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A B S T R A C T

With the global rapid expansion of offshore renewable energies, there is an urgent need to assess and predict 
effects on marine species, habitats, and ecosystem functioning. Doing so will require dynamic, multitrophic, 
ecosystem-centric approaches coupled with oceanographic models that can allow for physical and/or biogeo
chemical indicators of marine ecosystem change to be included. However, in such coupled approaches, indicators 
carry uncertainties that can propagate and affect species higher up the trophic chain. Dynamic Bayesian net
works (DBNs) are pragmatic approaches that probabilistically represent ecosystem-level interactions. They allow 
for uncertainties to be better estimated than mechanistic models that only account for expected values. In this 
study, we calculated variance as a measure of uncertainty from selected indicators and used them to build DBN 
models. A hidden variable was incorporated to model functional ecosystem change, where the underlying in
teractions dramatically change, following a disturbance. We wanted to assess whether propagating uncertainty 
into the modelling process affects the predictive accuracy of the models in the context of reconstructing the time 
series of the ecosystem dynamics. Model accuracy was improved for 60 % of the species once variance was 
added. The models were better in capturing the temporal inter-annual variability, once variance was calculated 
with a rolling window approach. The hidden variable successfully modelled previously identified ecosystem 
changes, however, now with the added uncertainty, the changes that implicated the ecosystem state were 
identified earlier in the time series. The results indicate that using DBNs is highly valuable as it gains accuracy 
with the addition of uncertainty.

1. Introduction

Marine ecosystems consist of complex dynamic interactions among 
species and the environment, the understanding of which has significant 
ecological and societal implications for predicting nature’s response to 
changes in climate and biodiversity (Barange et al., 2014; García Moli
nos et al., 2016). Such interactions are further exacerbated by spatial 
and temporal variation of the ecosystem and its components (Doney 
et al., 2012; Hunsicker et al., 2011; Polis et al., 1996). Stressors such as, 
climate change, fishing, and resource exploitation have also been shown 
to modify the driving forces in ecosystems (Blanchard et al., 2012; 
Cheung et al., 2019; Lotze et al., 2019). Understanding and disen
tangling the drivers of ecosystem change can be challenging because of 
the variability in observations, for example due to imperfect methods of 

observation and uncertainty in potential associations due to external 
forces like climate change (Link et al., 2012). Such complexities are a 
major challenge for modellers, particularly as data are often rather 
scarce due to the relatively high costs of collecting field data, the 
practical difficulties of collecting samples from all parts of the 
ecosystem, and the lack of scientific understanding about the entire 
range of factors that may be relevant to the ecosystem functioning.

Significant progress has been made in developing ecosystem models 
that use traditional statistical approaches to understand the relation
ships between several variables (Lynam et al., 2017), including “end-to- 
end” ecosystem models to predict impacts of environmental change on 
the structure and function of marine food webs and the services they 
provide (Heath et al., 2021). However, all these models assume that the 
underlying functional relationships do not change their form over time. 
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This assumption might not be true, as ecosystems are known to some
times undergo relatively fast structural changes that have a major effect 
on the ecosystem dynamics (Möllmann et al., 2008). Further, it is 
possible that the changes are driven by unobserved components, i.e. 
ecosystem variables that we do not have data for. Allowing for un
certainties in the modelling process rather than just accounting for ex
pected values is also an improvement to deterministic models which 
might remain fraught with errors when applied to problems with real 
data (Wikle, 2003). Thus, it is recommended that ecosystem models 
develop fuller non-mechanistic appreciation of ecological interactions 
across space and over time due to changing pressures at different levels 
of the trophic chain (Uusitalo et al., 2018).

Approaches using time series of multispecies population character
istics, as well as both physical and biological ecosystem components are 
useful methods to understand the drivers of ecosystem change, such that 
patterns of species population change can be quantified across space and 
over time, under different climate and/or anthropogenic scenarios 
(Lynam et al., 2017). In particular, coupling physical dynamics from 
high resolution oceanographic models (e.g., Finite Volume Community 
Ocean Model (FVCOM)) into ecosystem models can allow for critical 
physical (e.g., temperature) and/or biogeochemical (e.g., oxygen) in
dicators of marine ecosystem change to be included. However, all 
modelled and to some extent observed physical variables carry inherent 
biases and uncertainties. Additionally, model resolution and boundary 
forcing may contribute further to these errors (Powley et al., 2020). In 
coupled physics-ecosystem models, these errors can propagate through 
dependent physical and/or biogeochemical parameters and may affect 
variables higher up the trophic chain.

Other sources of error could come from data being assembled from 
different spatial and temporal scales, for example, fish stock data in one- 
year resolution, whilst climate data, such as sea surface temperature 
available on a daily resolution. The spatial and temporal scale of phys
ical and biological indicators is a challenging issue with respect to un
derstanding the multiplicity of mechanisms underlying observed 
patterns and variability changes (Levin, 1992; Wiens, 1989, 1990) and 
especially the trophic interactions of highly mobile marine animals (fish, 
seabirds, and marine mammals) within dynamic marine environments. 
However, the inclusion of physical and biological indicators is essential 
as they can be significant drivers of variation, or direction of change, in 
either behaviours, distributions and/or population dynamics of the 
highly mobile top predator marine species, thus delivering an under
standing of the indicators of habitat and ecosystem change (Trifonova 
et al., 2022). For example, one of several possible physical indicators to 
measure stratification is the potential energy anomaly (PEA, J/m3). PEA 
represents the amount of work required to bring about complete vertical 
mixing per unit of volume (Simpson and Bowers, 1981) and indicates the 
strength of stratification and mixing rate (De Boer et al., 2008; De 
Dominicis et al., 2018). The seasonal cycle of stratification underpins 
primary production cycles. Recent modelling outcomes reveal that PEA 
plays a significant role in predicting the abundance changes of both 
lower (e.g., sandeel larvae) and higher trophic level (e.g., harbour 
porpoise, black-legged kittiwake) marine species on a regional spatial 
scale (Carroll et al., 2015; Trifonova et al., 2021) and to a lesser extent, 
in determining habitat preferences on a North Sea scale (Sadykova et al., 
2017; Wakefield et al., 2017). PEA can reflect more subtle spatial and 
temporal changes within a habitat type (Van Leeuwen et al., 2016) and 
season (Simpson and Bowers, 1981), thus further highlighting the 
importance of spatial and seasonal distribution of physical processes as 
good indicators up through the entire trophic chain and any changes 
that are affecting ecosystem functioning.

Being able to propagate uncertainty into ecosystem models can be 
very useful when applied to environmental challenges with real data. 
Understanding how levels of uncertainty affect the predictive accuracy 
of the ecosystem models could provide more insight into which variables 
are the causes and even if certain variables are relevant at all in efforts to 
reconstruct ecosystem dynamics. Most importantly, explicit accounting 

for uncertainty can add substantial practical insight to many real-life 
problems that can aid communicating theories and results to industry 
and policy (Uusitalo, 2007).

