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Executive Summary 
 
Documented fatalities of bats at wind turbines have raised serious concerns about the future 
impacts of increased wind power development on populations of migratory bat species. These 
mortalities have been recorded for 11 of the 45 bat species found in North America, but wind 
turbines predominantly affect tree roosting migratory bats, including eastern red bats (Lasiurus 
borealis), hoary bats (Lasiurus cinereus), and silver-haired bats (Lasionycteris noctivagans), 
which together represent 72.8% of the annual bat fatalities reported for wind energy facilities in 
the United States. Although mortalities may occur throughout April to November, most turbine-
associated bat fatalities in North America have been reported in late summer and early autumn 
and appear to be concentrated during the fall migration of the affected migratory tree roosting 
species. To date, much of the research on bat-wind power interactions has focused on examining 
patterns and predictors of mortality at wind farms, operational mitigation, and possible 
deterrents; such studies have provided valuable information to prevent or mitigate bat mortalities 
on a local scale. However, we need to have a greater understanding of current population sizes, 
trends in population growth or decline, and patterns of population differentiation across the 
landscape for affected species to understand whether mortalities at wind power developments 
pose a serious risk to bat populations and whether the risks encountered by these populations are 
differentiated geographically. Bat fatalities may thus represent one of the major biological 
impacts of wind energy development, yet we lack the necessary information to place levels of 
mortality in context with respect to baseline population estimates and demographic trends. For 
most bat species we have no knowledge of the size of populations and their demographic trends, 
the degree of structuring into discrete subpopulations, and whether different subpopulations use 
spatially segregated migratory routes. Given the difficulties associated with applying traditional 
demographic methods such as capture-mark-recapture to bats, we require other approaches to 
estimating population sizes and demographic trends within bat populations.  

Genetic approaches provide an alternative to traditional demographic methods of 
population estimation, and allow us to estimate the degree of population structuring, 
demographic trends within subpopulations, and effective population size (Ne) using data on allele 
frequencies or the base composition of DNA sequences. Here, we describe the results of our 
study using genetic data to (1) estimate the effective population size for eastern red bats 
(Lasiurus borealis), (2) assess signals of population growth or decline in that species, and (3) 
evaluate patterns of population structure across the landscape. One of the great values of Ne 
estimation is that by comparing current and historical estimates we can gain valuable information 
on population trajectories over time. Estimations of Ne have been commonly applied to small 
populations where high levels of genetic drift are expected; the responsiveness of these methods 
to declines in very large populations are not as well understood. Therefore, a further goal of our 
study was to use a simulation approach to explore the influence of initial population size, 
mortality rate, data type, and analytical method on our power to detect population declines over 
short time intervals. 

Using a large dataset of both nuclear and mitochondrial DNA variation for eastern red 
bats, we demonstrated that: 1) this species forms a single, panmictic population across their 
range with no evidence for the historical use of divergent migratory pathways by any portion of 
the population; 2) the effective size of this population is in the hundreds of thousands to millions; 
and 3) for large populations, genetic diversity measures and at least one coalescent method are 
insensitive to even very high rates of population decline over long time scales and until 
population size has become very small. Our data and analyses suggest that genetic approaches 
are not an effective tool for assessing potential short-term population declines in large 
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populations of migratory wildlife affected by wind power development. That said, genetic 
markers can be used in a wide variety of other contexts to provide valuable information on 
species identification, patterns of connectivity and gene flow across the landscape, local 
adaptation, genomic responses to environmental stressors, the evolutionary potential of 
populations, local population size in capture-mark-recapture studies, and patterns of dispersal 
and individual movements. 
 
Introduction 
 

As concerns about anthropogenic climate change and the long-term environmental 
impacts of the burning of fossil fuels on biological and human systems have heightened, there is 
increasing motivation to develop alternative sources of energy that will reduce the production of 
greenhouse gasses.  Wind power has become an increasingly important sector of the energy 
industry and is one of the fastest growing sources of renewable energy. Despite the many 
positive aspects of wind power development, there have been some unexpected environmental 
costs. In particular, fatalities of bats at wind power installations have emerged as a major 
environmental impact of wind power development, and large mortality events have been 
reported at a number of wind energy facilities in the United States and abroad (Erickson et al. 
2001, 2005, Kunz et al. 2007, Arnett et al. 2008). The bat species most affected by wind power 
in North America are migratory, tree-roosting species such as hoary bats (Lasiurus cinereus), 
eastern red bats (Lasiurus borealis), and silver-haired bats (Lasionycteris noctivagans), which 
together constitute almost three-quarters of the bat carcasses found at wind turbines (Arnett et al. 
2008).  

The observed high levels of mortality for these species at wind power developments raise 
concerns about the long-term impacts on their populations, yet we lack the necessary information 
to place this mortality in context with respect to baseline population estimates and demographic 
trends of the affected species. For most bat species we have no knowledge of the size of 
populations and their demographic trends, the degree of structuring into discrete subpopulations, 
and whether different subpopulations use spatially segregated migratory routes. While estimates 
of local population sizes within particular roosts may be feasible using traditional capture-mark-
recapture (CMR) methodology or survey techniques (O’Shea and Bogan 2003, Kunz et al. 2009), 
only one study (Vonhof and Fenton 2004) has estimated population size in a known area (outside 
of a single roost) using CMR methodology, and no reliable range-wide population estimates exist 
for any bat species. Traditional demographic approaches have limitations when applied to bats, 
as they are nocturnal, exhibit cryptic behavior, and are difficult to follow over time during 
extensive seasonal movements between summer breeding areas and overwintering sites (Cryan 
2003, Rivers et al. 2006). The tree-roosting migratory bat species that are killed in high numbers 
at wind turbines are especially inaccessible for traditional CMR studies, given their solitary 
nature and restriction to forested habitats (Kunz 1982, Shump and Shump 1982a,b). Large-scale 
banding studies typically experience extremely low recapture rates (e.g., Glass 1982; reviewed in 
O’Shea and Bogan 2003), and there are serious data deficiencies with respect to sex- and age-
specific survival and reproductive rates that hamper our ability to apply demographic models to 
bat populations. Given these difficulties, we require other approaches to estimating population 
sizes and demographic trends within bat populations. 

Genetic approaches provide an alternative to traditional demographic methods of 
population estimation, and allow us to estimate the degree of population structuring, 
demographic trends within subpopulations, and effective population size (Ne) using data on allele 
frequencies or the base composition of DNA sequences.  Fewer individuals need to be sampled 
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relative to CMR approaches, and individuals need only be sampled a single time for many 
analyses. In addition, no accessory data, such as age or sex, is required (although such 
information is useful if available), and population parameters can be estimated directly from the 
observed patterns of genetic variation. Molecular markers can be used to examine levels of 
population differentiation within a species and to geographically delimit populations or groups of 
populations based on the observed distribution of genetic variation. Importantly, such analyses 
can be used to define the relevant unit for population monitoring, and highlight demographic 
connections among populations that may not be obvious from behavioral data alone. As mating 
is likely to take place during migration in bats (Dodd and Adkins 2007, Cryan 2008), gene flow 
should occur among populations that interact during migration; therefore it is likely that any 
genetically distinct populations, if they exist, will be using different migratory pathways. The 
analysis of genetic population structure is therefore highly relevant to our understanding of bat – 
wind power interactions. 

