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With the global rapid expansion of offshore renewable energies, there is an urgent need to assess and predict
effects on marine species, habitats, and ecosystem functioning. Doing so will require dynamic, multitrophic,
ecosystem-centric approaches coupled with oceanographic models that can allow for physical and/or biogeo-
chemical indicators of marine ecosystem change to be included. However, in such coupled approaches, indicators
carry uncertainties that can propagate and affect species higher up the trophic chain. Dynamic Bayesian net-
works (DBNs) are pragmatic approaches that probabilistically represent ecosystem-level interactions. They allow
for uncertainties to be better estimated than mechanistic models that only account for expected values. In this
study, we calculated variance as a measure of uncertainty from selected indicators and used them to build DBN
models. A hidden variable was incorporated to model functional ecosystem change, where the underlying in-
teractions dramatically change, following a disturbance. We wanted to assess whether propagating uncertainty
into the modelling process affects the predictive accuracy of the models in the context of reconstructing the time
series of the ecosystem dynamics. Model accuracy was improved for 60 % of the species once variance was
added. The models were better in capturing the temporal inter-annual variability, once variance was calculated
with a rolling window approach. The hidden variable successfully modelled previously identified ecosystem
changes, however, now with the added uncertainty, the changes that implicated the ecosystem state were
identified earlier in the time series. The results indicate that using DBNs is highly valuable as it gains accuracy
with the addition of uncertainty.

observation and uncertainty in potential associations due to external
forces like climate change (Link et al., 2012). Such complexities are a

1. Introduction

Marine ecosystems consist of complex dynamic interactions among
species and the environment, the understanding of which has significant
ecological and societal implications for predicting nature’s response to
changes in climate and biodiversity (Barange et al., 2014; Garcia Moli-
nos et al., 2016). Such interactions are further exacerbated by spatial
and temporal variation of the ecosystem and its components (Doney
et al., 2012; Hunsicker et al., 2011; Polis et al., 1996). Stressors such as,
climate change, fishing, and resource exploitation have also been shown
to modify the driving forces in ecosystems (Blanchard et al., 2012;
Cheung et al., 2019; Lotze et al., 2019). Understanding and disen-
tangling the drivers of ecosystem change can be challenging because of
the variability in observations, for example due to imperfect methods of
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major challenge for modellers, particularly as data are often rather
scarce due to the relatively high costs of collecting field data, the
practical difficulties of collecting samples from all parts of the
ecosystem, and the lack of scientific understanding about the entire
range of factors that may be relevant to the ecosystem functioning.
Significant progress has been made in developing ecosystem models
that use traditional statistical approaches to understand the relation-
ships between several variables (Lynam et al., 2017), including “end-to-
end” ecosystem models to predict impacts of environmental change on
the structure and function of marine food webs and the services they
provide (Heath et al., 2021). However, all these models assume that the
underlying functional relationships do not change their form over time.
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This assumption might not be true, as ecosystems are known to some-
times undergo relatively fast structural changes that have a major effect
on the ecosystem dynamics (Mollmann et al., 2008). Further, it is
possible that the changes are driven by unobserved components, i.e.
ecosystem variables that we do not have data for. Allowing for un-
certainties in the modelling process rather than just accounting for ex-
pected values is also an improvement to deterministic models which
might remain fraught with errors when applied to problems with real
data (Wikle, 2003). Thus, it is recommended that ecosystem models
develop fuller non-mechanistic appreciation of ecological interactions
across space and over time due to changing pressures at different levels
of the trophic chain (Uusitalo et al., 2018).

Approaches using time series of multispecies population character-
istics, as well as both physical and biological ecosystem components are
useful methods to understand the drivers of ecosystem change, such that
patterns of species population change can be quantified across space and
over time, under different climate and/or anthropogenic scenarios
(Lynam et al., 2017). In particular, coupling physical dynamics from
high resolution oceanographic models (e.g., Finite Volume Community
Ocean Model (FVCOM)) into ecosystem models can allow for critical
physical (e.g., temperature) and/or biogeochemical (e.g., oxygen) in-
dicators of marine ecosystem change to be included. However, all
modelled and to some extent observed physical variables carry inherent
biases and uncertainties. Additionally, model resolution and boundary
forcing may contribute further to these errors (Powley et al., 2020). In
coupled physics-ecosystem models, these errors can propagate through
dependent physical and/or biogeochemical parameters and may affect
variables higher up the trophic chain.