One way of dealing with uncertainty in environmental domains is 
using statistical indicators related to variability, autocorrelation and 
recovery time (Carpenter et al., 2011; Scheffer et al., 2009). Such ap
proaches have been demonstrated as new tools for understanding 
nonlinear dynamics in ecosystems, thus revealing new indicators of 
vulnerability and improving ecosystem management in a rapidly 
changing environment. Previous studies have demonstrated the use of 
variance and autocorrelation in the early detection of data patterns that 
govern the temporal ecological dynamics (e.g., ecosystem shift: Scheffer 
et al., 2009). Specifically, studies have used an increase in the mean and 
increase in the variance in the Quickest detection method to account for 
the expected ecosystem shift and uncertainty, respectively (Carpenter 
et al., 2014). Also, it has been demonstrated that such metrics can 
improve the predictive accuracy of ecosystem models when trying to 
predict functional changes, i.e., regime shifts (Trifonova et al., 2014). To 
understand and predict ecosystem response to perturbation, it is 
necessary to unravel the ecological networks underlying ecosystem’s 
stability and fragility (Dunne et al., 2002). However, identifying all the 
interactions and quantifying all the unexpected effects and interactions 
due to external pressures within complex real ecosystems can be rather 
challenging and beyond the scope of traditional fieldwork (Aderhold 
et al., 2012).

Computational inference of ecological interactions presents an 
alternative route to unravel ecosystem dynamics. Specifically, one way 
forward of dealing with these issues is to use probabilistic methods such 
as Bayesian networks (BNs) that can be used to capture ecological pat
terns between variables (Hui et al., 2022) and reveal spatiotemporal 
trends (Tucker and Duplisea, 2012), without requiring specific infor
mation on mechanisms and vast amounts of observational data used in 
traditional ecosystem models (Uusitalo, 2007). Modelling time series is 
achieved by using an extension of the BN known as the Dynamic 
Bayesian Network (DBN) which allow predictions to be made across 
different spatial and temporal scales and with a range of indicator spe
cies or functional groups representing all trophic levels (Trifonova et al., 
2015). A hidden variable can be used to enable the modelling of non- 
stationary dynamics (Tucker and Liu, 2004), which is potentially high
ly useful in ecological analyses where complex ecological interactions 
change in time due to changing pressures at different levels of the tro
phic chain. Its value depends on all the observed variables it is linked to, 
and a change in the pattern of the hidden variable indicates a change in 
the system interactions. BNs use probability as a measure of uncertainty: 
beliefs about values of variables are expressed as probability distribu
tions, and the higher the uncertainty, the wider is the probability dis
tribution. As information accumulates, knowledge of the true value of 
the variable usually increases, i.e., the uncertainty of the value di
minishes and the probability distribution grows narrower (Gelman et al., 
1995; Sivia and Skilling, 2006).

In this study, we focused on providing a method to propagate un
certainty (i.e., calculated as variance) from a set of physical and bio
logical indicators that included critically important factors of ecosystem 
change (e.g. stratification, primary production, temperature; Trifonova 
et al., 2021). Understanding how levels of uncertainty affect the pre
dictive accuracy of the ecosystem models could provide more insight 
into which indicators are more relevant when evaluating ecosystem 
structure and function in efforts to determine the ecosystem state. In this 
way, we wanted to provide a pragmatic yet powerful methodology that 
can be used within marine spatial planning considerations of the rele
vant implications of future climate change versus anthropogenic im
pacts (e.g., offshore large-scale wind developments). Firstly, the 
indicators were used to build dynamic hidden BN models, and we 
wanted to assess whether bringing in uncertainty into the modelling 
process would affect the predictive accuracy of the models in the context 
of reconstructing the ecosystem dynamics. To be able to do so, we used a 
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machine learning optimization technique to find the data-driven esti
mates of interactions among the physical and biological indicators. We 
used the learned data-driven interactions to construct a dynamic BN, i.e. 
one that explicitly represents the behaviour of the system over time, that 
incorporates a hidden variable to enable the modelling of non-stationary 
dynamics. A hidden variable was incorporated in the model to see 
whether we can detect a change in the interactions of the observed 
variables over time. Therefore, we wanted to see whether the hidden 
variable can be used to model changes in the ecosystem state. We then 
calculated the variance as a measure of uncertainty for selected physical 
and biological indicators and used it to define their conditional proba
bility distributions when learning the model variants of the hidden dy
namic BN model. We used a rolling window approach to calculate 
variance and autocorrelation for all the ecosystem components to build a 
separate model variant. We examine the models’ accuracy in terms of 
their ability to reproduce observations of the trends (increases versus 
decreases) in all the ecosystem components. We evaluate the potential 
usefulness of Bayesian inference for ecosystem-level interactions by 
examining whether using statistical metrics, such as variance and 
autocorrelation, improves the predictive accuracy and modelling of the 
ecosystem state.

2. Materials and methods

2.1. Study region and ecosystem components

Focus of the study are UK coastal waters and specifically the region of 
Firth of Forth, as defined by the spatial boundaries in Fig. 1, which 
currently contains Scotland’s largest operational offshore wind farm. 
The marine environment in this area is very complex due to a composite 
bathymetry exhibiting localized shelf banks, suggesting that the region 
might be subjected to small-scale processes defining a “mosaic” of 
heterogenous hydrodynamic conditions (Zampollo et al., 2025). The 
Forth is known to support overwintering populations and juveniles of 
estuarine fish communities and represents a significant percentage of 
the commercial activity in the North Sea (Elliott et al., 1990). The Isle of 
May, located about 40 km east of the Firth of Forth, is known to be a 
National Nature Reserve hosting >250,000 breeding seabirds and a 
population of breeding grey seals that feed upon eastern productive 
offshore waters (Harris and Wanless, 1998).

The time series input data consisted of annual values (1990–2022) as 
either seasonal mean values of physical variables (e.g. temperature) or 
cumulative values of biological variables (e.g. net primary production), 
or maximum values of physical and biological variables: current speeds 
and maximum Chl-a, respectively. Biological variables for population 
dynamics included total annual abundance, recruitment or mean 
breeding/pupping success (Table 1). Individual zooplankton species 
were grouped by summing up the abundance into assemblages, based on 
the geographical distribution and ecological characteristics of the un
derlying species, based on Beaugrand, 2004. All other trophic levels 
(fish, seabirds and mammals) were not grouped but used as individual 
species in the ecosystem models (Table 1). We refer to all the variables in 
the study as “ecosystem components” but distinguish components based 
on them being either physical (e.g. horizontal currents speed) or bio
logical (e.g. sandeel recruitment) indicators. The ecosystem components 
in the study were chosen as they cover the main physical and biological 
variables that have been shown to be important to marine mammals and 
seabirds and their prey (Carroll et al., 2015; Chavez-Rosales et al., 2019; 
Wakefield et al., 2017). These will alter with climate change (Holt et al., 
2016; Sadykova et al., 2017; Wakelin et al., 2015), and with the next 
biggest change to our shallow seas: very large number of new structures 
and substantial (100’s GWs) extraction of energy from ORE (Boon et al., 
2018; Daewel et al., 2022; De Dominicis et al., 2018; Dorrell et al., 2022; 
van der Molen et al., 2014). Previous studies were also conducted on a 
larger spatial scale (i.e., > 1000 km2) identifying the indicators used 
here as key regarding ecosystem change (Trifonova et al., 2021) and 
assessing both ecosystem status and resilience to natural and anthro
pogenic changes (Trifonova and Scott, 2024).

2.2. Bayesian networks

Formally, a Bayesian network (BN) describes the joint distribution (a 
way of assigning probabilities to every possible outcome over a set of 
variables, X1…XN) by exploiting conditional independence relation
ships, represented by a directed acyclic graph (DAG) (Friedman et al., 
1999). The conditional probability distribution (CPD) associated with 
each variable X encodes the probability of observing its values given the 
values of its parents and can be described by a continuous or a discrete 
distribution. In this case, the CPD is called a Conditional Probability 
Table (CPT) and all the CPTs in a BN together provide an efficient 

Fig. 1. The spatial boundaries of the study region: Firth of Forth.
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Table 1 
Summary of physical and biological data.

