
communications biology Article
A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-08238-x

Integrated distribution modeling resolves
asynchrony between bat population
impacts and occupancy trends through
latent abundance
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Monitoring populations is challenging for cryptic species with seasonal life cycles, where data from
multiple field techniques are commonly collected and analyzed as multiple lines of evidence. Data
integration canprovidecomprehensive inferenceswhile improving accuracy, precision, andscopebut
faces challenges inmodelingmisaligned resolutions and observational uncertainties.We developed a
multi-scale, integrated species distribution model (MS-iSDM) for North American bats to combine
data across monitoring types and seasons using joint likelihood methods, observational models with
false-negatives and false-positives, and seasonal migratory connectivity. We applied this model to 11
years of data for an imperiled bat species (tricolored bat, Perimyotis subflavus). Relative abundance
and occupancy were linked with multi-scale predictors, revealing clear patterns of population
declines, but with important differences in spatial trends (abundance: corresponded with white-nose
syndrome impacts, occupancy: at the range periphery) and overall severity (abundance: -74.8%, 95%
CRI: -79.7% to -69.3%; occupancy: -35.5%, 95%CRI: -41.1% to -30.2%). The asynchrony between
occupancy trends and population impacts was explained as an emergent pattern of spatiotemporal
variation in abundance in the integrated distribution model. Compared to multiple lines of evidence,
the integrated model provided consensus-estimates, increased precision and spatiotemporal scope,
and strengthened evidence of population declines.

Understandingwhere organisms occur and inwhat local densities, aswell as
how and why species distributions change in space and time, are central
themes in ecology1–3, biogeography2,3, and conservation biology4. Especially
of interest is how species’ occupancy and abundance distributions relate to
environmental conditions1–3, population processes1–3, stressors4, manage-
ment actions4, or with one-another1–3. Conservation monitoring programs
collect and analyze ecological data to address these questions and to inform
where and inwhat intensities limitedmanagement actionsmightbe targeted
to achieve conservation goals4–8. However, despite advancements in

collaborative monitoring programs at macro scales9,10 and in statistical
methods to estimate occupancy and abundance distributions11,12, extracting
simple and comprehensive answers to suchquestions remains challenging12.

Large-scale monitoring often requires that several field techniques be
deployed across different spatial and temporal resolutions, especially for
species with cryptic behaviors, seasonal life cycles, migratory behavior, and
continental distributions6,8,13. Data collected from different field techniques
and seasons may be prone to different sources and magnitudes of obser-
vation bias (false-negatives, false-positives, differential effort) and be best
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suited to inform different population metrics (occupancy vs abundance).
For example, bats in North America exemplify these challenges6,8. The
North American Bat Monitoring Program8,10 (NABat) was established in
2015 to address a historical lack of coordinated population monitoring
efforts for most species of North American bats6 in the wake of white-nose
syndrome (WNS), which has caused devastating population declines of
hibernating bats14,15. NABat uses information from multiple monitoring
methodologies to gain a richer understanding of population status and
trends6,8, including acoustics (deployed at stationary point locations and
along mobile transects) and live-capture data in the summer maternity
season. In the winter, counts of individuals within hibernating bat colonies
are also obtained. From these streams ofmonitoring data, population status
and trend inferences are based on (1) species occupancy in the summer16,17,
(2) relative abundance in the summer18, or (3) relative abundance in the
winter14,19. Thus, population inferences to date have beenmostly confined to
‘multiple lines of evidence’which are analyzed independently as opposed to
‘combined inference’ under a single framework.

Data integration provides a promising avenue for combining multiple
monitoring efforts into a single inferential framework—integration can
increase accuracy, precision, and spatiotemporal scope of inference relative
to independent analyses11,12. Importantly, as all data sets infer shared
population parameters, data integration can produce comprehensive esti-
mates of species distributions and trends over time while appropriately
weighting informational quantity and quality11. However, several analytical
challenges must be overcome12 including modeling response data with
misaligned spatial and temporal resolutions and potentially different
observational biases and uncertainties20. Combining occupancy metrics
(less sensitive topopulation change)withabundance-basedmetrics presents
an additional challenge given the typical non-linear and saturating rela-
tionship between them21. This relationship precludes simple averaging and
requires mechanistic statistical approaches for integration21–24.

This latter challenge is also present in post-hoc comparisons of occu-
pancy and abundance-based metrics that have been analyzed indepen-
dently, where intuition alone may be insufficient. For example, one
imperiled bat species (tricolored bat, Perimyotis subflavus) has experienced
catastrophic declines in abundance due to white-nose syndrome (as
reflected in trends of abundance-based18,19 and activity-based25 metrics) but
remains widespread in summertime occupancy throughout much of its
range17,25. This asynchrony in observed trends between occupancy-based
and abundance-based metrics could lead to ambiguity or confusion when
informing conservation management25. Integrated species distribution
models (iSDMs)22–24, which simultaneously model occupancy and abun-
dance via a shared latent abundance process, provide an opportunity to
unify inferences across population metric despite apparently disparate
patterns. In particular, iSDMs deterministically link occupancy and abun-
dance distributions via a shared spatial point patternprocess andprobability
of zero given an assumed spatial mesh24.

Specifying a useful relationship in space and time between seasonally
monitored populations presents another challenge of data integration. For
example,most bat species inNorthAmerica resemblemetapopulationswith
seasonal dynamics, occurring as discrete seasonal colonies (e.g., winter
hibernacula, summermaternity, summer bachelor), which are governed by
local population dynamics (births, survival), and linked within seasons (by
dispersal) and between seasons (by migration). Population impacts from
WNS primarily occur in the winter14 but also manifest in summer popu-
lations which are connected via seasonal migration. Metapopulation26 and
landscape connectivity theory27,28 predict functional relationships to quan-
tify expected animalmovement and dispersal in space and time asmeasures
of ‘potential’ population connectivity. For example, a seasonal migratory
connectivity approach18 can predict the spatiotemporal distribution of
expected migrants in the summer as a function of the species migration
behavior and the spatiotemporal distribution ofwinter populations. Then, it
can be included as a covariate to predict summer abundance and occupancy
in an integrated species distributionmodel to quantify the potential linkage
between winter and summer populations in space and time.

In thiswork,wedevelopedamulti-scale, integrated species distribution
model (hereafter, MS-iSDM) of relative abundance and occupancy for a
species of NorthAmerican bat (tricolored bat) based on an inhomogeneous
spatial point pattern process (Fig. 1). We used a change-of-support for-
mulation via a shared hierarchical spatial mesh (the NABat master sample)
and joint likelihood approaches to construct and link complex observation
models (with false-negatives, false-positives, availability bias) of each data
set (Fig. 1). Next, we used a seasonalmigratory connectivity covariate to link
population dynamics and impacts across seasons (Fig. 1), for which we
expected a strong positive relationship with summer populations. We
applied this model to 11 years of data for the tricolored bat to improve
population inferences and provide a comprehensive inference on status and
trends acrosspopulationmetrics (occupancy and relative abundance,winter
and summer). Predictions from the MS-iSDM specifically represent the
species distribution and trends over time in the ‘pre-volancy’ period (i.e.,
May 1st - July 15th, before newborn of the year can fly), which is the primary
time period targeted for monitoring in the maternity season8,18. Following
best practices in applying unmarked abundancemodels tomonitoring data
fromcomplex ecological systems,we conservatively interpret abundance for
tricolored bat as relative abundance (Refer to “Methods” for more details).