Other sources of error could come from data being assembled from
different spatial and temporal scales, for example, fish stock data in one-
year resolution, whilst climate data, such as sea surface temperature
available on a daily resolution. The spatial and temporal scale of phys-
ical and biological indicators is a challenging issue with respect to un-
derstanding the multiplicity of mechanisms underlying observed
patterns and variability changes (Levin, 1992; Wiens, 1989, 1990) and
especially the trophic interactions of highly mobile marine animals (fish,
seabirds, and marine mammals) within dynamic marine environments.
However, the inclusion of physical and biological indicators is essential
as they can be significant drivers of variation, or direction of change, in
either behaviours, distributions and/or population dynamics of the
highly mobile top predator marine species, thus delivering an under-
standing of the indicators of habitat and ecosystem change (Trifonova
et al., 2022). For example, one of several possible physical indicators to
measure stratification is the potential energy anomaly (PEA, J/m>). PEA
represents the amount of work required to bring about complete vertical
mixing per unit of volume (Simpson and Bowers, 1981) and indicates the
strength of stratification and mixing rate (De Boer et al., 2008; De
Dominicis et al., 2018). The seasonal cycle of stratification underpins
primary production cycles. Recent modelling outcomes reveal that PEA
plays a significant role in predicting the abundance changes of both
lower (e.g., sandeel larvae) and higher trophic level (e.g., harbour
porpoise, black-legged kittiwake) marine species on a regional spatial
scale (Carroll et al., 2015; Trifonova et al., 2021) and to a lesser extent,
in determining habitat preferences on a North Sea scale (Sadykova et al.,
2017; Wakefield et al., 2017). PEA can reflect more subtle spatial and
temporal changes within a habitat type (Van Leeuwen et al., 2016) and
season (Simpson and Bowers, 1981), thus further highlighting the
importance of spatial and seasonal distribution of physical processes as
good indicators up through the entire trophic chain and any changes
that are affecting ecosystem functioning.

Being able to propagate uncertainty into ecosystem models can be
very useful when applied to environmental challenges with real data.
Understanding how levels of uncertainty affect the predictive accuracy
of the ecosystem models could provide more insight into which variables
are the causes and even if certain variables are relevant at all in efforts to
reconstruct ecosystem dynamics. Most importantly, explicit accounting
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for uncertainty can add substantial practical insight to many real-life
problems that can aid communicating theories and results to industry
and policy (Uusitalo, 2007).

One way of dealing with uncertainty in environmental domains is
using statistical indicators related to variability, autocorrelation and
recovery time (Carpenter et al., 2011; Scheffer et al., 2009). Such ap-
proaches have been demonstrated as new tools for understanding
nonlinear dynamics in ecosystems, thus revealing new indicators of
vulnerability and improving ecosystem management in a rapidly
changing environment. Previous studies have demonstrated the use of
variance and autocorrelation in the early detection of data patterns that
govern the temporal ecological dynamics (e.g., ecosystem shift: Scheffer
et al., 2009). Specifically, studies have used an increase in the mean and
increase in the variance in the Quickest detection method to account for
the expected ecosystem shift and uncertainty, respectively (Carpenter
et al., 2014). Also, it has been demonstrated that such metrics can
improve the predictive accuracy of ecosystem models when trying to
predict functional changes, i.e., regime shifts (Trifonova et al., 2014). To
understand and predict ecosystem response to perturbation, it is
necessary to unravel the ecological networks underlying ecosystem’s
stability and fragility (Dunne et al., 2002). However, identifying all the
interactions and quantifying all the unexpected effects and interactions
due to external pressures within complex real ecosystems can be rather
challenging and beyond the scope of traditional fieldwork (Aderhold
et al., 2012).