Category Ecosystem 
component

Explanation Source

Physical Bottom 
temperature 
(BT)

Annual summer 
(May–August) 
mean bottom 
temperature (◦C)

Atlantic-European 
North West Shelf- 
Ocean Physics 
Reanalysis provided 
by E.U. Copernicus 
Marine Service 
Information using 
the Nucleus for 
European Modelling 
of the Ocean (NEMO) 
model (CMEMS-NWS 
physics)

Physical Sea surface 
temperature 
(SST)

Annual summer 
(May–August) 
mean sea surface 
temperature (◦C)

CMEMS-NWS 
physics

Physical Potential 
Energy 
Anomaly (PEA)

Annual summer 
(May–August) 
mean potential 
energy anomaly (J/ 
m3). The energy 
required to mix the 
water column 
completely and 
commonly used as 
an indicator for the 
strength of 
stratification (De 
Dominicis et al., 
2018)

CMEMS-NWS 
physics

Physical Horizontal 
current speed 
(HSpeed)

Annual summer 
(May–August) 
mean maximum 
depth averaged 
horizontal currents 
speed (m/s)

CMEMS-NWS 
physics

Physical Vertical current 
speed (VSpeed)

Annual summer 
(May–August) 
mean maximum 
depth averaged 
horizontal currents 
speed (m/s)

CMEMS-NWS 
physics

Primary 
production

Chlorophyll-a 
(max Chl-a)

Annual summer 
(May–August) 
mean maximum 
chlorophyll-at any 
depth (mgC/m3)

Atlantic-European 
North West Shelf- 
Ocean 
Biogeochemistry 
Reanalysis provided 
by E.U. Copernicus 
Marine Service 
Information using 
the European 
Regional Seas 
Ecosystem Model 
(ERSEM) (CMEMS- 
NWS 
biogeochemistry)

Primary 
production

Net primary 
production 
(NetPP)

Annual summer 
(May–August) 
mean depth 
averaged net 
primary production 
(gC m-2 year− 1)

CMEMS-NWS 
biogeochemistry

Physical Mixed Layer 
Depth (MLD)

Annual summer 
(May–August) 
mean mixed layer 
depth (m). The 
deepest layer 
affected by surface 
turbulent mixing; 
indicator for the 
variations of 
primary production

CMEMS-NWS 
physics

Table 1 (continued )

Category Ecosystem 
component 

Explanation Source

Biogeochemical Oxygen within 
the Bottom 
Mixed Layer  
(Oxy)

Annual summer 
(July–October) 
mean minimum 
oxygen (μmol L− 1)

CMEMS-NWS 
biogeochemistry

Abundance A2 zooplankton 
assemblage

Annual summer 
(May–August) total 
sum count of 
zooplankton 
species (e.g. 
Calanus 
helgolandicus)

Continuous plankton 
recorder (CPR) 
survey

Abundance A4 zooplankton 
assemblage

Annual summer 
(May–August) total 
sum count of 
zooplankton 
species (e.g. Para- 
Pseudocalanus spp.)

CPR Survey

Abundance A5 zooplankton 
assemblage

Annual summer 
(May–August) total 
sum count of 
zooplankton 
species (e.g. Acartia 
spp.)

CPR Survey

Abundance A6 zooplankton 
assemblage

Annual summer 
(May–August) total 
sum count of 
zooplankton 
species (e.g. 
Calanus 
finmarchicus)

CPR Survey

Recruitment Sandeel Annual number of 
individuals to enter 
the fished 
component of the 
stock

ICES Stock 
Assessment

Recruitment Herring Annual number of 
individuals to enter 
the fished 
component of the 
stock

ICES Stock 
Assessment

Recruitment Sprat Annual number of 
individuals to enter 
the fished 
component of the 
stock

ICES Stock 
Assessment

Recruitment Mackerel Annual number of 
individuals to enter 
the fished 
component of the 
stock

ICES Stock 
Assessment

Recruitment Haddock Annual number of 
individuals to enter 
the fished 
component of the 
stock

ICES Stock 
Assessment

Recruitment Cod Annual number of 
individuals to enter 
the fished 
component of the 
stock

ICES Stock 
Assessment

Human 
pressure

Catch of pelagic 
fish species 
(herring, 
sandeel, sprat, 
mackerel; Catch 
PEL)

Annual total sum of 
nominal catches 
(tonnes live 
weight)

ICES Historical 
Nominal Catches 
(1950–2010) and 
Official Nominal 
Catches 
(2006–2022)

Human 
pressure

Catch of 
demersal 
species (cod, 
haddock; Catch 
DEM)

Annual total sum of 
nominal catches 
(tonnes live 
weight)

ICES Historical 
Nominal Catches 
(1950–2010) and 
Official Nominal 
Catches 
(2006–2022)

Human 
pressure

Catch of 
shellfish species 
(scallops, 

Annual total sum of 
nominal catches 

ICES Historical 
Nominal Catches 
(1950–2010) and 

(continued on next page)
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factorization of the joint probability: 

p(x) =
∏n

i=1
p(xi|pai)

where pai are the parents of the node xi (which denotes both node and 
variable).

The DAG consists of nodes (or variables) and edges (or links) be
tween the nodes. “Parent” nodes are those from which arrows originate, 
and “child” nodes are those to which arrows are pointing. Edges between 
nodes represent dependency relationships. Each node in the DAG is 
characterized by a state which can change depending on the state of 
other nodes and information about those states propagated through the 
DAG. By using this kind of inference, one can change the state or 
introduce new data or evidence (change a state or confront the DAG with 
new data) into the network, apply inference and inspect the posterior 
distribution (which represents the distributions of the variables given in 
the observed evidence). The graphical structure of BNs is particularly 
convenient when we aim to describe an ecological network to model all 
the interactions between species and their environment that also pro
vides a user-friendly framework to communicate the results (Chen and 
Pollino, 2012). It is relevant to think of the BN as a “graph”, describing 
species as the “nodes” within the graph, and interactions as the links or 

“edges” that join the nodes (Faisal et al., 2010).

2.3. Dynamic Bayesian networks

Modelling time series is achieved by using an extension of the BN 
known as the Dynamic Bayesian Network (DBN), where nodes represent 
variables at time slices. DBNs are directed graphical models of stochastic 
processes that characterize the unobserved and observed state in terms 
of state variables, which can have complex interdependencies (Murphy, 
2001). DBNs can model the dynamics of a dataset using a hidden 
variable.

This hidden variable is used to model unobserved variables and 
missing data and can infer some underlying state of the series when 
applied through an autoregressive link that can capture relationships of 
a higher order (Murphy, 2001). The hidden variable allows us to 
examine unmeasured effects that would bring further insight on the 
importance of ecosystem dynamics to better understand community 
structure and resilience in an exploited ecosystem (Trifonova et al., 
2015; Uusitalo et al., 2018). In most domains, the observed variables 
represent only some characteristics of a system, which can have a 
negative effect on the learning procedure. For example, the apparent 
complexity of a predicted variable can be explained imagining it is a 
result of two simple processes, the “true” underlying state, which may 
evolve deterministically, and our measurement of the state, which is 
often noisy (Murphy, 2002). We can then “explain away” unexpected 
outliers in the observations, as opposed to strange fluctuations in 
“reality”.

