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Simple Summary: “Tree bats” are North American bats that day-roost in trees year-round and
undertake seasonal migration in lieu of hibernation. These bats have been shown to be highly
susceptible to collisions with wind energy turbines and are known to fly offshore during migration.
Therefore, as offshore wind energy expands off the eastern U.S. coast, there is some concern about
potential impacts. We monitored bats in coastal Virginia, USA, using acoustic monitors—devices
that collect the unique echolocation call signatures of bat species. We found that nightly tree bat
visitation offshore or on barrier islands was associated with wind speed, temperature, visibility,
and seasonality. Using statistical modeling, we developed a predictive tool to assess occurrence
probabilities at varying levels of wind speed, temperature, and seasonality. Probability of occurrence
and therefore assumed risk to collision is highest on high temperature and visibility nights, low wind
speed nights, and during the spring and fall seasons. We suggest a similar modeling regime could be
used to predict the occurrence of bats at offshore wind sites to inform potential mitigation efforts.

Abstract: In eastern North America, “tree bats” (Genera: Lasiurus and Lasionycteris) are highly
susceptible to collisions with wind energy turbines and are known to fly offshore during migration.
This raises concern about ongoing expansion of offshore wind-energy development off the Atlantic
Coast. Season, atmospheric conditions, and site-level characteristics such as local habitat (e.g., forest
coverage) have been shown to influence wind turbine collision rates by bats onshore, and therefore
may be related to risk offshore. Therefore, to assess the factors affecting coastal presence of bats, we
continuously gathered tree bat occurrence data using stationary acoustic recorders on five structures
(four lighthouses on barrier islands and one light tower offshore) off the coast of Virginia, USA,
across all seasons, 2012–2019. We used generalized additive models to describe tree bat occurrence
on a nightly basis. We found that sites either indicated maternity or migratory seasonal occurrence
patterns associated with local roosting resources, i.e., presence of trees. Across all sites, nightly
occurrence was negatively related to wind speed and positively related to temperature and visibility.
Using predictive performance metrics, we concluded that our model was highly predictive for the
Virginia coast. Our findings were consistent with other studies—tree bat occurrence probability and
presumed mortality risk to offshore wind-energy collisions is highest on low wind speed nights, high
temperature and visibility nights, and during spring and fall. The high predictive model performance
we observed provides a basis for which managers, using a similar monitoring and modeling regime,
could develop an effective curtailment-based mitigation strategy.

Keywords: tree bats; Lasiurus; Lasionycteris; wind turbine collisions; offshore; statistical modeling;
monitoring; curtailment; prediction
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1. Introduction

Collisions with wind turbines are an expanding conservation concern for bats [1–3]. In
North America, non-hibernating, migratory “tree bats” (Genera: Lasiurus and Lasionycteris)
are particularly susceptible to collisions and are often the majority bat group in post-
construction carcass surveys at wind energy facilities [4–8]. The tree bat mortality rate
at wind turbines appears to be highly correlated with the seasonal movements of these
species [9–15] whereby collisions are generally elevated in spring and maximized in fall
migration periods [5,7,16]. Increased mortality counts during migration may be attributable
to space-use increase due to fall mating and migration, erratic juvenile dispersal behavior,
and general attraction to turbines [13,14,17,18].

North American tree bats are known to fly offshore with some regularity. This was
first documented in anecdotal historical sightings from ocean vessels large distances off
mainland coasts [19–21] and observations of tree bats on the island of Bermuda [22]. In the
eastern North America, recent research has discovered high-flying tree bats 8.4–44 km from
the main shoreline [23,24]. The occurrence of tree bats offshore and along shorelines follows
a similar seasonal activity pattern to wind turbine collisions—a general peak during spring
and fall migration [23,25–28]. The reasons for this behavior remains unknown but some
speculate that the coastline serves as a topographic reference for navigation [29] or that
favorable wind conditions over open ocean may aid in long distance migration [30]. It is
posited that the eastern shoreline acts as a topographic barrier, concentrating southward
migrating tree bats along the coast during fall [10].

Wind energy in the eastern United States is expanding at an accelerating rate, particu-
larly in the offshore sector [31–33]. To date, two offshore wind turbine operations exist in
the eastern United States that account for <50 MW capacity [33]. However, an increasing
number of offshore projects are now leased and in the beginning construction phases. It
is projected that these projects will account for more than 20 GW of rated capacity [33],
a 400-fold increase. Although projections indicate offshore wind facilities will likely be
concentrated in the wind resource rich Northeast, some development is proposed off the
mid-Atlantic coast along Virginia, Delaware, Maryland, and New Jersey [33]. The impact
this rapid development will have on bats is unknown, however, risk is certainly non-zero
particularly for tree bats as they are the most susceptible bat group to collision (particularly
during migration) and are the only bat group consistently seen at offshore localities (again,
particularly during migration).