Although it is not possible to directly estimate adult census population size (Nc) using 
molecular data (although genetic markers can be used to identify individuals for traditional CMR 
analyses; Luikart et al. 2010), it is possible to estimate Ne, which provides information on how 
quickly genetic variation is being lost, or relatedness is increasing, in a population of interest.  It 
is defined as the number of individuals in an ideal population (a large, constant-sized, randomly-
mating, hermaphroditic population with discrete generations) that would lose genetic variation at 
the same rate as the actual population (Crow and Denniston 1988). Essentially it is the size of the 
population that is experiencing genetic drift, and hence estimates the number of individuals 
actually contributing genes to the next generation. The estimation of Ne has seen wide 
application in studies of threatened or isolated populations, as the extent of genetic drift, and 
hence loss of genetic variation, is inversely proportional to Ne. Current estimates of Ne can be 
used to assess the ‘genetic health’ of populations and their capability to respond to future 
environmental change or anthropogenic changes via selection (Frankham et al. 2002).  

The purpose of our project was to apply population genetic approaches to assess levels of 
genetic differentiation among populations and provide estimates of Ne using multiple techniques 
for the eastern red bat (Lasiurus borealis). This bat species was chosen because it is one of the 
three bat species of greatest concern with regard to the biodiversity impacts of wind energy, and 
has the highest fatality rate at a number of wind power installations in the eastern United States. 
Although estimates of total population size (actual numbers of individuals) would have been 
preferable, from the perspective of understanding the size of bat populations and the potential 
impact of fatalities at wind power installations, we wanted to test whether Ne estimates could 
provide us with information on the size of the evolutionarily-relevant portion of the population 
(that portion contributing genes to the next generation). We further assessed the potential to use 
estimates of Ne as a population monitoring tool through sensitivity analyses, where we modeled 
various starting population sizes, mortality rates, and time between measurements, and asked 
how much of a decline over what time scale is necessary to detect a significant change in Ne. 
 
Background 
 

We proposed that genetic estimates of effective population size (Ne) may be the best 
approach to understand the importance of fatalities at wind power installations for bat 
populations, as we cannot currently estimate total population size or population trends using 
traditional demographic methods.  Our proposed research had two main objectives.  First, using 
existing tissue samples taken from wild-captured and turbine-killed individuals from across their 
range, we set out to provide the best possible estimate of the Ne of eastern red bats. Multiple 
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analytical methods were used to estimate Ne to ensure that various aspects of the data were 
utilized and that analyses were not overly biased by the assumptions of any single method.  
Second, we performed sensitivity analyses to assess the utility of temporally-spaced estimates of 
Ne as a population monitoring tool. By using this current estimate of Ne as a baseline and 
modeling genetic diversity under defined scenarios of population decline, we determined 
whether population declines consistent with the magnitude of bat fatalities observed at wind 
turbines are detectable over relatively short time spans, and thus whether genetic monitoring is a 
potentially useful tool for managing these populations. In addition, we examined the influence of 
varying the number and diversity of molecular markers and the number of individuals sampled 
on our ability to detect demographic trends. 

Our proposed research specifically applied to Topic Area 3 – Environmental Impacts: 
Genetic studies to better estimate effective population sizes of affected bat species and 
potential population impacts that may be associated with wind development in the 20% 
Wind by 2020 program.  Our estimates of Ne will provide valuable information on the number of 
individuals across the range of eastern red bats, and thus provide the necessary context that has 
been lacking to understand the potential biological impact of increased wind power development 
on populations of eastern red bats.  

Fatalities of bats at wind power installations represent one of the key environmental 
issues faced by the expanding wind energy industry.  Genetic estimates of Ne may be our best 
option with respect to understanding the importance of fatalities at wind power installations for 
bat populations, as we cannot currently estimate total population size or population trends using 
traditional demographic methods.  Our specific objectives and the approach we used to address 
them were as follows: 
Objective 1. To use genetic approaches to estimate the effective population size of eastern 
red bats across their range. 

Using existing tissue samples taken from wild-captured and turbine-killed individuals 
from across the range of eastern red bats, we used multiple analytical methods to provide the best 
possible estimate of the current Ne of eastern red bats.   
 
Estimating Effective Population Size 
 

There are two commonly estimated measures of Ne. Variance effective size (NeV) is the 
size of an ideal population that would lose genetic variation via genetic drift at the same rate as 
the actual population, while inbreeding effective size (NeI) is the size of an ideal population 
losing heterozygosity, due to increased relatedness, at the same rate as the actual population.  
These two measures may differ dramatically when a population is not stable (Leberg 2005).  A 
rapid decrease in Nc is likely to cause a concurrent decrease in NeV, via the immediate loss of 
alleles (and hence genetic variation) from the population, while NeI may not decrease as rapidly 
because heterozygosity may decline much more slowly than the number of alleles.  Similarly, 
during population growth, accumulated relatedness in a small population will not be reduced 
quickly by a rapid increase in Nc, but additional drift will be minimized and new alleles created 
via mutation are likely to be retained during population expansion. The differential sensitivity of 
these different measures of Ne make them applicable to different temporal scales, with NeV 
typically used to estimate short-term or contemporary Ne, while NeI is used to estimate long-term 
or historical Ne (Crandall et al. 1999).  Most approaches to estimating NeV make a number of 
assumptions, including that the population is sampled at random, the genetic markers are 
selectively neutral, unlinked, and do not undergo mutation between samples, no population 
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subdivision, no immigration, stable population size, and no overlapping generations (Leberg 
2005, Wang 2005, Luikart et al. 2010). 

The two most common methods used to estimate short-term NeV are: 1) the temporal 
method, wherein multiple samples separated by several generations are collected from a 
population, and changes in allele frequencies between samples, which reflect genetic drift and 
are proportional to population size, are used to calculate NeV (Waples 1989); and 2) the linkage 
disequilibrium method, which utilizes information on linkage disequilibrium to estimate the 
degree of genetic drift experienced by a population and hence NeV (Waples and Do 2009, 2010). 
Assumptions about genetic markers (neutrality, no linkage, and no mutation) are likely met in 
most genetic surveys, and various maximum-likelihood and Bayesian methods have been 
developed that allow the other assumptions (no population subdivision, immigration, or 
overlapping generations and stable population size) to be relaxed (Williamson and Slatkin 1999, 
Anderson et al. 2000, Berthier et al. 2002, Wang and Whitlock 2003, Tallmon et al. 2004, 
Waples and Yokota 2007, Waples and England 2011, Robinson and Moyer 2013).  Because 
these short-term estimates are based on changes in allele frequencies or allele frequency 
distributions, highly variable markers such as microsatellites (tandem repeats of 2-7 base pairs; 
Tautz 1989) are required.  Precision of estimates benefits from increasing (1) sample size, (2) 
number of marker loci, and (3) number of generations between samples (Waples 1989, Luikart et 
al. 1998, Anderson et al. 2000, Berthier et al. 2002, Wang and Whitlock 2003), although marker 
diversity may be even more important than these other factors (Palstra and Ruzzante 2008). 

