappropriate. Both would overestimate M;; by

-1
a factor of about [1 -(1-5; j)e""i / tU] , leading to a positive bias.

Bias from Inappropriate Equation

These biases are apparent in the figures. In Figure 16, the stair-step simulated curves G;;(t)
typically lie well below the Erickson & Johnson mean function g;(t) = g7}, and their endpoints
(the filled squares) lie below g;; on average, leading to underestimation (by -5.9 percent on
average, for the parameters in this simulation). In Figure 18, the stair-step simulated curves
typically lie above Pollock’s mean function g;;(t) and the period endpoints, the filled squares,
lie above g;;(t) on average, leading to overestimation (but only by +2.5 percent for the
parameters used here). In Figure 17, the simulated curves G;;(t) coincide on average with
Shoenfeld’s mean function g;;(t), leading to accurate estimates. Figure 19 shows the
degradation-based estimator M{; = M|} with a simulation consistent with their assumptions
(exponential persistence times and carcass removal following searches), so there is no bias.

The biases would be larger with more frequent searches, possibly considerably larger. Daily
searches, for example, with the same residence time t;; = 4d and searcher proficiency s;; =
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70 percent, would lead to-71.1 percent bias for estimator MS.' and +30.5 percent bias for M/} or

ﬁ,!’j, while ﬁf; would remain unbiased.

In the scenario of Figure 19, where undiscovered carcasses remain undiscoverable as if they
were removed, Pollock’s estimator (and Huso’s which is identical) is unbiased while
Shoenfeld’s and Erickson/Johnson’s underestimate M; jby factors of

[1-@-s;)e s/ ‘U]_land[l — e7!i/t], respectively, for biases of —2.46 percent and -8.21
percent, respectively, with the 10-day search periods and 4-day persistence assumed here. For
daily searches these biases would grow to —23.6 percent and -77.9 percent, respectively.

Bias Affecting All Equations

Each of the estimation formulas is based on an expression of the expected carcass count E[C; j] as
a function of the fatality count M;; and some other variables, such as the average persistence
time t;; and the search team’s proficiency s;;. An estimator is then constructed by solving this
equation for M;; as a function of E[Ci 1-].

Consider, for example, estimator M 5-’ of Eqn. (1), derived from Equation (2), i.e., the relation
E[Cyllyj = Myjsistiy.

If both s;; and ¢t;; are uncertain or variable, perhaps because they depend on covariates (grass
height, etc.) that themselves are variable or perhaps simply because they must be estimated
from data, then there is still a linear relation for the expectations

E[cyly] = E[M,;3,8,]
for independent unbiased estimators $;; of s;; and {;; of t;;. Bias enters, however, when one
makes the non-linear transformation of solving for M;;:

_ Culii
MU =~ MU = ';'1112
SU' tU
Because the function x ~~>1/x is convex (its graph curves upward), the expectation of 1/3;; will
always exceed 1/E[$;;] and that of 1/%;; will always exceed 1/E[£;;], so uncertainty or variability
in s;j and t;; will lead each of these estimators to overestimate fatality to some extent, with

E[M,;]> M;;. But how large is this positive bias?

If a positive random variable X has a log-normal distribution (commonly used to model
uncertain positive quantities such as s;; or t;;) with mean E [ X]=M and variance V[X]=V, then
1/X also has a log-normal distribution, but the mean is not 1/M. It is always larger:

1_1 4
By =wl+l
more than 1/M by a fraction V/M2.

Thus if §;; is an unbiased estimator of s with standard error ¢, then (1/3;) is a positively biased
estimator of (1/5s;;) with bias given by:
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2
E[1/8,] = (1/8,) [1+ (e/5,)]
with a similar formula for ¢;;. If s;; and t;; are known to within a small proportional error, i.c., if

their standard errors are small fractions of their values, then little bias is introduced; if not, then
more sophisticated statistical approaches may be warranted.

Variability

All the estimators considered here are of the form M; =«C;;, proportional to the carcass count
with a proportionality coefficient k which will depend on 1}, 3;, t;;, and perhaps other
quantities. The value of k is determined by solving for M;; an equation for the expected number
Elc l-,-]oz M of carcasses counted. The resulting variability of the estimators M;; can be quite large.

Because C;; has a Poisson distribution under the models justifying all four of the estimators

under consideration, and Poisson random variables have variance equal to their means, the
variance of each such estimator M;=xC;; will be k2V[C;;| = x2E[C;;] = xE[M,;]. Even an
unbiased estimator #;; with expected value E[#;;] = M;; will have variance kM that may be
quite large. For counts high enough to justify a central limit approximation, one should expect
typical estimation errors to be on the order of ,/kM;},

|#:;—M;;| < 1.645 /KMU- ~ 1.645 (KM},

with probability about 90 percent (and similar formulas for other quantiles). For counts C;; too
small to justify the central limit theorem, the Anscombe transformation

Z:=2 /c,-,+ 3/8~N0(2 ,c,-,-+ 1/8,1)

forc;; := E[C i j] (Anscombe, 1948) leads to reliable interval estimates for M;; for counts as low as
Cij = 4. Exact Poisson confidence intervals are available for all counts C;; > 0.

For example, at the end of the second period of the simulation shown in Figure 17, C;; = 11
carcasses were counted. With s;; = 0.7 and t;; = 4 estimated perfectly, Shoenfeld’s estimator is

=3.795

,l'Z [e’iz Tt — 1+ §i2
K=

§i2fl~2 e’iz/flz -1
so a 90 percent Central Limit interval estimate is M7, = 41.745 + 10.6 = [31.145,52.345). The
more accurate Anscombe approximation is [24.21, 66.31] and the exact Poisson interval is
[23.41133, 69.09737]. In the simulation M;, = 30 fatalities occurred, exactly the expected number
Iizmi; = 10 x 0.3 = 30, but the 90 percent interval for this estimator ranges from -21.9 percent
below the true value to +130.3 percent above it.

What if the Common Assumptions Fail?

Common Assumption Az, that all fatalities lead to carcasses within the study area, is usually
false because some carcasses may fall outside the designated study area, and some birds may be

10 [e*5-1+07
T07x4] e25-1
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crippled but able to make it outside the study region. If unaddressed, this “crippling bias”
would lead to underestimation of fatality. It is usually addressed simply by estimating the
probability 7;; that a fatality will lead to a carcass in the study area, then scaling any of the
estimators (ﬁfj’,lﬁfj, MF, M}) by a factor of 1/#;;.

Common Assumption Az that all counted carcasses in the study region arise from encounters
with the indicated turbine, is only approximately correct. Fatalities are usually assumed to be
turbine related unless there is evidence to the contrary, but because the fatality rates from other
causes are thought to be small enough this is not believed to lead to significant over-counting. A
related problem is that some encounters with turbines may dismember a carcass into multiple
pieces deposited in multiple discrete locations with the search area. Searchers attempt to
prevent double-counting by matching parts, but this process is subject to error.

Search areas are generally established by rules of thumb, because of incomplete experimental
data to suggest the true area of influence a turbine exerts, and may overlap. This could lead to
misattribution, violating either Ai or Az.

Common Assumption As, that carcasses arrive uniformly over the time interval, will not be
satisfied exactly. Actual fatality rates will vary over time with diurnal patterns, weather
dependence, and other factors. If there are significant trends in fatality over the time period then
this would affect each of the estimators, but haphazard variation on a rapid time-scale
compared to search intervals will not. Some birds and bats have migratory behavior that may
lead to widely differing rates from year to year or period to period, but if search intervals /;; are
short compared to migratory time scales then As can still apply separately on each interval, but
fatality and removal rates may vary for different time periods j.

Common Assumption As, that quantities are either constant or are sufficiently well represented
by their averages, is also false. Both discovery by search teams and removal by scavengers are
more difficult in areas or time periods within the study region where and when grass is taller,
or light less available. Fortunately, these too are somewhat compensatory, but more elaborate
modeling would be required to remove their effects entirely. Estimating s;; and t;; by imperfect
estimators §;; and t; j does introduce some bias for all the estimators considered here, a rather
technical issue.

Some estimators (ﬁfj,ﬁ {}, and sometimes Pollock’s M}}) also assume that carcass persistence
times have exponential distributions. This distribution features a constant “hazard rate,” so its
use implies that carcasses remain equally attractive to scavengers over time. Evidence suggests
that this is false. Over time carcasses do deteriorate, with two effects: they become less attractive
to scavengers, reducing the removal rate 7;;; and they become more difficult for search teams to
discover, reducing the proficiency s;;. These two effects are somewhat compensatory, the first
increasing and the second decreasing estimates of M;;. If degradation is sudden and thorough
enough it may be viewed simply as another form of removal by scavengers, maintaining
validity for all the estimators, but if degradation is sufficient to deter scavengers but not enough

to affect discovery that would lead to a positive bias.
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Extensions

Each of the estimation approaches may be embellished to allow the rates of removal, fatality, or
discovery to depend on meteorological, topographical, or other covariates, taken to be constant
covariates for each turbine i and time interval j, at the cost of a considerable increase in
computational complexity.

Coupled Degradation Models

In each of the models considered above the removal process and discovery are treated as
“independent,” even for those underlying estimators M, and M}] that feature degradation. If in
fact carcasses differ in their appeal to scavengers and the ease with which they are detected by
search teams, and if the same carcasses that are easy for search teams to discover are those that
are rapidly removed by scavengers, then each of these estimators will be biased. Each on
average will underestimate M;;, because the easily discovered carcasses will have been removed
preferentially. Equation (12) shows an extension of Pollock’s Weibull persistence equation (8c)
for the most extreme case, where the removal and discovery processes are “coupled” in the
sense that those carcasses with the longest persistence times are precisely those most difficult
for search teams to discover:

( 1 1 Cl/tcizj 8> 1- (/)"
. P(E' [F(l +E)l/fij] )_(1_§ij)1/£ij
Mi: = 2 12
13} C I/tl] §” <1- e(l/fij)a ( )
1 ) . s Y -
LP (E, (1 - Sij))_ (1(1 - sij)[—log(l - Si}')]1 o

Intermediate cases between independence (8c) and coupling (12) are possible too. More details
are presented in Appendix B along with a more elaborate model in which:

* Scavenger removal rates 7;; and search team discovery rates s;; are allowed to depend on
extrinsic covariates (grass height, for example) and on carcass age (hence persistence
times will not have exponential distributions and counts may not be Poisson);

* Mortality rates m;; need not be constant (seasonal and diurnal patterns may be explored),

¢ Hierarchical structure exploits the similarities expected for data from different but
comparable time periods or search regions.

Each of the models underlying the estimators considered above can be expressed as a special
case of that new model. Parameter estimation for the new model is more computationally
intensive than the estimation formulas given here, however, and will require more extensive
data collection, such as that described in Appendix B, which may not be available at all sites of
interest.
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CHAPTER 4: Study Findings and Recommendations

CalWEA's study offers several lessons with implications for the experimental designs and field
monitoring recommendations provided in the Guidelines. The key findings, elaborated below,

can be summarized under the following general statements:

(1) Searcher proficiency is shown to be time-dependent.
(2) Searcher proﬁciency is site- and species-specific.
(3) Searcher proficiency is lower for bats than for birds.

(4) Carcass persistence is a time-dependent process.
(5) Small birds have a lower time-dependent persistence than bats.

In addition, CalWEA’s analysis of the Guidelines’ recommended fatality estimation equation
(Pollock) and three other prominent estimators (Erickson & Johnson, Shoenfeld, and Huso)
finds that:

(6) All four of the equations reviewed introduce some bias.