We examined population inferences for the tricolored bat under the
MS-iSDM using all available data from 2012 to 2022, while describing how
trends in occupancyand relative abundance compare in space and timewith
a suite of multi-scale environmental predictors (abiotic and biotic), with
observed population declines due to the advance of WNS, and with each
other. Our study provides a rare, empirical comparison using a shared data
set and inferential framework of spatiotemporal trends in occupancy and
relative abundances across the range of a species undergoing severe popu-
lation declines. While there are an increasing number of studies on species
distributions from range-wide monitoring efforts29,30, species distribution
dynamics in response to novel wildlife diseases at this scale are largely
unexplored given the aforementioned challenges of monitoring. We
expected that our integrated distribution model would reconcile the
apparent asynchrony in trends observed to date in occupancy and
abundance-based metrics for tricolored bat25. We also expected to find a
positive but saturating abundance-occupancy relationship3 in annual esti-
mates aggregated at the range-level, given that such relationships are more
commonly observed in species which are widespread, species with meta-
population dynamics, or species undergoing population declines3.

Next, we formally investigated the value of using combined inference
under a single inferential paradigm relative to multiple independent ana-
lyses by fitting data from 2016 to 2022 for each data set independently and
comparing inferences to those under the fully integrated model. We
compared point estimates and uncertainties of environmental relation-
ships, population trends, and mapped occupancy and relative abundance
distributions. We expected that our integrated model would reduce
uncertainty in estimates and predicted species distributions. Our model
can be used for data integration of other bat species in North America and
is also applicable to other macro scale ecological monitoring programs
which collect multiple sources of data. In particular, the ability of our
model to simultaneously account for false-negatives, false-positives, dif-
ferential sampling exposure, occupancy-abundance relationships, and
seasonal population dynamics represents important advancements in
species distribution modeling.

Results
Sampling effort by field method type
Our modeling effort included data from 120,014 observation nights from 4
different field methods (mobile transect acoustics, stationary acoustics,
MLE-acoustics [i.e., stationary acoustics which used a ‘maximum likelihood
estimator’ approach to remove suspected false-positives], and live-cap-
tures). Total effort (observation nights) by field method type is reported in
Table 1. Total effort (observation nights and grid cells) by fieldmethod type
and year are reported in Supplementary Table 1, and sampled locations are
mapped by field method type and year in Supplementary Fig. 1.
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Inferences from the MS-iSDM (2012–2022)
Results and predictions from theMS-iSDMprovide range-wide population
inferences for tricolored bat from 2012 to 2022 in the pre-volancy season
(May 1—July 15) at multiple scales (Fig. 2). The predicted distribution of
relative abundance (λit , 10-km x 10-km grids) for tricolored bat in 2012
(Fig. 2A) and 2022 (Fig. 2B) reveals population declines corresponding in

space (grid i) and time (t) with winter WNS impacts. Proportional rates of
total change between 2012–2022 in grid cells ranged between –0.65
and –0.90 (Fig. 2C). The predicted distribution of occupancy probability
(ϕqt , 5-km x 5-km quads) in 2012 (Fig. 2D) and 2022 (Fig. 2E) also reveal
population declines in tricolored bat. Proportional rates of total change in
occupancy probabilities (Fig. 2F) ranged between 0.00 and -0.80, with the

Fig. 1 | A multi-scale integrated species distribution model (MS-iSDM) for the
tricolored bat (Perimyotis subflavus) illustrating the connections between winter
populations, summer populations, and data integration via observation models.
Let i indicateNABat grid cells (10-km x10-km), q indicate quadrants (5-km x 5-km),
k indicate mobile transect routes, y indicate year, t indicate time periods (years ×
within-summer-season), and w indicate winter colonies. A Estimates of winter
colony abundance each year ðAwyÞ are provided by previous NABat analyses. The
expected number of summer migrants Siy to each grid cell each year is calculated as
abundance weighted dispersal flux (given Awy , distances between locations, and
migration kernel) and used as covariate for summer abundance. B Summer abun-
danceNit (and occupancy state zit) for each grid cell and time period are estimated as
a function of spatiotemporal covariates and a temporally autocorrelated annual
intercept. Nit and zit are assumed open between early and late summer seasons due
to a mid-summer birth-pulse, where βpost is the post-volancy effect on abundance.
Multi-scale abundanceMkt is modeled for each transect and time period conditional

on Nit and the sampling exposure rate (function of transect length). Multi-scale
occupancy qqt is modeled for each quadrant and time period conditional on zit and
the probability of local availability (a function of covariates). C1. For mobile ARUs
(automated recording units), the count of detections each night vktj comes from a
Poisson process given Mkt , the per-individual detection rate δmktj (a function of
covariates and random effects), and the false-positive rate ωm

ktj (with observation-
level random effects by data contributor). A hypergeometric observation model was
assumed for the manual review process, for subsets of reviewed nmktj and confirmed
kmktj recordings. C2: For stationary ARUs, a Poisson count-detection process was
assumed conditional on qqt , detection rates δsqtj , and false positive rates (similar to
C1). The same manual review observation model was assumed as C1. C3 and C4: a
traditional multi-scale occupancy model detection process is assumed for live-
capture data (C3) conditional on qqt and the detection probability and (C4) also for
maximum likelihood estimator ‘MLE’ style stationary acoustic records (assumed no
false-positive detections).
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largest declines estimated along the periphery of the range (where relative
abundanceswere low in 2012). Absolute declines in occupancy probabilities
(Fig. 2I) were largest along the periphery of the interior (i.e., where relative
abundances were at intermediate levels in 2012).

Range-wide estimates of the average relative abundance from
2012–2022 (Fig. 2G: λranget , averaged over all 10-km x 10-km grid cells each
year) indicate overall population declines, with a proportional rate of total
change estimated at –74.8% (–79.7% to–69.3%). Range-wide estimates of the

Table 1 | Numberof sample nights permonitoringdata type, andassumptionsonobservation biases (imperfect detection, false-
positives) for each (stationary acoustics, mobile acoustics, USFWS MLE acoustics, and live-capture)

Data type Number of sample nights by location Prone to imperfect detection Prone to false-positives (misclassification)

stationary auto ID only 82,157 yes yes

stationary auto ID and manual review 3753 yes no

mobile Auto ID only 20,343 yes yes

mobile auto ID and manual review 1147 yes no

USFWS stationary acoustic mle 611 yes no

Capture (5 km) 12,003 yes no

Auto ID represents acoustic records classified to species using automated classification software. Manual review entails a subset of auto IDs which are reviewed (number depicted) of which some
amount are also confirmed.