Onshore, extensive monitoring at wind facility sites post-construction have offered
successful data driven conservation strategies to minimize bat mortality at turbines includ-
ing, but not limited to, acoustic deterrents [34–40] and curtailment [41–45]. Curtailment
is based on the knowledge that most bats generally avoid flying in overtly windy condi-
tions, i.e., avoiding speeds generally above 5 m/s [44,45]. Therefore, at low wind speeds
below this (or other) threshold(s), turbine managers feather turbine blades, bringing rotor
movement to a minimum, and thereby minimizing bat fatalities. There has been some
success in the use of curtailment to reduce bat mortality while also minimizing financial
loss [42,44,46] through the development of “smart curtailment” algorithms. These are
typically model based, multivariate approaches whereby curtailment is triggered by the
expectation of high bat activity or probability of presence [42,47,48]. Although these strate-
gies may hold promise for offshore wind energy impacts, unlike terrestrial systems, the
factors that influence occurrence (and therefore the parameter values necessary to predict
risk metrics) of bats offshore are poorly known.

Monitoring bat activity offshore is challenging. Passive acoustic monitoring over
ocean waters requires some type of infrastructure (platforms, buoys, lighthouses, etc.) to
support acoustic detectors. Barrier islands and offshore structures offer an alternative
approach to collecting acoustic data in the near “offshore” environment if located a consid-
erable distance from the mainland shoreline. Yet, these sites are accessible and feasible as
detector deployment infrastructure. A few studies have approached the problem in this
way, deploying acoustic detectors on islands, structures at sea, and on the coastline [26–28].
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However, most of this research has been concentrated in the Northeast. Further south
in the mid-Atlantic, some degree of seasonally fluctuating barrier island use by bats has
been observed [25] as has fall offshore flight [23,24]. However, temporally, and geographi-
cally limited sample sizes somewhat constrain generalizability and the development of
predictive models to describe the factors influencing bat use and to test the feasibility of a
predictive curtailment algorithms in the near-offshore environment.

Our study sought to address these data gaps with a large sample of acoustic bat
occurrence data off the Eastern Shore of Virginia (ESVA). From 2012 to 2019, the Virginia
Department of Wildlife Resources deployed acoustic monitors at four barrier island sites
and one offshore site. We used this large acoustic dataset to develop a model to describe
migratory tree bat nightly occurrence relationships to season, atmospheric conditions,
and site-specific characteristics. Our modeling served two purposes—description and
prediction [49]. We describe the parameters that reveal the effects of various potential
drivers of nightly occurrence of tree bats. Then, we use the model as a predictive tool of
bat occurrence and hence potential risk for regional wind turbine collisions once deployed.

We hypothesized that tree bat occurrence in mid-Atlantic coastal environments is
closely related to season due to the seasonal fluctuations in which tree bats use coastal land-
scapes and oceanic space. We predicted strong positive effects in spring and fall, moderate
effects in summer, and negative effects in winter. We also developed competing hypotheses
that the seasonal effect is explained by either (1) unique sites, or (2) the availability of local
day-roosting habitat and potentially important foraging habitat (e.g., trees/forests, fresh
water). We predicted that if the seasonal pattern is best explained by site specifics that
unique sites would have noticeably different occurrence relationships to season. If the
seasonal pattern is best explained by roosting habitat, sites with limited roosting habitat
would have similar occurrence relationships to season (e.g., peaks only during migration).
Lastly, we hypothesized that tree bat occurrence is closely related to multiple atmospheric
conditions. We predicted that occurrence would be negatively related to wind speed,
positively related to nightly temperature.

2. Materials and Methods
2.1. Study Area

We conducted acoustic monitoring on four barrier island sites and one offshore site off
the ESVA (Figures 1 and 2) 2012–2019. The ESVA is the southern portion of the Delmarva
Peninsula, surrounded by the Chesapeake Bay to the west and the Atlantic Ocean to the
east. Locally, the vegetation is mid-Atlantic Coastal Plain deciduous and evergreen (pine)
mixed upland and bottomland forest in its interior and intertidal saltmarsh habitat along
the coasts. On the eastern Atlantic boundary, a chain of barrier islands occur that are
characterized by little physical relief above sea level with upland shrub thickets, scattered
patches of forest and salt marsh [50]. On the eastern side of ESVA, we monitored on
Assateague Island on the Assateague Lighthouse, Cedar Island on an inactive United States
Coast Guard (USCG) station, Hog Island on an inactive USCG station, and Smith Island on
the Cape Charles Lighthouse. Cedar Island, Smith Island, and Hog Island are similar in
that they are primarily composed of saltmarsh and upland shrub thickets. Some overstory
evergreen vegetation exists on Hog Island, however, it is extremely limited in extent. In
contrast to other ESVA study sites, Assateague Island has considerable deciduous and
evergreen forest habitat. Additionally, Assateague Island contains fresh water sources.
On the western boundary, we conducted research near Silver Beach on a navigation light
structure approximately 0.7 km off the western shore of the ESVA in the Chesapeake Bay.
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Figure 1. Acoustic detector sites (black points) on barrier islands and a light tower off the Eastern 
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tional Climatic Data Center (NCDC) online tool (Climate data online; 
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Figure 1. Acoustic detector sites (black points) on barrier islands and a light tower off the Eastern
Shore of Virginia, USA, 2012–2019. Weather data was obtained from the nearest available National
Oceanic and Atmospheric Administration (NOAA) weather stations (starred points) from the Na-
tional Climatic Data Center (NCDC) online tool (Climate data online; https://www.ncdc.noaa.gov/
cdo-web/; accessed on 9 November 2019).