(7) The equations can be distinguished by their underlying assumption about whether
undiscovered, unremoved carcasses remain “discoverable” in subsequent searches.

(8) For all four equations, length of search interval relative to mean persistence time is a key
determinant of bias.

These findings have implications for pre- and post-construction monitoring activities,
discussed below along with a recommendation for development of an improved estimating
equation that takes into account findings 6-8, above.

Summary of Field Study Findings

Searcher Proficiency Shown to be Time-dependent

This study is the first to document quantitatively the long-term relationship between carcass
age and the ability to detect the carcass. The implications for this issue are large, and will
influence survey methods, the number of carcasses used during detection trials, and the
approach to conducting pre-survey detection trials.

Searcher Proficiency is Site- and Species-specific

The magnitude of the searcher proficiency rate will be site specific, and will be a function of
environmental and topological variables. In this study, searcher proficiency was significantly
related to vegetation height. In addition to showing that searcher proficiency is a time-
dependent process, Figures 14 and 15 clearly indicate that the shape of the searcher proficiency
curves (with time and vegetation height) differ for birds and bats, and for small and large birds.

Searcher Proficiency is Lower for Bats than for Small Birds
A key contribution of this study is the findings associated with bats. Statistics derived from this
study indicate that, on average, searcher proficiency of bats is roughly half that of small birds.
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Large birds in this study were detected approximately 70 percent of the time. From a specific
carcass perspective, approximately 30 percent of all small birds in the study were detected at
least once, while only 19 percent of the bats were detected at least once.

The above rates for small birds are consistent with published literature values. For bats,
however, the incorporation of time-based functions of searcher proficiency will have a
significant impact on the resulting bat fatality estimation.

In this study, the searcher proficiency for small birds and bats was found to be similar after
approximately 25 days, with the largest difference seen initially after carcass placement when
the carcasses were fresh. An approximate 15 percent difference is seen between searcher
proficiency in birds and bats with fresh carcasses. The searcher proficiency for birds and bats
approached 2 percent after 30 days. This finding has implications for interval length in post-
monitoring studies, where this study points to shorter intervals in order to maximize the chance
of detecting a carcass on the ground.

Carcass Persistence is a Time-based Process

For small birds, an initial 10-15 percentloss in total numbers can be expected in the first few
days after first appearance. For bats, the initial loss rate is smaller, ranging from zero to
approximately 6 percent. Again, this finding for bats may not be expected based on the current
literature. In this study, the persistence probability for small birds was 50 percent at
approximately 10 days, and less than 20 percent after 40 days. For bats, however, the
persistence probability was approximately 50 percent at 25 days, and did not drop below 20
percent over the course of the study.

Carcass persistence curves can be a function of seasonal effects. Persistence curves for both
small birds and bats differ over the course of the study timeframe.

Small birds have lower time-dependent persistence than bats

Based on this study, bats persist longer on the field than birds. While the relative time-process
of persistence will be site-specific (at other sites the predator population may prefer bats), the
finding of an increased persistence of bats relative to birds has implications for the ability of
estimating equations to work well without a well-defined and rigorously tested persistence
curve for bats. Coupling the longer persistence with the lower detection rates of bats as
compared to birds could lead to gross error in the expected fatality of bats if new bat-specific
estimating equations are not fully developed and tested. Indeed, because bats persist for
relatively long periods and are difficult to see on the ground, the interaction of searcher bias
and detection proficiency plays a significant role in accurately estimating bats. In particular for
bats, long-term field trials rigorously designed to generate time-based searcher detection
proficiency and carcass persistence rates will be critical to accurate estimation of bat fatality.

Carcass persistence is best fit with a Weibull distribution

The assumption of an exponential decay function in many existing equations was not directly
tested in this study. A two-parameter Weibull function, which provides greater flexibility than
the simple exponential assumptions, is shown to work well within the study conditions. As
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noted in Chapter 3, the constant hazard assumption of the exponential function may not be
realistic if older carcasses appear less attractive to scavengers, as shown in this study. The
Weibull family of functions can be used to model carcass persistence without the assumption of
constant hazard.

Summary of Estimating Equations Analysis

Existing fatality estimating equations assume that fatalities (and the corresponding occurrence
of carcasses in a search plot) are randomly distributed over time. Because the experimental
design of the CalWEA study did not allow for carcasses to be placed at random temporal
intervals, direct calculation and comparison of the estimating equations against the known true
number of birds and bats was not an appropriate test. Instead, equation properties and implicit
assumptions were evaluated mathematically and the findings assessed in light of the findings
from the field study.

The Existing Estimators All Introduce Some Bias

The CalWEA field study’s finding that both searcher proficiency and carcass removal are time-
dependent processes violates a common assumption of the four existing estimators that all
carcasses are independent. This could easily be the case in this study where some carcasses
specifically persisted and were not detected by the end of the study, indicating a lack of
independence among the carcasses with respect to the two time-based processes.

If both searcher proficiency (s;;) and mean persistence time (t;;) are uncertain or variable,
perhaps because they depend on covariates (grass height, etc.) that themselves are variable or
perhaps simply because they must be estimated from data, then there is still a linear relation for
the expectations for independent unbiased estimators $;; of s;j and £;; of ¢;;. Bias enters,
however, when they are made the non-linear transformation of solving for M; ;.

Another common assumption, that quantities are either constant or are sufficiently well
represented by their averages, is also false. Both discovery by search teams and removal by
scavengers and weathering are more difficult in areas or time periods within the study region
where and when grass is taller, or light less available. Fortunately, these too are somewhat
compensatory, but more elaborate modeling would be required to remove their effects entirely.
Estimating s;; and ¢;; by imperfect estimators §;; and {;; does introduce some bias for all the

estimators considered here, a rather technical issue sketched in Chapter 3.

Key Assumptions Distinguish the Estimators

Each of the equations evaluated contains implicit assumptions pertaining to the nature of the
rate of bird/bat fatality during the search interval, the distribution of carcass persistence times,
and whether carcasses that persist from one search interval to the next are considered
“discoverable” during a subsequent search. These distinguishing assumptions are summarized
in Table 9.
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Table 9: Key Assumptions Distinguishing Estimators Reviewed

Equation Key Assumptions
Erickson & Johnson (1998) AE' :The system is in equilibrium at each search. [;; » t;,
Shoenfeld (2004) Aj3:Carcass persistence times have exponential distributions.

A3:All carcasses (both old and new) have the same probabilities of
discovery s;;. Undiscovered carcasses are no harder or easier to find
than those that were discovered — ie., discovery failures are entirely

random.

A5:Thelengths /;;, rates of mortality m;; and removal ;;, and the
proficiencies s;;are approximately constant over consecutive time

intervals.
Pollock (2007) A%:Each period begins with no discoverable carcasses
Huso (2011) AY: Carcass persistence times have exponential distributions.

AY: Each period begins with no discoverable carcasses.

Source: Dr. Robert Wolpert

An important contribution of this analysis is the concept of “bleed-through” — the idea that
every carcass not discovered and removed in a search, and does not persist due to scavenging,
weathering, or other natural processes, remains for possible discovery in later searches. Both
Erickson-Johnson and Shoenfeld’s estimators assume 100 percent bleed-through. Huso’s
estimator assumes zero percent bleed-through - none of the carcasses not removed (by searchers
or scavengers) are ever discovered in subsequent searches. Pollock’s estimator uses an “average
probability a carcass is unremoved until the search” (pij) rather than the more commonly used
“mean persistence time” (¢;). But as with Huso's estimator, Pollock’s implicit assumption is that
each period begins with no discoverable carcasses (“old” carcasses are never discovered).

Length of Search Interval Relative to Persistence Time is a Key Determinant of Bias
When search intervals are long with respect to persistence times, the influence of this “carcass at
the beginning of the search interval” assumption is minimized and the estimators are nearly
unbiased and provide very similar answers. However, for very short search intervals (a
growing tendency in the wind industry), the bias in some equations can be large, and the
equations can provide very different results. Figures 20-21 illustrate this point, showing the
range of bias in fatality estimates obtained using the various estimators with different search
intervals and bleed-through rates (theta=0, 1 or 0.5), for given removal ratesa =1 and 0.5.
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Figure 20: Comparison of Bias in Estimators at Various Search Intervals
and “Bleed Through” (6) Assumptions with Removal Rate a= 1
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1+ Erickson =1 ‘ -0.7% -5.2% -16.3% -33.5% -67.8%
'@ Shoenfeld =0 -1.7% ‘ -10.8% ‘ -27.5% -43.9% -61.3%
'riShoenfeld 6= 0.5 -0.8% -5.7% -16.0% -28.1% -44.1%
‘ll Shoenfeld8=1 0.0% 0.0% 0.0% 0.0% | 0.0%
- Pollock ®=0 0.0% 0.0% 0.0% 0.0% i 0.0% ‘,
/mPollock8=0.5 0.8% 5.7% ; 16.0% 28.1% 1 44.3%
. - - —— —— - . - PRI — —_ - .—— - —— - m———— . . -_——— - - - - -
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Where 6 represents the percentage of carcasses neither discovered nor removed dunng
one search interval that remain available to be discovered in later searches

Source: Dr. Robert Wolpert
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The degree of bias among the equations is a function of many issues but, in all cases, it is a
function of the inherent assumptions underlying the equation characteristics. Even when
biased, if search intervals are long relative to mean persistence times, all four estimators give
about the same answers. But if search intervals are short relative to mean persistence times,
large differences among the equations are possible. In fact, it is very possible that, with short
intervals, the results of the equations could differ by a factor of 3 or 4. For example, Shoenfeld’s
and Huso's estimators will differ by a factor of 3 or 4 or so if the search proficiency is 25 percent

or 33 percent or so, because Huso assumes zero percent bleed-through and Shoenfeld assumes
100 percent bleed-through.

Conclusions and Recommendations

CalWEA's study provides new insights that could enhance the existing methods and
procedures found in the Guidelines and other pre- and post-construction fatality monitoring
guidelines used in the United States and internationally. Four major implications of this work
and the corresponding recommendations are outlined here.

(1) Traditional fatality estimators do not account for time-dependence of carcass
persistence and searcher proficiency, or for “bleed-through.”

Recommendation: Use the proposed new Partial Periodic Estimator and integrated
detection probability trial method (proposed in Appendices A and B, respectively).

(2) Traditional estimators can have high degrees of bias depending on the search
interval, mean persistence, and bleed-through rate (theta) of the field data collected.

Recommendation: Do not use traditional estimators in conditions that produce levels
of bias that are unacceptable for the intended purpose. Caution is particularly
warranted where short search intervals have been used.

(3) Use of traditional estimators has resulted in an unknown degree of bias in the
literature.

Recommendation: Carefully consider the value of metrics like “industry average”
before applying them in policy or project-specific decisions.

(4) Previously generated fatality estimates used for project evaluation or broader
purposes could be recalculated using the proposed new Partial Periodic Estimator,
provided the key input variables (search interval, mean persistence, etc.) can be
collected from the original studies and reasonable assumptions made about searcher

proficiency probability distributions and theta values.
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Recommendation: Going forward, use a standardized approach to generate unbiased
project-specific results that may be compared with each other, and to generate
meaningful and unbiased industry averages and totals.

These implications and recommendations are briefly discussed here.

Curmrent estimators do not account for time-dependent processes and “bleed-through.”

