
remote sensing  

Article

Landsat Time Series Assessment of Invasive Annual
Grasses Following Energy Development

Miguel L. Villarreal 1,* , Christopher E. Soulard 1 and Eric K. Waller 2

1 US Geological Survey, Western Geographic Science Center, P.O. Box 158, Moffett Field, CA 94035, USA;
csoulard@usgs.gov

2 Independent contractor, Oakland, CA 94609, USA; eric.waller@gmail.com
* Correspondence: mvillarreal@usgs.gov; Tel.: +1-650-329-4261

Received: 7 September 2019; Accepted: 25 October 2019; Published: 30 October 2019
����������
�������

Abstract: Invasive annual grasses are of concern in much of the western United States because they
tolerate resource variability and have high reproductive capacity, with propagules that are readily
dispersed in disturbed areas like those created and maintained for energy development. Early season
invasive grasses “green up” earlier than most native plants, producing a distinct pulse of greenness in
the early spring that can be exploited to identify their location using multi-date imagery. To determine
if invasive annual grasses increased around energy developments after the construction phase,
we calculated an invasives index using Landsat TM and ETM+ imagery for a 34-year time period
(1985–2018) and assessed trends for 1755 wind turbines installed between 1988 and 2013 in the southern
California desert. The index uses the maximum Normalized Difference Vegetation Index (NDVI)
for early season greenness (January-June), and mean NDVI (July–October) for the later dry season.
We estimated the relative cover of invasive annuals each year at turbine locations and control sites
and tested for changes before and after each turbine was installed. The time series was also mapped
across the region and temporal trends were assessed relative to seasonal precipitation. The results
showed an increase in early season invasives at turbine sites after installation, but also an increase
in many of the surrounding control areas. Maps of the invasive index show a region-wide increase
starting around 1998, and much of the increase occurred in areas surrounding wind development
sites. These results suggest that invasions around the energy developments occurred within the
context of a larger regional invasion, and while the development did not necessarily initiate the
invasion, annual grasses were more prevalent around the developments.

Keywords: exotic species; Bromus tectorum; energy development; time series; Landsat; Google Earth
Engine; NDVI

1. Introduction

One of the major ecological consequences of increasing global connectivity is the introduction,
establishment, and spread of non-native species into new ecosystems [1]. The rate and extent of
biological invasions continues to increase globally [2], often at considerable environmental and economic
costs [3]. For instance, in the western United States, both accidental and intentional introductions of
non-native plants have contributed to habitat loss and increased wildfire risk [4]. Once established,
non-natives can transform ecosystems, complicating land management decision-making and impeding
ecological restoration [5]. These issues are magnified in areas where increasing climate variability
may be expected. Given the inherent challenges of managing ecosystems and invasive species in
a rapidly changing world, information on the geographic distribution of invasive plants, their rate
of spread, and the factors contributing to successful invasion are critical for informed management
and decision-making.
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Plant invasions are often facilitated by changes in land use that create openings through surface
disturbances and conduits for dispersal like roads and trails [6,7]. In the arid southwestern United
States vegetation loss and habitat fragmentation caused by land uses like urban development, livestock
grazing, roads, and off-road recreational vehicle use, and their effects on ecosystems has been well
documented [8–10]. Surface disturbance and fragmentation from energy exploration and development
(EED) is a growing concern throughout the region with both conventional and renewable energy
sectors growing at a rapid rate to support national energy demands [11–13]. In California for example,
much of the recent utility-scale solar energy development has occurred in biologically diverse desert
and shrubland regions [14], areas susceptible to invasion by exotic grasses [15]. Once established,
non-native annual grasses can create a continuous layer of fine fuels in otherwise sparsely covered
desert plant communities and facilitate a cycle of fire in ecosystems not adapted to fire [16]. Energy
development infrastructure and materials are also ignition sources [17], potentially helping to accelerate
the grass-fire cycle in these areas. The direct relationship between land change driven by EED and the
establishment and spread of invasive species in the arid Southwest has not yet been well quantified.