Long-term estimates of NeI are typically estimated using a coalescent approach (Leberg 
2005, Wang 2005).  Coalescent theory uses relationships between genes, as influenced by 
mutation and genealogy, to understand evolutionary phenomena (Kingman 1982).  Using a 
sample of genotypes (typically sequences from mitochondrial or nuclear genes), coalescent 
methods trace backward in time to infer events that occurred since the individuals in the sample 
shared a common ancestor (Fu and Li 1999). Current patterns of genetic variation in a population 
reflect both past and ongoing events, and hence we can learn a great deal about current and 
former population size and demographic trends using coalescent analyses. Because the ancestry 
of sampled alleles (i.e., the coalescent process) can only be inferred when mutations differentiate 
those alleles, coalescent methods estimate the scaled parameter q, which is defined as 4Neµ when 
based on biparentally inherited markers (such as microsatellites), or 2Neµ when based on 
markers with uniparental inheritance (such as mitochondrial DNA or Y chromosome markers), 
where µ is the mutation rate of the marker used.  This approach assumes that the correct 
mutation model and rate are known.  Modern coalescent methods allow the simultaneous 
estimation of q, migration (gene flow), recombination rates, and population growth rate, relaxing 
some of the assumptions of Ne estimation (Hey and Nielsen 2004, Kuhner 2006).  In addition, 
because population growth (positive or negative) can simultaneously be taken into account, 
contemporary Ne estimates can be obtained, within the limits imposed by the mutation rate of the 
marker(s) used.  However, these estimates still represent longer-term averages relative to 
estimates based on more rapidly evolving markers such as microsatellites. Sequence-based 
coalescent methods have much lower sample size requirements than do temporal methods, and in 
fact very large samples are not computationally feasible. 

We used a number of approaches to estimate Ne for eastern red bats.  Although we 
originally set out to estimate short-term NeV, it quickly became apparent that Ne was large, 
precluding the use of single sample estimators based on linkage disequilibrium or summary 
statistics (Waples and Do 2009, 2010, Tallmon et al. 2004, 2008) which are only effective for Ne 
<1,000, and temporal methods such as the Jorde and Ryman (1995) method which are based on 
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changes in allele frequencies due to genetic drift between time points (as drift is negligible and 
undetectable with large Ne).  Further, the cohort-based demographic data required for the latter 
method were simply not available for any bat species.  Therefore, we focused on coalescent 
analyses of long-term NeI.  
 
Sampling 

Tissue samples from across the range of eastern red bats were collected by researchers 
working in the field.  From these samples we generated three data sets:  

1) A sample of individuals (N = 277) from known populations collected in the summer 
months (June to mid-August when bats are likely to be resident) primarily between 2000-2006 
for the purpose of assessing levels of genetic population structure and estimating Ne (Table 1). 
We received tissue samples for between 1 – 39 bats from any given location. We had sufficient 
samples (N>15) for 12 localities with which to carry out population genetic analyses (Figure 1, 
Table 1). Unlike colonial bats roosting in buildings or trees where bats can be captured in 
numbers from a single site during a single sampling session, tree-roosting bats such as eastern 
red bats are solitary, and sampling therefore must involve the capture of foraging individuals and 
may encompass individuals from a wider area over a longer time scale. For six of our sampled 
populations, bats were captured within a single county or location (AR, GA, MO, ON, TX, WV-
Mason), while the other six populations consisted of individuals captured in several adjacent 
counties within a given state (IL, MD, MI, NC, TN, WV-Pend). Sixteen highly-variable 
microsatellite loci were genotyped for all individuals used in population level analyses (N = 
285). A 408 bp fragment of the hypervariable 2 portion of the mitochondrial DNA control region 
(hereafter HV2) was sequenced for 218 individuals used in population-level analyses (not all 
individuals in each population were sequenced), as well as 77 bats from 30 additional locations 
that were not included in population-level analyses, for a total of 295 individuals sequenced. We 
further sequenced a 651 bp fragment of the Chymase Intron 1 (CHY) for a random subset of 103 
individuals. 

2) A sample of individuals from 2002 only (N = 353, including 109 individuals used in 
the first dataset) for estimating Ne at a single time point. 

3) A sample of individuals from 2010 only (N = 226) for estimating Ne at a second time 
point. Data sets 2 and 3 were comprised of a mixture of individuals of known summer origin, as 
well as bats of unknown origin killed at wind power developments during fall migration. We 
performed microsatellite genotyping for individuals in data sets 2 and 3 but did not sequence 
HV2 or CHY. 

 
Laboratory Methods 

DNA was extracted from samples using a DNEasy Tissue Extraction Kit (Qiagen). All 
individuals in all three data sets were genotyped at 16 microsatellite loci using primers developed 
specifically for eastern red bats (primers Lbo-B06, C07, D08, D200, D202, D203, D204, D226, 
D240, D245, and D248; Eackles and King, pers. comm.), as well as primers originally developed 
for other bat species (MS3E10 and MS1C01, Trujillo and Amelon 2009; IBat-Ca22 Oyler-
McCance and Fike 2011; Cora_F11_C04, Piaggio et al. 2009a; and Coto_G12F_B11R, Piaggio 
et al. 2009b). Loci were multiplexed whenever possible, and PCR reactions combined 10 ng of 
each primer and 2 µL template DNA, with an illustra PuReTaq ready-to-go PCR bead (GE 
Health Care) to a total volume of 25 µL. Cycling conditions followed those in Vonhof et al. 
(2002) with the exception of a 10s (rather than a 1s) extension step at 72 °C. Multiple PCR 
reactions were subsequently pooled for loading on an ABI3130 Sequencer at the Vanderbilt 
University DNA Sequencing Facility for fragment analysis, and visualized and scored using 
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GeneMarker software (SoftGenetics). 
Amplification of the 408 bp fragment of the mitochondrial HV2 was initially carried out 

using the reverse complement of primer F from Wilkinson and Chapman (1991; RevF: CTA 
CCT CCG TGA AAC CAG CAA C) sitting in the central conserved sequence block and the 
primer sH651 located in the tRNAPro gene (Castella et al. 2001).  However, these primers span a 
region containing a large stretch of 6 bp repeats, resulting in a large amplicon of 1500-2000 bp.  
We therefore designed a new primer (HV2R2: TCC TGT WAC CAT TAA YTA ATA TGT 
CCC) to sit in the 3’ tail of the HV2 before the repeats that amplified a 408 bp fragment. 
Amplification was carried out using the above reaction conditions and the cycling conditions in 
Castella et al. 2001. PCR reactions were cleaned using ExoSAP-IT (PCR Product Pre-
Sequencing Kit, Affymetrix) and sent to the University of Arizona Genetics Core for bi-
directional sequencing. Sequences were edited using CodonCode Aligner software (CodonCode 
Corporation). 