Computational inference of ecological interactions presents an
alternative route to unravel ecosystem dynamics. Specifically, one way
forward of dealing with these issues is to use probabilistic methods such
as Bayesian networks (BNs) that can be used to capture ecological pat-
terns between variables (Hui et al., 2022) and reveal spatiotemporal
trends (Tucker and Duplisea, 2012), without requiring specific infor-
mation on mechanisms and vast amounts of observational data used in
traditional ecosystem models (Uusitalo, 2007). Modelling time series is
achieved by using an extension of the BN known as the Dynamic
Bayesian Network (DBN) which allow predictions to be made across
different spatial and temporal scales and with a range of indicator spe-
cies or functional groups representing all trophic levels (Trifonova et al.,
2015). A hidden variable can be used to enable the modelling of non-
stationary dynamics (Tucker and Liu, 2004), which is potentially high-
ly useful in ecological analyses where complex ecological interactions
change in time due to changing pressures at different levels of the tro-
phic chain. Its value depends on all the observed variables it is linked to,
and a change in the pattern of the hidden variable indicates a change in
the system interactions. BNs use probability as a measure of uncertainty:
beliefs about values of variables are expressed as probability distribu-
tions, and the higher the uncertainty, the wider is the probability dis-
tribution. As information accumulates, knowledge of the true value of
the variable usually increases, i.e., the uncertainty of the value di-
minishes and the probability distribution grows narrower (Gelman et al.,
1995; Sivia and Skilling, 2006).

In this study, we focused on providing a method to propagate un-
certainty (i.e., calculated as variance) from a set of physical and bio-
logical indicators that included critically important factors of ecosystem
change (e.g. stratification, primary production, temperature; Trifonova
et al., 2021). Understanding how levels of uncertainty affect the pre-
dictive accuracy of the ecosystem models could provide more insight
into which indicators are more relevant when evaluating ecosystem
structure and function in efforts to determine the ecosystem state. In this
way, we wanted to provide a pragmatic yet powerful methodology that
can be used within marine spatial planning considerations of the rele-
vant implications of future climate change versus anthropogenic im-
pacts (e.g., offshore large-scale wind developments). Firstly, the
indicators were used to build dynamic hidden BN models, and we
wanted to assess whether bringing in uncertainty into the modelling
process would affect the predictive accuracy of the models in the context
of reconstructing the ecosystem dynamics. To be able to do so, we used a
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machine learning optimization technique to find the data-driven esti-
mates of interactions among the physical and biological indicators. We
used the learned data-driven interactions to construct a dynamic BN, i.e.
one that explicitly represents the behaviour of the system over time, that
incorporates a hidden variable to enable the modelling of non-stationary
dynamics. A hidden variable was incorporated in the model to see
whether we can detect a change in the interactions of the observed
variables over time. Therefore, we wanted to see whether the hidden
variable can be used to model changes in the ecosystem state. We then
calculated the variance as a measure of uncertainty for selected physical
and biological indicators and used it to define their conditional proba-
bility distributions when learning the model variants of the hidden dy-
namic BN model. We used a rolling window approach to calculate
variance and autocorrelation for all the ecosystem components to build a
separate model variant. We examine the models’ accuracy in terms of
their ability to reproduce observations of the trends (increases versus
decreases) in all the ecosystem components. We evaluate the potential
usefulness of Bayesian inference for ecosystem-level interactions by
examining whether using statistical metrics, such as variance and
autocorrelation, improves the predictive accuracy and modelling of the
ecosystem state.