A hidden variable can be linked to one, multiple, or all, of the 
observed ecosystem components in the model. Then, the hidden variable 
value depends on all the observed ecosystem components it is linked to, 
and a change in the pattern of the hidden variable indicates a change in 
the system interactions. This is highly useful in ecological analyses 
where nonstationary dynamics are common and complex ecological 
interactions change with time due to changing pressures e.g., climate 
change (Chen and Pollino, 2012). In this work, the hidden variable was 
included in the models, to capture complex interdependencies between 
and among ecosystem components that might represent something 
external to the community, which is not purely constrained within the 
model structure. We use the hidden variable in this study, to represent a 
change in the underlying ecosystem dynamics (i.e. ecosystem state), 
following a natural or anthropogenic disturbance to the system in
teractions in the study region.

2.4. Uncertainty propagation

We used the variance as a measure of uncertainty (i.e., a high vari
ance meaning greater uncertainty about the outcome of X given its 
parents or a low variance meaning that X is more tightly constrained by 
its parents). For example, in the case of two variables X and Y, with Y 
influencing X. The conditional distribution P (X|Y) can be modelled as a 
Gaussian distribution with mean (μX(Y)) and variance (σ2

X(Y)): 

P(X|Y) = N
(
μX(Y) , σ2

X(Y)
)

In a Bayesian network, uncertainty about a variable propagates 
through the network from the parent nodes to the child nodes. We 
defined variance in the CPD which reflects the uncertainty associated 
with predicting the value of a variable given its parents. When set up in 
this way, the uncertainty, in turn, influences the accuracy and reliability 
of the model predictions (i.e., if the conditional variance of a node is 
high, the distribution of possible outcomes for that node will be wide). 
The accuracy of a Bayesian network model can be affected by how well it 
handles uncertainty and variance, especially in terms of its predictive 
performance.

However, a more complex model which accounts for varying vari
ance in different parts of the network (e.g., different variances for 

Table 1 (continued )

Category Ecosystem 
component 

Explanation Source

Nephrops; 
Catch Shell)

(tonnes live 
weight)

Official Nominal 
Catches 
(2006–2022)

Human 
pressure

Landings of 
pelagic fish 
species 
(herring, 
mackerel; 
Landings PEL)

Annual summer 
(May–August) total 
sum of landed fish 
(tonnes live 
weight)

Marine Management 
Organization 
(MMO)’s annual UK 
Sea Fisheries 
Statistics

Human 
pressure

Landings of 
demersal fish 
species (cod, 
haddock; 
Landings DEM)

Annual summer 
(May–August) total 
sum of landed fish 
(tonnes live 
weight)

MMO Fisheries 
Statistics

Human 
pressure

Landings of 
shellfish species 
(scallops, 
Nephrops; 
Landings Shell)

Annual summer 
(May–August) total 
sum of landed 
shellfish (tonnes 
live weight)

MMO Fisheries 
Statistics

Breeding 
success

Northern 
gannet (Morus 
bassanus)

Annual summer 
mean number of 
chicks fledged per 
pair

Seabird monitoring 
programme

Breeding 
success

Black-legged 
kittiwake (Rissa 
tridactyla)

Annual summer 
mean number of 
chicks fledged per 
pair

Seabird monitoring 
programme

Breeding 
success

Common 
guillemot (Uria 
aalge)

Annual summer 
mean number of 
chicks fledged per 
pair

Seabird monitoring 
programme

Breeding 
success

Razorbill (Alca 
torda)

Annual summer 
mean number of 
chicks fledged per 
pair

Seabird monitoring 
programme

Abundance Harbour 
porpoise 
(Phocoena 
phocoena)

Annual summer 
(May–August) 
mean of encounter 
rate

Waggitt et al. (2020).

Productivity Grey seal 
(Halichoerus 
grypus)

Annual summer 
mean estimates of 
pup production

Special Committee 
on Seals (SCOS, 
2022)

Abundance Harbour seal 
(Phoca vitulina)

Annual summer 
(August) total sum 
count of harbour 
seals

SCOS (2022)
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different conditional distributions), can sometimes improve predictions 
by allowing the model to better reflect the underlying uncertainties in 
the system (Nabney and Cheng, 1997; Simoen et al., 2015; Montesinos 
López et al., 2022). If variance is assumed to be constant or ignored in 
certain parts of the model, it may lead to overly simplistic models that 
fail to capture important nuances in the data.

There is copious literature that addresses statistical metrics, such as 
variance and autocorrelation and their use as indicators of an 
approaching regime shift (Carpenter et al., 2014; Jiao, 2009). In previ
ous work, they have been used to identify a functional collapse (i.e., 
regime shift) by modelling early-warning signals in the time-series 
(Trifonova et al., 2014). However, here, we use them as an alternative 
approach to account for uncertainty and examine whether their inclu
sion influences the model accuracy. We are also interested in identifying 
to what extent including them in our model impacts the expected values 
of the hidden variable. Previous work has shown that after the addition 
of the metrics in the model, the hidden variable was more stable and 
more likely to reflect the underlying ecosystem dynamics (i.e., capture a 
regime shift) (Trifonova et al., 2014).

3. Experiments

3.1. Learning Bayesian networks

We learn the Bayesian network structure for each of the spatial re
gions by applying a hill-climb optimization technique. The hill-climb 
search begins with an empty network. In each stage of the search, net
works in the current neighbourhood are found by applying a single 
change to a link in the current network such as “add arc” or “delete arc” 
and choose the one change that improves the score the most. We used 
the Bayesian Information Criterion (BIC) for scoring candidate 
networks: 

BIC = logP(θ) + logP(θ|D) − 0.5klog(n)

where Θ represents the model, D is the data, n is the number of obser
vations (sample size) and k is the number of parameters. Log P(Θ) is the 
prior probability of the network model Θ, log P(Θ|D) is the log likeli
hood whilst the term k log(n) is a penalty term, which helps to prevent 
overfitting by biasing towards simpler, less complex models. The learned 
Bayesian network links represent dependence, these are spatial re
lationships that are predictive in an informative, not causal aspect 
(Milns et al., 2010; Trifonova et al., 2015). The method identifies sim
ilarity in the temporal trend of the paired variables (i.e. both variables 
increase, or as one increases, the other decreases over time). We per
formed the hill-climb with random restart (n = 10), which conducts 
several hill-climbing runs, perturbing the result of each one as the initial 
network for the next. Then, we apply the learning for 1300 iterations. 
The maximum number of “parent” nodes (learned from the hill-climb) 
was limited to three to avoid over-fitting (Trifonova et al., 2015). This 
hill-climb approach produces a probabilistic dependency output per 
year (i.e., value from 0 to 1) and for all the possible combinations of 
paired relationships between the observed variables. We define a con
fidence threshold - the minimum confidence (estimate of the probability 
of finding a relationship) for a relationship to be accepted in the learned 
network structure. We defined relationships of high confidence in time 
as those in which we have the greatest mean confidence (calculated from 
all the years per identified relationship) of being in the generated 
network (threshold ≥ 0.25). We use the confidence value to represent 
the strength of each dependency relationship between a pair of two 
variables. The confidence of the identified relationship represents the 
level of similarity in the temporal trend of the paired variables. In 
addition, to learn the network structure for each year in the time win
dow, the hill-climbing was conducted on a window of data (size of 
window = 10). In this way, we would be able to capture any significant 
interactions over the previous 10 years. Based on the level of confidence 

and the number of the identified relationships between the observed 
indicators and between the observed indicators with the hidden vari
able, we define “best” indicators, which represent the most confident 
data-driven estimates of indicators of ecosystem dynamics and their 
changes across space and time (Fig. 2).