2.2. Acoustic Data

From 2012 to 2019, we collected acoustic data at the five ESVA sites named Assateague
Island, Cedar Island, Hog Island, Smith Island, and Silver Beach (Figures 1 and 2). We
used frequency division/zero-crossing acoustic detectors (Anabat SD1 and SD2, Titley
Scientific, New Ballina, NSW (any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S. Government) that record high
frequency (15–150 kHz) echolocation pulses of bats. We placed the detectors on existing
structures (lighthouses or similar) at heights of approximately 10–40 m. We collected data
annually typically across three seasons—beginning in early spring and through late fall
and recorded during the winter season at least once per site (Figure 3). We considered
acoustic recordings on a nightly basis from sunset to sunrise.

https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/


Animals 2021, 11, 3146 5 of 18
Animals 2021, 11, x  5 of 18 
 

 
Figure 2. Lighthouses and structures serving as infrastructure for acoustic bat detector deployment on Eastern Shore of 
Virginia, USA, 2012–2019. Acoustic detector microphone locations are indicated by the red circles. Labels correspond to 
the locations given in Figure 1: (a) Assateague Island (Assateague Lighthouse); (b) Cedar Island (inactive United States 
Coast Guard station); (c) Hog Island (inactive United States Coast Guard station); (d) Silver Beach (offshore navigation 
light structure); (e) Smith Island (Cape Charles Lighthouse). 

2.2. Acoustic Data 
From 2012 to 2019, we collected acoustic data at the five ESVA sites named As-

sateague Island, Cedar Island, Hog Island, Smith Island, and Silver Beach (Figures 1 and 
2). We used frequency division/zero-crossing acoustic detectors (Anabat SD1 and SD2, 
Titley Scientific, New Ballina, NSW (any use of trade, firm, or product names is for de-
scriptive purposes only and does not imply endorsement by the U.S. Government) that 
record high frequency (15–150 kHz) echolocation pulses of bats. We placed the detectors 
on existing structures (lighthouses or similar) at heights of approximately 10–40 m. We 
collected data annually typically across three seasons—beginning in early spring and 
through late fall and recorded during the winter season at least once per site (Figure 3). 
We considered acoustic recordings on a nightly basis from sunset to sunrise. 

The post processing data structure was composed of timestamped individual echo-
location sequences of bats (hereafter “bat passes” or “passes”). Bat passes is defined as a 
distinct series of echolocation pulses, or “clicks”, which is identified to one bat as they 
pass within range of the detector [51]. We used Kaleidoscope 4.5.0 Bats of North Amer-
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conducted on the Eastern Shore of Virginia, USA, 2012–2019.
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The post processing data structure was composed of timestamped individual echolo-
cation sequences of bats (hereafter “bat passes” or “passes”). Bat passes is defined as a
distinct series of echolocation pulses, or “clicks”, which is identified to one bat as they
pass within range of the detector [51]. We used Kaleidoscope 4.5.0 Bats of North America—
4.2.0 classifier (Wildlife Acoustic, Inc., Maynard, MA, USA) to identify passes to species,
unidentified bat passes (“no ID”), or noise. We tallied nightly pass counts by individual
species, no ID, and noise. To minimize false positives, we manually inspected subsets
of passes identified to species to confirm identification. Due to the context of the prob-
lem and realization that >85% of identified passes were tree bats, we placed particular
emphasis on correct identification of eastern red bats (Lasiurus borealis), silver-haired bats
(Lasionycteris noctivigans), and hoary bats (Lasiurus cinereus), and only used tree bat pass
data in our analysis. In wind turbine collision risk studies, recent evidence suggests that
the hourly or nightly passage rates of bats pre-construction are poor predictors of fatality
rates post-construction [52] so to account for this, instead of using hourly or nightly tallies
of bat passes as our response variable, we restructured the data to consider only the binary
occurrence (or non-occurrence) of tree bat(s) on a nightly basis.

2.3. Atmospheric Conditions and Other Variables

We compiled weather conditions from nearby National Oceanic and Atmospheric
Administration (NOAA) weather stations on the ESVA (Climate data online; https://
www.ncdc.noaa.gov/cdo-web/; accessed on 9 November 2019; Figure 1). We used the
nearest available weather station to each site to approximate hourly weather conditions. We
extracted hourly data on wind speed (m/s), wind gust speed (m/s), temperature (deg C),
visibility (0–16.2 km), pressure (mmHg), precipitation duration (hours), precipitation (cm),
and absolute humidity (mg/cm3). We filtered these data to reflect dates and hours in
which the detector stations were active, i.e., reducing to a nightly basis between sunset and
sunrise on active detector nights. We summarized each weather variable to reflect nightly
conditions taking the nightly mean of wind speed, temperature, visibility, pressure, and
relative humidity, the maximum wind gust speed, nightly cumulative sum of precipitation,
and nightly cumulative number of hours precipitating. We also created a change in pressure
variable calculated as the mean at the current night minus the mean of the previous night.
Lastly, because bats may be more likely to be present at individual sites during different
times of the year if they contain viable day-roosting habitat, we created a binary roosting
habitat variable as has viable roost availability (forests) or, none or limited roost availability
for each detector station. We also noted additional potentially relevant variables including
ordinal date (day of year), site name, and year. We did not include the potentially relevant
variable of detector height because we were limited by the number of unique heights
(n = 5).