Detection probability is now known to be sensitive to time-dependent processes of carcass
persistence, searcher proficiency, and bleed-through (theta), and that the traditional fatality
estimators do not account for these influences. Therefore anew Partial Periodic Estimator
(Appendix A) and an integrated detection probability field-trial methodology (Appendix B) are
proposed and recommended that incorporate:

o Trials for searcher proficiency & carcass removal rates conducted simultaneously (vs.
independent trials)

Further, the Guidelines on these issues are recommended to be revisited.

Care must be taken to awoid unacceptable bias when using current fatality estimators.

The four traditional fatality estimators reviewed (Pollock, Erickson & Johnson, Shoenfeld and
Huso) are now shown to have high degrees of bias depending on the search interval, mean
persistence, and the proportion of bleed-through (theta) occurring in the field. Therefore these
estimators are not recommended for use in conditions that produce unacceptable levels of bias
(see Figures 20-21) unless biases can be corrected.

Note that “unacceptable” bias depends on circumstance and degree of accuracy needed.

e Theinaccuracy of an estimate for a specific project may or may not be of consequence.
o The importance of accuracy or just precision depends on the sensitivity of the species,
regulatory requirements, etc.

While individual project results are likely to be inaccurate, precise comparisons internal to a
given project may still be useful provided the project studies are consistent with each other.

Use of previous study estimates

Previously generated study estimates can be used with some confidence in decision making
where a persistence trial has produced a reliable mean value, providing that mean persistence
time is shorter than the search interval (noting also that, in some cases, mean persistence will
also have to be recalculated because of some common errors in methods of calculating this
mean). If the persistence time is longer than the search interval, the estimate will be unreliable.
If the mean is comparable to the search interval, the estimate will vary in the range of 30-40
percent.
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Caution should be taken with metrics such as “Industry Average”

The findings in this project highlight the degree of difficulty that occurs when comparing
mortality estimates among individual studies, particularly when the individual studies are not
conducted with a standardized survey design. A number of factors make between-study results
difficult, and also negate the ability to compare the results from a single study to an industry-
wide average. For example, the following elements can negate the ability to compare mortality
results on a national or state-wide basis: (1) differing approaches to treating the resulting survey
data (e.g., compiling data across individual turbines), (2) differing approaches to calculating
inputs to the estimating equations (e.g., estimation of mean persistence time), (3) the use of
different equations, and (4) inconsistent survey design and field methods. Any industry
average, therefore, will reflect a large variation among sites not due to variation in mortality,
but due to the specific methods used to generate the mortality values. Therefore, a
standardization of methods used to evaluate wind facility impacts is recommended, based in
part on the findings of this report.

Considerable caution is in order when comparing individual project estimates to industry
averages, given the possible level of bias in, and lack of comparability among, each of the source
studies that are used to calculate the industry average. Similar cautions are in order when
considering national total mortality figures.

Future Research

The results and findings of this study provide insight into needed changes in current
monitoring practices and fatality estimation procedures at wind facilities. The existing
estimating equations could be enhanced and improved with the addition of time-dependent
processes for searcher proficiency and carcass persistence that are a function of environmental
conditions. Appendix A presents a proposed new equation that incorporates these terms, and
Appendix B outlines the key components for detection probability trial survey methods to
support the proposed new estimator. Field testing the new estimating equation and protocols
was beyond the scope of this study and report.

The Altamont study site provided a unique venue for studying fatality under changing
conditions, and while all of the findings of this study will not directly translate to other sites, the
general principles and findings should be applicable. The major findings of this study should
hold generally for all wind facilities. However, the degree to which the vegetation height, time-
based searcher efficiency, and other factors that were found influential in this study are
transferable to other locations and conditions is explicitly unknown. Therefore, additional
studies may provide insights on fatality estimation as a function of topographical,
climatological, and environmental conditions.
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APPENDIX A:
A New Equation for Estimating Avian Mortality Rates

A Partially Periodic Equation for
Estimating Avian Mortality Rates

Robert L Wolpert
October 6, 2012

Abstract

A key issue in assessing the environmental impact of wind plants for electrical power
generation is the rate of mortality of birds and bats caused by collisions with turbines.
The direct approach of counting and removing carcasses near a turbine facility at
designated time intervals must be corrected in some way for the effects of removal by
scavengers, detection failure, and other systematic biases. A number of authors have
proposed estimation formulas intended to adjust for these, based on somewhat different
assumptions about the underlying processes.

One significant issue on which these authors differ is whether or not bird carcasses
present but not discovered and removed in the search ending one time interval, might
possibly be discovered and counted in the search ending a later interval. The “periodic”
estimator proposed by Shoenfeld (2004), for examnple, is based on a model in which any
undiscovered carcasses may be found in later searches, while the aperiodic estimators
proposed by Pollock (CEC, 2007, Appendix F) and by Huso (2011) are both based on
the assumption that each interval begius with no discoverable carcasses.

We present a unified “partially periodic” structure that encompassecs all of these
estimators, in which a specified fraction of undiscovered carcasses remain discoverable
in future searches. It includes that of Shoenfeld and those of Pollock and of Huso as
special cases in which that fraction is 100% or 0%, respectively. The proposed estima-
tor also accommodates arbitrary removal time distributions, avoiding the unrealistic
assumption of exponential removal distributions implicit in the estimation formulas of
Shoenfeld and Huso.

1 Introduction

The data we consider will be repeated counts of bird or bat carcasses made in designated
search areas near each of several wind turbines. Denote by C;; the count of carcasses in
the designated area near the jth wind turbine by a Search Team at the end of the ith time
interval, of length I;; days, and by s;; the search proficiency (discovery probability for a

Go 3IC



carcass present at the time of the search) and by ¢, the average length of time (in days)
before a new carcass is removed by scavengers.

For the special case of exponentially-distributed removal times, the proposed estimator
(derived in Section (2.1) and generalized to arbitrary removal distributions in Section (2.2))

is:
8ij tij chilty — 1

where 6 € [0.1] is the fraction of undiscovered carcasses that remain discoverable in future
searches. This includes as special cases each four of the estimators compared in (Wolpert.
2012; Warren-Hicks et al.. 2012):

Shoenfeld: For § = 1, indicating that all unremoved carcasses are discoverable eventually,
this is exactly Shoenfeld's (Shoenfeld, 2004) estimator

e Culy [eli’hs =1+ 3,
1\[;.:‘19{(” : s (2)

Sij f,_, elu/ty — 1

Thus Eqn (1) may be viewed as a generalization of Shoenfeld’s estimator to partial
periodicity, and that presented in Section (2.2) a further generalization to arbitrary
removal distributions.

Pollock: Pollock’s mortality estimator (CEC. 2007, Appendix F)

Cy

Piy5iy

M= (3a)

depends explicitly on p;;, the estimated “average probability a carcass will remain

until the next search”. For exponentially-distributed removal times this is p;; = [1 —
—Il il" Av. .. 1 ] P ‘P avr aQ aQ

e~fu/tut,;/I;;, so in this case M may be expressed as

~ Pk iilij 1]t .

MFE = —CL—J [l —¢ "J/"J] (Exponential removal), (3b)
Sij t'.l

the special case § = 0 of Eqn (1).

Huso: Huso's estimator (Huso, 2011) is identical to Pollock’s for exponentially-distributed
removal times (unless I;; > 4.6t;;, in which case M is about 1% larger), so it too is
the special case of Eqn (1) with 8§ = 0:

. M - -1
ALY = Culy [1 —c—’u/"’:] : (4)

Sz'j tzj
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Erickson: Erickson & Johnson's estimator (Erickson et al., 1998: Johnson et al., 2003)

AME = 5)
i) é'i_j tij (
would be (1) in the special case of # = (1 — $;;)~!'. Note # > 1 here, because this
estimator’s assumption that the system is in steady-state at each search is inconsistent

with the usual practice of removing carcasses upon discovery by Search Teams.

Thus each of these estimators corresponds to some specific choices for removal distribution
and for the parameter 6— but maybe not the choices one would prefer on further reflection.

Some have expressed the opinion that both 100%, persistence of undiscovered carcasses
(i.e., @ = 1, as in Shoenfeld’s estimator) and 100%. disappearance of them (i.e., # = 0, as in
Pollock’s and Huso’s) are unrealistic, and that the truth lies somewhere in between. Also,
evidence (Bispo et al., 2012; Warren-Hicks et al., 2012, p. 21ff) suggests that other survival
distributions fit removal times better than exponential distributions.

2 The Model Underlying the New Partially Periodic
Estimator

Suppose (as usual) that carcasses arrive in a Poisson stream with average daily rate m;
and, following Shoenfeld, that the process is “periodic” in the sense that consecutive interval
lengths I;; (in days), mean mortality rates in;; (per day), and search proficiency probabilities
si; vary slowly in time - and hence do not vary with index ¢ (though thev may still differ
across turbines, indexed bv j). In contrast to Shoenfeld, we now assume that while all
unscavenged carcasses arriving during the current period are discoverable in the search ending
that period, only a fraction 6; € [0, 1] of those unscavenged carcasses not discovered in that
search will remain discoverable for future searches.

2.1 Exponential Removal Times

The average nuinber of discoverable carcasses at the end of any period (call it g;) will be the
sum of those carcasses (if any) remaining unscavenged and undiscovered by earlier searches,
plus those carcasses arriving at times uniformly distributed over the present interval and
remaining unremoved until its end. For the case of exponentially-distributed persistence
with rate r;; > 0, this is

Iy
g1 = e—rij’ij do + nl,;j/ (’_rij([ij_'s) ds
0

where gy denotes the average number of discoverable carcasses at the beginning of the period.
By periodicity this is go = g16;(1 — sy;), so

T m;; T
g1 = e—r,_,l,, 9101(1 — S,jj) + . J [1 - (’—r"’l'-’] .
ij
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Collecting terms and solving, and using r;; = l/f,-j and EM = 1.

E.\[,‘J'f‘j 1 - ("l'j/i"J
11j I - 0_,(1 - S‘IJ)P_I‘!/"' '

For searchers with proficiency s;; the expected carcass count is E[C’] = s,;g;. leading to the

estinator
- C,‘ ]," 1-6,(1- .“," "~
Ay =~ { (1= 5 } (1)

h =

- /
s L= e I/t

2.2 The Generél Case

The exponential distribution, commonly used for modeling removal times, features constant
hazard—- the probability of removal by scavengers in a short time interval is approximately
the same constant multiple 2 A of the interval's length A, irrespective of the age t of the
carcass at the start of the interval. Evidence suggests that in fact the hazard rate h(t) varies
with carcass age, and that (at least for large t) it decreases. Warren-Hicks et al. (2012) found
that Weibull distributions with shape parameter o < 1 (whose hazard h(t) decreases at rate
t~(1=2)) fit the observed removal times far better than exponential distributions, while Bispo
et al. (2012) found that log normal and log logistic distributions (whose hazards decrease at
rate 1/t for large t) or Weibull distributions fit their data better than the exponential. In
this section we develop a partially-periodic estitnator for arbitrary removal distributions.