2. Materials and methods
2.1. Study region and ecosystem components

Focus of the study are UK coastal waters and specifically the region of
Firth of Forth, as defined by the spatial boundaries in Fig. 1, which
currently contains Scotland’s largest operational offshore wind farm.
The marine environment in this area is very complex due to a composite
bathymetry exhibiting localized shelf banks, suggesting that the region
might be subjected to small-scale processes defining a “mosaic” of
heterogenous hydrodynamic conditions (Zampollo et al., 2025). The
Forth is known to support overwintering populations and juveniles of
estuarine fish communities and represents a significant percentage of
the commercial activity in the North Sea (Elliott et al., 1990). The Isle of
May, located about 40 km east of the Firth of Forth, is known to be a
National Nature Reserve hosting >250,000 breeding seabirds and a
population of breeding grey seals that feed upon eastern productive
offshore waters (Harris and Wanless, 1998).
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The time series input data consisted of annual values (1990-2022) as
either seasonal mean values of physical variables (e.g. temperature) or
cumulative values of biological variables (e.g. net primary production),
or maximum values of physical and biological variables: current speeds
and maximum Chl-a, respectively. Biological variables for population
dynamics included total annual abundance, recruitment or mean
breeding/pupping success (Table 1). Individual zooplankton species
were grouped by summing up the abundance into assemblages, based on
the geographical distribution and ecological characteristics of the un-
derlying species, based on Beaugrand, 2004. All other trophic levels
(fish, seabirds and mammals) were not grouped but used as individual
species in the ecosystem models (Table 1). We refer to all the variables in
the study as “ecosystem components” but distinguish components based
on them being either physical (e.g. horizontal currents speed) or bio-
logical (e.g. sandeel recruitment) indicators. The ecosystem components
in the study were chosen as they cover the main physical and biological
variables that have been shown to be important to marine mammals and
seabirds and their prey (Carroll et al., 2015; Chavez-Rosales et al., 2019;
Wakefield et al., 2017). These will alter with climate change (Holt et al.,
2016; Sadykova et al., 2017; Wakelin et al., 2015), and with the next
biggest change to our shallow seas: very large number of new structures
and substantial (100’s GWs) extraction of energy from ORE (Boon et al.,
2018; Daewel et al., 2022; De Dominicis et al., 2018; Dorrell et al., 2022;
van der Molen et al., 2014). Previous studies were also conducted on a
larger spatial scale (i.e., > 1000 km?) identifying the indicators used
here as key regarding ecosystem change (Trifonova et al., 2021) and
assessing both ecosystem status and resilience to natural and anthro-
pogenic changes (Trifonova and Scott, 2024).

2.2. Bayesian networks

Formally, a Bayesian network (BN) describes the joint distribution (a
way of assigning probabilities to every possible outcome over a set of
variables, X;...Xn) by exploiting conditional independence relation-
ships, represented by a directed acyclic graph (DAG) (Friedman et al.,
1999). The conditional probability distribution (CPD) associated with
each variable X encodes the probability of observing its values given the
values of its parents and can be described by a continuous or a discrete
distribution. In this case, the CPD is called a Conditional Probability
Table (CPT) and all the CPTs in a BN together provide an efficient
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Fig. 1. The spatial boundaries of the study region: Firth of Forth.
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Table 1
Summary of physical and biological data.
Category Ecosystem Explanation Source
component
Physical Bottom Annual summer Atlantic-European
temperature (May-August) North West Shelf-
(BT) mean bottom Ocean Physics
temperature (°C) Reanalysis provided
by E.U. Copernicus
Marine Service
Information using
the Nucleus for
European Modelling
of the Ocean (NEMO)
model (CMEMS-NWS
physics)
Physical Sea surface Annual summer CMEMS-NWS
temperature (May-August) physics
(SST) mean sea surface
temperature (°C)
Physical Potential Annual summer CMEMS-NWS
Energy (May—-August) physics
Anomaly (PEA) mean potential
energy anomaly (J/
m®). The energy
required to mix the
water column
completely and
commonly used as
an indicator for the
strength of
stratification (De
Dominicis et al.,
2018)
Physical Horizontal Annual summer CMEMS-NWS
current speed (May-August) physics
(HSpeed) mean maximum
depth averaged
horizontal currents
speed (m/s)
Physical Vertical current Annual summer CMEMS-NWS
speed (VSpeed) (May-August) physics
mean maximum
depth averaged
horizontal currents
speed (m/s)
Primary Chlorophyll-a Annual summer Atlantic-European
production (max Chl-a) (May-August) North West Shelf-
mean maximum Ocean
chlorophyll-at any Biogeochemistry
depth (mgC/m®) Reanalysis provided
by E.U. Copernicus
Marine Service
Information using
the European
Regional Seas
Ecosystem Model
(ERSEM) (CMEMS-
NWS
biogeochemistry)
Primary Net primary Annual summer CMEMS-NWS
production production (May-August) biogeochemistry
(NetPP) mean depth
averaged net
primary production
(gC m-2 year™ 1)
Physical Mixed Layer Annual summer CMEMS-NWS
Depth (MLD) (May-August) physics

mean mixed layer
depth (m). The
deepest layer
affected by surface
turbulent mixing;
indicator for the
variations of
primary production