Fig. 2 | Range-wide population status and trend inferences from the multi-scale
integrated species distribution model (MS-iSDM) for the tricolored bat from
2012 to 2022 in the pre-volancy season (May 1–July 15). Let i indicate NABat grid
cells (10km x 10-km), q indicate quadrants (5 km x 5 km), t indicate the pre-volancy
season each year. Inferences include the predicted species distribution of relative
abundance (λit , A: 2012, B: 2022, 10-km x 10-km grid cells), proportional rate of
change in relative abundance between 2012 and 2022 (C), occupancy probabilities
(ϕqt , D: 2012, E: 2022, 5-km x 5-km quadrants), proportional rate of change in
occupancy probabilities between 2012 and 2022 (F), range-wide estimates of the

population time series (G: λranget , average relative abundance; H: ϕranget , average
occupancy probability), and the absolute differences in occupancy probabilities ϕqt
between 2012 and 2022 (I). The total proportional rate of change in range-wide
average relative abundance (λranget , 10-km x 10-km) was estimated at –74.8%
(–79.7% to –69.3%), while the total change in range-wide average occupancy (ϕrangey ,
5-km x 5-km)was estimated at –35.5% (–41.1% to –30.2%)with probabilities >0.999
that trends were negative. Points depict posterior means, and error bars depict 95%
Bayesian credible intervals. State polygons are from GADM (Global Administrative
Areas, 2018)68.
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average occupancy probability from 2012 to 2022 (Fig. 2H: ϕranget , averaged
over all 5-km x 5-km quads each year) also indicate overall declines, with
proportional rates of total change estimated at –35.5% (–41.1% to –30.2%).
Similarly, the proportional rate of total change in average grid cell occupancy
(averaged across all 10-km x 10-km grid cells) was estimated as –36.6%
(–42.3% to 31.2%). Though each trend metric showed strong evidence of
population decline (probability >0.999), the decline in range-wide relative
abundance was approximately 2.1 times greater than the decline in range-
wide occupancy probability. The abundance-occupancy relationship3

(Fig. 3A) between range-wide average relative abundance (Fig. 2G:λranget ) and
range-wide average occupancy (Fig. 2H: ϕranget , 5 km quads) over time was
positive, non-linear, and saturating (Fig. 3A). At the individual grid cell level
(10-kmx10-km), the relationship betweenexpected abundance λit

� �
and the

occupancy probability is deterministic (Fig. 3B) based on probability of zero
under a Poisson distribution.

Estimated ecological covariate effects under the MS-iSDM (Fig. 4)
reveal how multi-scale ecological relationships combine to predict the
species distribution and trends over time (Fig. 2). For example, we found
positive effects of migratory connectivity (Supplementary Fig. 2), culvert
density, physiographic diversity, all three forest cover types (conifer,
deciduous-oak, deciduous-non-oak), and the post-volancy effect (change
between pre-volancy and post-volancy seasons) on relative abundance at
the 10-kmx10-kmscale (Fig. 4A).Wetlands coverhadapositive linear term
and negative quadratic term, while maximum elevation (DEM) a negative
linear term and positive quadratic term. For local availability at the 5-km x
5-km scale (Fig. 4B), we found positive effects of culvert density, oak cover,
conifer cover, maximum elevation, and wetlands cover (linear and quad-
ratic); and negative effects for physiographic diversity and deciduous (non-
oak) cover. Additional results from the full MS-iSDM analysis, including
estimates for detection covariates (Supplementary Figs. 3–5) and estimates
ofλit ; θqt ; andϕqt for sampled locations (SupplementaryFig. 6) areprovided
in the supportingmaterials (AppendixS3: SupplementaryResults).A full set
of results includingmodel estimates, abundance andoccupancypredictions,
and trends over time are also provided as a US Geological Survey data
release31.

Model validation for the full iSDM (2012–2022) evaluated on pre-
dictive occupancy resulted in an average Area Under the Curve (AUC) of
0.801 for presence/absence at the 5 kmscale and 0.883 at the 10-kmx10-km
scale (in-sample). A visual assessment of posterior predictive checks for the
expected vs observed counts (in-sample) of mobile acoustics and stationary
acoustics data is reported in Appendix S3 (Supplementary Fig. 8). The
average occupancy probability of a leave-out data set (n = 206) of known
presences was 0.86 at the 10 km scale, and 0.70 at the 5-km x 5-km scale.
Comparing the distributions of predicted occupancy probabilities for the
leave-out presence data to the distribution across all sampled quads and
years (Supplementary Fig. 9) demonstrated a consistently higher predicted
occupancy probabilities compared to the background rate.

Integrated vs multiple independent model comparisons
A comparison of inferences obtained under the fully integrated model and
each individual model fit independently (one for each field method) using
data from 2016 – 2022 demonstrated the value of combined inference
(Figs. 5, 6). These benefits included both reduced uncertainties and
weighted-averaging of the comprehensive estimates compared with those
under each independent model, including range-wide population status
estimates and their trajectories over time (Fig. 5-A1: λranget , average relative
abundance across all 10-km x 10-km grid cells; Fig. 5-A2: ϕranget , average
occupancy probabilities across all 5-km x 5-km quadrants), andmulti-scale
covariate effects for ecological predictors (Fig. 5B). Uncertainty measures
(95% Bayesian credible interval widths) in range-wide average abundance
estimates were reduced by 31–46% with the integrated model compared to
mobile acoustics alone. The integrated model also reduced uncertainty
measures in the average range-wide occupancy estimates by 67–86%
compared to the capture-only model and 25–52% compared to the
stationary-acoustics-only model. Because models without mobile transects
estimated occupancy probabilities (ψ) instead of expected abundance (λ) at
the 10-kmx10-kmscale, covariate estimates are provided for eitherλ orψ at
the 10-km x 10-km scale depending on the underlying model (Fig. 5).

Discussion
In this work, we developed a multi-scale, false-positive, integrated species
distribution model (MS-iSDM) for North American bats which combines
monitoring information across survey method types, spatial scales, ecolo-
gical states, years, and seasons to improve population inferences on species
occupancy and abundance across its range. We achieved this by building
upon recent statistical (e.g., joint likelihood methods for data integration)
and ecological (e.g., migratory connectivity to link seasonal distributions)
advances for modeling distributions of cryptic species with seasonal and
migratory life cycles. We applied this model to 11 years of data for the
tricolored bat to gain a better understanding of population status and trends

Fig. 3 | Estimated and deterministic relationships between relative abundance
and occupancy probability (abundance-occupancy relationships) for tricolored
bat from 2012 to 2022 at range-wide and local scales. A Estimated relationship
between average range-wide relative abundance and average range-wide occupancy
probability for the tricolored bat each year. Points depict posterior means, and error
bars depict 95% Bayesian credible intervals. The best-fit-curve of point estimates
from a generalized additive model is depicted as the blue line (mean) and gray
shading (95% confidence interval). B Deterministic relationship between expected
abundance and occupancy probability at the grid cell level based on the shared
probability of zero.
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in abundance and occupancy, relationships with ecological predictors, and
the abundance-occupancy relationship over time. Inferences under this
model demonstrated clear population declines between 2012 and 2022 as
captured by trends in relative abundance and occupancy, which varied
spatially and temporally based on multidimensional nature of the modeled
niche (covariate effects), spatial variation in population dynamics, and a
non-linear abundance-occupancy relationship at local scales (Fig. 3B). By
comparing inferences of the fully integratedmodel to independent analyses
of each data set using a confined temporal scope (2016–2022), we
demonstrated improved population inferences for the tricolored bat using
combined inference relative to using multiple lines of evidence analyzed
independently.