2.4. Presentation of Data and Exploratory Data Analysis

We performed an exploratory data analysis (EDA) to visualize the effect of wind speed,
temperature, and seasonality. At each site, we noted tree bat occurrence or non-occurrence
and calculated a 20-day moving average on the ordinal date (day of the year (1–366)).
We also fit a smoothing line (generalized additive model (GAM) spline; [53]) to aid in
visualization. We calculated 90%, 95%, and 99% quantile values in which 90%, etc. of
all nights with tree bat occurrence were less than a wind speed threshold, greater than a
temperature threshold, or between spring or fall date ranges. We calculated these quantiles
for wind speed only, temperature only, and a mix of wind speed and temperature or a
spring and fall date range.

2.5. Modeling

We used generalized additive models (GAMs; [54,55]) with a binomial distribution
(logit link function) to model the relationship between binary nightly occurrence of tree bats
and the variables. GAMs are an extension of generalized linear models (GLMs; [56]) such

https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/
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that the expected response is a link transformed summation of an intercept and the product
of slope coefficients and variables, however, some or all variable effects may be specified
as semi- or non-parametric real functions denoted as splines (hereafter “smooths” or
throughout, “f (x)”; [54,55,57–60]). Smooths are created by a series of coefficient scaled basis
functions “tied” together at knots—evenly spaced segments along the variable range. These
smooths then, can take on complex, non-parametric shapes in the relationship between
the variable effect and the variable as opposed to the generally linear, or parametric
relationships in GLMs that may not reflect actual biological patterns. We performed all
analysis in program R [61] and fit GAMs using the R package mgcv [53].

To test our first hypothesis and the subsequent competing hypotheses, we used a
model selection process that tested three a priori models to select the appropriate model that
best accounted for a potentially nonlinear seasonal effect. These three models contained
smooth non-parametric function(s) of the ordinal date that took on factor level-specific
shapes depending on the factor provided in the model. We supplied one model with no
factor variable, one with roosting habitat availability that varied its intercept with site, and
one with site only (Table 1).

Table 1. A priori generalized additive models to evaluate the shape of the effect of seasonality (ordinal date) of tree bat
occurrence at offshore/barrier island sites, Eastern Shore of Virginia, USA, 2012–2019. Three models are presented—one
that only considers the ordinal date, one that considers local roosting availability, and one that considers site specifics.

Model Name (Model Number) Explanation Biological Significance

Ordinal date only (1)
Nightly tree bat occurrence is
explained by a smoothed effect of the
ordinal date.

Tree bat visitation of barrier islands is related to the
day of the year (ordinal date) because of the seasonal
offshore habits of tree bats during migration.

Ordinal date by roosting
habitat (2)

Nightly tree bat occurrence is
explained by a smoothed effect of the
ordinal date, but two shapes
exist—one for viable roosting habitat,
one for limited roosting habitat.
Additionally, an intercept modifier
exists for each site.

Tree bat visitation of barrier islands is related to the
day of the year (ordinal date) because of the seasonal
offshore habits of tree bats during migration. For
sites with viable roosting habitat, the effect of
ordinal date is likely highest in mid-summer,
indicating maternity use. For sites with limited
roosting habitat the effect of ordinal date is likely
highest in spring and fall, indicating migratory use
only. While the effect shapes are roost-availability
specific, occurrence rates may differ between sites
for some unknown reason, so the intercept is free to
fluctuate between sites.

Ordinal date by site (3)
Nightly tree bat occurrence is
explained by smooth effects of the
ordinal date—one for each site.

Tree bat visitation of barrier islands is related to the
day of the year (ordinal date) and this relationship is
specific to each site. For instance, some sites may be
migration only, some sites may be for some
migration and summer use, and many other minute
differences between sites.

We used the minimum change in Bayesian information criterion (∆BIC; [62]) as the
basis for model selection because BIC outperforms Akaike’s information criterion (AIC)
when n is large (n > 3000; [63]) and tends to select more parsimonious models because the
penalty for complexity is larger than AIC (for n > e2). We calculated each a priori model
BIC using Schwarz’s method of BIC = –2 log(L) + K log(n) implemented in the model.sel
function of the R package MuMIn [64].

We used the top a priori model structure in all further models as a baseline (i.e.,
this model structure was nested within any other further competing model). To include
atmospheric conditions into the model, we first reduced variables by omitting those of
high correlation (Pearson correlation coefficient > 0.7). We then created a global model that
included all variables as smooth functions. We performed a dredge (i.e., fit all possible
additive model combinations). We compared these models by BIC. We considered models
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<2 BIC points competing models in which we selected the top model by biological feasibility
and interpretability [63].