Denote by Fj(t) = P[r > {] the complimentary CDF. or survival function, for removal
times 7 > 0. and by

Qi(t)=E[rAt]= /0 Fi(r)dr (6)

the integrated survival function or “ISF”. Clearly Q;(t) < t (because F;(x) < 1). and Q;(¢)
increases as t — oc to the mean removal time t,; = E[7] = fox F(r) d.r (which may be infinite
for some distributions). As before denote by 6; € [0, 1] the average fraction of undiscovered
carcasses that remain discoverable in later searches, by s;; the probability a carcass present
at the time of a search will be discovered, and by m;; the average daily rate of mortality.
The discoverable carcasses on the ground at any given time include “new” carcasses that
arrived since the last search along with those “old” ones that arrived in earlier periods and
eluded discovery by search teams. Thus if ¢; = 6;(1 — s;;) denotes the probability that a
carcass is undetected in a search and remains discoverable for future searches, then ¢ days
after the most recent search the expected number g,(t) of discoverable carcasses is the sum

~(k=DI,;

t
gj(f) -:/ mijF_‘j(t—s)ds—f—ZqJ’-‘/ 'm,-jF_’j(t—s)ds
0 -
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of those arriving in the current period and those arriving earlier who went undetected in
some number & > 1 of searches. Changing variables to » =t — s.

f+k1,',

=m,-j/ F r)dr +IHUZ([J/ If‘j(_'l-)d.l-.

k>1 I+(k—])l;j

= m;Q,(1) +my; Y ¥ [Q(t + KIj) — Q;(t + (k = 1)I;;)].
k>1
(recall Q;(t) := fot F;(r)dr). a telescoping series with sum
gi(t) = m,;(1 Zq;’QJ (t + nly). (7)
n>0

The expected number of carcasses counted E[C};] will be a fraction s;; of g;(I;;), and the
average daily mortality rate is m;; = E[A[;;]/1;;. leading to the new Partially Periodic esti-
mator

. C:i I
ALy = o
where R;; = g,(I;;)/m;; is given by
Rij=[1=0;(1=5:)] ) _[10;(1 = 5] Q;(k I;). (9a)
k>l

This sum always converges to a well-defined and finite quantity R;; < I,,/[1 — 6,(1 — s;;)]
for any removal distribution, even if ¢;; = E[T] is infinite.

Fol f; = 0 only the first term (A ) contributes to the sum in (9a). In that case

= Qj(li;) = Iijpij where p;; = fo Y F;(I;; — t)dt/1; is the average probability a carcass
is unremoved until the next search, and ( ) reduces to Pollock’s estimator Jfl,-’; = C'y;/bi)5
for any underlying removal distribution.

For 6; > 0, the kth term in the sum of (9a) accounts for carcasses that went undiscovered
through (k — 1) searches and unremoved for about & x I;; days. It’s not surprising that only
a few terms are necessary (usually just two or three) to evaluate R;; with sufficient accuracy.
Bounds are presented in Section (3) for finite approximations including simple truncation,

~RY=[1-6;(1-s;) ]Z[o (1—s:)]*'Q,(k I). (9b)

2.3 Parametric Examples

In this section we consider several parametric distributions commonly used for survival or
lifetiine analysis. To facilitate introducing a regression setting later to reflect dependence
on covariates such as vegetation height, in each case we parametrize the distribution with a
rate parameter r;; > 0 and perhaps one or more shape parameters.
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2.3.1 Exponential Persistence

For the exponential distribution. the survival function, mean. and ISF are

F(t)=Pr>t]=e"! (10a)
ti; = E[7] = /.x('_r”’(l.r = 1/r;; (10b)
Jo
t
Q,(t) =E[T At = / e dr =]l — e (10¢)
0

for t > 0 s0 (7) and (9a) are geometric series with sums

l-qi  _iy
g;(t) = mijti {1 - Tl—qﬁj_/u‘ ’/‘u} (10d)

eliltii 1

t e —_
T

, (10e)
1 - q]

Rij =
with ¢; = 0;(1 — s;;). This leads to the exponential removal Partially Periodic estimator

arp=Suli Cij 1y {elw‘j —6,(1 - -*'“)}

& G.o fo. dilti;
i Sij Sij tij eliilliy — ]

identical to (1). It reduces further to ’UfJ’E of Equ (3b) or .’\'[,-*; of Eqn (4) for 8, = 0 and to
\[;] of Eqn (2) for §; = 1.

2.3.2 Weibull Persistence

The survival function, mean, and ISF for the Weibull distribution with shape a > 0 are

EFi(ty =P[r > t] = e "" (11a)

ti; = E[7] = / " de = T(L+ 1) /ry. (11Db)
Jo
¢

Q,(t) =E[rAt] = / e dy = P(L (rit)) 8y (11¢)
0

where I'(a) and P(a,.x) denote the gamma and incomplete gamma functions, respectively
(Abramowitz and Stegun, 1964, §6.5), so ALj; = Cy;1;;/ R;;ij with

g9;(t) = ti;(1 — g;) my; Z(pr(al- [ri) (t + k1)) (11d)
k>0 .
Rij=t;(1-gq) Y ¢'P(L, (kryly)®) (11e)
k>1

again with g; = 6;(1 — s,;) (see Section (3) for finite approximations). This is illustrated in
Figure (1) and Sectlon (2.5).
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2.3.3 Log Normal Persistence
The survival function. mean. and ISF for the log normal distribution are
Fi(t) =P[r > t] = ®( - alog,(r,;1)) (12a)
x 2
ti; = E[7] = / Fi(r)dr = el/20 /74 (12b)
0

t
Q;(ty=E[rnt] = ‘/0 Fir)dr =®(-a log;(rijt)) t + ®(alog,(rijt) — 1) t;;  (12¢)

where ®(2) is the standard Normal CDF, and so ;\115 = I/ Rijsy; with

gi(t) = (1= gq) my; Y fQ,(t + k1) (12d)
k>0
Rij=(1-q;))_ ¢"'Q;(k ;). (12e)
k>1
The log normal distribution is more commounly parametrized by the mean y = —logr;; and

variance 02 = 1/a? of log 7.

2.3.4 Log Logistic Persistence

The survival function. mean, and ISF for the log logistic (or “Fisk”) distribution are

F;() =P[r >t =1+ (r,H)"]"! (13a)
fos ir 7L — > 1
tij = E[T] = / # — ry sin(a/a) @ (13}))
Jo 1+ (ryr)° x a<l1
Q;(t) = E[r At :/f—L :t-F(l l'1—4-1'—(7'--f)”) (13¢)
J - o 1_'_(,.1_1,‘17)0 280\ 0 a’ V]
t 1

= AL L1+
1+ (rijt)e | c 1+(-ru-t)—ﬂ)

where 3 F)(a, b; ¢; z) is Gauss’ hypergeometric function (Abramowitz and Stegun, 1964, §15.1).
Note t;; = oo is possible for this distribution. Again M} = Cj;1; /Ri;sij with

gi(t) = (1 —q;)my; ¥ gFQ;(t + kI;) (13d)
k>0
R =(1-gj) Zq;_le("' Iij) (13e)
k>1

with finite approximations given in Eqn (19). The log logistic distribution is more commonly
parametrized by the median m = —logr;; and scale s = 1/a of log 7.
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2.4 Estimating Parameters and Persistence

The parameters governing removal distributions are usually estimated with the help of re-
moval trials in which some number Cy of carcasses are placed at known locations at time
to = 0, then checked on each of some number n of succeeding days 0 < t; <t < --- < ¢,
revealing counts Cy > Cy > Cy > --- > C,, of remaining carcasses (sce, for example, Erick-
son et al., 2008, §2.6). To simplify some formulas below, set f,.1 = > and C,,; = 0. with

2.4.1 Estimating Parameters

If we were able to observe the exact lengths of time {7} until each carcass’s removal, the
log likelihood function for the rate parameter r;; and shape parameter a of any of the
distributions considered in Sections 2.3.2-2.3.4 would be

(o, i) = Zlog Fi(teiary;)
k

where f;(t;a,r;;) = —(0/0t)F;(t;a,7,;) denotes the probability density function (pdf) for
removal, with the parameter dependence made explicit. Our data are censored, however, to
only the counts Cp, of {7;} in the intervals (¢,,.oc) for 0 < mn < n, leading to the multinomial
log likelihood

€(ee.rij) = Z[C'm = Cins1]log (f}(f,,,:n. ry) — I‘:j(f,,,ﬂzn', riy)) (14)

m=0

from which estimates &, 7;; can be found numerically. For equally-spaced search intervals
tm = mA and exponentially-distributed removal, a closed-form expression for the rate max-
imum likelihood estimators (MLEs) of r;; and of the mean persistence time ¢,; = 1/r,; are
available:

1 CO — Cn 1 ZO<m<n C"‘ : A
Fy=xlogd I+ ot b= ~logq XL =1/, (15)
’ A { Zlfntfn C’" } A { ZO(m}_’.u Cm ! / !

Note this is quite different from the forinula for estimating mean persistence suggested in (Er-
ickson et al., 2008, §3.3), which will systematically underestimate ¢;;. Searcher proficiency s;;
can also be estimated empirically from removal trial experimental data (see Section (2.4.3)).

2.4.2 Empirical Persistence

An alternative to the parametric models presented in Section (2.3) is to estimate R;; directly
from experimental data gathered in a removal trial. If 6; and s;; (and hence ¢;) are known,
then the maximum likelihood estimator (MLE) f?ii can be computed from the MLE Qj(t)
of the ISF Q;(t).
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Unfortunately the MLE for the ISF is not uniquely determined-— the likelihood takes the
same maximum value at all non-decreasing functions Q(#) satisfving Q; (1) < Q(#) < QF(1).
with lower and upper limits given by:

N — - C k-1 C k (‘n A+ - C'Ir—] ('k ('n
) = E P —— )+ —t, ! = E —_—t + —t
Q] (t) i (0 ( k=1 A\ ) C() Q} (t) po (10 ( kN t) C() (16)

These lead in turn to lower and upper MLEs for R;; of

=(1-¢) ) ¢ Q¥ (k1)

k>1
and hence to Partially Periodic estimators
Ci;i I;;
\[*i = ; J (17)
R'J .S‘,'j

The estimator AY;T generated from the lower MLE R; is conservative, in that it will slightly

overestimate A;; on average, while on average that M,—}‘ generated from R;; will slightly
underestimate Al;. Note too that the sums for evaluating both R and R} entail at most

[ta/1;;] terms, since for t > t, the function Q]'( ) is constant and Q+( ) is llnedr leading to

summable geometric series. The difference [QJ*( Qj (t)] for t < t, are weighted averages
of the inter-search intervals [t — #4 1], hence smaller than the largest such interval.

2.4.3 Regression

Now suppose that in a trial we have a vector of p > 1 covariates for each carcass that might
affect the rate of removal. such as vegetation height or slope. Model the rate parameter r;;
for the kth carcass as

rij = exp(Xy - 3)
for a p-dimensional vector 3 of regression coeflicients, and denote by #; the last search time
{tm} the carcass was still present, and by ¢ the first search time the carcass was absent (or
oc if the trial ended before it was removed). The log likelihood function of (14) becomes

{(cv, 3) Zlog f‘ s, exp(Xy - 3)) — F_'j(f;:;a.exp(.\’k . ;’3))] (18)

which can be maximized numerically in the parameters o and 5.
These covariates may also affect the probability of discovery s;;, which could also be
modeled in log-linear fashion as
sij = exp(Xg - )

for an uncertain p-dimensional vector + of regression coefficients.
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2.5 Illustration

Figure 1 shows a simulation of four I;; = 10d periods with average daily mortality rate of
m;; = 3d7'. Persistence distributions are Weibull with shape a = 0.70 and mean t;; = 15d:
search proficiency is s;; = 30%. and 8; = 50% of carcasses remain discoverable in subsequent
periods (a compromise between the Shoenfeld and Pollock values). Counts of discoverable
carcasses are shown as stair-step curve beginning and ending at open and filled squares, that
increases (resp. decreases) by one with each new fatality (resp. removal by scavengers), and
decreases by the number Cj; of carcasses discovered and removed by searchers (shown as a
red downward arrow) and by an additional nuinber that become undiscoverable. Expected
numbers of discoverable carcasses are shown as smooth curves beginning and ending at open
and filled circles. For these values, Erickson & Johnson's estimator has a bias of —50% (i.e..