We found strong evidence (probabilities >0.999 that trends were
negative) of population declines in the tricolored bat from 2012 to 2022 in
both range-wide relative abundance (total change: mean = –74.8%) and
occupancy (total change:mean = –35.5%). This reflects previous findings in
bat distribution and trend modeling that occupancy is a less sensitive
indicator of population change than relative abundance18,19, or activity25. It
also highlights that even catastrophic declines in abundance may result in
only modest declines in occupancy probability for wide-spread and abun-
dant species. At the grid cell level, we found the strongest declines in relative
abundance (approximately -90%) corresponded spatially with the most
severe declines in winter abundance along the advancing wave of WNS
impacts14 in the interior of the range (Fig. 2). However, occupancy prob-
abilities were largely stable in these regions because relative abundances
were initially high, and occupancy probabilities remained near one (Fig. 2).
Rather, the strongest proportional declines in occupancy probability were
observed along theperipheryof the species rangewhere starting abundances
were already low. Absolute change in occupancy probability (Fig. 2I)
declinedmost along the periphery of areas with high relative abundance, in

and near locations with winter WNS impacts and moderately high (e.g.,
0.25–0.75) occupancy probabilities in 2012.

While macro-scale trends in summer occupancy17 and relative
abundance18 have been previouslymodeled for tricolored bat, this is thefirst
time both state variables were analyzed using an integrated framework.
Encouragingly, overall trend estimates for occupancy and relative abun-
dance from this work are similar in direction andmagnitude as those found
inpreviouswork17,18 despite somedifferences inmonitoringdata, spatial and
temporal scope, predictive covariates, and statisticalmethods. Furthermore,
the finding of differing spatiotemporal trends in occupancy and population
impacts agrees with prior work on tricolored bats trends17,18,25. However,
providing estimates of bothoccupancy and relative abundance froma single
inferential framework (i.e., integrated distribution model) leads to addi-
tional insights into population ecology.

For example, the asynchrony between occupancy trends and popula-
tion impacts is explained as an emergent pattern of spatiotemporal variation
in abundance in the integrated distribution model. It also explains an
apparent conundrum for conservation management, i.e., how tricolored
bats can remain widespread in occupancy (use by at least one bat) despite
severe population impacts. Put simply, local occupancy probability declines
non-linearly with abundance (Fig. 3B) andwill bemostly stable in locations
with high initial abundances despite large population declines. Occupancy
trends will only become apparent locally when abundances approach zero
(Fig. 3B). Spatiotemporal variation in abundance interacts with the satur-
ating relationship between occupancy probability and abundance, and in
this case, also metapopulation connectivity to predict the observed range
dynamics in tricolored bat occupancy (Fig. 2). Indeed, such a pattern is
predicted from metapopulation theory when Allee effects32 are present.
Populations in the interior of the range could be buffered from local
extinction due to rescue effects while populations along the range periphery

Fig. 4 | Covariate effect estimates for tricolored bat under the multi-scale inte-
grated species distribution model (MS-iSDM) using data from 2012 to 2022 for
expected abundance at the 10-km x 10-km scale, and in local availability at the
5-km x 5-km scale. A Parameter estimates for expected abundance at the 10-km x
10-km scale.BParameter estimates for local availability at the 5-kmx5-kmquadrant

scale, conditional on occupancy at the 10-km x 10-km scale. Points depict posterior
means, and error bars depict 95% credible intervals. DEM represents maximum
elevation and 'W-S connectivity' represents winter-to-summer migratory
connectivity.
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decline due to smaller initial population sizes and reduced dispersal flux
from the interior3,32.

As expected, we found a positive, non-linear, and saturating relation-
ship between range-wide relative abundance and occupancy over time
(intraspecific abundance-occupancy relationship, Fig. 3A). Our integrated
distribution model includes a combination of all four categories of
mechanisms (statistical, resource, range-position, and population dynam-
ics)whichhave been suggested to producepositive intraspecific abundance-
occupancy relationships3. The latent spatial point pattern process reflects
“statistical mechanisms” (i.e., shared probability of zero for abundance and
occupancy given an assumed spatial mesh and statistical distribution) while
predictive covariates (abiotic and biotic) reflect resource mechanisms. The
inclusion of a metapopulation based “seasonal migratory connectivity”
covariate reflected both “population dynamic” and “range-position”
mechanisms.

Multi-scale ecological relationships on abundance and local occur-
rence (Figs. 4, 5) combined topredict the species distribution (Figs. 2, 6) and
were generally in linewith our expectations (SupplementaryTable 2).When
interpreting covariate effects (within and across scales), it is important to
remember they are estimated conditional on all other covariate effects in the

model. We found a positive effect for culvert density on the relative abun-
dance and occupancy of tricolored bat, which may reflect their use as
potential roosting habitat in the winter and summer. Based on long-held
hypotheses concerning landscape complexity and bat distributions33, and
findings from previous work17,18, we expected positive effects of physio-
graphicdiversity for both ecological states and spatial scales.Whilewe found
a positive effect on relative abundance at the 10-km x 10-km scale, we also
found negative effects on availability at the 5-km x 5-km scale. This could
possibly reflect multi-scale habitat selection processes for summer roosts,
foraging grounds, and home ranges, where physiographic diversity may
support higher abundances at larger spatial scales (e.g., due to com-
plementary resources across trophic levels), while areas with the highest
landscape complexity might be avoided at local scales.

We found that winter-to-summer migratory connectivity had
the strongest positive effect of all predictors on abundance (Figs. 4, 5),
demonstrating the utility of this linkage between winter and summer
populations. This covariate importantly reflects a source of ‘non-statio-
narity’ in the population demography across a spatiotemporal gradient34

driven by population impacts from a rapidly expanding disease, which
would have likely biased population inferences if not accounted for.