Table 1 (continued)
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Category Ecosystem Explanation Source
component
Biogeochemical  Oxygen within Annual summer CMEMS-NWS
the Bottom (July-October) biogeochemistry
Mixed Layer mean minimum
(Oxy) oxygen (umol L)
Abundance A2 zooplankton  Annual summer Continuous plankton
assemblage (May-August) total ~ recorder (CPR)
sum count of survey
zooplankton
species (e.g.
Calanus
helgolandicus)
Abundance A4 zooplankton  Annual summer CPR Survey
assemblage (May-August) total
sum count of
zooplankton
species (e.g. Para-
Pseudocalanus spp.)
Abundance A5 zooplankton ~ Annual summer CPR Survey
assemblage (May-August) total
sum count of
zooplankton
species (e.g. Acartia
spp.)
Abundance A6 zooplankton  Annual summer CPR Survey
assemblage (May-August) total
sum count of
zooplankton
species (e.g.
Calanus
finmarchicus)
Recruitment Sandeel Annual number of ICES Stock
individuals to enter ~ Assessment
the fished
component of the
stock
Recruitment Herring Annual number of ICES Stock
individuals to enter ~ Assessment
the fished
component of the
stock
Recruitment Sprat Annual number of ICES Stock
individuals to enter ~ Assessment
the fished
component of the
stock
Recruitment Mackerel Annual number of ICES Stock
individuals to enter ~ Assessment
the fished
component of the
stock
Recruitment Haddock Annual number of ICES Stock
individuals to enter ~ Assessment
the fished
component of the
stock
Recruitment Cod Annual number of ICES Stock
individuals to enter ~ Assessment
the fished
component of the
stock
Human Catch of pelagic ~ Annual total sum of  ICES Historical
pressure fish species nominal catches Nominal Catches
(herring, (tonnes live (1950-2010) and
sandeel, sprat, weight) Official Nominal
mackerel; Catch Catches
PEL) (2006-2022)
Human Catch of Annual total sum of ~ ICES Historical
pressure demersal nominal catches Nominal Catches
species (cod, (tonnes live (1950-2010) and
haddock; Catch weight) Official Nominal
DEM) Catches
(2006-2022)
Human Catch of Annual total sum of  ICES Historical
pressure shellfish species ~ nominal catches Nominal Catches
(scallops, (1950-2010) and

(continued on next page)
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Table 1 (continued)

Category Ecosystem Explanation Source
component
Nephrops; (tonnes live Official Nominal
Catch Shell) weight) Catches
(2006-2022)
Human Landings of Annual summer Marine Management
pressure pelagic fish (May-August) total ~ Organization
species sum of landed fish (MMO)’s annual UK
(herring, (tonnes live Sea Fisheries
mackerel; weight) Statistics
Landings PEL)
Human Landings of Annual summer MMO Fisheries
pressure demersal fish (May-August) total  Statistics
species (cod, sum of landed fish
haddock; (tonnes live
Landings DEM) weight)
Human Landings of Annual summer MMO Fisheries
pressure shellfish species (May-August) total ~ Statistics
(scallops, sum of landed
Nephrops; shellfish (tonnes
Landings Shell) live weight)
Breeding Northern Annual summer Seabird monitoring
success gannet (Morus mean number of programme
bassanus) chicks fledged per
pair
Breeding Black-legged Annual summer Seabird monitoring
success kittiwake (Rissa mean number of programme
tridactyla) chicks fledged per
pair
Breeding Common Annual summer Seabird monitoring
success guillemot (Uria mean number of programme
aalge) chicks fledged per
pair
Breeding Razorbill (Alca Annual summer Seabird monitoring
success torda) mean number of programme
chicks fledged per
pair
Abundance Harbour Annual summer Waggitt et al. (2020).
porpoise (May-August)
(Phocoena mean of encounter
phocoena) rate
Productivity Grey seal Annual summer Special Committee
(Halichoerus mean estimates of on Seals (SCOS,
grypus) pup production 2022)
Abundance Harbour seal Annual summer SCOS (2022)