3.2. Ecosystem models comparison

3.2.1. HDBN ecosystem model
The modelling approach is a dynamic Bayesian network model with 

a hidden variable (HDBN, Fig. 2) that is a modified version of the model 
developed in Trifonova et al. (2015, 2017). The model was developed 
from the identified consistent physical and biological indicators from 
Section 3.1. From the strongest relationships, up to three indicators (i.e. 
“parent” nodes) were selected that drive each target ecosystem 
component (i.e. “child” node) and were used to build the modelling 
structure. Therefore, in this way the HDBN ecosystem model captures 
the spatial and temporal variability of multiple biophysical interactions 
throughout the trophic chain, ensuring that the strongest relationships 
(i.e. relationships of high dependency that are predictive in an infor
mative, not causal aspect), and so the most consistent indicators of 
ecosystem change, are the ones identified in this process. The model 
included a single hidden variable that was modelled as a discrete node 
with two states.

When the model parameters are fitted with data, the value of the 
hidden variable is set so that it maximizes the fit of the model to the data 
(e.g. the log-likelihood). If the patterns of the observed variables change 
in the time series, e.g. the slope of a dependency between two variables 
changes, the value of the hidden variable linked to these variables’ 
changes. Thus, we use the hidden variable in this study, to represent a 
change in the underlying ecosystem dynamics (i.e. ecosystem state). To 
do this, the hidden variable was linked to all the ecosystem components 
in the model.

We want to compute P (Ht|Xt, Xt – 1), where Ht represents the hidden 
variable and Xt represents all observed variables at times t. We use the 
predicted variable states from time t to infer the hidden state at time t. 
The hidden variable was parameterized using the Expectation Maximi
zation (EM) algorithm (Bilmes, 1998). In this case, the log-likelihood is: 

L(Ɵ) = logP(X|Ɵ) = log
∑

j
P(X,H|Ɵ)

where 
∑

H is the sum over the set of hidden variables H, required to 
obtain the marginal probability of the data. In the first step of the EM, 
the hidden variable is inferred using the predicted states, whilst in the 
second step the estimated likelihood function is maximized. When the 
algorithm converges to a local maximum, the parameters are estimated. 
We used an exact inference method: the junction tree algorithm 
(Murphy, 2001).

3.2.2. HDBN + physics and HDBN + ecology ecosystem models
The variance (i.e., the square root of the standard deviation) was 

calculated for all the physical and biogeochemical drivers and used to 
populate their CPDs (i.e., gaussian distributions) when building the first 
model variant, the HDBN + physics ecosystem model. In the second 
ecosystem model variant (HDBN + ecology), the variance was calcu
lated for the biological indicators (i.e., zooplankton abundance, fish 
recruitment, birds breeding success and mammals’ abundance and/or 
harbour porpoise encounter rate) and was used to populate their CPDs 
when building the HDBN + ecology ecosystem model. In this way, we 
can account for varying variance in different parts of the network (e.g., 
different variances for different conditional distributions), which will 
potentially improve predictions by allowing the models to better reflect 
the underlying uncertainties in the system. In contrast, parameters for 
the HDBN model were not specifically assigned. In the case of gaussian 
nodes, the following was assumed: if node is called Y, its continuous 
parents (if any) are called X, and its discrete parents (if any) are called Q. 
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The distribution on Y is defined as follows:

Y∣X = x,Q = i ∼ N(mu( :, i)+W( :, :, i)* x , Sigma ( :, :, i) )

where N (mu, Sigma) denotes a normal distribution with mean mu 
and covariance Sigma (Murphy, 2001).

3.2.3. HDBN + VAR + AC ecosystem model
Finally, variance and autocorrelation were calculated on a window 

of data, set to size 10, so that each metric captures the value of interest 
over the previous 10 years. The size of the window was found to be 
optimum due to the length of the time series Note, the predictions from 
this model variant will be available for a shorter time series due to the 
windowing approach. The metrics were included in another ecosystem 
model variant (HDBN + VAR + AC), and they were both linked to all the 
remaining ecosystem components. We explore to what extent including 
the two statistical metrics in our model impacts the expected values of 

Fig. 2. (a) General structural form of the dynamic Bayesian network model with a hidden variable (HDBN) where X1…XN represents the set of variables and arrows 
denote conditional independence relationships. (b) The strongest data-driven relationships, that were used to build the ecosystem models, however, only some 
illustrative ecosystem components are shown, to maximise visual clarity. The same illustrative ecosystem components are presented in sub-section 4.12. Blue- 
coloured links indicate relationships with the physical indicators, red with fisheries catch and landings, green with primary production components, orange with 
zooplankton assemblages and purple with higher trophic levels. Symbols used to denote the ecosystem components are next to the relationships. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the hidden variable but also whether including the two metrics in
fluences the model accuracy. This model will not be addressed as a 
competing model in the results and discussion, we simply wanted to 
state the overall predictive accuracy during the learning process using a 
windowing approach, however, the learned value of the hidden variable 
will be discussed in the following sub-section.

We examine the models’ (i.e., HDBN, HDBN + physics, HDBN +
ecology and HDBN + VAR + AC, Table 2) accuracy in terms of their 
ability to reproduce observations of the trends (increases versus de
creases each year of the time series) in all the ecosystem components 
(oceanographic processes as well as species/functional groups at all 
trophic levels). The same modelling structure (learned from the identi
fied relationships from Section 3.1) was used for all the model variants, 
except for the HDBN + VAR + AC model, where variance and auto
correlation were both linked to all the remaining ecosystem compo
nents. In the HDBN + physics and HDBN + ecology models, the 
difference was the added variance to the CPDs, but the graphical 
structure was identical. Model performance, in terms of sum of squared 
error (SSE), was assessed for each model and predictions were compared 
on a year-to-year basis versus the original input data. Non-parametric 
bootstrap (re-sampling with replacement from the training set, (Fried
man et al., 1999) was applied 250 times for the model and its variants to 
obtain statistical validation in the predictions. The data were stand
ardised prior to conducting the experiments to a mean of 0 and standard 
deviation of 1. We conduct all experiments using the Bayes Net Toolbox 
in MATLAB (Murphy, 2001).

4. Results

4.1. Model comparison

4.1.1. Lowest SSE values
SSE per species, per model were compared to assess how well each 

model performed against the annual input data values. The HDBN model 
reported the highest number of ecosystem components (n = 9, 47 %) 
predicted most accurately (least SSE per species), closely followed by the 
HDBN + physics (n = 6, 32 %). These results are reassuring that the 
inference scheme can handle the increased model complexity. The 
model with the least accurately predicted ecosystem components was 
the HDBN + ecology (n = 4, 21 %) with some SSEs higher than 30.00, 
which highlights the importance of the level of variance when running 
these types of models. We found the threshold of 30.00 to be most 
appropriate based on examining the range of SSE values across models 
as well as across ecosystem components. Although the general 
improvement in predictive accuracy of the HDBN model over the 

competing models, there is a similar level of accuracy (i.e., least SSE 
difference: less than 5.00 between the generated overall predictions of 
two models) for most of the ecosystem components. Two exceptions to 
that were haddock and razorbill. For these species, the SSE difference 
across the competing models was always higher than 5.00. Some 
ecosystem components (e.g., the zooplankton functional group A6), 
were generally predicted with higher SSEs values from two of the 
competing models (i.e., SSE higher than 30.00) in comparison to the 
remaining ecosystem components. Overall, the HDBN + VAR + AC also 
performed well, specifically reporting some low SSE values for the lower 
trophic levels (e.g., A2 zooplankton group) and higher trophic level 
species like haddock and harbour seal (i.e., SSE less than 10.00). At the 
same time, a higher SSE (i.e., SSE higher than 30.00) was reported for 
the seabirds (e.g., razorbill).