Fig. 5 | Combined analysis under the multi-scale
integrated species distribution model (MS-iSDM)
improves population inferences for tricolored bat
relative tomultiple, independent lines of evidence.
A1: Estimates of range level population status in
relative abundance (average relative abundance)
using the MS-iSDM compared with only using
mobile transects. A2: Estimates of range level
population status in species occupancy probability
(average occupancy probability) under the MS-
iSDM compared with only using stationary acous-
tics or only live-capture data. In addition to reduced
uncertainty in population status and trends esti-
mates, the data integration acts as a smother of
observed trends to produce consensus-estimates
over time in both occupancy and abundance. B:
Covariate effect estimates under each model (MS-
iSDM and independent) for expected abundance at
the 10-km x 10-km scale (B1: MS-iSDM versus
independent mobile transects), occupancy prob-
ability at the 10-km x 10-km (B2: independent sta-
tionary and capturemodels), and in local availability
at the 5-km x 5-km scale given conditional on
occupancy at the 10-km x 10-km scale (B3: MS-
iSDM versus independent stationary and capture
models). Points depict posterior means, and error
bars depict 95% credible intervals. DEM represents
maximum elevation and Siy represents seasonal
(winter to summer) migratory connectivity.
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Seasonal population dynamics are becoming increasingly recognized as
important for modeling species distributions, especially for migratory
species12,13,34. Full annual cycle models have been discussed in the
literature35,36, but are especially challenging for species with large ranges.
One important consideration is that we assumed no directionality in
migration (a common assumption of regionally migratory bats37 and
metapopulation connectivity26,27), although isotypic evidence for tricolored
bats38,39 suggests that migration may be variable in both directionality and
distance traveled.Our framework could be used in future studies to quantify

and evaluate support for different migratory hypotheses such as differences
in migration distances or directionality throughout the species range,
though model selection in integrated models remains a challenging topic12.

Additional improvements in model accuracy are expected by com-
bining complementary data sets which do not suffer from the same
observational biases12,13,40. By integrating across multiple data types, we
endeavored to overcome the individual limitations of each data set by
modeling a single underlying truth which is shared between observation
models. We demonstrated that combined inference under the integrated

Fig. 6 | Model predictions(occupancy probabilities and uncertainties) for trico-
lored bat in 2022 at the 5-kmx5-km scale under themulti-scale integrated species
distribution model (MS-iSDM) compared to multi-scale occupancy models fit
using only stationary acoustics or live-capture data. Predictions from the MS-
iSDM (A: mean occupancy probabilities,B: standard deviations) were less uncertain

than those from the models using only stationary acoustics (C: mean occupancy
probabilities, D: standard deviations) or only using live-capture data (E: mean
occupancy probabilities, F: standard deviations). State polygons are from GADM
(Global Administrative Areas, 2018)68.
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model (as opposed to multiple lines of evidence) reduced uncertainty and
provided a comprehensive, appropriately weighted ‘consensus’ estimates11

of population trends over time (Fig. 5A), covariate effects (Fig. 5B), and
spatial patterns (Fig. 6). This ‘smoothing’ of estimates was observed in both
relative abundance and occupancy estimates (Figs. 5, 6), highlighting the
flow of information across ecological states, spatial scales, and monitoring
data sets.

Data integration also facilitated an increased spatiotemporal scope of
inference. Slightly stronger estimated effects of winter-to-summer con-
nectivity under the integratedmodel (Fig. 5-B1) could reflect increased (and
more representative) spatial coverage relative to mobile transects alone. A
stronger post-volancy effect (i.e., apparent birth rate) likely reflects a greater
number of sampling events in the post-volancy season (i.e., when juvenile
bats begin to fly and become detectable by acoustics) when data streams are
integrated. Furthermore, estimating the relationships between data types
and ecological states in years where each was common (e.g., 2016 on)
allowedus to extend estimates under the fullmodel to yearswhenonly some
monitoring types were common. We included data collected before
2012–2015 to better capture WNS impacts which occurred before the
NABat Monitoring Protocol8 was officially established. Had we only ana-
lyzed the data through 2016 based on the most limited data set, we would
have missed severe population declines which occurred between 2012 and
2015. These data, and those collected opportunistically (e.g., capture data),
were less ‘structured’ and less representative than those collected under the
NABat protocol. Including such data could potentially result in some
amount of bias in earlier years due to non-representative sampling41,
especially if data sets are analyzed independently.

This work represents the most comprehensive population and species
distribution analysis to date for the imperiled tricolored bat in thematernity
season, integrating information across both winter and summer. Results
from this work have been used to inform U.S. Fish and Wildlife Service’s
(USFWS) environmental review process based onwhere the species is likely
to occur42. Furthermore, predicted maps of relative abundance and occu-
pancy probability42 (Fig. 2, Supplementary Fig. 7) can be used in environ-
mental reviews to determine the proportion of the species abundance or
distribution that might be at risk of some proposed action in a region of
interest. Finally, maps of occupancy probability, relative abundance, and
trends over time can be integrated with formal or informal species status
assessments or spatial conservation planning efforts.

Standard presence-only species distribution models do not typically
account for observation bias (false-negatives or false-positives), though data
integration has increasingly been used to account for imperfect
detection12,13,24,40,43,44. One notable exception accounted for both false-
negatives and false-positives using a non-identifiable mixture45 which
required at least two additional data sources (a subset of reviewed data and a
second data stream without false-positives) or parameter constraints to
make the model identifiable. Our false-positive N-mixture and occupancy
models—formulated as count-detection models with a hypergeometric
review process—overcome this limitation18,20 and do not require a second
source of unambiguous detections. Despite this, our inclusion of additional
data sources without false-positives (live-capture, MLE-acoustics) likely
further improved model accuracy. Furthermore, our multi-scale iSDM
formulation helped to better account for differential sampling exposure46

(availability) between data sets compared to the typical single scale models
used for iSDMs12,13,24,40,43,44.

Our work had several limitations including: (1) less representative
sampling in monitoring data sets before 2016, (2) long computational run
times which limited the number of alternative model comparisons, and (3)
theuse of broadand simplifying assumptionswhen constructing thewinter-
to-summer migratory connectivity metric resulting from a limited under-
standing of tricolored bat migration throughout its range. One potential
source of improvement would be using local habitat covariates in proximity
of transects to inform any heterogeneity of availability within a grid cell.
Accounting for spatial autocorrelation, especially in the relative abundance
trends over time, may help account for additional non-stationarity if

computational limitations can be overcome. Future extensions which
include presence only summer roost locations or counts could provide
additional information on summer abundance. Finally, extending this
model to include explicit seasonal population dynamics (e.g., apparent birth
and survival processes47) may provide additional insights into the demo-
graphy of bats if methodological challenges can be overcome.

Conclusion
In this work, we developed a first of its kind model (multi-scale, false-
positive, iSDM) for North American bats which integrates monitoring
information across survey types, spatial scales, ecological states, years, and
seasons to improve population inferences on species occupancy and
abundance across a species range. We demonstrated how multiple data
integration techniques can be combined to model cross-seasonal species
distributions and population trends informed by migratory connectivity
from data sets with complex observational processes (false-negatives, false-
positives, availability bias). Ultimately, our work takes an important step
forward in applying data integration approaches to modeling macro scale
distributions of species with cryptic, seasonal, and migratory life histories;
and in modeling the full annual cycle of bats in North America.

Methods
Probabilistic sampling grid and protocol
The NABat master sample8 is based on a grid-based sample frame with 10-
km × 10-km cells (NABat grid cell), with each grid further sub-divided into
5-km × 5-kmquadrants (quads, Fig. 1). The grid-based sample frame serves
as amulti-scale, hierarchical ‘mesh’ (quads within grid cells) to facilitate the
change-of-support48 of across various spatial scales. To achieve NABat
objectives, a probabilistic survey design for site selection was established to
support defensible range-wide inferences, encourage collaboration, and
facilitate data integration among multiple states, regions, and agencies8.
While priority sampling order is stressed for selecting grid cells for mon-
itoring, unique considerations and constraints of each monitoring partner
weigh into the final selections10.