Remote sensing provides a powerful tool to characterize how landscapes change immediately
following the EED process, and for monitoring reclamation (aka rehabilitation) and restoration efforts
after the initial development [18,19]. EED generally includes a disturbance phase when the site (e.g.,
oil pad, crane pad), access roads, and transmission corridors are cleared, followed by an interim
reclamation or rehabilitation period during operation that reduces the disturbed footprint around
the energy site. Remote sensing approaches for mapping the disturbance footprint of energy sprawl
typically use high resolution (<1m) aerial imagery for digitization [20] or image classification [21].
Moderate resolution (20–50 m) multispectral data with repeat coverage have proven useful for
identifying the location and timing of disturbances, the amount of vegetation loss, and site recovery
over time after treatment under various different circumstances [22–24]. For example, Waller et al.
(2018) estimated vegetation cover continuously across a time series of Landsat satellite images before
and after sites were developed for oil and gas extraction on the Colorado Plateau, and developed
metrics to estimate site recovery over time. Statistical analysis of factors contributing to recovery
indicated that much of the measured recovery could be explained by the presence of exotic annual
grasses, and suggests that these techniques can be readily extended to investigate recovery trends in
other disturbed systems [19].

Methods for discriminating between native and invasive plants with satellite imagery for mapping
patterns of non-natives is a growing focus of environmental remote sensing [25]. Some of the most
promising approaches utilize hyperspectral imagery for mapping [26], but this often precludes use for
detailed time-series analysis of spatial patterns of spread over large areas. Moderate-low resolution
satellites with good temporal coverage like MODIS have generally provided good insights into regional
patterns of vegetation productivity in areas dominated by annual grasses [27] but may miss some
of the fine-scale landscape patterns. Landsat 30-m resolution data is ideal for time series analysis of
invasives both for the spatial resolution and the length of the archive. However, obtaining timely
cloud-free observations can be a challenge with only the 16-day return interval, especially in cases
where the non-native plant greens up for a brief period during the early season. Recent advances in
cloud computing with Google Earth Engine [28] has facilitated the use of Landsat imagery for time
series development [29], making it easy to utilize multiple Landsat collections (i.e., TM, ETM+, OLI)
and exploit data-rich areas where the paths overlap, increasing the probability of cloud-free images.

Multi-date spectral information can be used to identify and exploit different phenological phases
of non-native and native species [30,31]. The non-native annual grasses red brome (Bromus rubens)
and cheatgrass (Bromus tectorum) are a major concern for range management and habitat conservation
across the western U.S. [32,33], and their spatial and temporal dynamics have been the focus of many
recent remote sensing studies [34,35]. Red brome and cheatgrass “green up” earlier than native
vegetation, producing a distinct pulse of greenness in the early spring. This pulse can be exploited
to identify the location of cheatgrass by using a difference of the spring image with peak cheatgrass
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greenness vs. early summer image where cheatgrass is senescent [36]. This concept was applied in the
Detection of Early-Season Invasives (DESI) approach on the Colorado Plateau [19,37,38] utilizing a
differenced spring and summer Normalized Difference Vegetation (NDVI) from multi-date Landsat
to produce cheatgrass maps. Boyte et al. (2016) used an Annual Cheatgrass Index that normalizes
the spring/summer NDVI difference by the sum of the NDVI of those two dates [35]. The observed
greening pulse of cheatgrass is generally greatest during years with high winter/spring precipitation,
and during these periods a single NDVI is often sufficient for accurate mapping [39].

In this study we aim to better understand trends and patterns of early season invasive grasses
around wind turbine sites across southern California. We hypothesized that initial access road
construction and site clearing for turbine construction, and continuing maintenance activity during
operation, would contribute to the establishment and spread of invasive grasses around wind energy
sites. More specifically, we hypothesized that (1) annual grasses would be greater in the period after
the establishment of wind turbines when compared to the period prior, and (2) annual grasses would
be greater in the areas surrounding the turbine sites relative to control areas further from the turbine.
To determine this, we used Landsat TM and ETM+ imagery from 1985–2018 to develop estimates of
invasive grasses and assess whether increases could be detected after installation of wind turbines
installed at two study areas in the deserts of southern California, USA.

2. Materials and Methods

2.1. Study Area

We selected two major wind energy development study areas in the Mojave and Colorado Deserts
of southern California, USA. Sites of the northern study area occur at the northwestern edge of the
Western Mojave Basins Level IV Ecoregion, near the Tehachapi Mountains (hereafter this area is referred
to as Tehachapi) (Figure 1). The southern study area sites occur in the Upper Coachella Valley and
Hills Level IV Ecoregion, east of San Gorgonio Pass, between the cities of Palm Springs and Desert Hot
Springs (hereafter referred to as Desert Hot Springs) (Figure 1).
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Figure 1. (A) Location of the study turbines in relation to the Western Mojave Basins and the Upper
Coachella Valley and Hills Level IV Ecoregions in California. Zooms of (B) the Tehachapi area in
the Western Mojave Basins, and (C) the Desert Hot Springs area in the Upper Coachella Valley and
Hills ecoregion.
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The Desert Hot Springs study area has a range in elevation from 210–860 m at the northwest edge
of the Colorado Desert. The Tehachapi turbine sites are generally at a higher elevation (840–1280 m),
on the edge of the Mojave Desert, with a few turbines along the transition zone from desert scrub
to grasslands and woodlands of the Tehachapi Mountains. The Tehachapi study area, on average,
receives only slightly more annual average winter precipitation (229 mm) than the Desert Hot Springs
(215 mm) (GRIDMET; [40]).