Overall, for higher trophic levels of fish and above (i.e., seabirds and 
mammals) the addition of either physical or biological variance saw a 
better fit (decrease in SSE) for 77 % of those 13 species (10/13). When 
comparing predictions across the ecosystem components, mammal 
species were most accurately predicted by either the HDBN + physics or 
HDBN model. The seabird species were most accurately predicted by 
either the HDBN + physics or HDBN + ecology, highlighting the 
importance of including variance in the case of these higher trophic level 
ecosystem components. Across the fish species, it was harder to find any 
specific patterns in terms of which model reported most accurate per
formance per species, however, some patterns were identified based on 
what specific indicators (physical vs biological) were driving the fish 
recruitment in the models. For example, sandeel and herring were both 
most accurately predicted by the HDBN + physics model and their levels 
of recruitment are both driven by a combination of physical and 
biogeochemical indicators, whilst the sprat, which was most accurately 
predicted by the HDBN was driven by biological indicators and catch.

Table 2. Sum of squared error (SSE) of the ecosystem components 
predictions generated by the HDBN and its variants (a). The component- 
specific interactions that are used to build the HDBN models are shown 
inside the brackets. The * symbol indicates most accurate predictions for 
ecosystem components across the three models (values of SSEs that are 
less than 30.00). (b) shows SSE of the ecosystem components generated 
by the HDBN + VAR + AC. In a separate table as the values are not 
directly comparable to the other three models.

a) Ecosystem components HDBN HDBN +
physics

HDBN +
ecology

Max Chl-a (PEA, Hspeed, MLD) 22.48* 29.85 25.39
NetPP (Oxy, Hspeed) 6.34* 6.92 6.43
A2 (Hspeed, Vspeed) 29.96* 31.14 30.99
A4 (PEA, NetPP, Vspeed) 10.08* 10.13 11.33
A5 (PEA, Vspeed) 9.63* 10.47 9.85
A6 (BT, NetPP, Hspeed) 29.35* 32.50 41.32
Sandeel (BT, A4, Catch DEM) 20.15 17.59* 19.52
Herring (MLD, NetPP, Land PEL) 26.85 25.80* 29.50
Sprat (A2, A6, Catch PEL) 26.99* 27.96 29.46
Mackerel (BT, A2) 30.99 30.50 27.94*
Haddock (NetPP, Catch DEM) 26.01 20.03 18.03*
Cod (MLD, Max Chl-a, Land DEM) 14.64* 24.68 14.92
Kittiwake (Vspeed, Sandeel, Sprat) 29.1 27.04* 43.13
Guillemot (MLD, NetPP, Sandeel) 29.79 24.36* 30.57
Gannet (A6, Herring, Sprat) 29.44 36.13 29.84*
Razorbill (Mackerel, Haddock, Cod) 29.71 31.90 21.48*
Grey seal (BT, NetPP, A6) 14.80 13.12* 20.93
Harbour seal (Max Chl-a, A5, Cod) 29.41* 31.55 42.90
Harbour porpoise (Max Chl-a, Oxy, 

Sprat)
15.51 11.55* 13.44

b) HDBN + VAR + AC

Max Chl-a 22.34
NetPP 16.72
A2 9.31
A4 16.17
A5 26.88
A6 22.52

(continued on next page)

Table 2 
Summary of HDBN models.

Models Name Comments

HDBN Hidden Dynamic Bayesian 
network model

A hidden dynamic Bayesian 
network model with no variance 
specified in the CPDs

HDBN +
physics

Hidden Dynamic Bayesian 
network model with conditional 
variance on physical and 
biogeochemical indicators

Variance was calculated for BT, 
SST, PEA, max Chl-a, NetPP, 
MLD, Hspeed, Vspeed, Oxygen 
and was used to populate their 
CPDs

HDBN +
ecology

Hidden Dynamic Bayesian 
network model with conditional 
variance on biological indicators

Variance was calculated for 
zooplankton abundance, fish 
recruitment, birds breeding 
success and mammals’ 
abundance and/or productivity 
and was used to populate their 
CPDs

HDBN +
VAR +
AC

Hidden Dynamic Bayesian 
network model with statistical 
metrics: variance and 
autocorrelation

Variance and autocorrelation 
were calculated on a rolling 
window of data
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(continued )

b) HDBN + VAR + AC

Sandeel 17.07
Herring 26.69
Sprat 38.38
Mackerel 14.38
Haddock 9.11
Cod 23.87
Kittiwake 29.65
Guillemot 32.66
Gannet 10.39
Razorbill 37.64
Grey seal 10.92
Harbour seal 9.68
Harbour porpoise 11.87

4.1.2. Temporal trends
We compared example ecosystem components and their population 

trend predictions in time across the three model variants. We want to 
visually demonstrate how well the model variants performed in repro
ducing the inter-annual variability and long-term patterns (always 
shown as blue lines) versus the original input data (red lines). Note, we 
only show some illustrative examples, with their 95 % confidence in
tervals calculated from the bootstrap predictions’ mean and standard 
deviation, shown in the Supporting information (SI). The models were 
able to capture many of the changes (increases versus decreases) of the 
ecosystem components across over time, predicting the general trends in 
population dynamics for all lower trophic level functional groups and 
higher trophic level species using three or fewer indicators.

For sandeel, the HDBN and HDBN + physics were better able to 
capture the declining trend in the early 2000s, in comparison to the 
HDBN + ecology (Fig. 3). The HDBN + physics (least SSE value) in 
comparison to the HDBN was better in modelling some of the individual 
yearly variations (e.g., years 2014, 2019), however, the declining trend 
(from the 1990s to early 2000s) over time was better captured by the 

HDBN model. The HDBN + VAR + AC model variant performed well in 
capturing some of the individual yearly variations (e.g., 2005).

Similarly, the two best performing models (least SSE values) were 
able to capture the long-term trend in the case of cod recruitment, 
specifically, the declining trend from the early 2000s, whilst the HDBN 
+ physics model was better in capturing some of the specific yearly 
variations (mid to late 2000s, Fig. 4). Similarly, to the sandeel, the 
HDBN + VAR + AC model for cod, was able to capture well a lot of the 
individual yearly variations.

In the case of guillemot, all three model variants were able to capture 
the declining trend from the mid 1990s- early 2000s (Fig. 5). However, 
none of the models were able to capture the steep decline in 2006, with 
the exception of the HDBN + VAR + AC model. After 2006, it was the 
HDBN + physics, followed by the second accurate model (HDBN) that 
were able to capture the inter-annual variabilities in the time series.