~

on average M’ ~ ;M[;) and Shoenfeld’s M,:j- has bias —34.2%, because each assumes that

all carcasses remain discoverable while in fact only half do. Pollock’s estimator AA[[J’-’“' has
positive bias +22.8%. because it assumes that no carcasses remain discoverable while in
fact half do. Pollock’s M‘-‘;E (and Huso's identical M) comes closer, with just +2.7% bias,
because the reduction from its incorrect assumption of exponential removal distributions
and the inflation from its incorrect assumption that intervals begin without discoverable
carcasses nearly cancel out (a coincidence arising from our choice of parameter values). The
new Partially Periodic estimator 1\1;; has zero bias.

w0 |
N
~ "
8 -
@ :e-i
S o
© o o
O v
<le T | T I
0 10 20 30 40

Time (days)
Figure 1: One draw (stair-step) from random distribution of all carcasses present at times
t, for 0 <t < 40d. Expected value g(t) is shown as solid line, beginning and ending search
periods at open and filled circles, removal by search teams as downward arrows.

For exponential removal times (o = 1). the new estimator will alwavs lie between the
estimators
M < MY < AL,
of Shoenfeld and Pollock (or, equivalently, Huso), with negligible differences among them
whenever I;;/t;; is large. The differences are larger with more frequent searches, but never
exceed a factor of s;;: for any [;; and {,‘]‘, always s,-j}\:/i';- < M,‘-j < M}; < 1\75- /$ij.
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3 Computation

3.1 Evaluating R;;

Since Q,(t) <t and Q;(t) < £, the truncation error incurred by approximating R;; with
just the first n terms as in Eqn (9D)

R} = Zq,* 'Qj(k 1))
k=1
is bounded above by both of
R — R} <(1-gj) zq;c‘]kfij =q; I;[n+1/(1~ gq,)]
k>n
Ry-Ri<(1-q)) a7 ' iy = ¢} L
k>n

and, by monotonicity, is bounded below by

R — > (1-g¢;) Z QJ ”Iu) _‘I;Qj(nli_l)-

k>n

leading to the two-sided bound
Rn— — Rn +q_] QJ(II- Ii_]) S R‘j S R:'jf = R:l]—f-([J” min ({ij' I,‘j [)l+1/(1—(b)]) (1())

For the parameter values used in the simulation of Section (2.5) presented in Figure 1
the error is bounded by (0.5 * (1 — 0.3)e™2*)Y = (0.0288)", so0 just N = 2 terms suffice for
99.92% accuracy.

3.2 Special Functions

The partially-periodic estimator ’\[ * of Eqn (1) is simple to evaluate in closed form under

the assumption that removal times have exponential distributions, as is the estimator 1([;’;+
of Eqn (17) based on non-parametric empirical estimation of removal distributions. The
version of ]\7{3 for log normal removal distributions presented in Section (2.3.3) requires only
the cumulative normal distribution function ®(z), available in virtually every computing
environment, but the estimators for assumed log logistic or Weibull removal distributions
require slightly less commonly used functions.

The complete and incomplete gamma functions I'(a) and P(a, x) required for the Weibull
estimator of Section (2.3.2) are included in R (R Core Team, 2012) as gamma (a) and pgamma(x,a),
respectively, and are also included in MATLAB, Mathematica, the gnu scientific library (gsl:
Galassi et al., 2009), and other standard computational environments. In Microsoft Excel
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they are available as I'(a) = EXP(GAMMALN.PRECISE(a)) and P(a, r) = GAMMA.DIST(x.a,1, TRUE).
respectively (for versions of MS Excel prior to 10, use GAMMALN and GAMMADIST instead).

Gauss’ hypergeometric function yF(a, b; ¢; =) needed for the log logistic removal models
of Section 2.3.4) is available in MATLAB, in Mathematica, and R (using the gsl package).
While it’s not included in MS Excel, certain special cases are—— for example, for o = 2,
Q;(t) = arctan( r,-jt /rij and (13e) becomes

= (1-gq;) Z Yarctan( (krijIiy) /7y

k>1
~ I = (1-gj) Z Larctan(kr;; L)/ rij + ¢} arctan(nry;L;) [y

for any small n, easily evaluated in Excel. with an error bounded by Eqn (19).

4 Non-constant Removal Rates and Proficiencies

One part of a 2011 study by the California Wind Energy Association (Warren-Hicks et al.,
2012) consisted of a removal trial in which a number of bird and bat carcasses were placed
in known locations and followed for 45 days. At intervals, searches would be undertaken and
each discovered carcass would be recorded. Periodically the trial coordinators would check
each carcass to see if it had vet been removed by scavengers.

4.1 Estimating Proficiency Time Dependence

A key finding of this study is that the proficiency s;; does not appear to be constant.
unrelated to the age of the carcass — rather, that older carcasses have a lower probability of
discovery than fresher carcasses. This is illustrated in Figure (2), which shows the data for
small birds: 38 successful discoveries of carcasses aged 1-28 days, shown as small circles o
at height y = 1, and 185 undiscovered carcasses, aged 1- 45 days, shown as small circles at
height y = 0 (a small jitter is added to the locations of each circle to reveal multiplicity).
The overall average proficiency is 5;; = 17%, but there is clear evidence that 3;;(¢) diminishes
with carcass age t. The figure also shows an empirical exponential moving-average estimate
(with a 5-day window) as a dashed red line, and the best fit with a logistic regression model
shown as a solid blue curve:

~§ij(f) — (1 + eo.s441+0.09114)—1, (20a)

starting at §;;(0) = 45.75%, falling to the overall average $,;(10.3) = 17% after about 10
days and continuing to fall down to a negligible $,;(45) = 0.86%. The two curves are in
substantial agreement throughout the range, suggesting that the logistic regression model is
a good fit. The best fit for a model with simple exponentially-decreasing proficiency

'§1](f) — e—l.017—0.0777t (20b)

(in green) is virtually indistinguishable; we’ll return to this one in Section (4.3).
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Figure 2: Time-dependence of search proficiency $;;(t). Dashed red curve is nonparametric
moving-average estimator (exponential window, width 5 days), solid blue and green curves
are best logistic-regression and exponential fits (see Eqn (20)).

4.2 Estimating Removal Time Dependence

Other investigators (such as Bispo et al., 2012) have reported earlier that exponential dis-
tributions offer a worse fit to empirical data on carcass removal by scavengers than several
alternatives, and data from Warren-Hicks et al. (2012) reaffirm this finding. Figure (3) shows
the upper and lower empirical survival curves (Kaplan and Meier, 1958) for these censored
data, along with best fits for Exponential Distribution (dashed red curve) and Weibull (solid
blue curve). Evidently the Weibull fits far better. Both log-logistic and log-normal fits are
similar to Weibull, and far better than exponential, suggesting that hazard rate (daily prob-
ability of removal by scavengers), like search proficiency, diminishes over time. The best-fit
Weibull had shape parameter @ = 0.4606 with a Standard Error of 0.0532d, about 10.31
Standard Errors below the value o = 1 corresponding to the exponential distribution, leading
to emphatic rejection of exponentially-distributed removal. The estimated rate parameter is
r;j = 0.07944, for a mean persistence time of

t; =T(1 +1/a)/7; = 29.64d,

substantially longer than the estimate fij = 16.68d under the exponential model which (see
Figure (3)) systematically underestimates early removal and overestimates late removal.
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Figure 3: Upper and lower empirical (Kaplan-Meier) Removal curves (solid black stair-steps),
with best Weibull fit (solid blue curve) and best Exponential fit (dashed red curve).

4.3 Adapting the Model and Mortality Estimators

Although the model and mortality estimator of Section (2.2) makes no assumptions on
removal distributions, and the parametric examples presented in Section (2.3) include the
Weibull, Lognormal, and Log Logistic, all of which fit our data well, each of of these (along
with all other published mortality estilnators we are aware of) are built on the assumption
that search proficiency is constant, unrelated to carcass age: in Section (4.1) we showed that
this assumption appears to be false. In this section we will adapt the model and estimators
of Sections (2.2) and (2.3) to accomnmodate age-dependent proficiency.

By the same argument and changes-of-variables that led to Eqn(9a), the number of
carcasses counted at each search will have a Poisson distribution with mean

oo (k+DL;
Cij = ™) 20"/ Fy(x)si;(x) H [1 — s;;(x = nl;)] dr (21a)
k=0 kI 1<n<k
or, for @ = 0 as assumed by Pollock and Huso, just one term & = 0:
I _
= nzi_.,-/ Fij(x)sij(a) du. (21b)
0
Using E[M;;] = I;jm,j, this leads to a variation on (8).
“rx Cl” 1i; .
A[ij = ——éz*]—" (22&)
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where now R}, is given by

(k+1)1;;

R} = 20"/ () s (x) H [1—sij(x = nl;j)] de. (22h)

LI 1<n<k

This can be computed numerically for any specified proficiency function s,;(r) (like the
logistic or exponential regressions of Eqn (20a) or Eqn (20b)) and any of the empirical or
parametric removal distributions of Section (2.3) or Section (2.4.2).

4.3.1 An Efficient Computational Scheme

For exponentially diminishing proficiency s;;(t) = exp(—a — bt) (which fits our data well, as
shown in Figure (2)), R}; is the sum

of terms

(k+1)1;
T, = 0"1,~;‘/k Fy(t)ee™ H [1 - emetlt-nl)] gt

Lij 1<n<k

1
:ak/ FJ((A'FII)[ —a—bl;,(r+k) H -a-bl,; (r+n)]d
0

0<n<k

each expressible as the sum of 2% terms of the formn

1
Qltmn = Ok(_l)’n+l / F/((l‘ + ‘I:)Ii.l')e_m(arkblu bl de (23)
J0

for suitable nonnegative integers k, m, n that can be enumerated recursivelv. The first few

terms are
*
To = Qow

T, = Q1 + Q@
T, = Q33 + Qa3 + Qhyp + Q3
T3 = Q313 + Q35 + Qg + Qiz6 + Q33 + Qs + Q334 + Qige

The integral in (23) is easily evaluated using Simpson’s rule, or is available in closed form for
Weibull removal with shape parameters a = 1 (the exponential case) or a = 1 (very close
to our estimated shape parameter ¢ = 0.4606 for small birds). The truncation error from
using only the first N terms 0 < k < N in (22b) is bounded by

GNF](N I,'j) exp(—a -N bl,'j)

0 < Truncation Error < max {61, (1 — 0e-%1)]
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For the parameter estimates in our studyv!. a 40% error would be made using only N =1
term (i.e., neglecting bleed-through). but the error falls to 8% with N = 2 terms and below
0.5% with N = 4, indicating that a significant fraction of old carcasses were present from
the immediately preceding period, but essentially none from more than three periods earlier.
The values of R;; and corresponding estimators A"\A'I,-*j = Cy;1;;/ Ry, with 8 = 50% were:

I | 2d 7d 14d  28d
Ry | 1.094 22224 29013 3.327

1

."[,*] ISC,J 315(,_, 48(21 84C',J

5 Interval Estimates for M;; and m;;

Each of the estimators in Sections (2) and (4) is of the form “Mij = nCy;" for some k > 1,
proportional to the carcass count C;j, because in each Cj; has cither a binomial or a Poisson
distribution with mean proportional to Al or to m;; = EM;; /1

I I,
EAI, =m,~-[,~, EC, = m,--[,-~ k. N = Y or - 24a
[ J] J74 [ J] J J/ Si_jl?/ij R:J ( )

where R;j is given by Eqn(9a) and R}, by Eqn(22h). In this Section we present Confidence
Interval estimators for A;; and m,;.
5.1 Estimating M;; when § =0

If & = 0 then all of the Cj; carcasses discovered will be from the Af;; of the current period
I;j. with conditional distribution

Cij | M ~ Bi(M;;. 1/x).