Wind turbine locations and attributes were downloaded from the United States Wind Turbine
Database [41]. A range of installation years was selected to ensure at least three years of consistent
Landsat data before the installation (most sites have many more years pre-installation) and at least
five years post-installation. At these two study areas there were a total of 6736 wind turbines in the
database, with 1755 installed between 1988 and 2013. 1050 turbines occur at Tehachapi and 705 at
Desert Hot Springs. The Desert Hot Springs turbines were generally installed earlier, with many in the
late 1980’s and early 2000’s; the Tehachapi turbines are more recent, with a majority of the installations
included in this analysis occurring between 2011–2013 (Figure 2). The Desert Hot Springs turbines
are older generation models characterized by lower height, smaller rotor diameter, and less capacity.
The average height, from ground to tip of a blade at its apex, is 76 m, and mean turbine rotor diameter
is 47 m. Collectively, these southern turbines have a capacity of 485,600 megawatts. The Tehachapi
group of turbines, which were generally installed more recently, are 118 m in height on average, with
an average rotor diameter of 66 m. Each turbine at this study area produces roughly 3x the megawatt
production capacity. The cumulative capacity of all turbines in the northern wind power project is
2.2 million megawatts.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 22 

 

the Western Mojave Basins, and (C) the magnified Desert Hot Springs area in the Upper Coachella 

Valley and Hills Ecoregion. 

The Desert Hot Springs study area has a range in elevation from 210 to 860 m at the northwest 

edge of the Colorado Desert. The Tehachapi turbine sites are generally at a higher elevation (840–

1280 m), on the edge of the Mojave Desert, with a few turbines along the transition zone from desert 

scrub to grasslands and woodlands of the Tehachapi Mountains. The Tehachapi study area, on 

average, receives only a slightly higher annual average winter precipitation amount (229 mm) than 

the Desert Hot Springs (215 mm) (GRIDMET) [40]. 

Wind turbine locations and attributes were downloaded from the United States Wind Turbine 

Database [41]. A range of installation years was selected to ensure at least three years of consistent 

Landsat data before the installation (most sites have many more years pre-installation) and at least 

five years post-installation. At these two study areas, there were a total of 6736 wind turbines in the 

database, with 1755 installed between 1988 and 2013 with 1050 turbines at Tehachapi and 705 at 

Desert Hot Springs. The Desert Hot Springs turbines were generally installed earlier, with many in 

the late 1980s and early 2000s; the Tehachapi turbines are more recent, with a majority of the 

installations included in this analysis occurring between 2011 and 2013 (Figure 2). The Desert Hot 

Springs turbines are older generation models characterized by lower height, smaller rotor diameter, 

and less capacity. The average height, from ground to tip of a blade at its apex, is 76 m, and the 

mean turbine rotor diameter is 47 m. Collectively, these southern turbines have a capacity of 

485,600 megawatts. The Tehachapi group of turbines, which were generally installed more recently, 

are 118 m in height on average, with an average rotor diameter of 66 m. Each turbine at this study 

area produces roughly three times production capacity measured in megawatts of the turbines at 

Desert Hot Springs. The cumulative capacity of all turbines in the northern wind power project is 

2.2 million megawatts. 

 

Figure 2. Number of turbines installed per year between 1988 and 2013 in the Tehachapi and Desert 

Hot Springs study areas. 

2.2. Sampling Design 

We established a sampling scheme to assess changes in exotic grasses in areas radiating out 

from disturbed areas surrounding the turbines. The core area within a 105 m radius around the 

turbines center, which contains the turbine tower, access roads, the permanent gravel turbine pad, 

Figure 2. Number of turbines installed per year between 1988–2013 in the Tehachapi and Desert Hot
Springs study areas.