The nuclear chymase sequence data were generated via cloning of PCR amplicons from a 
randomly-selected subset of individuals. First, a region of the chymase gene spanning intron 1 
was amplified through PCR using the primers Chy-F (5’-GTC CCA CCT GGG AGA ATG TG-
3’) and Chy-R (5’-TGG GAG ATT CGG GTG AAG-3’; Venta et al. 1996). In this case the PCR 
reaction utilized 1 µL of template, but otherwise reaction conditions were identical to the above. 
The temperature profile included an initial extended denaturation of 95°C for 5 minutes, 
followed by 40 cycles of 95°C for 1 minute, 52°C for 1 minute and 72°C for 1.5 minutes, with a 
final extension step at 72°C for 4 minutes. This PCR reaction was cleaned using a PCR 
purification kit (Qiagen) and sent to the University of Arizona Genetics Core for bi-directional 
sequencing using the Chy-F and Chy-R primers. These diplotypes were edited and heterozygous 
sites called using Sequencher v.4.8 (GeneCodes). Individuals found to contain two or more 
heterozygous sites were targeted for cloning.  

Cloning and transformation was performed using the TOPO TA cloning kit (Life 
Technologies). The cloning step combined 4 µL of fresh PCR product, 1 µL of salt solution, and 
0.75 µL pCR®2.1-TOPO® TA vector in a total reaction volume of 6 µL. This cloning reaction 
was incubated at room temperature for 15 minutes, then stored overnight at –20°C. The prepared 
vector was then transformed into TOP10 ultracompetent E. coli cells using a 30 second heat 
shock at 42°C. Following the heat shock and hour-long recovery at 37°C in SOC media, 50 µL 
of the transformed cells were plated and grown overnight at 37°C on selective plates containing 
ampicillin and blue-white screening reagent (Sigma). 

On the following day, 6-8 distinct white colonies were picked per plate, and used in PCR. 
The picked colonies were each suspended in 10 µL dH2O and heated to 95°C for 10 minutes to 
lyse the cells. The cell lysate was then used directly as template DNA for colony screening 
through PCR. The PCR reaction combined 10 ng of each primer and 10 µL template DNA (cell 
lysate), with an illustra PuReTaq ready-to-go PCR bead (GE Health Care) to a total volume of 25 
µL. The temperature profile followed that described above for the initial PCR. PCR reactions 
yielding clean amplicons of the expected size (~650 bp) were cleaned using ExoSAP-IT 
(Affymetrix) following the manufacturer’s instructions. Cleaned PCR amplicons were then sent 
to the University of Arizona Genetics Core for bi-directional sequencing using the Chy-F and 
Chy-R primers. 

CHY sequences were edited using Sequencher v.4.8 (GeneCodes). Heterozygous sites 
identified during the initial sequencing of diplotypes were resolved into continguous haplotypic 
alleles (i.e., phased alleles). Thirty-six individuals were experimentally phased through cloning 
and sequencing. The other 67 individuals with ambiguous diplotypes were computationally 
phased using Phase v.2.1.1 (Stephens et al. 2001; Stephens and Donnelly 2003) with a 
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confidence threshold of 0.95. 
 
Analysis 
 
Population Structure 
 
Mitochondrial DNA analysis 

To describe overall levels of mtDNA diversity within populations, we calculated 
haplotype (h) and nucleotide (p) diversities in DNASP 5.10.1 (Librado and Rozas 2009). We 
calculated pairwise FST values between populations and tested for significance with permutations 
in Arlequin 3.11 (Excoffier et al. 2005) to identify pairs that were genetically distinct. We also 
performed an analysis of molecular variance (AMOVA; Excoffier et al. 1992) to describe the 
relative amount of genetic variation within and among populations.  
 
Microsatellite DNA analysis 

Deviations from Hardy-Weinberg equilibrium (HWE) for each locus were estimated and 
loci were confirmed to be in linkage equilibrium using FSTAT v2.9.3 (Goudet 1995). To test for 
differences among sampling sites in levels of genetic diversity, several indices of nuclear genetic 
diversity were estimated, including number of alleles per locus, allelic richness, and the 
inbreeding coefficient (FIS) using FSTAT, private allelic richness using HP-RARE 1.0 
(Kalinowski 2005), and observed and expected heterozygosity using GENODIVE (Meirmans 
2012). We then tested for differences among populations (or groups of populations) in allelic 
richness, and FIS in FSTAT, and expected heterozygosity in GENODIVE, using 10,000 
permutations.  

We applied two different approaches to determine the most likely number of distinct 
genetic clusters independent of original sampling locations, as different clustering algorithms can 
produce different solutions and concordance among multiple techniques is suggestive of the 
presence of a strong genetic signal (Guillot et al. 2009). First, we utilized the model-based 
Bayesian clustering approach in STRUCTURE 2.3.3 software (Pritchard et al. 2000, Falush et al. 
2003) with population membership as a prior (Hubisz et al. 2009). To determine the optimal 
number of clusters (K), we ran 10 runs per K, for K = 1–10, with an MCMC search consisting of 
an initial 100,000-step burn-in followed by 400,000 steps using the admixture model with 
correlated allele frequencies.  The most likely number of clusters was determined using the 
Evanno et al. (2005) method implemented in the program STRUCTURE HARVESTER (Earl 
and vonHoldt 2012). The Evanno et al. (2005) method is not informative for the highest and 
lowest K values, therefore if the highest log likelihood value was observed for K=1 or 10 across 
all replicates, we accepted that as the K with the highest probability. 

Second, we applied the repeated allocation approach of Duchesne and Turgeon (2012) 
implemented in the software FLOCK. In this method, samples are initially randomly partitioned 
into K clusters (≥2), allele frequencies are estimated for each of the K clusters, and each 
genotype is then reallocated to the cluster with the highest likelihood score. Repeated 
reallocation based on likelihood scores (20 iterations per run) resulted in genetically 
homogeneous clusters within a run. Fifty runs were carried out for each K, and at the end of each 
run the software calculated the log likelihood difference (LLOD) score for each genotype (the 
difference between the log likelihood of the most likely cluster for the genotype and that of its 
second most likely cluster) and the mean LLOD over all genotypes.  Strong consistency among 
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runs (resulting in ‘plateaus’ of identical mean LLOD scores) is used to indicate the most likely 
number of clusters (Duchesne and Turgeon 2012).  

The level of genetic differentiation among pre-defined populations was determined by 
calculating pairwise distance measures, including FST (Weir and Cockerham 1984) and a 
measure independent of the amount of within population diversity (Jost’s D; Jost 2008). As with 
mtDNA, we performed an AMOVA on microsatellite genotypes using ARLEQUIN. 
 
Ne Estimation 

We used three primary methods to estimate Ne, all of which are coalescent-based 
approaches.   
 