To test predictive performance, we performed a series of diagnostic tests on the final
model. First, to assess general performance, we conducted a Monte-Carlo cross validation
(MCCV; [65]) on the area under the receiver operating characteristic (AUC; [66]). The
AUC is a threshold dependent, sensitivity and specificity dictated metric of predictive
performance for binary data such that an AUC of 0.5 is no better than random and an
AUC of 1 is perfect prediction [66]. To perform the MCCV, we (1) randomly selected 85%
of the data for training and 15% of the data for testing the model, (2) fit the model and
predicted on the withheld data, and (3) measured and saved the AUC using the R package
pROC [67,68]. We repeated those steps for 1000 iterations. We calculated the mean of
the AUCs, and a 95% confidence interval by taking 2.5% and 97.5% quantiles of those
1000 iterations.

As a second metric of predictive performance, we again divided the data into 85% train-
ing and 15% testing groups. Using the training group, we fit the final model, then predicted
occurrence probabilities from 0 to 1 on the testing group. We selected an optimal “cut-off”
threshold using the Youdin index [69] to categorize occurrence. We used these categoriza-
tions to compare to their true occurrence values. Therein, we calculated a confusion matrix
and values for sensitivity (true positive rate; true positives/true positives + false negatives)
and specificity (true negative rate; true negatives/true negatives + false positives; [70–72]).
We used various other R packages for data manipulation, cleaning, processing [73–75],
visualizations, and mapping [76–81].

3. Results

We recorded acoustic data over eight years (2012–2019) resulting in a total of 5735 nights
of recording across all detectors. We recorded at Silver Beach across four years (762 nights),
Assateague Island and Smith Island across five years (791 and 1328 nights, respectively),
Hog Island across six years (1268 nights), and Cedar Island across all eight years (1586 nights).
Per year, effort was primarily centered on warmer months of spring to autumn, however,
winter effort existed 1–2 years per site resulting in nearly entire year effort across all sites
(Figure 3). We detected tree bats on a total of 39.26% of recorded nights, which varied by
site (min = 29.89% at Hog Island, max = 71.30% at Assateague Island).

With respect to the exploratory data analysis, tree bats appeared to occur at sites
with strong relationships to season (Figure 4). At Assateague Island, we detected nightly
occurrence with a unimodal shape—low occurrence in winter, increase in spring, a peak
in summer, and a decrease in fall. For all other localities, we detected bimodal effect
shapes with respect to season—low occurrence in winter, a small peak in spring, a slight
decrease in summer, then an increase and larger peak in fall. Sites showing a bimodal
shape contained limited roosting habitat and probably limited foraging habitat.

The proportion of nights with tree bat occurrences appear related to wind speed and
temperature as 90% of occurrences were on nights where wind speed averaged below
4.06 m/s and average temperatures were above 12.66 ◦C (Table 2). As an additive effect
to these atmospheric conditions, the spring and fall months appeared to carry a large
proportion of positive occurrence nights as 90% of occurrences occur during either wind
speeds below 4.5 m/s, above 12 ◦C, or were between the dates of 28 April–14 May or
16 August–1 September.
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Figure 4. Raw occurrence data (black points: occurrence, non-occurrence (1, 0)) from acoustic detectors deployed on the
Eastern Shore of Virginia, USA, 2012–2019. Data is grouped by site for all years of data collection stacked on a 1–366 ordinal
date calendar. The raw data is shown as semi-transparent to visualize the occurrence density across years. Additionally
overlaid are the results from the exploratory data analysis (EDA): the general relationship of tree bat nightly occurrence vs.
ordinal date is represented by a 20-day two-sided moving average proportion of nightly occurrence (red line) and smoothed
average using a generalized additive model (GAM) spline (blue line). Each site is labeled as containing viable day-roosting
habitat (grey square) or limited day-roosting habitat (black square).

Table 2. The 90%, 95%, and 99% quantiles representing the proportion of nights with tree bat occurrence under certain
conditions of wind speed, temperature, and/ or date ranges using acoustic data collected on the Eastern Shore of Virginia,
USA, 2012–2019.

Percent of Positive Occurrence
Nights with Conditions Conditions Values

0.90 Wind Speed <4.06 m/s
0.95 Wind Speed <4.90 m/s
0.99 Wind Speed <7.28 m/s
0.90 Temperature >12.66 ◦C
0.95 Temperature >10.31 ◦C
0.99 Temperature >5.43 ◦C

0.90 Wind Speed and
Temperature or Date Range

<4.5 m/s and >12 ◦C or within either
28 April–14 May or 16 August–1 September

0.95 Wind Speed and
Temperature or Date Range

<4.5 m/s and >12 ◦C or within either
23 March–11 June or 11 July–7 October

0.99 Wind Speed and
Temperature or Date Range

<4.5 m/s and >12 ◦C or within
24 February–3 November

Through model selection, the top approximating a priori model via minimum ∆BIC
was model 2—the ordinal date shaped by roosting habitat model (Table 3). In post-hoc,
our atmospheric variables reduced from seven to six potentially relevant variables by
omitting nightly maximum wind gust (m/s) due to multicollinearity with nightly mean
wind speed (m/s). We argue that nightly mean wind speed more closely relates to the
wind conditions throughout an entire sampling night. We encountered missing values
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from weather stations that forced us to reduce the total number of nights from 5735 to 4864
so that each model used the same data in calculating model selection metrics.

