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Background → Wave Sheltering

Offshore structures and coastlines face fatigue damage and 
deterioration due to cyclical wave loads[1],[2]

2
[3]

Wave energy converters (WECs) extract power from 
ocean waves, leaving lower energy waves in their wake

[1] Sun, C., Jahangiri, V., 2019, [2] Häfele et al. 2018, [3] USGS 2023



Background → Wave Sheltering

Studies have investigated the wave sheltering capabilities of different WECs for 
protecting vulnerable coastlines[4],[5],[6],[7], offshore aquaculture farms[8], and 
offshore wind installations[9],[10],[11] 

NREL[12] is working to construct coastal structure integrated WECs, which are 
attached to traditional fixed breakwaters
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[12] 

This presentation focuses 
specifically on floating WECs

[4] Flanagan, Wengrove, Robertson, 2022, [5] Chang et al. 2016, [6] Contardo et al. 2018, [7] Rusu, Guedes Soares, 2013, [8] Silva, Rusu, Guedes Soares, 
2018, [9] Astariz, Perez-Collazo, Abanades, Iglesias, 2015, [10] Clark, Paredes, 2018, [11] Clark, Velarde, Sønderkær Nielsen, 2018, [12] NREL, 2023



Background → Wave Sheltering

Methods for quantifying this performance rely on using capture width 
ratio to determine how much wave power the device absorbs[4-11],[13]

- This ignores reflected and dissipated wave energy, assuming that all 
energy not absorbed is transmitted

Additionally, WECs are often modeled in isolation, but the end-goal is 
to deploy WEC arrays

- One study accounted for WEC wakes when considering array wave 
sheltering[14], but did not include interactions, only power available 
to downstream WECs
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[14]

[13] Venugopal, Nemalidinne, Vögler, 2017, [14] Zou et al., 2024



Background → Wave Sheltering
Questions:

1. How do we define WEC wave sheltering capabilities?

2.  How do different WEC architectures perform in this metric?

3.  How does this change when including array interactions?
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Standard practice in coastal engineering is 
to measure wave heights up- and 
down-stream of a body to determine its 
dissipative properties[15]

Some WEC studies have employed this 
method for a WaveCat[16] and a point 
absorber[17]
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Methodology → Metrics

[18]

[15] Seelig 1980, [16] Carballo, Iglesias, 2013, [17] Atan et al. 2019, [18] Bao et al. 2022. 



Methodology → Metrics

We define performance by the transmission (K
t
) and reflection (K

r
) coefficients[19]

K
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|η|
transmitted
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η: wave elevation

[19] Seelig, Ahrens, 1981



Methodology → Metrics
The dissipation coefficient (K

D
) represents energy that is either 

dissipated or absorbed by the WEC and is defined as:

K
D
 = 1 - K

t
2 - K

r
2  ≥ 0
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The potential power extracted is defined by Falnes[20] as:

P’ = J
inc

 - J
r
 - J

t
     [kW/m]

J =  
⍴g 
4⍵ |A|2

⍴: fluid density
g: gravitational constant
⍵: wave frequency [rad/s]
A: wave amplitude

where J is the wave energy transport

[20] Falnes, Kurniawan, 2020



Methodology → Metrics
How do we define WEC wave sheltering capabilities?

- K
t
 and K

r
 define our device performance

- The K
D
 condition must be met for energy balance

- P’ is how we define potential power extracted
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Methodology → 
Architectures
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We analyzed:

- Oscillating surge (OS)
- Heaving point absorber (PA) 
- Attenuator
- Breakwater

Individual WECs were sized such that they are 
rated for the same power production (within 
5%) at the frequency of interest (1.25 rad/s)



Methodology → Architectures
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Each architecture is modeled in Capytaine[21], an open-source boundary element 
method (BEM) solver
- used to find hydrodynamic coefficients, incident (η

inc
), diffracted (η

diff
), and 

radiated (η
rad

) wave elevations

η
tot

 = η
inc

 + η
diff

 + ∑X
i
η

rad,i
    [21] i: degree of freedom

*all values are complex

We still need the complex body motion (X
i
) to obtain the correct 

radiated wave elevation

[21] Ancellin, Dias, 2019



Methodology → Architectures
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We use the hydrodynamic coefficients (M
ij
,A

ij
,B

ij
,K) to determine body motion

Additionally, we model controllers as dampers and as spring-dampers (reactive) for each 
architecture. These will alter body motion (X

i
) to resonate with the wave frequency:

X
i

F
ex

-⍵2(M
ii
+ A

ij
) - i⍵(B

ij
 + B

PTO
) + K + K

PTO

=

F
ex

: excitation force
A: wave amplitude
X: complex body motion
M

ii
,A

ij
,B

ij
,K: hydro coeffs

A



Methodology → Architectures
How do different WEC architectures perform in this metric?

- We chose 3 WEC architectures and 1 breakwater design

- We determine the total wave elevation

- We use a simple control model and find complex body motion 
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Results → 
Single
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Point Absorber Oscillating Surge

1. The coefficient trendline with respect to frequency 
remains similar regardless of control scheme

2. Both perform better at higher frequencies, with the 
OSWEC still performing well at low frequencies



Results → Single

Attenuator

The attenuator violates energy 
balance at <1.2 rad/s when 
reactively controlled 
- violating linear potential flow 

assumption of small body 
amplitude
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Results → Single
16

The OSWEC 
outperforms all other 
architectures

The attenuator cannot 
outperform the 
breakwater

Controls significantly 
alter PA and OS 
performance (for 
better and for worse, 
respectively)



Methodology → Arrays
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Oscillating bodies can interact in ways 
that are constructive or destructive to 
power production[22,23]

- does this correspond to their wave 
sheltering performance?

[22] Babarit 2013, [23] Balitsky 2019



Methodology → Arrays
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We model two arbitrary, non-optimized array configurations

Regular Staggered



Results → Array (Regular)
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The sheltering effect is 
concentrated in the 
center, with the periphery 
experiencing less wave 
sheltering

*at a frequency of 1.25 rad/s

Breakwater



Results → Array (Regular)
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We see modeling the body 
in isolation is 
underpredicting wave 
transmission for the 
uncontrolled and damped 
cases

There is little change when 
the bodies are reactively 
controlled

*at a frequency of 1.25 rad/s

OSWEC



Results → Array (Regular)
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We see the wave sheltering 
of Body 2 negated by 
interactions of Bodies 1 and 
3 in the damped control 
case.

*at a frequency of 1.25 rad/s

Point Absorber



Results → Array (Regular)
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Attenuator

*at a frequency of 1.25 rad/s

We see a slight 
underprediction and again 
energy balance violation 
with reactive control



Conclusions
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1. We defined WEC wave sheltering capabilities by their fluid-structure 
interactions (K

t
 and K

r
)

2.  We determined the OSWEC architecture had the lowest wave transmission 
across frequencies and the breakwater typically outperforms the PA and 
attenuator

3.  We saw that wave sheltering performance can be affected by array 
interactions, but the extent to which this is relevant in the far field needs 
further investigation
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