1. msvar 

The first approach we used was the coalescent-based software msvar v.1.3 (Beaumont 
1999), which estimates effective population size and demographic trends from microsatellite 
genotype data. This analysis considers a model in which a single ancestral population of size NA 
experiences exponential population size change beginning at time t until the population reaches 
the current size N1. Bats sampled at two different time points (2002 and 2010; datasets 2 and 3, 
respectively) were analyzed separately to determine whether increases in mortality over that time 
interval had a measurable effect on genetic diversity. To make the analysis computationally 
feasible, we randomly subsampled 100 diploid individuals from each dataset. Subsampling was 
performed twice for each time point, yielding datasets A and B, to ensure that no bias was 
introduced. Each analyzed dataset thus included 100 genotypes (= 200 chromosomes) for each of 
16 autosomal microsatellite loci. 

The msvar analysis requires the specification of hyperpriors for each of the four 
demographic parameters, N1, NA, t, and the mutation rate µ. These hyperpriors describe 
distributions from which the locus-specific initial parameter values are drawn, and are given here 
as [log10(N1), log10(NA), log10(µ), log10(t)]. The parameter means were assumed to be normally 
distributed with means (7, 7, -3.5, 4.3) and standard deviations (3.5, 4, 0.5, 2). We chose these 
values for (1) N1 based on estimates of Ne for eastern red bats from our own Lamarc analyses 
with a relatively large standard deviation to reflect our own uncertainty regarding this parameter, 
(2) NA based on a null hypothesis of no change in population size with a slightly larger standard 
deviation to accommodate increased uncertainty in historical parameters, (3) µ based on Storz 
and Beaumont’s (2002) msvar analysis of microsatellite variation in Cynopterus fruit bats, and 
(4) t based on a hypothesis of population size change due to ecological change associated with 
deglaciation with a relatively large standard deviation to reflect our own uncertainty regarding 
this parameter. The parameter standard deviations were assumed to be normally distributed with 
means (0, 0, 0, 0) and standard deviations (0.5, 0.5, 2, 0.5). The means of the parameter standard 
deviations were set to 0 to start the search algorithm with no inter-locus variation; the standard 
deviations of the parameter standard deviations followed recommendations of Storz and 
Beaumont (2002). Each of the four datasets (2 time points, with 2 subsamples each) were 
analyzed 2-3 times, with each run lasting ~74-200 million steps.  

 
2. IMa2 

Second, we used the coalescent-based software IMa2 (release date 27 August 2012; Hey 
2010a, b) to estimate the effective size of the panmictic eastern red bat population using dataset 
1. The analysis included the CHY and HV2 sequences and 16-locus microsatellite genotypes.  
One hundred microsatellite genotypes (= 200 chromosomes) for each locus were subsampled at 
random out of the full dataset in order to reduce the computational time of the analysis. The 
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DNA sequence data (CHY and HV2) were edited to conform to an infinite sites model of 
mutation; microsatellite data were analyzed assuming a single-step model of mutation.  

In the IMa2 analysis, we modified the underlying population model to consider only a 
single population, with a uniform prior on the size of that population varying from θ = 0.05 to 
99.95. We ran 40 heated chains for an initial burn-in of ~3.6 million steps, followed by an 
MCMC search of ~10.2 million steps. Stationarity of the search chains was validated by 
monitoring ESS values. 

 
3. Lamarc 

Third, we used the software package Lamarc v.2.1.8 (Kuhner 2006) to estimate effective 
population size and population growth rates independently from the nuclear CHY and the 
mitochondrial HV2 sequence data from dataset 1. As implemented here, we considered a model 
of a single panmictic population that undergoes population size change (growth or decline) until 
it reaches the current population size. We implemented a Bayesian analysis in Lamarc with 
priors on θ ranging from 10-5 to 50 and on the population size change parameter (g) ranging from 
-500 to 2000. Each sequence dataset was analyzed in three independent runs, with each run 
consisting of an MCMC search that was 20 million steps long and sampled every 200 steps. The 
first 2 million steps were discarded as a burn-in. Each MCMC search was run as 3 chains, heated 
to 1, 1.5, and 3, and each search was replicated three times internally within each of the 
independent runs. Posterior distributions for each independent run and for overall results per 
locus were visualized using Tracer v.1.5 (Rambaut and Drummond, unpublished software), and 
results are reported as median point estimates with 95% confidence intervals. All parameter 
estimates were well supported, with ESS values exceeding 100 in all cases. Effective population 
size was calculated from the estimated coalescent-scaled parameter θ using the equations 
 

 
 
for mitochondrial data and 
 

 
 
for autosomal data, where Nef is the effective population size of females and Ne is the effective 
size of the entire population. This software uses mutation rates in units of substitutions per site 
per generation; based on the relative mutation rates estimated for the same data in the IMa2 
analysis, we used a mutation rate of 4.29 x 10-8 per site per generation for the HV2 dataset and 
7.76 x 10-9 per site per generation for the CHY dataset. 
Objective 2. To perform sensitivity analyses to assess the utility of temporally-spaced 
estimates of effective population size as a population monitoring tool. 

If we take current estimates of Ne as a baseline and make several temporally-spaced 
estimates of Ne in the future, can we detect population trajectories and document the extent of 
any population-level impact of bat fatalities at wind turbines that may be occurring?  We tested 
the utility of various Ne estimators and different types of data as monitoring tools for bat 
populations by performing sensitivity analyses in which we modeled various starting population 
sizes, mortality rates, and time between estimates, and asked how much of a decline over what 
time scale is necessary to detect a significant change in genetic diversity.  In addition, we 
examined the influence of varying the number and diversity of molecular markers and the 

θ = 2Ne⋅ fµ

θ = 4Neµ
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number of individuals sampled on our ability to detect demographic trends. Initially we focused 
on simple diversity measures, with the idea that if we observe insensitivity of these simple 
measures to the range of conditions we simulated, then the use of more computationally 
intensive methods used to estimate Ne that ultimately rely on patterns of genetic variation would 
not be warranted. 
 
Simulations 

We used coalescent simulations of DNA sequence and microsatellite genotype data to 
evaluate the power of genetic analyses to detect signals of population decline. While similar 
questions have been addressed for small populations of conservation concern (N = 101–103; 
Garza and Williamson 2001, Girod et al. 2011), our study is unique in examining the effects of 
decline in large populations (N = 103–107). To produce datasets comparable to that observed for 
eastern red bats, our demographic model (Figure 2) considered only a single panmictic 
population experiencing rates of decline not higher than –10% per generation. Simulations were 
performed using the program ms (Hudson 2002). For these simulations, NA varied incrementally 
on the log10 scale from 3-7; the rate of decline (α) was set to -1%, -5%, or -10%; and the time of 
onset of decline (t) took a value of 1, 5, 10, 50, 100, 500, or 1000 generations. We explored all 
possible combinations of these parameters (5 values of NA x 3 values of α x 7 values of time), for 
a total of 105 demographic scenarios. The current population size (N0) is easily calculated from 
the other three parameters as 
 

 
 

DNA sequence datasets were simulated assuming basic molecular genetic parameters 
consistent with the mitochondrial HV2 locus, including a mutation rate µ = 4 x 10-8 substitutions 
per site per year, a generation time of 1 year per generation, and a sample size n = 30 haploid 
individuals. Output from the ms simulations were recorded as 10,000 replicate binary datasets 
per demographic scenario. Variation in each dataset was then summarized using the 
ms_stats_v3.1 script (Thornton 2003).  