Table 3. A priori models ranked by Bayesian information criterion (BIC) from acoustic data collected
off the Eastern Shore of Virginia, USA, 2012–2019. Displayed are the model names and numbers as
referenced in Table 1, approximate degrees of freedom, −log (Likelihood), BIC, and ∆BIC.

Model Name (Model Number) df log (L) BIC ∆BIC

Ordinal date by roosting habitat (2) 18 −2798.92 5758.08 0.00
Ordinal date only (1) 14 −2834.04 5794.93 36.85

Ordinal date by site (3) 44 −2760.76 5906.33 148.25

Our global model included all remaining terms as additive smooths. The model
selection dredge resulted in 128 models from which we selected the top model via BIC
(Table 4). This top model included an intercept, site as a factor, a smooth effect of ordinal
date based on day-roosting habitat, and smooth effects of nightly mean temperature, wind
speed, and visibility.

Table 4. Top five competing post-hoc models ranked by Bayesian information criterion (BIC) from acoustic data collected
off the Eastern Shore of Virginia, USA, 2012–2019. The model selection dredge contained all possible combinations of site
(factor, 5 levels), smooth effects, f (x), of ordinal date (1–365; one for each roost availability type [viable, limited]), and smooth
effects of nightly mean pressure (mmHg), temperature (C), visibility (0–10 mi), and wind speed (m/s), total precipitation
duration (hours), and change in pressure from the previous night. N/I indicates no inclusion in that particular model.
Terms with “+” indicate inclusion of that term in the model as a smooth function. We displayed the model degrees of
freedom (df), BIC, and ∆BIC.

Intercept Site f (Ordinal, by
Roost Habitat) f (Press) f (Temp) f (Visib) f (Wind

Spd)
f (Precip

Duration) f (∆Press) df BIC ∆BIC

−1.149 + + N/I + + + N/I N/I 23 4557.7 0.00
−1.149 + + N/I + + + + N/I 24 4563.8 6.09
−1.136 + + N/I + N/I + N/I N/I 20 4567.5 9.82
−1.134 + + N/I + N/I + + N/I 21 4569.1 11.37
−1.149 + + + + + + N/I N/I 28 4579.8 22.12

The smooth effect of temperature and visibility was generally positive along the range
of variable values, however, plateaus at higher values of each were evident (Figure 5).
The smooth effect of wind speed was linear and negative along the range of variable
values. The smooth effect of ordinal date was different for each roost availability type.
For sites with limited roost availability the ordinal date effect was generally low in winter,
locally maximized in spring at around ordinal date 125 (~May 5), lower in summer, and
maximized in fall at around ordinal date 235 (~August 22). For sites with viable roosting
habitat, the ordinal date effect generally increased from winter to spring, peaked in summer
at around ordinal date 200 (~July 17), and decreased in fall (Figure 5). The intercept of
the model was modified based on site. The greatest positive effect was Assateague Island
(β0 + β1), the only site with viable roosting habitat (Table 5). The lowest effect was at Hog
Island (β0 + β2; Table 5), the most distant barrier island from the ESVA mainland.



Animals 2021, 11, 3146 11 of 18
Animals 2021, 11, x  11 of 18 
 

 
Figure 5. Visualizations of all smooth effect components, f(x), of the final model which was fit using acoustic data off the 
Eastern Shore of Virginia, USA, 2012–2019. The fits (solid lines) and 95% confidence intervals for the fits (black dotted 
lines) are displayed. Smooths, f(x), can be interpreted as the effect of the variable, x. Nightly occurrence probability is 
positively associated with larger smooth values along the range the of variable. These smooth components, f(x), are on the 
logit scale, for example, the dotted line at 0 on the logit scale indicates 50% probability of occupancy. The final model used 
smooth effects of nightly means of temperature (a), wind speed (b) visibility (c), and the ordinal date (c). The shape of the 
smooth effect was separated by roost availability, by limited (d), or viable (e). 

Table 5. Beta parameters names, estimates, standard errors, and p-values for site-specific intercept 
modifiers in the final model fit using acoustic data off the Eastern Shore of Virginia, USA, 2012–
2019. Estimates of β1–β4 should be added to the intercept (β0) to interpret the intercept modifying 
effect of the specific locality correctly. 

β Parameter Estimate Standard Error Z-Score p-Value 
β0 (Intercept, Cedar Island) −1.170 0.086 −13.69 <0.05 

β1 (Assateague Island) 3.133 0.209 14.96 <0.05 
β2 (Hog Island) −0.444 0.101 −4.38 <0.05 
β3 (Silver Beach) 0.311 0.113 2.74 <0.05 
β4 (Smith Island) −0.335 0.104 −3.21 <0.05 

Our final model was highly predictive. It contained a mean MCCV AUC value of 
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rence was 0.393, which we used as a threshold to predict on withheld data. The model 
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values were 0.826 and 0.671, respectively. 