Field method types
We analyzed data from the NABat database49–51 which were collected
between 2012–2022. Monitoring protocols for NABat built upon previous
efforts established by program partners, and are documented in guidance
documents8,52,53. Field monitoring methods consist of acoustic monitoring
in the summer (point sampling and transects), live-captures in the summer,
and counts of winter colony sizes typically obtained at hibernacula (Fig. 1).
Autonomous recording units (ARUs) were deployed at fixed locations
(stationary acoustic surveys) or affixed to a vehicle that traveled along a road
transect (mobile acoustic surveys). Temporal and spatial replication of
surveys, along with manual vetting for subsets of records, provides infor-
mation to account for both false-negatives and false-positives8,18,20. The total
count of auto IDs (species detections by automated classification software),
and the total number of auto IDs which were manually reviewed and
confirmedas the species of interest,were treated as the response variables for
each survey location, night, and method (Supplementary Methods 1).

Live-capture data contributed toNABat are reported as the total number
of bats of each species captured for each location and night. Non-detections
were inferred across all capture survey efforts in the database whenever
sampling effort was reported (at least one other species was caught) and no
tricolored bats were captured. Winter season data are comprised of colony
counts at winter roosts (oftenwith temporal replication), such as caves,mines,
culverts, bridges, or other human structures14. A separate status and trends
analysis using Bayesian hierarchical modeling has provided modeled esti-
mates of abundance each year in hibernaculum19. Data from summer
maternity roosts were not included in this analysis due to data sparsity.

Multi-scale integrated species distribution model (MS-iSDM)
Following prior work11, we constructed a joint likelihood approach to
accommodate multiple data sources and observation processes based on a
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common spatial point process for latent abundance (Fig. 1B). The NABat
grid-based sample frame serves as a multi-scale, hierarchical ‘mesh’
(5-km × 5-km quads within 10-km x 10-km grid cells) that defines the
spatial resolutions at which we define occupancy and abundance. We
assume an inhomogeneous Poisson point pattern process24 for latent
abundance, estimated for each 10-km x 10-km grid cell i and for each time
period t as: Nit � Poisson λit

� �
. Because the summer maternity season for

bats is bisected by the birth pulse and volancy of newborns, we subdivide
year (corresponding with the summertime season each year) into two sub-
periods: pre-volancy and post-volancy, using July 15th as the cutoff 8,18. Thus,
t corresponds with time period (year and sub-period, arranged in chron-
ological order). We model the expected abundance, λit , as a function of
spatial, temporal, and spatiotemporal covariates using a logit link:

log λit
� � ¼ x0iβþ by þ βpost × postit þ c× Siy

where x0i is a row vector of grid cell-level covariate values, β is a vector of
covariate coefficients, by is the temporal random intercept for population
abundance in the pre-volancy season (adult population) each year. To share
information between years in abundance, we assume an AR1 process on the
intercept over time, ½by� ¼ ARð1Þ, for years y = 1, · · ·Y, with Y denoting the
number of years available. Furthermore, postit is a binary indicator for the
post-volancy season (sub-period = 2 each year), βpost represents the post-
volancy effect on abundance, or the apparent birth rate (i.e., the average rate
of increase in abundance after the birth pulse) each year. The variable c is the
migratory connectivity coefficient, and Siy is a measure of potential
migratory connectivity quantified as abundance weighted dispersal flux
(Fig. 1; See Integrating across seasonal distributions).

As proposed in prior work11, we link presence/absence datasets to the
latent abundance process via the deterministic relationship between the
occupancy state zit and abundance Nit : zit ¼ I Nit > 0

� �
(Fig. 1). The

derived occupancy probability (presence of at least one individual) given the
latent abundance intensity λit is 1� exp �λit

� �
; and the probability of

absence (no individuals present) is exp �λit
� �

. Because bats are mobile
species, abundance Nit represents the total number of animals which ‘use’
(for any reason) any portion of a grid cell, while the occupancy probability is
the probability of ‘use’ by at least one individual, over each time period t
(Fig. 1- B.1 and Fig. 1-B.2).

Multi-scale abundance
We use amulti-scale abundance approach (Fig. 1-B.1 and Fig. 1-B.3) which
links the abundance of bats in a 10-km x 10-km grid cell Nit with the
abundance of batsMkt exposed to sampling along each transect (i.e., those
withhomeranges intersecting the transect) basedon sampling exposure rate
θtransectk (the proportion of bats in a grid cell exposed to sampling). Like prior
work18,54, we model the θtransectk as an exponential function of the inverse
transect length: log θtransectk

� � ¼ �βtl ×
1
Lk
, where βtl > 0. This results in a

saturating function,with the rate of saturationdeterminedby the slopeofβtl .
We model Mkt conditionally as a binomial sample of grid cell level abun-
dance Nit given the sampling exposure rate:Mkt � Bin Nit; θ

transect
k

� �
. This

facilitated conditional inferences for Nit (in addition toMkt) based on data
from each individual monitoring type (e.g., mobile transacts), while
accounting for co-located observations within and between data types (e.g.,
site-level confirmation).

Multi-scale occupancy
We used a multi-scale parameterization to represent the finer resolution of
the nested 5-km x 5-km quads (denoted q) within a grid cell i, where
qqt � Bernoulliðθqt × zitÞ and logitðθqtÞ ¼ w0α can include covariates at the
resolution of a quad q that explains local availability or occurrence (Fig. 1-
B.2 andFig. 1-B.4).Here, θqt is theprobability of local availability at the quad
level given occupancy at the grid-cell level, and qqt is the occupancy state at
the quad level. The unconditional probability of occupancy at the 5-km x
5-km scale ðϕqtÞ is defined as θqt × 1� exp �λit

� �� �
:

Spatial covariates on λ and θ
We model spatial covariates on λ and θ via their link functions to explain
heterogeneity in occurrence and abundance at both the 10-km x 10-km and
5-km x 5-km scales. Covariates (Supplementary Table 2) were included
basedonevidence frompreviousNABat17,18, or because theywere thought to
be associated with summer roosting or foraging habitat, including land
cover types (forest types, wetlands), abiotic factors (elevation, physiographic
diversity), and culverts (which are potential roosting structures). Physio-
graphic diversity is a measure of landscape complexity that considers
multiple factors (multiscale topographic position, slope, aspect, parent
material, continuous heat load). The proportion of forest cover by type
(coniferous, oak, non-oak deciduous), the count of culverts, physiographic
diversity, maximum elevation (with quadratic effects) and proportion of
wetland cover (with quadratic effects) were included as predictors on both
expected abundance (10-km) and local occurrence/availability (quad,
5-kmx5-km). Eachcovariate is further described in SupplementaryTable 2,
including its source, measured spatial extent, reasoning for inclusion, a
priori expectations and preparation steps.