Datasets for microsatellite analysis were simulated assuming a mutation rate of 10-5 
substitutions per locus per year, a generation time of 1 year per generation, and a sample size of 
30 diploid individuals. We simulated 10,000 replicate datasets per demographic scenario. Binary 
output from the ms simulations was converted into 20-locus microsatellite genotype data using 
the perl script ms2ms (Pidugu and Schlötterer 2006). The simulated genotype data were then 
summarized using the MicroStat script (M. Cox, unpublished software).  

We also assessed whether we could detect changes in population size using sequential Ne 
estimates (remember that using coalescent approaches we estimate θ, and then use that estimate 
to calculate Ne) in the program Lamarc v.2.1.3 (Kuhner 2006) using sequence data, which is 
inherently less variable than microsatellite genotype data and therefore more likely to lose 
variation under a scenario of population decline (we tested a single scenario of 1% mortality per 
generation). Molecular genetic parameters (mutation rate, generation time, and sample size) 
follow those described above for simulated HV2 data. Five replicate datasets were simulated for 
coalescent analysis using a demographic scenario of –1% decline from an ancestral population 
with NA = 106, with ms output recorded as coalescent genealogies. DNA sequence data were then 
simulated across these genealogies using the program Seq-Gen (Rambaut and Grassly 1997). 
The five replicate datasets per timepoint were then analyzed together as independent loci in 
Lamarc to estimate the parameter θ (= 2Neµ for haploid data). These replicate datasets were 

NA = N0e
−αt
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pooled in this manner to add power to the Lamarc analysis (Wakeley 2006). To make the Lamarc 
model more appropriate to the known evolutionary history of the simulated data, we included the 
population size change parameter (g) in the analysis, although we did not focus on the estimation 
of this parameter as that was not the point of the analysis. Each Lamarc run utilized a Bayesian 
analysis with one long run of one million steps in which trees were sampled every 100 steps, 
yielding a final sample of 10,000 trees. The initial 1,000 trees were discarded as the burn-in. This 
long run included three heated chains with relative temperatures of 1, 1.5, and 3. Results were 
reported as maximum probability estimates of θ with 95% confidence intervals and compared 
with known values of N0 and NA as specified in each simulation. 
 
Results and Discussion 
 
Population Structure 

We observed 167 unique haplotypes among the 295 individuals sequenced at the 
mitochondrial HV2 gene representing 84 segregating sites. The number of haplotypes per 
sampled population ranged from 13-23 (mean: 18.6), and haplotype diversity (h, mean: 0.986, 
range: 0.961 – 1) was high in all populations (Table 1). However, nucleotide diversity (π, mean: 
0.011, range: 0.009 – 0.016) was relatively low in all populations (Table 1).  Such high levels of 
haplotype diversity and low nucleotide diversity are often indicative of historical population size 
increases, and are consistent with our findings below. 

AMOVA analysis indicated very low levels of mitochondrial differentiation among 
sampling sites (FST = 0.0113, meaning that 1.13% of the variation is explained by differences 
among sampling sites, and 98.87% of the variation occurs within sites). Accordingly, pairwise 
FST values among sites were consistently low (Table 2) and range from -0.03 – 0.049 (Table 2). 

All microsatellite loci were unlinked and 11 of the 16 loci met HWE expectations.  Four 
loci (MS3E10, MS1C01, D202, D226) had heterozygote deficits, but removing them from the 
analysis made no difference in our conclusions, and therefore we present analyses with all loci 
included. Mean observed and expected heterozygosities were high (0.82 and 0.88, respectively), 
as was the mean number of alleles per locus (14.77) and allelic richness (12.9), although private 
allelic richness was low (0.78; Table 1).  
 Both clustering methods employed [Bayesian clustering (STRUCTURE) and repeated 
reallocation (FLOCK),] identified K = 1 as the most likely number of genetic clusters, indicating 
a lack of population differentiation. Similarly, AMOVA analysis on microsatellite genotypes 
indicated an almost complete lack of structure (FST = 0.0044, meaning that 0.44% of the 
variation occurs between sites, and 99.56% of the variation occurs within sites), with pairwise 
FST and Jost’s D values between populations consistently low (Table 3; FST range: -0.005 – 
0.009; Jost’s D range: -0.036 – 0.068). 
 The picture that emerges from these data is one of extremely low levels of population 
structure and effective panmixia across the sampled populations of eastern red bats. Further, 
there is no evidence for the historical use of different migratory pathways and no evidence for 
any barriers to gene flow among any of the sampled populations. Few geographic barriers to the 
movement of vagile organisms such as bats exist east of the Rocky Mountains, and therefore 
there are likely few impediments to the movement of individuals across the landscape. 
Phylogeographic studies of widespread bats and birds have shown low levels of genetic 
differentiation among eastern North American populations, and, when present, genetic structure 
is often restricted to broad-scale differentiation between eastern and western populations on 
either side of the Rocky Mountains (Gibbs et al. 2000, Kimura et al. 2002, Jones et al. 2005, 
Turmelle et al. 2011, Irwin et al. 2011). In the case of eastern red bats, evidence from museum 
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records indicates that they most likely migrate from northern parts of their range to the 
southeastern United States (Cryan 2003) where they roost in trees during warmer temperatures 
and may hibernate beneath leaf litter for short durations during colder temperatures (Saugey et 
al. 1998, Moorman et al. 1999, Mormann et al. 2007). There are resident populations in the 
southeastern United States that likely do not migrate, and we might have hypothesized 
differentiation between migratory northern populations and non-migratory populations in the 
south. However, given that mating likely takes place before or during migration in eastern red 
bats (Cryan et al. 2012) and can take place before bats hibernate or during warm periods on the 
wintering grounds, the potential for gene flow among bats spending their summers in 
geographically disparate areas is likely very high.  
 In most colonial temperate bat species females are philopatric to natal nursery colonies or 
exhibit short dispersal distances to nearby colonies, while mating takes place during swarming 
and/or hibernation at distant sites that act as hotspots of gene flow between bats occupying 
distant roosts during the summer (Kerth et al. 2003, Veith et al. 2004, Furmankiewicz and 
Altringham 2007).  As a consequence, levels of mitochondrial differentiation (indicative of 
female movements) are often quite high among summer maternity colonies while levels of 
nuclear differentiation (indicative of gene flow through mating) are typically low (Castella et al. 
2001, Bilgin et al. 2008, Kerth et al. 2008, Vonhof et al. 2008, Bryja et al. 2009, Lack et al. 
2010, Turmelle et al. 2011).  Eastern red bats and other members of the genus Lasiurus roost 
solitarily in foliage during the summer (Shump and Shump 1982a,b), and if they exhibited 
philopatry it would likely occur within broader landscape units such as forest patches or stands 
rather than a single roost,.  The absence of any mitochondrial differentiation among populations 
of eastern red bats suggests that females may be exhibiting similar levels of dispersal and/or 
dispersal distances to males, and that gene flow likely take place through both female 
movements and mating (e.g., Russell et al. 2005).  
 