2.2. Sampling Design

We established a sampling scheme to assess changes in exotic grasses in areas radiating out from
disturbed areas surrounding the turbines. The core area within a 105 m radius from the turbines
center, which contains the turbine tower, access roads, the permanent gravel turbine pad, as well as
reclaimed areas and other disturbances was considered actively used and excluded from analysis.
Outside of the 105 m active areas we established 120 m-wide ring that contains the pixels used for
analysis (Figure 3). Areas within the ring that intersect with active areas around adjacent turbines
were masked out (Figure 3), and pixels with other heavy disturbances and roads were masked using
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threshold (<0.05) on a vegetation index (NDVI) calculated from a summer 2018 (May–August) Landsat
8 (cloud-masked) median composite image.
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Figure 3. Sampling occurred within a ring extending from 105 to 225 m from the turbine. The active
areas within 105 m of the turbine were excluded from analysis, as were disturbed pixels within the
outer ring.

For our control sites, we generated a set of random points (n = 4314; 2937 for Tehachapi and 1377
for Desert Hot Springs) based on multiple criteria: points were >500 m from a turbine, were screened
for burned areas [42], developed/disturbed areas (i.e., land cover, mines, roads) and vegetation type
from the GAP landcover data set [43]. These points, in turn, were subsampled into a control set for
each turbine, selecting those points within 2000 m of each turbine and then each point buffered 45 m
for sampling the imagery.

2.3. Landsat Time Series of Early Season Invasives

Cloud-masked Landsat 5 and Landsat 7 data were processed from 1985 to 2018 in Google Earth
Engine [28] to generate a 34-year time series of an invasives index (Landsat 5: 1985–2011, Landsat
7: 2011–2018). The annual invasives index, modeled after the DESI index [37], uses the contrast in
early season and late season NDVI, to estimate the relative amount of invasive annuals at a given
location in a given year. We chose our early season time window to extend from January through
June due to the potential for early green-up in the warm California desert. The maximum NDVI pixel
was selected from all January-June cloud-free scenes for the early season, and the median NDVI from
the July-October dry season. We refer to the differenced NDVI product simply as the Early Season
Invasives (ESI) index (Equation (1)).

ESI = NDVI max value (January-June) − NDVI median value (July-October) (1)
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We generated an ESI time series for turbine rings and for all control points and calculated the mean
value within their respective buffers. Data were imported into R [44] for processing to before-installation
(1985–) and after-installation (–2018) mean ESI values for each turbine ring, and associated random
control points. Data from the installation year was excluded from calculation. To compare results
among ESI values before and after turbine construction, as well as between turbines and control areas,
we applied fixed-effect analysis of variance (ANOVA) single factor tests.

Kokaly (2011) established DESI index thresholds of >0.1 (high probability) and >0.075 (low
probability) based on known location of cheatgrass, and these default thresholds have been applied
in other studies on the Colorado Plateau [38] where the initial algorithm was developed. However,
because these thresholds are specific to Landsat data collected over the Colorado Plateau, Kokaly
suggested user-defined thresholds might prove more effective in other regions [37]. We investigated
ESI thresholds values in our study region through comparison with field observations available
through CalWeedMapper (https://calweedmapper.cal-ipc.org/maps) and environmental assessment
surveys performed by Southern California Edison [45]. CalWeedMapper is an online portal
created by the California Invasive Plant Council (Cal-IPC) that integrates and serves plant invasion
occurrence data reflected in the Calflora and Consortium of California Herbaria (CCH) databases.
The Southern California Edison data contained information of mapped patches of invasive grasses.
In CalWeedMapper we queried the database within the USGS quads covering our study turbines and
assessed all available observations, but only considered samples that fell within our study period
(1985–2018) and had reliable geo-location information. All sites were identified by isolating coordinates,
species type (B. rubens or B. tectorum), site description and collection date. A total of 30 sample locations
met these requirements, which were a mix of cheatgrass and red brome. Using Google Earth Pro we
visually assessed the observation sites and ranked them according to visible herbaceous density and
cover (high, moderate and low). We calculated ESI for each sample location from the date of the initial
observation through the remainder of the time period, and heuristically identified thresholds across
all the sites based on the cover information assigned to the field sample. Ultimately, we identified
thresholds in our study area that were slightly more conservative than the original DESI thresholds;
These thresholds are: >0.20 (very high probability), 0.15–0.20 (high probability), 0.12–0.15 (moderate
probability), 0.10–0.12 (low probability) and <0.10 (none present). Appendix A contains a time series
of ESI collected at the sample locations, plotted with winter precipitation from the same locations.

