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Background — Wave Sheltering

Offshore structures and coastlines face fatigue damage and
deterioration due to cyclical wave loads!!"12!

Wave energy converters (WECs) extract power from cif edge |
ocean waves, leaving lower energy waves in their wake
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Background — Wave Sheltering

Studies have investigated the wave sheltering capabilities of different WECs for
protecting vulnerable coastlines!*°l6l7] offshore aquaculture farms!®, and
offshore wind installations!®![0}[11]

NREL"?! is working to construct coastal structure integrated WECs, which are
attached to traditional fixed breakwaters oiwc

This presentation focuses
specifically on floating WECs
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Background — Wave Sheltering

Methods for quantifying this performance rely on using capture width
ratio to determine how much wave power the device absorbs!* 1113l
- This ignores reflected and dissipated wave energy, assuming that all
energy not absorbed is transmitted

Additionally, WECs are often modeled in isolation, but the end-goal is

to deploy WEC arrays
- One study accounted for WEC wakes when considering array wave

sheltering'*¥], but did not include interactions, only power available
to downstream WECs | | wece Avay
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Background — Wave Sheltering
Questions:

1. How do we define WEC wave sheltering capabilities?

2. How do different WEC architectures perform in this metric?

3. How does this change when including array interactions?
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Methodology — Metrics

Standard practice in coastal engineering is
to measure wave heights up- and
down-stream of a body to determine its
dissipative properties!*

Some WEC studies have employed this
method for a WaveCat'*®! and a point
absorber!!’]
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Methodology — Metrics

We define performance by the transmission (K\) and reflection (K ) coefficients!™!
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Methodology — Metrics

The dissipation coefficient (K ) represents energy that is either
dissipated or absorbed by the WEC and is defined as:

— 2 2
K, =1-K2-K2 20

The potential power extracted is defined by Falnes!?” as:

Pr=J -1 -J  [kW/m]

where J is the wave energy transport
p: fluid density

pg g: gravitational constant
| A | 2 o: wave frequency [rad/s]
A: wave amplitude

[20] Falnes, Kurniawan, 2020
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Methodology — Metrics

How do we define WEC wave sheltering capabilities?

- K and K_define our device performance
- The K condition must be met for energy balance

- P’ is how we define potential power extracted
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We analyzed:
o OSCILLATING l::::—_::::——::' m
- Oscillating surge (0S) SURGE (05) = ="
Heaving point absorber (PA)
- Attenuator :gls?)LBER (PA)
- Breakwater

ATTENUATOR

Individual WECs were sized such that they are
rated for the same power production (within

m 5%) at the frequency of interest (1.25 rad/s)
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Methodology — Architectures

Each architecture is modeled in Capytaine!?!!, an open-source boundary element
method (BEM) solver
- used to find hydrodynamic coefficients, incident (n._ ), diffracted (n__), and
radiated (n ) wave elevations

) i: degree of freedom
r]tot r]inc + r]diff + innrad,i 2]

*all values are complex

We still need the complex body motion (X/) to obtain the correct
radiated wave elevation
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Methodology — Architectures

We use the hydrodynamic coefficients (Mij,Aij,Bij,K) to determine body motion

Additionally, we model controllers as dampers and as spring-dampers (reactive) for each
architecture. These will alter body motion (X)) to resonate with the wave frequency:

Xi _ I:ex
A -0’ (M +A)-in(B + B,o) + K+ K, |
. J . Mass (WEC)
M A,B, K
i’ i’
PTO Spring PTO Damper
L K l_ B
F_: excitation force PTO PT
A: wave amplitude
X: complex body motion N N N N N N

M. ,A_,B ,K: hydro coeffs

T Tid
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Methodology — Architectures

How do different WEC architectures perform in this metric?

- We chose 3 WEC architectures and 1 breakwater design
- We determine the total wave elevation

- We use a simple control model and find complex body motion
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Point Absorber Oscillating Surge
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1. The coefficient trendline with respect to frequency
remains similar regardless of control scheme

Both perform better at higher frequencies, with the
OSWEC still performing well at low frequencies
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Results — Single
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The OSWEC
outperforms all other
architectures

The attenuator cannot
outperform the
breakwater

Controls significantly
alter PA and OS
performance (for
better and for worse,
respectively)
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Methodology — Arrays radiated waves
wave \
' heading : o

that are constructive or destructive to : e |
power productio . /i
- does this correspond to their wave E:" f'/body\“;: :

sheltering performance? : L .

Oscillating bodies can interact in ways
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Methodology — Arrays

We model two arbitrary, non-optimized array configurations
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Breakwater

The sheltering effect is
concentrated in the
center, with the periphery
experiencing less wave
sheltering

*at a frequency of 1.25 rad/s
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Results — Array (Regular)
OSWEC

We see modeling the body
in isolation is
underpredicting wave
transmission for the
uncontrolled and damped
cases

There is little change when
the bodies are reactively
controlled

O Lab
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Results — Array (Regular)

e Uncont

Point Absorber o= " Darip
1.0 Reactive
] 23 Isolated

We see the wave sheltering

of Body 2 negated by 0.8
interactions of Bodies 1 and
3 in the damped control

case.
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Results — Array (Regular) .,

e Uncont

Attenuator = Damp
. 1.0; Reactive
We see a slight 73 Isolated

underprediction and again 0.8
energy balance violation
with reactive control < 0.6
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Conclusions

1. We defined WEC wave sheltering capabilities by their fluid-structure
interactions (K _and K )

2. We determined the OSWEC architecture had the lowest wave transmission
across frequencies and the breakwater typically outperforms the PA and

attenuator

3. We saw that wave sheltering performance can be affected by array
interactions, but the extent to which this is relevant in the far field needs

further investigation
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Questions?

Olivia Vitale email: ov35@cornell.edu
Maha Haji email: maha@cornell.edu

GitHub (to be released):
https://github.com/symbiotic-engineering/transmission-reflection
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