Ne Estimation 
 

We used three coalescent methods to estimate Ne for eastern red bats: msvar, IMa2, and 
Lamarc.  These methods utilize different suites of data (microsatellites only for msvar, nuclear 
intron and mitochondrial sequences only for Lamarc, all three data types for IMa2) and therefore 
were expected to provide complementary estimates based on differences in the mutation rates of 
the markers used and differences in the underlying models assumed.  Here we present the results 
for each of these estimation approaches as well as results of simulations, and then discuss the 
interpretation of the combined results. 

 
msvar 

Although we found considerable variation from run to run, there were some clear patterns 
that emerged from these analyses. Importantly, we found no consistent difference between 
parameter estimates from the 2002 (runs 1-5) vs. 2010 (runs 6-11) time points (Figures 3-5). We 
also found no consistent difference between independent subsamples of the full dataset (runs 1-3 
vs. 4-5 for 2002; runs 6-8 vs. 9-11 for 2010). For the current effective population size N1, we 
found generally consistent estimates on the order of 105 (average N1 = 103,610, disregarding 
outlier run 3). Estimates of ancestral effective population size NA were less consistent among 
runs, and we have little confidence in any given estimate of this parameter. Due to this difficulty 
in converging on a consistent estimate of ancestral Ne, these analyses yielded differing signals of 
population growth vs. decline between runs (Table 4), although a majority of runs (8 of 11) 
indicate population decline rather than growth. The time of this population size change (t) was 
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also variable among runs, but generally was on the order of 104 years (average t = 50,317 years, 
disregarding outlier run 3). While the time of population size change is difficult to pinpoint with 
great accuracy, these analyses clearly do not support a pattern of very recent population size 
change.  
 
IMa2 

The analysis converged on an unambiguous, unimodal posterior distribution for the single 
population parameter θ (= 4Neµ) for the panmictic eastern red bat population. The most probable 
value of θ was estimated to be 37.95 with a 95% confidence interval of 32.15 – 45.55 (Table 5). 
To convert this coalescent-scaled parameter θ to the natural parameter Ne, it is necessary to 
estimate the mutation rate for our data. The IMa2 analysis provided an estimate of relative per-
locus mutation rates, which ranged from a low of 0.1028 for the microsatellite locus D202 to a 
high of 7.798 for microsatellite locus D248 (Table 6). We used Pesole et al.’s (1999) estimate of 
mammalian mitochondrial mutation rates (= 2.740 x 10-8 substitutions per site per year) to 
calculate locus-specific mutation rates for our data. The geometric mean of these rates (= 8.03 x 
10-6 substitutions per locus per year = 1.61 x 10-5 substitutions per locus per generation) was 
used to convert coalescent-scaled estimates of θ into estimates of Ne (Table 5). Our analysis thus 
supports an effective size of approximately 5.91 x 105 individuals, with a 95% confidence 
interval of 5.00 – 7.09 x 105 (Figure 6). Because this estimate includes both appropriately-scaled 
mitochondrial and autosomal microsatellite data, this estimate reflects the totality of the 
population (i.e., both males and females). 
 
Lamarc 
 We used the coalescent-based analyses in Lamarc to provide estimates of θ and 
population growth independently for the nuclear CHY and mitochondrial HV2 loci.  Analyses of 
both markers provided unambiguous, unimodal posterior probability distributions for θ and 
population growth (Figures 7-10). Utilizing the mutation rates provided in the previous section, 
estimates of Ne (based on conversion of θ estimates) were of the same order of magnitude as the 
estimates generated with msvar and IMa2 for HV2 (females only), where the mean estimate 
across three runs was 1.29 ´105 (95% confidence limits: 1.06 – 1.80 ´105; Table 7).  The 
estimate of Ne using CHY (males and females) was considerably larger, with a mean of 1.52 
´106 (95% confidence limits: 1.05 – 2.18 ´106; Table 7). There was a clear signal of historical 
positive population growth for both CHY and HV2, although the signal was stronger for the 
mitochondrial locus (Table 7); however the analysis does not provide the time scale over which 
growth occurred, and estimates based on sequence data typically integrate growth over 100’s to 
1000’s of generations. 
 
Simulations 
 

Our analyses demonstrate that simple summary statistics such as the number of 
segregating sites (S) and number of alleles are remarkably unresponsive over short timespans to 
population declines even at rates of up to –10% (Tables 8-9, Figures 11-16). To relate these 
simulations more explicitly to eastern red bats with an estimated Ne of 105-106, we find that it 
takes 500-1000 generations (1000-2000 years) before a decline of –1% results in a significant 
loss of genetic diversity at a rapidly-evolving mitochondrial locus (Table 4, Figure 11). Even at a 
decline of –10%, genetic diversity is maintained in the population through at least 50 generations 
(100 years; Table 4, Figure 13). Simulated microsatellite genotypes are similarly unresponsive to 
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population declines in large populations. For effective population sizes of 105-106, it again takes 
more than 500 generations before a decline of –1% results in a significant loss of genetic 
diversity (Table 5, Figure 14), and even declines of –10% require at least 50-100 generations 
before they result in a significant loss of alleles (Table 5, Figure 16). These declines model 
selectively neutral mortality; selection on behavioral traits that might be associated with 
mortality might increase or decrease these times to decline, depending on the type of selection. 
 As seen in Figure 17, the modeled decline in Lamarc shows a gradual drop in current 
effective population size relative to the ancestral effective population size. If the Lamarc method 
were a sensitive tool for detecting very recent population declines, we would expect to see the 
estimates from Lamarc tracking the known current effective population size. If the Lamarc 
method were an accurate measure of historical evolutionary effective population size, we would 
expect to see those estimates being much more consistent across timepoints and more similar to 
the known ancestral effective population size. Our results indicate more support for the latter 
interpretation, with estimates from Lamarc being relatively consistent across timepoints until the 
very end of the simulation, at which point very little variation remains in the population. 
Interestingly, though, we see that Lamarc consistently underestimates ancestral θ compared to its 
true value in these analyses, which may be a result of the simulated population decline. 
 
Effective Population Size as a Monitoring Tool? 
 