4.2. Hidden variable

To assist in characterizing the ecosystem state, we examine the 
learned hidden variables from the HDBN and HDBN + VAR+ AC models 
(Fig. 6). The hidden variable from the HDBN model was relatively stable 
for majority of the time series: it modelled one state until 2010, followed 
by some fluctuations in 2011 and 2018. The hidden variable from the 
HDBN + VAR+ AC model was a bit more varied than the hidden variable 
from the HDBN model.It still identified a change in the ecosystem state 
around the same time, even, a year earlier in 2009, followed by two 
changes in the ecosystem state in 2013–2015 and then in 2018 that 
remained until the end of the time series.

5. Discussion

5.1. Summary of model variants

In this study, we examined whether adding variance as a measure of 
uncertainty to the CPDs of specific ecosystem components would result 

Fig. 3. Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, HDBN + ecology and HDBN + VAR + AC) versus real data (red line) 
for sandeel recruitment. SSEs are shown under the panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

N. Trifonova et al.                                                                                                                                                                                                                              Ecological Informatics 92 (2025) 103510 

9 



in a better performance of a hidden dynamic Bayesian network model 
(HDBN). The HDBN model showed consistently accurate predictions of 
the ecosystem components. The HDBN + physics (variance added to the 
CPDs of selected physical and biogeochemical indicators) was the 

second-best performing model which was reassuring that the increased 
model complexity applied here has resulted in revealing some genuine 
patterns of the underlying lower and higher trophic level relationships 
identified by our approach and their heterogeneity. In addition, these 

Fig. 4. Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, HDBN + ecology and HDBN + VAR + AC) versus real data (red line) 
for cod recruitment. SSEs are shown under the panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 5. Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, HDBN + ecology and HDBN + VAR + AC) versus real data (red line) 
for guillemot breeding success. SSEs are shown under the panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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results also suggest more insight into the relevance of physical and 
biogeochemical indicators, such as stratification, temperature and 
NetPP when evaluating ecosystem structure and function in efforts to 
determine the ecosystem state. It is evident that changes in the popu
lation dynamics of higher trophic levels are likely to reflect those of their 
preferred prey, which may, in turn, be bottom–up driven by dynamic 
bio-physical oceanographic processes like across spatial and temporal 
scales (Bertrand et al., 2014; Boyd et al., 2015; Cox et al., 2018). Tem
perature is another major driver of marine ecosystems and one of the key 
factors affecting the physiology and ecology of all marine organisms 
(Edwards et al., 2020; Evans and Waggitt, 2020; Simpson et al., 2011). 
BT was found to be a better indicator, in comparison to SST (Table 2a), 
with the mechanism for that potentially being that BT reflects steady 
changes over longer periods of time, including integrated trends in 
warming/cooling, whilst changes in SST reflect a wider range of the 
daily/seasonal extremes (Trifonova et al., 2022). NetPP was another 
indicator that was found to be a key driver for majority of the higher 
trophic level species dynamics. It is through energy transfer along the 
food web, that NPP provides bottom–up control on fisheries production, 
identified within the North Sea and across other large marine ecosys
tems around the globe (Barange et al., 2014; Blanchard et al., 2012; 
Chassot et al., 2007). NPP plays a significant role in determining habitat 
preferences and facilitating foraging for both fish prey and top predator 
species, highlighting that prey and predators are selecting aspects of the 
habitat type very differently and that might be a reflection of prey 
species avoiding areas with predators (Cox et al., 2018; Sadykova et al., 
2017). With the improved understanding of the exact bottom-up (e.g. 
levels of mixing and stratification) versus top-down (e.g. predators and 
fishing) mechanisms that influence habitat use by marine animals across 
spatial (< 1 km through to 1000 km) and temporal (days through to 
years) scales, the effects of biophysical interactions on populations and 
ecosystems and how these vary with climate change can be better 
understood.

Predictions from all models were sensitive to the observed variables 
incorporated due to the complex natural processes involved in gener
ating the ecological input data. We reported some higher SSEs (e.g., 
zooplankton functional group A6, Table 2) which could be due to 
structural uncertainties (i.e. species-specific relationships and/or 
colony-specific drivers used to build the models) but also due to 

empirical data uncertainties perhaps due to some sampling variation in 
the survey data. In addition, there was some similarity in accuracy of 
generated predictions from different models that might be attributed to 
the similar effects of changing climate on many species (Fernandes et al., 
2013), as previous work has demonstrated the potential effects of 
continuous warming with cold-water anomalies and salinity changes 
(Trifonova et al., 2021).

The HDBN model performed consistently well across the ecosystem 
components, because the model evaluates the relative influence of 
different driving factors when modelling ecosystem-level dynamics. Our 
results highlight the need to include region-specific ecosystem level 
changes and dynamics of the multiplicity of interactions when building 
predictive models of complex and heavily exploited ecosystems within 
shallow seas, such as the North Sea. The recognition of a hidden variable 
is important which was adopted here to capture unmeasured effects and 
changes in ecosystem components variance that are not purely con
strained within the model structure. This is very different from mass 
balance model approaches (Christensen and Walters, 2004) whose 
fitting is conditioned completely upon the model structure.

However, for some of the species, prediction accuracy was improved 
once variance was included by the HDBN + physics model, suggesting 
that accounting for additional sources of variation removed spurious 
interactions and let to a more plausible network structure (Aderhold 
et al., 2012; Faisal et al., 2010). The successful performance of the model 
variant highlights the heterogeneous nature of the ecosystem 
component-specific lower and higher trophic level interactions (e.g., 
driven by physical, biological and/or combination of both) and gives us 
more accurate insights on the structure of the underlying ecological 
system. Through the applied BN approach, we were able to make trac
table predictions of the true dynamic nature of physical, biogeochemical 
and biological relationships and their patterns across trophic levels, and 
their changes over time. This increases knowledge necessary to add to 
the traditional use of top predator population dynamics as separate as
pects of marine systems and will reduce uncertainties of the level of 
direct and indirect effects on populations across a range of trophic levels. 
By accounting for varying variances in the CPDs of the drivers, the 
model becomes better equipped to handle uncertainty in a way that 
reflects the true underlying system (Yıldırım and Liaw, 2024).

Some dependencies between variables might be complex and non- 
linear. It is often assumed by statistical and mechanistic modelling ap
proaches that the underlying functional relationships (i.e., the govern
ing ecological processes) are assumed to be static. This assumption, of 
course, is overly simplistic, and maybe inaccurate, as ecosystems are 
subject to increasing human pressures that can lead to drastic changes, 
including regime shifts (Scheffer et al., 2009). However, the assumption 
of static relationships is a necessary feature of mechanistic models, as 
these models are built on the best available current understanding of 
how systems function. While this static representation reflects our best 
knowledge at the time, we are unable to account for ‘unknown 
unknowns’.

From the modelling and data analysis perspective, these pose a 
challenge, since the same functional forms may not describe the re
lationships between the variables before and after the change 
(Blenckner et al., 2015). By allowing variances in the physical and/or 
biogeochemical drivers to vary, our HDBN model + physics can better 
capture complex and nonlinear lower and higher trophic level re
lationships where the uncertainty might vary depending on certain 
conditions. For example, in a previous study using a larger ecosystem 
region (i.e., deep central North Sea), that enclosed the study region in 
this work, the region was shown to be controlled by both types of 
forcing: bottom-up (e.g., primary production) and top-down (e.g., fish
eries exploitation) leading to complex patterns of control on the 
ecosystem (Trifonova and Scott, 2024). This further explains the better 
performance of the models with added variance for some of the 
ecosystem components, i.e., the Firth of Forth region is characterized by 
a changeable ecosystem state prone to variability, therefore, a more 

Fig. 6. The learned hidden variables from the HDBN (top) and HDBN + VAR+
AC (bottom) models. Note, the shorter time series in the bottom plot due to the 
windowing approach.
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complex model is needed to capture the underlying ecosystem dy
namics. For example, in the case of breeding success, every bird species 
was better predicted by either the HDBN + physics or HDBN + ecology 
model, however, the SSE difference was still ≤5.0 between the HDBN 
model and the model variant, except for razorbill. This suggests that 
breeding success might be influenced by more complex factors than 
some of the other ecosystem components that were better predicted by 
the HDBN model alone. This could also suggest that seabirds might be 
more prone to variability, thus, highlighting them as potentially more 
sensitive indicators to pressures.