If the constant x is known precisely (if 8;, I;;, s;j, and the removal distribution including
its parameters are all known, for example), then an exact Confidence Interval for Al; =
]\AI,-*]- = kCjj can be constructed as follows. For any chosen confidence level v (like 0.90, for
example), an exact 1007% Confidence Interval is given by

v < P{10(Cyj) < M;; <hi(Cip} (24b)

where the functions 10() and hi() are given for integers ¢ > 0 by

1 —
lo(c) = sup {m > ¢: pbeta(1l/kap; c+1, m-c) < T}

1
hi(¢) = inf {m > c: pbeta(1l/kap; c, m+l-c) > %y_}

'Maximum likelihood estimates were & & 0.4606, 7;; ~ 0.07944, @ = 1.017 and b=0.0777
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For large C';; and moderate x these are approximately

lo(¢).hi(e) = K [(f:i: Ve 2/ (k- 1)/,‘{.]

for z := ®~! (]%) so the CI widths are roughly proportional to \/¢ for large ¢. They fall to
zero for ¢ = 0.

5.2 Estimating ENM;; when 0 <6 <1

If & > 0 some carcasses discovered in a search may have arisen from fatalities in earlier
time period — so it is possible to have a positive count Cj; > 0 even if M;; = 0, making it
challenging to find interval estimates for M;; based only on the count C;; from the current
period. Under the assumption of near periodicity, however, even though the actual fatality
counts M;; will vary from period to period by chance, the mean fatality counts EAM;; = my;T;;
should be approximately constant. An exact 1007% Confidence Interval is given by

v < P{10(Cyj) < EM;; <hi(Ci))} (24c)

where the functions 1o0() and hi() are gamma distribution quantiles determined for integers
¢ > 0 by the relations

(1 -7%)/2= P(c, 1o(c)/K) (1+4)/2=P(c+1, hi(c)/r). (24d)
In R, the solutions (with variables c, gam and kap for ¢, 7 and ~ respectively) are

lo(c) = kap * qgamma((1-gam)/2, ¢);
hi(c) = kap * qgamma((1+gam)/2, c+1);

with similar forinulas in MS Excel (where GAMMA.INV(q.a,1) takes the place of R's qgamma(q,
a)) or other environments. For example, with the parameter values used in the simu-
lation shown in Figure 1, R;; = 0.49956, I;;/t;; = 10/15 = 0.6667 and s;; = 0.3, so
k = I;;/(R;jsi;) ~ 4.4483. The proposed estimator is M;} = KCj; = 4.45 x Cj;, and
v = 90% confidence interval estimates of Af;; (whose true value averaged m;;I;; = 30 in the
simulation) for various count values of C;; would be:
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0

~I O U W= O

lo ;\Y,’} hi

0.00 0.00 13.33
023 445 21.10
1.58 890 28.01
3.64 1335 3449
6.08 17.79 40.72
8.76 2224 46.77
11.62 26.69 52.68
14.61 31.14 58.49
17.71  35.59  64.21
9 20.89 40.04 69.86
10 24.13 4448 7545
11 27.44 48.93  80.99
12 30.80 53.38 86.49
13 34.21 5783 91.94
14 37.65 62.28 97.36
15 41.13 66.73 102.71

0o

This illustrates how imprecisely Af;; is determined by the counts C;j (especially for low
counts) even if o, 8;, I;;, s;;, and t;; are all known precisely. If any of these must be
estimated, then the uncertainty about A/;; is greater.

Bayesian estimates and Credible Intervals are also available for conjugate gamma prior
distribution M;; ~ Ga(a, b),

K .\Y," + Ku
E[A[L_,' ' C;_j] = m [C,‘j + (l] = ——1—4+—h—b—— (253)
5 = P{lo(Cij) <AM; < hi(CU)} (25b)
lo(¢) = qgamma((1-gam) /2, c+a) * kap/(1+kap*b); (25¢)
hi(c¢) = qgamma((1+gam)/2, c+a) * kap/(1+kap*b); (25d)

The reference or “noninformative” choice would be @ = 1, b = 0; more generally, experience
2 g ) p

in similar settings may suggest an appropriate “prior sample size” b and “prior sample sum”

a. Note the same Confidence Intervals and Credible Intervals also apply to any of the

estimators M, M}, M5, MJ, since they are special cases of /).

A Appendix: Notation Glossary

For convenience we collect here notation used in this document:

go be the number of discoverable carcasses on the ground at the start of a period,
g1 be the number of discoverable carcasses on the ground at the end of a period.
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Bv periodicity we take to be the same for all periods, though they may vary with the turbine
i (but to simplifv the notation we ignore this). At turbine i and time period j, let:

Cij  (count) = number of carcasses counted,
Iij  (search interval) = number of days between searches,
AL (mortality) = true number of carcasses during interval.
m;i;  (mortality rate) = daily average arrival rate of carcasses,
pi;  (persistence probability) = probability of remaining unremoved until next search.
rij  (rate parameter) = common parameter for all removal distributions.
sij  (search proficiency) = probability a carcass will be discovered,
t;j  (mean persistence) = average number of days a carcass remains unremoved,
o (shape parameter) = common parameter for all removal distributions,
0, (periodicity) = fraction of undiscovered carcasses that remain discoverable,
T (persistence time) = number of davs a carcass remains unremoved,
g (6;(1-s5)) = probability undiscovered but still discoverable,

F;(t) (survival function) = P[r > t],

Q,(t) (ISF) =E[rA = [} F;
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APPENDIX B:
A New Survey Method for Detection Probability Trials
for Partial Periodic Estimator

Introduction

This study identified and explained major influences on detection probability for periodic
searches of bird and bat fatalities. These discoveries led to the creation of a new Partial Periodic
Estimator (Appendix A), which requires modifications to the traditional survey methodology.
The following lays out the framework for wind energy fatality monitoring surveys and
detection probability trials that support the new estimator and account for the major influences
on detection probability.

1. Time dependent carcass persistence and searcher proficiency: It has been well
documented that carcass persistence is dependent on carcass age, and this study shows
that search proficiency is also dependent on carcass age.

2. Carcasses can persist through multiple search intervals, allowing for multiple detection
events: Some of the previous fatality estimation equations (e.g., Pollock and Huso) do
not account for the common occurrence of carcasses being deposited in one search
interval that persist into subsequent intervals and are detected at a later date. The
Partial Periodic Estimator measures this “bleed-through” process with a new term,
“theta,” which is the proportion of undiscovered carcasses that remain discoverable.

3. Other covariates such as vegetation height can also have strong influences on detection
probability.

Preliminary Scavenger Removal Trial

Before a main study begins, a preliminary traditional 60-day scavenger removal trial is required
to estimate the ballpark mean persistence of carcasses (bats, small birds, and large birds) and
variation in removal times. The recommended main study search interval is equal to the
shortest mean persistence of the three carcass types placed. The recommended main detection
probability trial length is three times the mean persistence of the longest persisting carcass type.
The number of carcasses used in the main detection probability trial for each size category
should be based on the variation of removal times.

Main Study Detection Probability Trial

Carcass Placement

Carcass placement timing should occur to simulate the assumed steady random rate of deposit.
Carcasses should be placed at random positions in a search area to account for covariates such
as vegetation height and slope. Carcasses should be marked to distinguish them as trial
carcasses and not true fatalities. Carcasses should be mapped with sub-meter accurate Global
Positioning System (GPS) receivers, or their positions should be cryptically marked to help a
project field manager certify their presence while keeping field technicians blind to their
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presence. Main study detection probability trials should occur at least once per season, and the
trial length should be equal to three times the mean persistence of the longest persisting carcass
type in the preliminary scavenger removal trial. All carcasses should be placed at monitored
wind turbines.

Integrated Carcass Persistence and Proficiency Detection Events

For any given carcass and search, the probability of persistence and detection (searcher
proficiency) are both time dependent and dependent on one another. This makes it highly
effective and desirable to measure these outcomes together in an integrated trial, rather than in
two independent trials.

After placing trial carcasses strategically at monitored wind turbines, carcass persistence and
searcher proficiency needs to be measured.

To establish carcass persistence, a traditional scavenger removal trial schedule of carcass checks
is recommended for all trial carcasses -the project field manager checks carcasses every day for
the first week, every three days for the next two weeks, and then every seven days until all
carcasses are removed or the end of the trial is reached. In addition to the traditional schedule
of carcass checks, supplemental carcass checks should occur for trial carcasses on search days.
Note that many of the supplemental carcass checks will overlap with the traditional schedule of
carcass checks and will not require extra effort. Carcass checks of trial carcasses on the day of
searches should be conducted after field technicians complete their searches to maintain the
searchers’ blindness.

To establish searcher proficiency, field technicians record all marked carcasses they detect while
conducting their standard scheduled searches. They should be instructed not to disturb these
marked carcasses; they are left in place for future project field manager persistence carcass
checks. Because the project field manager conducts carcass checks of trial carcasses on search
days, the true persistence status of those trial carcasses is known; therefore negative searcher
detections can interpreted as either a searcher’s miss of a persisting trial carcass or that the trial
carcass was removed by scavengers.

Integrating the carcass persistence and searcher proficiency trials can simultaneously produce
time dependent carcass persistence and searcher proficiency functions for the same set of trial
carcasses.

Search Interval Bleed-through of Carcasses: Theta

The final term that needs to be measured for the Partial Periodic Estimator is theta, the fraction
of undiscovered carcasses that remain discoverable over time through multiple search intervals.
Because trial carcasses are placed to simulate a random steady state of deposit at monitored
wind turbines and the persistence and detection of trial carcasses are tracked, the number of
trial carcasses that are not detected and not removed in one interval that persist to be possibly
detected in a subsequent interval can be measured.
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Collateral Data and Advantages to the New Method

Because a preliminary persistence trial is conducted first, proper trial carcass sample size, trial
length, and search interval can be established for the main monitoring program ahead of time.
This will introduce an evidence-based approach rather than guessing or using a “rule-of-
thumb” to establish these aspects of the program.

The data collected from the new method can be used to source estimates for all four traditional
fatality estimation equations reviewed in this study. The traditional persistence carcass check
schedule is conserved, and the traditional simple initial fresh carcass searcher proficiencies can
be extracted from the initial detection outcome of this method. This can allow for easy
comparisons of estimator results to compare to previous studies that used other estimators. In
addition, a remarkably simple empirical estimator is also sourced by the data collected and can
be used as an independent check on the Partial Periodic Estimator. The number of total
searcher-detected trial carcasses divided by the number of placed trial carcasses should be equal
to (or close to) the overall detection probability derived by the Partial Periodic Estimator. This
is because the effects of the integrated time dependent probabilities of carcasses persistence and
searcher proficiency as well as the bleed-through theta mechanism are implicit in the
proportional detection outcomes of this new method.