(a) (b) (c) 

(d) (e) 

Figure 5. Visualizations of all smooth effect components, f (x), of the final model which was fit using acoustic data off the
Eastern Shore of Virginia, USA, 2012–2019. The fits (solid lines) and 95% confidence intervals for the fits (black dotted lines)
are displayed. Smooths, f (x), can be interpreted as the effect of the variable, x. Nightly occurrence probability is positively
associated with larger smooth values along the range the of variable. These smooth components, f (x), are on the logit scale,
for example, the dotted line at 0 on the logit scale indicates 50% probability of occupancy. The final model used smooth
effects of nightly means of temperature (a), wind speed (b) visibility (c), and the ordinal date (c). The shape of the smooth
effect was separated by roost availability, by limited (d), or viable (e).

Table 5. Beta parameters names, estimates, standard errors, and p-values for site-specific intercept
modifiers in the final model fit using acoustic data off the Eastern Shore of Virginia, USA, 2012–2019.
Estimates of β1–β4 should be added to the intercept (β0) to interpret the intercept modifying effect of
the specific locality correctly.

β Parameter Estimate Standard Error Z-Score p-Value

β0 (Intercept, Cedar Island) −1.170 0.086 −13.69 <0.05
β1 (Assateague Island) 3.133 0.209 14.96 <0.05

β2 (Hog Island) −0.444 0.101 −4.38 <0.05
β3 (Silver Beach) 0.311 0.113 2.74 <0.05
β4 (Smith Island) −0.335 0.104 −3.21 <0.05

Our final model was highly predictive. It contained a mean MCCV AUC value of
0.852–95% CI (0.828, 0.877). The optimal cutoff for predicting occurrence or non-occurrence
was 0.393, which we used as a threshold to predict on withheld data. The model appeared
to correctly predict occurrences as indicated by the confusion matrix (Figure 6). Therein,
the number of false positives and false negatives were generally low (117 and 65 out of
730 data points). Sensitivity (true positive rate) and specificity (true negative rate) values
were 0.826 and 0.671, respectively.
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displayed as true positives (top left), false positives (top right), false negatives (bottom right), and true
negatives (bottom left). Shading indicates more frequency of any categorization—darker indicating
more weight.

4. Discussion

Our hypotheses were generally supported by our analysis. First, tree bats do occur at
offshore barrier island sites, but occurrence is most related to season. This became apparent
as peaks in the occurrence rate over ordinal date contained local maximums in spring and
fall. This seasonal effect is demonstrated in the EDA (Figure 4), the smoothed ordinal
effects of the model (Figure 5), and in that 90 and 95% of occurrence nights fell within
either nights of certain wind speed and temperature conditions or somewhat narrow
spring or fall date ranges (Table 2). These seasonal effects undoubtedly are related to
the migratory behavior of tree bat species [9–11,15,82,83]. Why tree bats traverse large
bodies of water seasonally remains speculative, however, it could be explained by a simple
increase in space use during migration or favorable conditions for long-distance flight
occurring offshore [30]. Curiously, while both fall and spring seasons contain local peaks
in occurrence, fall occurrence rates are higher than spring. This could be explained by
the fact that fall is mating season and tree bats are more active in searching for mates
and thereby more likely to explore more space [14,84]. This appears consistent as female
eastern red bats are known to have multiple mates in a single season [85]. These effects
are compounded, too, by additional volant juveniles navigating long distances for the
first time. Moreover, these effects occur at a time when the species’ population should
be at a level higher following summer parturition and juvenile volancy than winter and
spring which could incidentally cause a higher rate of occurrence in fall as compared to
spring [86].

Another obvious effect on occurrence was the presence or absence of viable roosting
habitat (forests), which seemed to influence the shape of the seasonal pattern. The unimodal
seasonal activity pattern observed at Assateague Island, which contained forests available
for roosting habitat, was more typical of onshore sites—bats arrive in spring, activity
peaks in mid-summer which corresponds to maternity activity, and bats settle into reduced
activity states (cave hibernation (cave bats) or intermittent torpor (tree bats)) in fall and
then winter [11]. The other survey sites that contained little or no forest patches seemed



Animals 2021, 11, 3146 13 of 18

to be visited consistently in just spring and fall—an indication of vagrant, rather than
maternity, use. These sites contained lower activity in general, suggesting that without
quality roosting habitat, bat occurrence and residency time was low, aside from the spring
and fall season. Therefore, our results support the latter of our competing hypothesis—the
pattern of seasonal use is best explained by the availability of local day-roosting habitat.
This point also supports that siting for offshore wind turbines should consider increasing
distance to viable roosting habitat to reduce curtailment needs during the summer. A
similar study also observed this [27], that bat activity decreases with increasing distance
from mainland and decreasing forest coverage.