2.4. Regional Trend and Climate Analysis

In order to characterize regional ESI patterns during the time period, and to identify areas with
sustained presence of invasive annuals, we summed the raw (non-thresholded) ESI values over 5-year
periods for each pixel in the study region and mapped the changes over time. We also evaluated
trends in ESI relative to winter precipitation by aggregating 4km daily Gridded Surface Meteorological
dataset (GRIDMET; [40] values into monthly totals for October-April of each year and assessed the
linear relationship between the two variables.

3. Results

3.1. Comparison of ESI before and after Development

The areas immediately outside the active/disturbed turbine areas widely experienced some
increase in ESI after turbine installation when compared to their pre-installation values, with 89%
of the 1755 turbines increasing (average of 27% ESI increase) in the period following construction
(Figure 4, Table 1). The amount and magnitude of increase varied between the northern and southern
study areas (Table 1, Figure 4). In Tehachapi, 99.6% of the turbine sites experienced an increase during
the period after installation (mean 38% ESI increase), whereas 71.9% of the southern turbine sites
experienced an increase after turbine construction (mean 12% increase). The number of turbines with
“very high” (>0.20) ESI values at Tehachapi increased from 94 to 231 in the period after installation

https://calweedmapper.cal-ipc.org/maps
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(e.g., example “a” in Figure 4) and the number of turbines with no invasives (ESI < 0.10) decreased
from 269 to 46 after installation (e.g., example “b” in Figure 4). The number of turbines in Desert Hot
Springs with “very high” (>0.20) ESI values increased from 72 to 137 after installation and the number
with no invasives (ESI < 0.10) decreased slightly from 145 to 129 after installation. There were several
turbines in this area that showed a decline from low-moderate cover to none after installation (e.g.,
example “c” in Figure 4).
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before, (B) Tehachapi after, (C) Desert Hot Springs before, and (D) Desert Hot Springs after. Index
classification values indicate the likelihood of presence: none < 0.10, low 0.10–0.12, moderate 0.12–0.15,
high 0.15–0.20, and very high >0.20.
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Table 1. Mean and variance of ESI values calculated for turbine rings and control sites before and after
the installation period.

Turbine Rings
before

Installation

Turbine
Rings after
Installation

Difference
for Turbine

Rings

Control Sites
before

Installation

Control Sites
after

Installation

Difference for
Control Sites

All (n = 1755)

Mean 0.1298 0.1650 0.0352 0.1141 0.1434 0.0292
Variance 0.0022 0.0034 0.0009 0.0008 0.0018 0.0006

Tehachapi (n = 1050)

Mean 0.1263 0.1741 0.0478 0.1169 0.1590 0.0422
Variance 0.0019 0.0027 0.0004 0.0007 0.0013 0.0002

Desert Hot Springs (n = 705)

Mean 0.1351 0.1515 0.0164 0.1100 0.1200 0.0100
Variance 0.0025 0.0040 0.0010 0.0010 0.0015 0.0006

3.2. ESI Changes Relative to Control Areas

Analysis of ESI values at turbines relative to nearby control areas show that turbine sites generally
had a greater increase in ESI values after development when compared to controls (Table 1, Figure 5)
and these differences were statistically significant for both sites (p < 0.001 at 0.05 CI). The data also
indicate that invasive annuals also became more widespread at the control areas during the periods
analyzed for their corresponding turbines (Table 1). Just as for the areas immediately surrounding
the turbines, patterns varied between the northern and southern parts of the study area. In general,
both the turbine sites and control sites had considerably higher ESI at Tehachapi compared to the
Desert Hot Springs (Figure 5). 100% of the Tehachapi control sites showed an ESI increase during the
period (averaged increase of 36%), while 76% of the Desert Hot Springs controls showed a smaller
ESI increase (average increase of 9%). The number of turbine control areas with “very high” (>0.20)
ESI values at Tehachapi increased from 1 to 98 during the period, and the number of controls that
started with no invasives (ESI < 0.10) decreased from 189 to 45 during the same period. The number of
control areas in Desert Hot Springs with “very high” (>0.20) ESI values increased from just 2 to 4 after
installation, and the number of control areas with no invasives (ESI < 0.10) changed from 161 to 160.