Interestingly, once the variance was added to the CPDs, the models 
were better able to capture some of the specific yearly variations in the 
time series. It seems that the variance adds to the overall model per
formance by specifically capturing the inter-annual variability in the 
time series. The potential explanation for this is that in some cases where 
variables are inherently noisy or more prone to variability (e.g., seabird 
breeding success), the more complex Bayesian network model applied 
here can help prevent overfitting by modelling the noise appropriately 
with higher variance (López et al., 2022; Ramampiandra et al., 2023). 
This prevents the model from becoming overly influenced by outliers or 
fluctuations in the data, resulting in more accurate predictions. This was 
particularly the case for guillemot for which the HDBN + VAR + AC 
model was the only model that was able to capture the steep decline in 
breeding success in 2006. Overall, the HDBN + VAR + AC model was 
able to capture the trends and inter-annual variations with high accu
racy, including some specific yearly variations. The accurate perfor
mance of this model is also likely due to the inclusion of a rolling 
window that has been previously discussed as successful in detecting an 
impending regime shift in ecosystem time series (Carpenter et al., 2014). 
The successful performance of a dynamic hidden BN model that was 
used in combination with variance and autocorrelation has been pre
viously demonstrated, but in the context of detecting early-warning 
signals of functional changes in fisheries across a range of geographic 
regions (Trifonova et al., 2014).

5.2. Hidden variable

A hidden variable was used in this study to learn and therefore, 
represent the ecosystem state, and specifically capture any changes in 
the ecosystem interactions that lead to changes in state. We compared 
the hidden variable from the HDBN model to the hidden variable from 
the HDBN + VAR+ AC model to identify to what extent including the 
statistical metrics impacts the expected value of the hidden variable and 
therefore, the expected ecosystem state.

Both hidden variables modelled a change in the ecosystem state after 
2010, with the hidden variable from the HDBN + VAR + AC modelling 
the change in state a year earlier in 2009, allowing detection of early- 
warning signals of functional change across different geographic re
gions (Trifonova et al., 2014). This change in the ecosystem state has 
been discussed previously for much larger ecosystem regions and it was 
thought to be due to changes in the bottom temperature (e.g., cold-water 
anomalies: Gonzalez-Pola et al., 2019; Trifonova et al., 2021), with the 
mechanism behind being the interplay between the physical indicators 
(temperature and mixing) and productivity (Capuzzo et al., 2018). Here, 
we were able to add further insight on the potential extent of the 
functional change, even at the smaller spatial scale in this study. Most 
importantly, with the now added uncertainty (i.e., variance) to the 
model, we were able to detect such changes earlier in the time series. 
The hidden variable from the HDBN + VAR+ AC model identified an 
additional change in the ecosystem state (i.e., 2013–2015) whilst both 
hidden variables modelled another change in state in 2018. The period 
2015–2018 has been previously identified as a period of change with 
relatively low values in net primary production, most likely attributed to 
changes in mixing (Capuzzo et al., 2018; Trifonova et al., 2021). Simi
larly, with the added results from this study, and specifically, once un
certainty was included in the model, we were able to further identify the 

timing of a second potentially important period in the context of 
reconstructing the ecosystem dynamics. These results highlight that the 
use of a hidden variable when modelling ecosystem change is potentially 
useful in providing insights on the underlying dynamics and patterns in 
terms of ecological stability and resilience that can contribute towards 
the general advice on potential response of the system to pressure. 
Indeed, it is by examining the learned ecosystem state that allows us to 
conclude whether the environment is in a desirable (predictable) or less 
desirable state and during which years the state is desirable. Thus, the 
hidden variable, once set up and updated with rather low effort, could 
potentially be used to check for possible new changes in the underlying 
ecosystem dynamics, indicative of major changes in the ecosystem, 
which could be further investigated (Uusitalo et al., 2018).

6. Conclusion

The dynamic Bayesian network approach is a promising method to 
analyse complex ecosystem-level interactions, and it may help reveal 
underlying ecological patterns. Here, we demonstrated that the applied 
hidden dynamic Bayesian network model can handle the increased 
complexity by accounting for uncertainty (i.e., variance) in the condi
tional probability distributions (CPDs) of selected physical, biogeo
chemical and biological indicators. Indeed, model performance was 
improved for 77 % of the higher trophic level species (fish, seabirds and 
marine mammals) once variance was included in the CPDs. Therefore, 
models that account for additional sources of variation seem to better 
reflect on the underlying ecosystem-level dynamics. These results pro
vide real insights into the characteristics of the study region, which is a 
changeable ecosystem state prone to variability, and pave the route for 
better understanding of the ecosystem structure and function under 
different pressures. Most importantly, the methodology provides an 
effective baseline that can be used within marine spatial planning con
siderations of the relevant implications of future climate change versus 
anthropogenic impacts (e.g., offshore large-scale wind developments). 
Our results show temporally specific ecological interactions that indi
cate a regional relationship of ecosystem components and their habitat 
with the mechanisms varying from bottom-up (e.g., primary production) 
through to top-down (e.g., fisheries). We were able to identify the 
consistent drivers and illuminate the likely mechanisms that led to 
consistently accurate model predictions. However, it must be noted that 
perfect reconstruction is unlikely due to the noisy input data and com
plex ecological process involved in generating such data (Faisal et al., 
2010). However, our findings complement more traditional mechanistic 
(Heath et al., 2021) and statistical (Lynam et al., 2017) approaches; and 
have extended our knowledge into the ecosystem-level understanding of 
this North Sea region and its ecological structure and stability. Further, 
the success of applying the HDBN + VAR+ AC model highlights the 
usefulness of the rolling window approach in combination with the use 
of statistical metrics in characterizing the temporal dynamics of this 
region, specifically improving predictive performance in capturing the 
inter-annual variability in the time series. The two hidden variables 
successfully modelled changes in the ecosystem state, one attributed to 
cold-water anomalies and a second one attributed to the interplay be
tween the physical indicators (temperature and mixing) and produc
tivity. The hidden variable from the HDBN + VAR+ AC model was able 
to capture these changes earlier than the hidden variable from the HDBN 
model.

Future work can use the methods shown here with the hidden dy
namic Bayesian network model and with added variance in the CPDs 
from selected physical and biological indicators to produce a range of 
“what-if?” scenarios to better understand the combined ecosystem-level 
effects of offshore large-scale wind developments, climate change and 
fisheries displacement. Such approaches will be useful to guide what 
habitats/species are more representative of what disturbances and what 
management decisions are required to steer towards more ecologically 
sustainable conditions under the influence of future changes (Trifonova 
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and Scott, 2024). These types of outputs can be used to assess the cu
mulative effects across a range of trophic species to support the devel
opment of evidence-based policy and marine management.
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