Integrating across seasonal distributions
We include a winter-to-summer, migratory connectivity covariate
measure (Siy , Fig. 1 panel A to panel B) on expected abundance λit ,
calculated as abundance weighted dispersal flux, to link winter and
summer population distributions in space and time as in prior work18.
The interpretation of this covariate is the expected number of seasonal
migrants from winter populations to each summer grid cell each year. It
was calculated as the sum of expected contributions of all winter colonies
to each summer grid cell, based on the abundance estimate of each winter
colony each year, and the probability of connectivity between each winter
colony and grid cell (given an exponential migration kernel, the average
migration distance, and the distance between each winter colony and grid
cell, Supplementary Methods 6). An average seasonal migration distance
of 101.1 km was used based on banding and telemetry data reported in
the literature (summarized in Udell et al.18). For annual winter abun-
dances, we used point estimates from a separate NABat analysis of winter
counts19 which used a Bayesian hierarchical time series modeling
approach to account for missing observations and observation error.
Additional methods and figures of seasonal migratory connectivity
(Supplementary Fig. 2) are included in Supplementary Methods 6. Fol-
lowing prior work18 we include the value for winter-to-summer con-
nectivity ðSiyÞ into the log-link for λit after applying a ‘log plus 1’ and
centering it (subtracting the mean over all sites and years) to improve
convergence.

Integrating across monitoring method types (Observation
models)
Observations from each monitoring data type were integrated into the
species distribution model at different relevant spatial scales (Fig. 1B) and
different ecological states. We specified a different hierarchical observation
model for each data type based on their inherent observation biases (e.g.,
detectability, sampling exposure, false-positives, Fig. 1C). We use a super-
script to distinguish the different datatypes and their associated model-

parameters: vðmÞ
ktj for mobile ARU observations; v sð Þ

qtj for stationary ARU

observations; yðcapÞqtj for live capture; and y mleð Þ
qtj for the small subset of sta-

tionary ARU observations which used the ‘MLE-method’ to remove sus-
pected false-positives (Fig. 1).

Mobile transect acoustic surveys
NABat mobile transect acoustics consist of temporally replicated surveys of
acoustic data collected from ARUs mounted to vehicles, which are driven
along transects (ideally 25–48 km in length and driven at aminimum speed
of 32 km/hr8) within NABat grid cells. Mobile transect acoustics were pri-
marily linked with abundance at the 10-km x 10-km scale based on a false-
positive N-mixture model18,20. Given their speed, mobile transects were
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originally designed so that each bat detection could be reasonably assumed
to correspondwith a single individual, and support inferences via unmarked
abundance models8. However, the assumption that animals are only
detected once is no longer required for recent unmarked abundance
methodswhich use a Poisson observationmodel (as opposed to a Binomial)
for the count-detection process18,55.

We let vðmÞ
ktj denote the observed number of auto IDs classified as a

tricolored bat recording during a nightly visit j to a transect k during time
period t. Following prior work18, we used a Poisson observation model for
the count-detection process of auto IDs (vðmÞ

ktj , Fig. 1- C1) based on the
transect level abundanceMkt in each time period, the per capita detection
rate δktj, and the false-positive rate ωktj:

vðmÞ
ktj � Poisson δ mð Þ

ktj ×Mkt þ ω mð Þ
ktj

� �

The per-capita detection rate δ mð Þ
ktj is the average number of true

detections per individual in Mkt each night j. The auto IDs are a combi-

nation true positives (denoted as KðmÞ
ktj , which are unknown and occur

at a rate of δmktj ×Mkt) and false positives (QðmÞ
ktj that occur at a

nightly rate of ωktj). These latent parameters are estimated as:

KðmÞ
ktj � Binomial v mð Þ

ktj ;
δ mð Þ
ktj ×Mkt

δ mð Þ
ktj ×Mktþω mð Þ

ktj

� �
, where

δ mð Þ
ktj ×Mkt

δ mð Þ
ktj ×Mktþω mð Þ

ktj

is the true

positive rate; and QðmÞ
ktj ¼ vðmÞ

ktj � KðmÞ
ktj . A subset of manually reviewed n mð Þ

ktj

and confirmed k mð Þ
ktj auto IDs were modeled via a hypergeometric for-

mulation to provide the necessary information to estimate false-positive and
true-positive rates18,20 (Supplementary Methods 2):

kðmÞ
ktj � Hypergeometric nðmÞ

ktj ;K
ðmÞ
ktj ;Q

ðmÞ
ktj

� �

Heterogeneity in observation parameters (δ mð Þ
ktj and ω mð Þ

ktj ) was
accounted for using a combination of spatiotemporal covariates and nested
random effects (Fig. 1-C1, Supplementary Methods 2), which can help
account for unexplained variation in space and time. We used three pre-
dictors of δ mð Þ

ktj including:minimumair temperature, total precipitation, and
day of year (with quadratic effects on day of year). Random slopes for each
transect were also included for the linear and quadratic day of year effects
(Supplementary Methods 2, as in Udell et al. 18). To account for differences
amongdata contributors in the average false positive ratesω mð Þ

ktj , we included
observation level (i.e., nightly) random effects nested within NABat project
(i.e., data contributor)-level random effects (Supplementary Methods 2).

Stationary acoustic surveys (with manual review)
NABat stationary acoustic surveys deploy 2–4 detectors within an NABat
grid cell8. Ideally, one detector was placed in each 5-km x 5-km quad within
a given NABat grid cell (Fig. 1-B4 and Fig. 1-C2). Detectors were deployed
for 1–4 nights (though sometimes much longer) with detectors recording
from dusk through dawn. Stationary acoustics were linked with occupancy
at the 5 km scale ðqqtÞ using a similar observation process as for mobile
transects. A Poisson count-detectionmodel for auto IDswas conditional on
occurrence at the quad level ðqqtÞ instead of abundance at the transect level
Mkt

� �
(Fig. 1-C2, See Supplementary Methods 3).

vðsÞqtj � Poisson δ sð Þ
qtj × qqt þ ω sð Þ

qtj

� �

This formulation is a false-positive extension of recent multi-scale,
‘continuous-time’ occupancy models46 assuming a standard time exposure
rate of one per site-night. Thus, the overall detection rate δ sð Þ

qtj is the average
encounter rate (i.e., count of truedetections pernight j) given the specieswas
present, which is an implicit combination of local abundances and per-
capita detection rates.Then, just as formobile transects, a subset ofmanually
reviewedn sð Þ

qtj andconfirmedk sð Þ
qtj auto IDs for tricoloredbatwere includedvia

a hypergeometric formulation to estimate false-positive and true-positive
rates (Fig. 1-C2, Supplementary Methods 3). For covariates on δ sð Þ

qtj, we
included fixed effects of total daily precipitation and minimum air tem-
perature. Day of year effects were considered but removed due to con-
vergence issues. The false-positive rate per night ω sð Þ

qtj was formulated the
same as for ω mð Þ

qtj , using hierarchically nested random effects of observation
night within project ID (Supplementary Methods 3).