A comparison of ESI values before and after the construction date (post-installation minus
pre-installation) at the turbine sites and neighboring control areas indicates that 70% (1223) of the
turbine sites had greater ESI increase than the control areas. This pattern is similar across both
Tehachapi and Desert Hot Spring study areas, with 727 (69%) and 496 (70%) turbines showing greater
ESI increase than the control areas. When mapped out, the ESI difference between the turbines and
their control highlights the locations where turbine-related invasions were higher than changes in the
surrounding landscape (Figure 6). The change data, which are classified into groups above and below
a no-change threshold of −0.01 to 0.01, show that only one third of the turbines (592) had considerably
higher (<−0.01) ESI changes than the surrounding controls. These turbine-related invasions show
a more clustered pattern in the Desert Hot Springs area when compared to Tehachapi (Figure 6).
The magnitude of the difference between turbine and control is important, and the turbines that had
highest increase compared to control sites are generally the same turbines that were identified with
very high and high ESI values in the period after installation (Figure 4).
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locations where turbine-related invasions were higher than changes in the surrounding landscape 

(Figure 6). The change data, which are classified into groups above and below a no-change 

threshold of −0.01 to 0.01, show that only one-third of the turbines (592) had considerably higher 

(<−0.01) ESI index changes than the surrounding controls. These turbine-related invasions show a 

more clustered pattern in the Desert Hot Springs area when compared to those in the Tehachapi 
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Figure 5. Boxplots of the difference (post-installation minus pre-installation) in Early Season Invasives
(ESI) index values for turbines and control sites at the Tehachapi and Desert Hot Springs wind energy
sites. p-values from ANOVA test between turbine and control were <0.001 for both Tehachapi and
Desert Hot Springs.
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Figure 6. Difference in Early Season Invasives (ESI) index values before and after turbine construction
compared to control areas at (A) Tehachapi and (B) Desert Hot Springs Desert. Data are classified into
quantiles, where negative values (red) show areas where the post-installation minus pre-installation
ESI changes measured at turbines was greater than at the control sites, and positive values (blue) are
where the ESI changes measured at control sites was greater than at the turbines. Yellow values show
where ESI changes at turbine and control were similar.
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3.3. Regional Analysis of ESI and Relationship to Precipitation

Regionally, areas with consistently high ESI tended to be on the northwestern edge of the Western
Mojave Basin ecoregion, and northwestern edge of the Upper Coachella Valley and Hills ecoregion
(Figures 7 and 8), both areas that could be considered transition zones for these ecoregions. In the
Western Mojave Basin ecoregion, there appears to be a relatively low signal in the areas around the
wind developments during the first period from 1989–1993 (Figure 7a), but with a considerable increase
that spreads eastward beginning in the 1994–1998 period (Figure 7b). The wind energy areas have
consistently high ESI for the remainder of the study period (Figure 7). In the Upper Coachella Valley
and Hills ecoregion the wind energy areas have high ESI in the early period (1989–1993, Figure 8a),
but the high values become much more extensive after 1998 (Figure 8c).

Analysis of ESI values relative to yearly winter precipitation (Oct–April) measured from the turbine
sites show that much of the peak ESI occurs during years with high winter precipitation (Figure 9).
The linear relationship between winter precipitation and ESI over the entire period (1986–2018) is
much stronger at the Desert Hot Springs study area (R2 = 0.26) than Tehachapi (R2 = 0.002), where no
obvious relationships exist early in the study period (Figure 9). The relationship between precipitation
and ESI gets stronger throughout the study period, and during the period from 1998–2018, the two are
highly correlated in Desert Hot Springs (R2 = 0.63), whereas the correlation is strongest for Tehachapi
during the last decade of the study (2009–2018; R2 = 0.30). At both sites ESI showed an increasing
trend over the period, even while winter precipitation declined slightly.
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Figure 7. 5-year average ESI values across the Western Mojave Basin ecoregion. Red box in panel A
outlines the wind energy areas. Blue values indicate persistent yearly high (>0.2, summed for the
period) values over each period. Periods are (A) 1989–1993, (B) 1994–1998, (C) 1999–2003, (D) 2004–2008,
(E) 2009–2013, and (F) 2014–2018.
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4. Discussion 

Figure 8. 5-year average ESI values across Upper Coachella Valley and Hills ecoregion. Red box in
panel A outlines the wind energy areas. Blue values indicate persistent yearly high (>0.2) values over
each period. Periods are (A) 1989–1993, (B) 1994–1998, (C) 1999–2003, (D) 2004–2008, (E) 2009–2013,
and (F) 2014–2018.
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(A) and Desert Hot Springs (B) study sites.