Next, including nightly atmospheric conditions greatly improved the model. It was not
surprising that wind speed had negative effects on occurrence and conversely temperature
and visibility had positive effects on occurrence. For example, we found that ~95% of nights
that contained positive tree bat occurrence were <~5 m/s (~11 mi/hr) and >~10 ◦C (50 ◦F).
High wind speeds and low temperatures greatly increase the energy costs associated with
flying [87] which may be particularly true at distant barrier islands where we speculate
that the nightly origin of these bats was most likely non-local, i.e., from the ESVA mainland.
We understand that a multitude of atmospheric conditions relate to the activity states of
bats [28] and the migratory behavior of birds [30]. Indeed, many observations of over-ocean
flying bats have been during calm conditions [88]. We were initially surprised that visibility
was selected as a relevant variable considering that bats rely on audible cues to navigate
during flight via echolocation. However, it is intuitive to assume that bats use visual cues
when flying above the ocean and/or when traveling to the islands and structures that
we detected them nearby. Bats are known to echolocate while traveling over the ocean,
particularly when close enough to detect them with acoustics (e.g., [23,89]), however, hoary
bats (Lasiurus cinereus) sometimes forgo echolocation when traveling, and therefore rely
solely on visual clues intermittently [90]. It is not beyond the realm of possibility that
over-ocean flying bats use vision when there are no reflective surfaces for echolocation (e.g.,
at high altitudes) and therefore are unlikely to engage in over-ocean flights when visibility
is low. The negative relationship of occurrence to visibility could also be explained by poor
conditions for flying in general (rain, wind, low temperatures) as poor visibility is generally
associated with those poor weather conditions, which, require more energy to fly in (e.g.,
rain, [91]).

Our modeling effort increased our understanding of the pattern of occurrence of
migratory tree bats at barrier island sites in the mid-Atlantic. Importantly, this dataset
revealed the conditions whereby occurrence along the coast is more or less likely. Whether
inland or coastal, it is established that site characteristics, seasonality, and atmospheric
conditions influence the activity rates of bats [25–28]. These effects are reinforced with our
findings at the more southerly latitude of the ESVA. The occurrence of bats offshore was
highly predictable when using the model. Our large AUC values from the MCCV indicated
that, on average, given site specifics, day of the year, and atmospheric conditions, the
occurrence probability of migratory tree bats is very accurate for the ESVA sites. We also
argue that our study continues a trend of consistency across studies. Tree bats appear to use
offshore areas on the east coast during a certain set of conditions—calm and warm weather,
during fall (and to some extent spring), and nearer to shorelines or forest coverage than
far [27,88]. Therefore, we believe our results are fairly generalizable to the surrounding
region of the mid-Atlantic coastline.

Nonetheless, our study is not without limitations. First, observing bats via acoustics
contain potential biases in that the physics of ultrasonic sound (bat echolocation pulses)
change with atmospheric conditions [92]. This, plus the fact that non-occurrence does not
necessarily equate to absence (i.e., detection probability is not reliably 1; [93]), may over or
underestimate probabilities of occurrence depending on the conditions, time of year, among
other factors. Additionally, acoustic activity of bats and wind turbine collision risk are
not always analogous [52]. Regardless, these issues largely concern the correct detection
of absence rather than presence of bats. In our research, nights of known occurrence
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follow patterns that are consistent (i.e., prediction accuracy is high on withheld data when
trained on multiple years of data). Lastly, our study was limited in the number of sites
to support our results. As we were limited in detector deployment infrastructure and
accessibility, we were restricted to only five sites which could restrict generalizability and
could contain bias. As just mentioned however, our study does not differ in major ways
from other studies. Even with just five sites, patterns of occurrence follow associations
with atmospheric conditions, site specifics, and seasonality in a largely nonunique manner
which, as a standalone study may suffer with site limitations, but in the greater literature is
in support of what has previously been known [25,27,89].

The development and deployment of predictive smart curtailment algorithms is cur-
rently underway onshore and may be a viable method to reducing bat collisions at offshore
wind farms. While additional research is warranted to assess collision risk at project-level
localities, these data and this analysis helps identify a starting-point in assessing the tempo-
ral and climatic conditions when tree bats may be most susceptible to impacts from wind
turbines offshore in the Mid-Atlantic region. If nightly occurrence does indeed generally
correlate to offshore wind strike risk, a similar algorithm or model could be used as a to
predict when risk is more likely. Even more simply, if managers were to implement simple
standards, such as curtailing on nights with average wind speeds <5 m/s, temperatures
>10 ◦C, and/or during the spring and (especially) the fall, most bat occurrence (and poten-
tial risk) could be avoided. It appears that curtailment using a combination of variables as
these could be a relatively inexpensive [94] and effective [44,95] way to reduce bat fatalities
at offshore wind facilities.

5. Conclusions

Although we do not suggest using our specific model as a smart curtailment tool per
se, this framework provides a viable starting point for creating curtailment regimens in
the Mid-Atlantic. Our model was highly predictive and parsimonious which may suggest
generalizability. Our results suggest that tree bat occurrence, and therefore a potential
for risk is most likely under general and definable conditions—during the spring and
fall seasons and on nights with low wind speeds, high temperatures, and high visibility.
As such, it would be feasible for wind energy managers to collect acoustic data pre- and
post-construction, assess the frequency of visitation at their specific sites, use site specific
effects, atmospheric conditions, and seasonality in a modeling framework, and test the
predictive ability of the model for specific locations. Using this approach, managers could
have some basis for understanding which conditions influence nightly occurrence and
when and where bat collision risk is non-zero or high as a guide to curtailment or other
mitigation practices to minimize bat mortality.
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