 Estimates of Ne varied considerably (almost an order of magnitude) among the different 
approaches we used, ranging from 1.93 x 105 based on microsatellite genotypes only (msvar), to 
1.5 x 106 for sequence data only (CHY in Lamarc), with an intermediate estimate of 5.91 x 105 
using all markers combined (IMa2). This variation is the result of methodological differences 
among the approaches we used, which all utilize different aspects of the data and make varying 
assumptions about the underlying historical population processes that may have occurred. 
Further, the analyses each used different marker data, which vary in their mutation rates, and so 
are providing estimates across varying time scales. Nevertheless, in combination with the results 
of population structure analyses, our data indicate that eastern red bats form a single, large, 
panmictic population across their range and that minimum effective population sizes are likely in 
the hundreds of thousands or low millions. 
 The parameter that we would most like to know, the actual number of individuals in the 
population (Nc), is not obtainable from our estimates of Ne. A variety of factors reduce Ne relative 
to Nc, including fluctuations in population size over time, overlapping generations, and variation 
among individuals in reproductive success. Attempts have been made to compare estimates of Ne 
to Nc, and across a wide range of organisms the average Ne / Nc ratio is 0.11 – 0.14 (Frankham 
1995, Palstra and Ruzzante 2008); for mammals alone, the average ratio is 0.34 (Frankham 
1995). If we applied this latter mean ratio (0.34) to our point estimates of Ne, we would obtain Nc 
estimates of 567,000 to 4,471,000 individuals, and using the overall mean (0.11) estimates would 
be 1,750,000 to over 13,818,000 individuals. However, there are a number of serious problems 
with the use of our estimates in this way. Ne is a theoretical concept that relates the genetic 
characteristics of a population to those expected of an ideal population under a Wright-Fisher 
model. We can estimate Ne as a measure of the evolutionary potential of populations, but there is 
no clear relationship between current or historical demography and changes in genetic variation 
that influence genetic estimates of Ne. Further, there are a number of methodological concerns. 
First, Ne has most often been estimated for very small populations of less than 1,000 individuals, 
and we do not know how the Ne / Nc ratio may vary with the magnitude of Nc. Second, the 
majority of the ratios provided by Frankham (1995) utilize demographic, rather then genetic, 
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estimates of Ne, and demographic estimates may differ substantially from genetic estimates even 
when population sizes are small (Luikart et al. 2010). Third, the majority of estimates in 
Frankham (1995) come from organisms with very different life histories than bats, and we do not 
know to what extent the Ne / Nc ratio might vary from the overall mean for bats (or most other 
organisms). Fourth, the calculation of Ne using coalescent-based methods requires division of 
estimates of θ by the mutation rate (µ), but mutation rates are extremely difficult to estimate and 
few good estimates exist for any gene (Ho et al. 2006, Montooth and Rand 2008, Nabholz et al. 
2009), much less for any bat species. As a result, any inaccuracy in the mutation rate estimate is 
amplified arithmetically in the subsequent calculation of Ne (Ovenden et al. 2007, Luikart et al. 
2010). Therefore, applying a standard conversion to convert Ne to Nc is highly problematic, and it 
is best to use our estimates to indicate relative orders of magnitude of bat population sizes rather 
than to provide any specific population size estimates. 

Given these issues, a major focus of our project was to determine whether temporally-
spaced estimates of Ne could be used to monitor population declines in bat species affected by 
wind power development. We initially focused on modeling change in simple diversity measures 
with the idea that if we observed insensitivity of these simple measures to the range of conditions 
we simulated, then the use of more complex and computationally intensive methods used to 
estimate Ne that ultimately rely on patterns of genetic variation would not be warranted. The 
results of our simulation analyses suggest that patterns of genetic variation are remarkably stable 
even under high rates of simulated mortality (up to 10% of the population per generation; see 
Figures 11-16), and detectable changes in diversity were only apparent after 100’s of generations 
and only after population sizes had been dramatically reduced. We also found that coalescent-
based approach in Lamarc did a poor job of tracking changes in population size. It consistently 
underestimated θ at the beginning of population declines, and only registered a change in θ after 
population size had decreased to extremely small size and almost all variation had been lost from 
the population. We did not believe that it would be fruitful to apply other coalescent approaches, 
as they would be affected by the same patterns of change in genetic variation, and were 
prohibitively computer- and time-intensive (for example, each msvar run took 25-30 days to run, 
making extensive simulations using this technique simply intractable). 

The combined outcome of these simulations is that genetic approaches do a poor job of 
detecting and tracking population declines before population sizes become very small. Similar 
findings have been made for approaches to NeV estimation based on linkage disequilibrium (e.g., 
Waples and Do 2010), suggesting that most if not all methods for estimating Ne may only be 
successfully applied to very small populations numbering in the 10’s or 100’s unless genetic data 
can be combined with demographic data (as in the approach of Jorde and Ryman 1995). Given 
recent evidence suggesting that the demographic effects of declining population size (such as 
demographic stochasticity and Allee effects) better predict the risk of extinction than genetic 
effects such as loss of diversity and inbreeding (Wootton and Pfister 2013), future analyses 
applying demographic models to the problem of bat mortality at wind power developments may 
be more fruitful. One approach we are pursuing is to use our estimates as starting points for 
demographic approaches that model sustainable yield, taking into account demographic 
characteristics of bats, to understand how many bats can be killed before we expect to see 
demographic effects associated with population decline. 
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Accomplishments 
   

Our research was not intended to result in product development, technology transfer, or 
commercialization activities, but rather it was focused on providing context for one of the major 
environmental concerns surrounding future wind power development in the United States. Our 
results will form the basis of a publication that will be submitted to a peer-reviewed scientific 
journal in coming months. 
 
Conclusions 
 

We set out to provide a proof-of-concept for the use of genetic approaches to assess the 
population-level effects of bat mortality at wind power developments. Using a large dataset of 
both nuclear and mitochondrial DNA variation for eastern red bats, we have demonstrated that: 
1) this species forms a single, panmictic population across their range with no evidence for the 
historical use of divergent migratory pathways by any portion of the population; 2) the effective 
size of this population is in the hundreds of thousands to millions; and 3) for large populations, 
genetic diversity measures and at least one coalescent method are insensitive to even very high 
rates of population decline over long time scales and until population size has become very 
small. Our data and analyses suggest that genetic approaches are not an effective tool for 
assessing potential short-term population declines in large populations of migratory wildlife 
affected by wind power development. That said, genetic markers may be used in a wide variety 
of other contexts to provide valuable information on species identification, patterns of 
connectivity and gene flow across the landscape, local adaptation, genomic responses to 
environmental stressors, the evolutionary potential of populations, local population size in 
capture-mark-recapture studies, and patterns of dispersal and individual movements.  
 
 
Recommendations 
 
We have no specific recommendation for future work. We do not feel that further simulations 
(for instance, to test the influence of marker number, population structure, sex-specific mortality) 
will be fruitful, as it was clear that populations retained genetic variation under all scenarios of 
population decline until populations became very small. However, it is important to note that our 
analyses focused on neutral markers, and the influence of population decline on genetic variation 
in adaptive markers could be quite different. Certainly, analyses of population differentiation and 
testing for the presence of populations using different migratory pathways should be carried out 
for the other two species of long-distance migratory bats experiencing mortality at wind power 
developments (hoary and silver-haired bats). Both species are distributed across North America 
from east to west, and are more common than eastern red bats in the boreal forest of Canada. 
Populations east and west of the Rocky Mountains, and populations in the far north and south, 
could be behaving differently, as has been demonstrated for a number of species of migratory 
birds. 
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