(Phoca vitulina)

(August) total sum
count of harbour
seals

factorization of the joint probability:

PO = ﬁp(xitpaa

where pa; are the parents of the node x; (which denotes both node and

variable).

The DAG consists of nodes (or variables) and edges (or links) be-
tween the nodes. “Parent” nodes are those from which arrows originate,
and “child” nodes are those to which arrows are pointing. Edges between
nodes represent dependency relationships. Each node in the DAG is
characterized by a state which can change depending on the state of
other nodes and information about those states propagated through the
DAG. By using this kind of inference, one can change the state or
introduce new data or evidence (change a state or confront the DAG with
new data) into the network, apply inference and inspect the posterior
distribution (which represents the distributions of the variables given in
the observed evidence). The graphical structure of BNs is particularly
convenient when we aim to describe an ecological network to model all
the interactions between species and their environment that also pro-
vides a user-friendly framework to communicate the results (Chen and
Pollino, 2012). It is relevant to think of the BN as a “graph”, describing
species as the “nodes” within the graph, and interactions as the links or
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“edges” that join the nodes (Faisal et al., 2010).

2.3. Dynamic Bayesian networks

Modelling time series is achieved by using an extension of the BN
known as the Dynamic Bayesian Network (DBN), where nodes represent
variables at time slices. DBNs are directed graphical models of stochastic
processes that characterize the unobserved and observed state in terms
of state variables, which can have complex interdependencies (Murphy,
2001). DBNs can model the dynamics of a dataset using a hidden
variable.

This hidden variable is used to model unobserved variables and
missing data and can infer some underlying state of the series when
applied through an autoregressive link that can capture relationships of
a higher order (Murphy, 2001). The hidden variable allows us to
examine unmeasured effects that would bring further insight on the
importance of ecosystem dynamics to better understand community
structure and resilience in an exploited ecosystem (Trifonova et al.,
2015; Uusitalo et al., 2018). In most domains, the observed variables
represent only some characteristics of a system, which can have a
negative effect on the learning procedure. For example, the apparent
complexity of a predicted variable can be explained imagining it is a
result of two simple processes, the “true” underlying state, which may
evolve deterministically, and our measurement of the state, which is
often noisy (Murphy, 2002). We can then “explain away” unexpected
outliers in the observations, as opposed to strange fluctuations in
“reality”.

A hidden variable can be linked to one, multiple, or all, of the
observed ecosystem components in the model. Then, the hidden variable
value depends on all the observed ecosystem components it is linked to,
and a change in the pattern of the hidden variable indicates a change in
the system interactions. This is highly useful in ecological analyses
where nonstationary dynamics are common and complex ecological
interactions change with time due to changing pressures e.g., climate
change (Chen and Pollino, 2012). In this work, the hidden variable was
included in the models, to capture complex interdependencies between
and among ecosystem components that might represent something
external to the community, which is not purely constrained within the
model structure. We use the hidden variable in this study, to represent a
change in the underlying ecosystem dynamics (i.e. ecosystem state),
following a natural or anthropogenic disturbance to the system in-
teractions in the study region.

2.4. Uncertainty propagation

We used the variance as a measure of uncertainty (i.e., a high vari-
ance meaning greater uncertainty about the outcome of X given its
parents or a low variance meaning that X is more tightly constrained by
its parents). For example, in the case of two variables X and Y, with Y
influencing X. The conditional distribution P (X|Y) can be modelled as a
Gaussian distribution with mean (uy(Y)) and variance (¢2(Y)):

P(X|Y) = N(ux(Y) ,0%(Y) )

In a Bayesian network, uncertainty about a variable propagates
through the network from the parent nodes to the child nodes. We
defined variance in the CPD which reflects the uncertainty associated
with predicting the value of a variable given its parents. When set up in
this way, the uncertainty, in turn, influences the accuracy and reliability
of the model predictions (i.e., if the conditional variance of a node is
high, the distribution of possible outcomes for that node will be wide).
The accuracy of a Bayesian network model can be affected by how well it
handles uncertainty and variance, especially in terms of its predictive
performance.