4. Discussion

The development and use of renewable energy sources is growing globally as economies transition
from fossilized carbon to environmentally friendly sustainable energy sources [46], and while green
energy holds great promise to reduce global change impacts of fossil fuels, the environmental impacts
of these sites need to be carefully considered and managed [47,48]. The growing demand for energy
has led to a surge in development in the western U.S., and the clearing of native vegetation for access
roads and pads present new opportunities for invasives to take hold and spread. Exotic species
present major management challenges in areas where energy developments create new openings for
invasion [32,49], and invasions can persist long after the sites have been abandoned. Field studies
in southern California have shown that exotic species are more abundant near disturbed energy
developments, both at conventional oil and gas fields [50] and wind energy developments [51]. Remote
sensing data facilitate landscape-scale detection and monitoring of energy exploration and development
(EED) related invasions, providing timely and actionable information to support management decisions
by energy industry and government natural resource specialists. Landsat time-series data collected
over abandoned oil and gas pads in the Colorado Plateau for example, showed evidence that invasives
were a major component of vegetation on reclaimed sites [19], and provided information that can be
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used to improve reclamation efforts. The application of remote sensing for invasive management is not
limited to reclamation; in the Mojave and Colorado deserts, maps of invasive grasses in landscapes
surrounding energy development can be used to identify potential fire risk for human settlements
and wildlife habitat during a time when electric utilities and energy infrastructure are an increasingly
common source of wildfire ignitions.

The development of a 34-year time series invasive index in this study allowed us to assess the
difference before and after EED and understand these changes in the context of region-wide changes in
invasive cover. Comparing ESI index changes between turbine sites and control sites bears out two
key findings. First, the increase in ESI relative to pre-development conditions at turbines is notably
higher than the control sites for many turbines. These differences hold when stratifying samples by
geography (north and south) or by turbine installation date. Second, although many turbines had
higher ESI after turbines were installed, these results do not apply to all turbines sites. Comparing the
invasive (ESI) trend geographically by analyzing the difference between turbine and control values at
the site level showed that there were some places around the energy development where the change
in invasive cover at the control exceeded that of the adjacent turbines, although the differences in
values are quite small. These clusters with an inverse pattern, as well as the many sites with very little
difference between turbine and control, suggest that there are other factors at play across the study area,
in addition to or separate from EED, that contribute to the spread of invasive annuals in the region.
Overall it is difficult to conclude that the turbines and the energy infrastructure contributed to the
presence of invasives, or if the entire area experienced an overall increase in invasives during the period
which contributed to a signal of slightly more invasives in the disturbed areas around the turbines.

Our results showed an increase in ESI in the wind energy sites as well as a considerable regional
increase. The maps representing regional patterns of ESI over the study period (1985–2018) provide
insight into the scale of invasion in southern California and help to explain why both turbine and
control areas showed increasing invasives cover over time. The Tehachapi and Desert Hot Springs
wind development sites both are situated in areas of the region that showed sustained high cover of
invasives, but the extent to which the disturbance caused by wind energy development contributed to
an increase in invasives across the larger landscape remains unknown because various other factors
(i.e., past land use, climate, soils) could have set the stage for establishment and spread in these areas.
B. tectorum and b. rubens have been present in the study regions since at least the early/mid-1900s [52]
and periods of heavy winter rainfall in the 1960s and 1980s likely encouraged regional spread [53,54].
Both study regions have also experienced heavy land uses (grazing, off-highway vehicle use, urban
development) in addition to energy development that may have contributed to the regional spread
of exotics. However, exotic grass cover has been shown to be correlated with wind disturbance [55],
and the simple fact that wind farms are sited in areas with strong, consistent winds is likely a major
factor in the local seed dispersal in these areas, and thus the observed increase in the invasives index
around wind development sites.

Our analysis of precipitation trends over the study period illustrate that winter precipitation is
tightly coupled with annual ESI, especially in recent years. While the relationship between ESI and
precipitation is strong during wet years, the overall trends of declining precipitation and increasing ESI
suggest that a regional drying may be making the landscape more susceptible to invasives, who quickly
exploit available winter precipitation during years of abundant rains. Other studies in the southwest
have shown that dryland plants respond more strongly to short-term water availability within periods
of sustained aridity [56]. Additional research is needed to investigate the observed regional trends
and spatial patterns of ESI that includes additional climate variables (i.e., minimum and maximum
temperature), possible climate lag effects, and local-scale disturbances (i.e., nitrogen deposition, grazing
history and wind disturbance).