Overall, this new method and estimator are much more sensitive to the major influences that
affect detection probability, reducing bias and improving the predictive power of estimating the
impacts of wind turbines on wildlife.
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APPENDIX C:

Data Dictionary & Data Fields Used for Recording

Carcasses
Table C-1: Data Dictionary
Variable Description Units
ID Unique record identifier for all data rows Number
Date Date that a status check or search took place | Julian date format
Unique identifier for a collection of turbines
String where trial carcasses were placed and Unique number
searches occurred
. The species or unknown species .
Species determination (ex UNRA, unknown raptor) AOU species code
Photo Unique identifier per photo Photo number
The sex determination of trial carcasses, if U=unknown; M=Male;
Sex
known F=Female
. . A=adult; J=juvenile;
Age The age class of the trial carcass, if known U=unknown
Class The group status of trial carcass, Bird or Bat | Bird or Bat
Grid_Cell The d(?nunant gnd cell that the carcass Alpha-numeric map key
occupies on specified date
PositionID ID a-t'tlme of search, based on last known Carc??s__ID + position
position modifier
) ' ID after QA and analysis, may combine
AssignedID several unknown or found IDs Carcass_ID
An identifying number for the project field
PID manager who conduct the status check. See data file for codes
Searcher that conduct the search
Person Project field manager or field technician Name
SearchDay Does record represent a day when searchers Yes / No
were present
P = placement of carcass;
F = found carcass;
NF = a not found carcass;
DetectionStatus The detection outcome generated by a status NC.=.a not checked carcass
check or search position (only after many
prior checks, and
assurance that carcass has
been removed)
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Variable Description Units
S: Found during standard
status check without
additional effort;
F: Found during flushing
search around last known
location of carcass;
I: Found incidentally at
DetectionType The type of detection (if detected)* unknowr} position without
systematic search;
0: Found but not enough
evidence to be considered
fatality;
. . . . M: Found carcass due to
e e s 0 | e o i o
stuay. ‘ ' Find the Marker (NFM)
PositionPresence Indictor of carcass presence at time of search | 1=present; O=absent
AssignedPresence Indicator of carcass presence after analysis I=present; O=absent
and QA
Veg HT Vegetation height Inches
Index 1: Fresh carcass and
very attractive for
removal/scavenging;
Index 2: Partially
scavenged or decayed
carcass , moderately
A subjective index of the carcass “attraction” | attractive for
ScavengerIndex )
to a scavenger on a day removal/scavenging;
Index 3: Completely
scavenged or decayed (no
remaining edible or
attractive tissue), low
attraction for
removal/scavenging
GPSMarkiD Garmin r.ecord ID; allows sync with latitude Number
and longitude
Latitude Position where carcass found during search | GPS Lat
Longitude Position where carcass found during search | GPS Long
Note /}ny field notes made by searcher or project Text
field manager
BlockNum Plock ID contal'ns mult'lple strings searched Ranges from 1 - 4
in a consistent time period
DistanceSighted Distance from searcher to found carcass Meters
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Variable Description Units
TrialCarcass Indicator of a trial carcass placed at t=0 Yes / No
TemperatureHighF Daily high temperature Degrees F
TemperatureAvgF Daily average temperature Degrees F
TemperatureLowF Daily low temperature Degrees F
DewpointHighF Daily high dewpoint Degrees F
DewpointAvgF Daily average dewpoint Degrees F
DewpointLowF Daily low dewpoint Degrees F
HumidityHigh Daily high humidity Percent
HumidityAvg Daily average humidity Percent
HumidityLow Daily low humidity Percent
PressureMaxIn Daily maximum pressure mmBars
PressureMinIn Daily minimum pressure mmBars
WindSpeedMaxMPH | Daily maximum wind speed Miles per hour
WindSpeedAvgMPH | Daily average wind speed Miles per hour
GustSpeedMaxMPH | Daily maximum wind gust speed Miles per hour
PrecipitationSumIn Daily total precipitation Inches
RELEV E-levatlon (feet) of nearest grid cell at the Feet
ridge crest
VELEV Elevation (feet) of nearest grid cell at the Feet
valley bottom
Change in elevation (feet) between nearest
DELTAELV ridge crest and nearest valley bottom. Feet
Measure of slope size
Total horizontal distance (feet) between
TOTDIST nearest valley bottorn and nearest ridge crest. | Feet
Measure of slope size.
RDIST Horizontal dl‘stance (feet) between grid cell Feet
and nearest ridge crest
Horizontal distance (feet) between grid cell
VDIST and nearest valley bottom Feet
DEMELV Elevatl.on (feet? c.)f target gpd cell centroid, Feet
according to digital elevation model
ASPECT Dt?grees from true north toward which the Degrees
grid cell faces
Percentage slope of grid cell, determined by
SLOPE trend with nearest grid cell in the uphill Percent

direction and with the nearest grid cell in the
downhill direction. Measures local slope.
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Variable

Description

Units

SLPBIN

Slope values aggregated into bins

Percent

VPLYDIST

Horizontal distance (feet) between grid cell
and nearest grid cell along boundary of the
closest valley bottom polygon.

Feet

VPLYELV

Vertical distance (feet) between grid cell and
nearest grid cell along boundary of the
closest valley bottom polygon.

Feet

RPLYDIST

Horizontal distance (feet) between grid cell
and nearest grid cell along boundary of the
closest ridge top polygon.

Feet

RPLYELV

Vertical distance (feet) between grid cell and
nearest grid cell along boundary of the
closest ridge top polygon.

Feet

Within slope hazard
zone?

Whether grid cell occurs within a ridge
saddle, break in slope, or other slope feature
determined to be more often used by flying
raptors. This determination was judgment
based, and not the product of modeling.

1=yes; 0=no

Gross slope

Average slope from nearest valley bottom to
nearest ridge crest, measured as ratio of
elevation difference and total slope distance.

Ratio (%)

Distance ratio

Ratio of horizontal distance (feet) between
grid cell and nearest valley bottom and of
distance between grid cell and nearest ridge
crest. Values of #DIV/0! in this ratio occurred
for grid cells at the ridge crest; repairs were
left to the analyst.

Ratio (%)

Elevation ratio

Ratio of vertical distance (feet) between grid
cell and nearest valley bottom and of vertical
distance between grid cell and nearest ridge
crest. Values of #DIV/0! in this ratio occurred
for grid cells at the ridge crest; repairs were
left to the analyst.

Ratio (%)

Source: EcoStat, Inc.
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Table C-2: Master Data Fields Used in Recording Carcasses Found

Recorded Master Data Fields

Record ID: Unique record identifier for all data rows.

Date: Date that a status check or search took place.

String: Unique identifier for a collection of turbines that trial carcasses were placed and searches
occurred.

Species: The species or unknown species determination (ex UNRA, unknown raptor).

Sex: The sex determination of trial carcasses, if known.

Age: The age class of the trial carcass, if known.

Class: The group status of trial carcass, Bird or Bat.

Grid Cell: The dominant grid cell that the carcass occupied on specified date.

Carcass ID: The unique identifier for marked placed trial carcasses, naturally detected carcasses, and
unknown marked carcasses.

Assigned ID: The assigned carcass ID for unknown marked carcasses based on proximity to known
carcass ID positions and presence status.

P_ID: Identifying number for project field manager who conducted status check, and searcher who
conducted search.

Search Outcome: The search outcome, whether a carcass was detected on a day Yes/No.

Presence: The known presence of a carcass on a day Yes/No.

Vegetation height: The vegetation height measure at the position of the carcass.

Scavenger Index: A relative index of carcass condition.

Index 1: A fresh carcass.

Index 2: A partially scavenged or decayed carcass.

Index 3: A completely scavenged or decayed (no remaining edible tissue).

Recorded Master Data Fields

Topo: A topographical feature that the carcass position occupied.

Detection status: The detection outcome generated by a status check or search.

P: Placement of a trial carcass

F: Carcass found

NF: Carcass not found

NC: Carcass position not checked

Detection type: The type of detection (if detected).

S: Found during a standard status check without additional effort.

F: Found during a flushing search around the last known location of a carcass.

I: Found incidentally at an unknown position without a systematic search.

0: Found but not enough evidence to be considered a fatality.

M: Found carcass due to the Marker (FM) or Did Not Find the Marker (NFM).

Source: EcoStat, Inc.
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Table C-3: Data Collected by Project Field Managers for Unknown Carcasses

Date mm/dd/yyyy
Project Field Manager Project field manager initials.
String String number.

Start and End Time

24 hour time. Time when the field technician arrived at the
string and left after completing the search.

Grid Cell Alphanumeric cell address indicating the position of the fatality
remains.

Species Project field manager’s best understanding of species
identification.

Nearest Turbine The closest complete turbine to the evidence of fatality.

Distance Distance (in meters) from evidence of fatality to Nearest
Turbine.

Bearing Compass bearing from the Nearest Turbine to the evidence of
fatality.

Latitude Longitude GPS NAD 24 CONUS hddd.ddddd

Carcass sign

One or more code can be entered. Coded categories of carcass
sign for evidence of fatality:

F =10 or more feathers

W = partial or intact wing or wings

T = partial or intact tail

PB =body parts or partial body

WB = complete whole body

H = partial skull or complete head

Photo number

Camera letter and photo numbers.

Vegetation height The vegetation height (in inches) at the position of the evidence
of fatality.
Marked Yes or No indicating whether the fatality legs and wings were
taped or whether the flight feather (wing and tail) were clipped.
Carcass ID If the legs were taped, the number indicated was recorded.
Scavenger Index A relative rating of carcass condition:
1 - Fresh
2 — Partially scavenged or decayed
3 — Completely scavenged (feather spots or bones) or very
decayed
Notes

Source: EcoStat, Inc.
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APPENDIX D: Figures lllustrating Biases for

Equations in the Current Literature
Robert L. Wolpert

The four estimating equations considered here all represent quite similar attempts to
estimate the actual number of avian fatalities in a specified area during each of a sequence
of time intervals from counts of carcasses. For a variety of reasons some carcasses may not
be counted: some may have been removed by scavengers, some may have fallen outside the
search region, and searchers may fail to see some carcasses. The four equations differ in the
assumptions they make in order to adjust for these missing carcasses.

Two of the estimation equations, those of Erickson, Johnson, et al. and of Shoenfeld.
assume that search teams will find both “new” carcasses (those killed during the current time
period) and “old” ones (those killed during earlier periods, but not removed by scavengers
or search teams). Old and new carcasses are assumed to be equally likely to be removed by
scavengers, and equally likely to be discovered in a subsequent searches. These estimators
will under-estimate true mortality if these assumptions are wrong.

Conversely the other two estimation equations, those of Pollock and of Huso, begin
with the assumption that all carcasses counted are new (i.e., died during the current time
interval). Both will over-estimate true mortality if this is wrong.