Stationary acoustics (MLE) and live capture data
A small subset of data collected and submitted by USFWS used a statistical
decision rule (i.e., ‘MLE method’56,57) to remove potential false-positive
detections using a p-value threshold of 0.05. For live-capture data and
‘MLE’-protocol stationary acoustics (where suspected false-positives were
removed prior to analysis), we specify separate traditional occupancy
models for each data type at the 5-km x 5-km scale (Fig. 1-C3 [orange] and
Fig. 1-C4 [blue]) given occupancy at the 5-km x 5-km scale ðqqtÞ and
detection rates (MLE:p mleð Þ

qtj , Live capture: p
capð Þ
qtj ). We used minimum daily

air temperature, total daily precipitation, and day of year (with fixed linear
and quadratic effects on day of year) as predictors for both data types. For
live captures, we also included a random intercept by NABat project on the

detection probability p
capð Þ
qtj

� �
to account for differences in sampling

methods. Refer to Supplementary Methods 4 for more details.

Absolute vs relative abundance interpretations from unmarked
populations
Given sensitives in the intercept of expected abundance estimates (N
and/or λ) to assumption violations (e.g., no unmodeled or mis-specified
heterogeneity) in unmarked abundance models, best practices are cur-
rently to treat inferences as those pertaining to relative abundance58–60

(i.e., covariate effects, proportional trends over time, population growth
rates, demographic rates, etc…). Therefore, we interpret our expected
abundance estimates as relative rather than absolute. However, similar to
prior work13,61, we maintain interpretation of the occupancy probability
estimates as absolute. This was given the multi-scale nature of the change
of support formulation47 with additional tunable parameters for transect-
level (θmk , Fig. 1B) and quadrant-level availability (θqt , Fig. 1B), and the
nature of the complimentary log-log link where occupancy probabilities
saturate near one above modest values of expected abundance.

Data processing and cleaning
Data were accessed from the NABat database using the official data request
process49–51 for each data type and formatted as long-format encounter
histories by location and night. Information on accessing data, data request
numbers, data processing and cleaning steps are documented in Supple-
mentary Methods 1. Descriptions of predictive covariates used for relative
abundance and local availability (including spatial scale, source, and rea-
soning for inclusion) are detailed in Supplementary Methods 5 and Sup-
plementary Methods 6.

Separate vs integrated model comparison
We fitted separate models using data from each individual summer mon-
itoring method, in addition to the fully integrated model, using data from
2016 onward to investigate the improvements topopulation inferences. The
starting year of 2016 was selected to align data sets more fully, given that
stationary acoustic data before 2016 was limited (Supplementary Table 1).
For the separate analyses of stationary acoustic and live capture data, a logit
link was used to model occupancy probability at the 10 km scale instead of
the ‘cloglog’ (assumed in the integratedmodel). A separatemodel for ‘MLE’
protocol stationary data was not fit due to limited sample sizes.

Statistics and reproducibility
Statistical analyses were conducted for each model (MS-iSDMs 2012–2022
and 2016–2022, and each independent model type 2016–2022) in JAGS62
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using R63 and the JagsUI64 package in a Bayesian framework. MCMC set-
tings of each model are documented in Supplementary Methods 7 (Sup-
plementary Table 3). We used visual assessment of MCMC chains and
parameter R-hat65 values of less than 1.1 assess convergence of the MCMC
chains. JAGS code for theMS-iSDM is provided inAppendix S2 and as part
of a US Geological Survey data release31. Across all field method types,
observations at the site by night level served as temporal replicates for each
location and year. Stationary acoustics also typically had 4 spatial replicates
per grid cell (1 per quadrant8, Fig. 1). The total number of site x night
observations for each survey method are provided in Table 1, and for each
survey method and year in Supplementary Table 1.

Model evaluation
Model evaluation is particularly difficult in integratedmodels givendata sets
of different qualities and quantities12. Because the primary intent of this
work was to inform where the species is likely to occur (i.e., predicting
occupancy probability across the range) to support conservation manage-
ment, we evaluated model accuracy using Area Under the Curve (AUC), a
measure of (in-sample) classification accuracy that considers classification
rates of both presences and absences66. We also used a posterior predictive
check67 to visually assess the models of mobile acoustic and stationary
acoustic data by comparing the observed nightly counts to expected values.
We also used a leave-out data set (n = 206) of confirmed presences at the
quad level as validationdata, forwhichwepredictedoccupancyprobabilities
and compared them to those from all sampled locations.

Predictions from the MS-iSDM across the species range
While data from the entire maternity season informed the MS-iSDM,
predictionswere focused specifically on the pre-volancy season (May 1–July
15) each year as the primary time period of interest for NABat’s summer
status and trends8,18. Thus, all species distribution predictions and trend
calculations are representative of the pre-volancy season. All continuous
covariates were scaled for each grid cell and quadrant in the species range,
based on the mean and standard deviations of the available data for each
covariate. Values of maximum elevation were clamped at 6 standard
deviations greater than the sampledmean (i.e., above the 99.9th percentile of
sampled values) to avoid extrapolation beyond the range of observed values.
Then, looping over all grid cells in the species range and 5000 MCMC
samples for covariates effects on λit and θqt , predictions for expected
abundance were made for each grid cell (at the 10-km x 10-km scale) and
predictions for the unconditional occupancy probability ϕqt were made for
each quad (5-km x 5-km), year, and MCMC sample. Predictions were
summarized for each spatial unit and year by taking the means and 95%
credible intervals (lower limit, upper limit, and interval width).

Status and trends estimates (grid cell and range-wide)
Range-wide, derived population status variables of average relative abun-
dance λranget and average occupancy probability ϕranget in the pre-volancy
season each year were calculated by taking themean of predicted λit and ϕqt
across all spatial units (grid cells and quads respectively) for every MCMC
sample and year (as in Udell et al. 18). We calculated trends in these derived
parameters as the total proportional change in λranget and ϕranget between
2012–2022 for each MCMC sample, and summarized the posterior dis-
tribution of these trends as the mean, standard deviation, 95% credible
intervals, and the probability that the trend was less than one.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data supporting this research are available from North American Bat
Monitoring Program (NABat) database49–51 [https://sciencebase.usgs.gov/
nabat/#/results], with restrictions [including non-disclosure agreements,
licensing, other agreements]. The platform is developed andmaintained by

theUSGeological Survey to provide shared, permission-controlled access to
scientific data products and resources. Due to sensitivities around bat data,
including private land ownership and concern for the safety of vulnerable
populations, original data contributors are responsible for managing per-
missions and data access through the NABat Partner Portal. Users may
restrict access to their project-level data, grant access upon request, or make
data publicly available. Partiesmay request access to these data by following
steps documented at https://www.nabatmonitoring.org/get-data. The
parameters of the dataset drawn from the NABat database, date of the
export, and database version are documented in the references49–51 and are
available on theNABatDataRequestArchive (seeNABatRequestNumbers
166, 167, 172) located at: https://sciencebase.usgs.gov/nabat/#/data/
requests/all. Non-sensitive data, model results and predictions, and source
data used to make figures are available as a US Geological Survey data
release31 (https://doi.org/10.5066/P1FKYTMA).

Code availability
Model code has been provided as supplementary material (Appendix S2)
and as part of as a US Geological Survey data release31 (https://doi.org/10.
5066/P1FKYTMA).
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