The regional increase in annual exotic species is a concern for fire management in areas with
growing human populations, as well as for more remote areas that support endangered or rare desert
species [57,58]. Changes in the frequency and size of wildfires in the Mojave Desert are linked to
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the expansion of brome grasses [59]. Years with high invasive cover near wind turbines is a concern
from a fire risk standpoint since turbines are a known source for fire ignition [17,60]. In the summer
of 2012, for example, there were two separate instances of turbines igniting and causing grass fires,
one in the Tehachapi site and one in the Desert Hot Springs site [61]. While both fires were quickly
contained, given increasing herbaceous fuels over time and the continued urban development in
California, the mixture of wind turbines and high Bromus spp. cover present a serious hazard putting
life and property at risk. Power lines are a main source of ignitions in California [62], and two of
the recent deadly fires in California, the 2018 Camp Fire and 2017 Tubbs Fire, were both ignited by
sparks from electrical transmission lines in areas that had not been adequately cleared of such fuels.
Remote sensing maps of invasives cover and patterns, like those generated for this study, can provide
useful geospatial data layers to help fire managers identify areas of high fire hazard potential for
fuels reductions, and where these areas overlap with energy infrastructure that may contribute to
ignitions. Time series satellite data can also play an important role in monitoring vegetation changes
and managing invasive species after fires [63,64].

Protocols are usually put in place prior to energy development to ensure that the project
site is properly maintained. These include clearing dry vegetation, limiting potential fuel sources,
and designing firebreaks. In addition, the operators are expected to develop species-specific control
procedures for high priority invasive weeds [65]. While it is likely that the operators enact these weed
control protocols at the pad-level at the two sites, our research shows that the invasives can have an
impact at a distance away from the turbine pad and the surrounding disturbed areas. With areas
greater than 100 m from the turbine showing a very high likelihood of non-native grasses, weed
control efforts at the pad-level may not be effective at preserving the integrity of ecosystems in the
surrounding areas.

Our use of ESI shows clear value in mapping annual invasives and identifying differences by
creating an annual invasive time series. These seasonal approaches can be used to identify other
annuals and exotics that have less of a predictable phenological signal but respond to individual
precipitation events or summer precipitation. One example, Brassica tournefortii, categorized as a “Most
Invasive Wildland Pest Plants” in California, is an annual invasive that grows around disturbed areas
(roads) and ephemeral waterways and responds opportunistically to winter rains [66] in both the
Mojave and Sonoran deserts. With some high-resolution information on winter precipitation patterns
across these dryland regions, a relative greenness index could be implemented shortly after the rains
to identify areas with B. tournefortii that may show uncharacteristic high seasonally differenced NDVI.
Studies that leverage precipitation-driven phenology for invasives include Waller et al. (2018) who
developed a summer annuals index in the Colorado Plateau to map Salsola spp., which greens up (and
quickly senesces) in response to summer precipitation and Wallace et al.(2016) who developed an index
that coupled NDVI and precipitation data to map presence of invasive buffelgrass (Pennisetum ciliare)
in the Sonoran Desert [67].

5. Conclusions

This application of remote sensing imagery for exotic species detection exploits the relative
difference between spring green up and summer senescence annually across the Landsat archive,
which provides yearly insights into the amount and distribution of annual grasses on the landscape,
and their patterns before and after installation of wind turbines. A higher ESI value suggests that
invasive annual plant species are greening-up more in spring, as compared to a more typical pattern in
native grasses and forbs with a less vigorous green-up.

We do not have direct evidence that the disturbance from wind turbine installation caused
increased invasive species cover relative to the surrounding areas. We found an increase in our ESI
index across large areas, and much of the highly invaded areas were around the energy development
sites. Our data show that invasive annuals increased after turbine installation at most sites in one of
our two study areas, but there is no clear indication that the rate of invasion around the wind energy
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sites is considerably different than the rest of the adjacent study area (i.e., control areas). More research
is needed to establish the causes of increases in our invasives index across many areas of the California
deserts, especially in the Tehachapi region. Wind energy development may be one factor among many
contributing to the degradation of the desert environment and subsequent invasion by invasive plants.
The data we used for this paper see Supplementary Materials.

Supplementary Materials: A GIS shapefile of the data used for this research, that includes turbine IDs, as well as
early season invasive (ESI) values for turbines and corresponding control sites summarized before and after the
turbine installation date can be found on ScienceBase (https://doi.org/10.5066/P9LSUJWH).
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