Shoenfeld’s estimator always exceeds that of Erickson, Johnson, et al., because the latter
assume (incorrectly, in practice) that search teams do not remove carcasses. Huso’s esti-
mator is identical! to a special case of Pollock’s: the case in which scavengers are assumed
to remove fresh carcasses and old ones at the same rates (technically, that the “persistence
time” before scavengers remove a carcass have “exponential” probability distributions). Pol-
lock’s estimator does not require that assumption. For exponential persistence times, the
estimators of Erickson, Johnson, et al., Shoenfeld, Pollock, and Huso are ordered consistently

MZP <M, < M <A

All four give similar estimates when the interval between searches is long compared to
mean carcass persistence times, but differences among them are larger when searches are
made more frequently to reduce the loss of carcasses to scavenging. With frequent searches,
]\7,-3 and M}; can be as much as three or four times larger than M% for small birds. The key
issue, then, to guide the choice of estimators, is:

What fraction of carcasses missed by a search team might
still be discovered as “old” carcasses in a later search?

If that fraction is 100% then Shoenfeld’s estimator M;j- is most accurate on average if search
teams remove the carcasses they discover, and Erickson & Johnson’s ]f[,-'j’ if they don’t.

If that fraction is 0% then Pollocks’s estimator 1\7}; is most accurate on average, with the
side benefit that it does not require the “exponential distribution” assumption.

If that fraction is somewhere between 0% and 100%, then some sort of compromise
between ]\73- and 1\7}; is called for. Such a compromise is proposed and described in Appendix
A, A New Equation for Estimating Avian Mortality Rates.

1Except that Huso’s estimator is inflated by about 1% in the rare case when intervals between consecutive
searches are more than 4.6 times the average length of time before scavengers remove a carcass.
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Figures Illustrating Equation Biases

Figures 1-6 below show eight-week simulations of carcass arrivals and removals by scav-
engers as stair-step curves increasing at each arrival and decreasing at each removal, with
searches at specified intervals from two to 56 days. Carcasses discovered and removed are
indicated by downwards pointing red arrows; expected numbers of carcasses are indicated
by smooth blue curves.

Figures 1-3 assume exponential distributions for persistence times (so scavengers remove
fresh and older carcasses at the same rates), while Figures 4-6 assume Weibull removal
distributions with parameter values suggested by our data.

Figures 1, 4 assume that only “new” carcasses can be discovered, so each curve begins
each search period with zero carcasses. This assumption underlies Pollock’s and Huso’s
estimators, so their bias is zero in the exponential persistence case, Figure 1 (and, for Pollock,
also for Weibull persistence, Figure 4).

Figures 3, 6 assume that 100% of old carcasses remain discoverable, so each curve begins
at the point of the red arrow (indicating that carcasses disappear only because of their discov-
ery by search teams). This assumption underlies Erickson, Johnson, et al.’s and Shoenfeld’s
estimators, so Shoenfeld has no bias in Figure 3. Erickson, Johnson, et al. still underestimate
M;; there because of their assumption that search teams don’t remove carcasses.

Finally, figures 2, 5 take the compromise position that (on average) 50% of undiscovered
carcasses will remain discoverable; typically here Erickson, Johnson, et al.’s and Shoenfeld’s
estimators will underestimate, while Pollock’s and Huso's will overestimate.

Below each of these thirty plots is a table giving the bias (as a percentage of the truth)
for each of the four estimators (or five, for Weibull distributions, where results for both
exponential and Weibull versions of Pollock’s estimator are reported).

All the biases are smaller for long search intervals (at the top of each figure) and greater for
shorter ones (at the bottom of each figure). Huso’s estimator is identical to the exponential
version of Pollock’s, and so has the same bias in every case. The new estimator described in
Appendix A, A New Equation for Estimating Avian Mortality Rates, has zero bias in all of
these cases.
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Figure Walk-through

Robert L Wolpert
October 26, 2012

1 Introduction

Figure (1) shows two views of the same simulated two-week period, in which fatality occurs
at a rate of about one per day and in which weekly searches were made with proficiency
sij = 30%. Carcass persistence is exponentially distributed with mean t;; = 15d, and
0 = 50% of undiscovered carcasses remain across search intervals (those that do not remain
might be thought to have decayed). Table 1 shows the arrival time and fate of each carcass.

Upper Figure

Each fatality is shown in the upper “Time line” figure as an “x” mark, followed by a
horizontal line that indicates the fate of this particular carcass.

Carcasses eventually removed by scavengers are shown in red, with a red dashed red line
extending from a red cross “x — —” marking the fatality to an open circle “— — o” marking
the removal. Vertical position in this plot is another indicator of persistence— points are
sorted so the carcasses removed most quickly are at the top, those removed most slowly at
the bottom (for more on this see p.3 below).

Carcasses eventually discovered in searches are shown as solid black lines, beginning at a
black “x—" marking the fatality and ending at one of the weekly search times on days zero,
seven or fourteen. Discoveries are marked by black filled circles “—e” for “new” carcasses,
i.e., those from the search week, while “old” carcass discoveries are marked with crossed
squares “—K”.

Finally, undiscovered carcasses that become undiscoverable are marked by faint dotted
blue lines, beginning at a blue cross “x - - -” marking the fatality and ending unceremoniously
at a search time. We’ll discuss the curved lines in the top figure below on p. 3.

Lower Figure

The ground “Carcass Count” is shown in the lower figure as a stair-step curve G(t) that
indicates the number of discoverable carcasses on the ground at each time ¢. Between
searches, this increases by one with each new fatality and decreases by one with each removal
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by scavengers. After each search time, G(t) drops by the number of carcasses discovered and
removed by the Search Team, which is indicated by a downward red *!”. In addition, some
carcasses may “disappear” as they become undiscoverable (or perhaps decay); if so, G(¢)
will drop further to begin the next period at a value below the red arrow point, indicated by
an open square “0". The number possibly discoverable at each search is shown by the filled
square “m”.

In the bottom figure, the smooth blue curve shows the expected number of discoverable
* carcasses for the model assumed by the Pollock and Huso estimators— beginning each period
with zero carcasses at a blue “o— ”, then rising smoothly over the period to a peak marked
with a blue “ --e”, then dropping to zero to begin the next period due to those estimators’
assumption of “zero carcasses beginning each period”, or “no old carcasses”. Those curves
generally lie below G(t), because their “no old carcass” assumption is false in this simulation,
leading estimators M}; and J\AI{J*- of Pollock and Huso to overestimate Af;; on average.

A Walk Through This Simulation

This simulation begins at time ¢ = 0 with G(0+) = 2 discoverable carcasses present, the
remnants of the arrivals, removals, and weekly searches from 50 earlier simulated days (not
shown) generated to ensure that this two-week period would be typical. Sixteen additional
simulated fatalities occurred between days 0 and 14, about what one would expect for an
average daily mortality of m;; =1/d.

The first new fatality occurs 0.838 days (20 hours, 7.5 minutes) into the simulation,
indicated by a red x at the top left in the upper figure and by the unit increase of G(t)
by one (from 2 to 3) in the lower one. The top figure shows that this carcass is eventually
removed by scavengers at time t = 2.015; this event is indicated in the lower curve by a drop
of G(t) from 5 to 4.

G(t) had risen to 5 by time ¢t = 2.015 due to the second and third fatalities, which arrived
just 41 minutes apart at times ¢t = 1.27 and ¢ = 1.30, increasing G(¢) by one at each event.
The earlier of these two is eventually removed by scavengers at time ¢t = 4.92, but the latter
lasts long enough to be discovered by the Search Team on day seven.

The Day 7 Search

The lower figure shows that G(7) = 8 discoverable carcasses were present for the day-7
search, and that three were discovered then (because the red arrow “;” extends from 8 down
to 5). Two of the three discovered carcasses were “new” ones, that arrived at times ¢t = 1.30
and t = 2.41; the other one was an “old” carcass, that arrived at time t = —0.17, four hours
and five minutes before the start of our two week-long simulation. Of the five carcasses that
were present but not discovered in the day-7 search, two became undiscoverable (on average
we would expect (1 — 0) = 50% of them to do so), leaving G(7+) = 3 discoverable carcasses
just after the search to begin the second week.

In the top figure, the two carcasses that become undiscoverable are indicated by blue

x ---” marks beginning at times ¢t = 3.58 and t = 5.90, and ending with the search at

1)
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t = 7. That figure also reveals the eventual fate of the other G(7+) = 3 carcasses that
were present but not discovered in the day-7 search— one of them (the one that arrived
at t = 2.42) is eventually removed by scavengers at time t = 13.78, just before the day-14
search, while the other two eventually became undiscoverable (decayed, perhaps). one on
day 14 and one later (on day 21, as it happens).

The Day 14 Search

The search on Day 14 discovered three carcasses, all “new” (having arrived at times ¢t = 10.50,
11.77, and 13.23, all in the range (7,14]). Four carcasses were missed in this search: two
that arrived just minutes apart at ¢ =~ 1.43, which were also both missed in the search on
day 7 and both of which are eventually lost to decay, one arriving at ¢t = 13.23, also lost to
decay; and one (the red x — -) arriving at ¢ = 12.58, that will eventually be removed by
scavengers at time ¢ = 27.13 after eluding discovery in both the day-24 and day-21 searches.

The Curves in the Top Figure

Height in the top figure is in fact the “quantile” of the persistence times— so half the arrivals
(all marked by x’s) are in the upper half of the figure, 10% in the top (or bottom) tenth, and
so on. In fact, the sixteen arrival marks “x” are distributed perfectly evenly (or “uniformly”)
in the two-dimensional rectangle with height 0 < y < 1 and width 0 < ¢ < 14.

The smooth black curves in the upper figure mark the earliest time a carcass can arrive
and still be unremoved by scavengers at the next search time. SO, every x outside all the
triangular regions marks the arrival of a carcass that will be removed by scavengers before
the next search (and so is red), while every “x” inside the triangular regions will still be
on the ground at the time of at least one search. If it is undiscovered in that search then it
still might be removed by scavengers or to decay (and hence some of those marks are red x
or blue x). More frequent searches (smaller values of I;;, here 7) reduce loss to scavenging
precisely because they reduce the area outside these triangular regions, but evidently there
is a rapidly diminishing return on investment when I;; is reduced far below t;; (here 15d),
because there is little remaining area outside the union of triangles; see Figure 2.
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Figure 1: Two graphical views of consecutive one-week searches: Individual time-lines (top),
Ground carcass count (bottom). Search proficiency is s;; = 30%; persistence is exponential
with mean t;; = 15d; 8 = 50% of undiscovered carcasses remain discoverable for future
searches.
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Figure 2: The same simulation, but with I;; = 2-day search intervals. Note fewer carcasses
lost to scavenging, but only one more discovery (7 in the seven searches on days 2,4,...,14).

Serial Arrival | Departure | Fate
—0.1703770 | 7 Disc
—0.1270495 | 5.201678 | Rem

1 0.8383745 | 2.015476 | Rem
2 1.2684557 | 4.922721 | Rem
3 1.2967885 | 7 Disc
41 24092051 | 7 Disc
5| 2.4233033 | 13.776822 | Rem
6| 2.4236632 | 21
7| 2.5218538 | 14
8| 3.5768155 | 7
9| 4.8454552 | 5.590141 | Rem
10| 5.8996038 | 7
11 7.4934336 | 8.690271 | Rem
12 | 10.5000953 | 14 Disc
13 | 11.7721292 | 14 Disc
14 | 12.5795863 | 27.139489 | Rem
15| 13.2330163 | 14
16 | 13.3854000 | 14 Disc

Table 1: Arrival and depature times for the sixteen carcasses appearing during period (0, 14]
and the two earlier carcasses still present past time ¢ = 0.
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