However, a more complex model which accounts for varying vari-
ance in different parts of the network (e.g., different variances for
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different conditional distributions), can sometimes improve predictions
by allowing the model to better reflect the underlying uncertainties in
the system (Nabney and Cheng, 1997; Simoen et al., 2015; Montesinos
Lopez et al., 2022). If variance is assumed to be constant or ignored in
certain parts of the model, it may lead to overly simplistic models that
fail to capture important nuances in the data.

There is copious literature that addresses statistical metrics, such as
variance and autocorrelation and their use as indicators of an
approaching regime shift (Carpenter et al., 2014; Jiao, 2009). In previ-
ous work, they have been used to identify a functional collapse (i.e.,
regime shift) by modelling early-warning signals in the time-series
(Trifonova et al., 2014). However, here, we use them as an alternative
approach to account for uncertainty and examine whether their inclu-
sion influences the model accuracy. We are also interested in identifying
to what extent including them in our model impacts the expected values
of the hidden variable. Previous work has shown that after the addition
of the metrics in the model, the hidden variable was more stable and
more likely to reflect the underlying ecosystem dynamics (i.e., capture a
regime shift) (Trifonova et al., 2014).

3. Experiments
3.1. Learning Bayesian networks

We learn the Bayesian network structure for each of the spatial re-
gions by applying a hill-climb optimization technique. The hill-climb
search begins with an empty network. In each stage of the search, net-
works in the current neighbourhood are found by applying a single
change to a link in the current network such as “add arc” or “delete arc”
and choose the one change that improves the score the most. We used
the Bayesian Information Criterion (BIC) for scoring candidate
networks:

BIC = logP(6) + logP(0|D) — 0.5klog(n)

where O represents the model, D is the data, n is the number of obser-
vations (sample size) and k is the number of parameters. Log P(®) is the
prior probability of the network model @, log P(0|D) is the log likeli-
hood whilst the term k log(n) is a penalty term, which helps to prevent
overfitting by biasing towards simpler, less complex models. The learned
Bayesian network links represent dependence, these are spatial re-
lationships that are predictive in an informative, not causal aspect
(Milns et al., 2010; Trifonova et al., 2015). The method identifies sim-
ilarity in the temporal trend of the paired variables (i.e. both variables
increase, or as one increases, the other decreases over time). We per-
formed the hill-climb with random restart (n = 10), which conducts
several hill-climbing runs, perturbing the result of each one as the initial
network for the next. Then, we apply the learning for 1300 iterations.
The maximum number of “parent” nodes (learned from the hill-climb)
was limited to three to avoid over-fitting (Trifonova et al., 2015). This
hill-climb approach produces a probabilistic dependency output per
year (i.e., value from O to 1) and for all the possible combinations of
paired relationships between the observed variables. We define a con-
fidence threshold - the minimum confidence (estimate of the probability
of finding a relationship) for a relationship to be accepted in the learned
network structure. We defined relationships of high confidence in time
as those in which we have the greatest mean confidence (calculated from
all the years per identified relationship) of being in the generated
network (threshold > 0.25). We use the confidence value to represent
the strength of each dependency relationship between a pair of two
variables. The confidence of the identified relationship represents the
level of similarity in the temporal trend of the paired variables. In
addition, to learn the network structure for each year in the time win-
dow, the hill-climbing was conducted on a window of data (size of
window = 10). In this way, we would be able to capture any significant
interactions over the previous 10 years. Based on the level of confidence
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and the number of the identified relationships between the observed
indicators and between the observed indicators with the hidden vari-
able, we define “best” indicators, which represent the most confident
data-driven estimates of indicators of ecosystem dynamics and their
changes across space and time (Fig. 2).

3.2. Ecosystem models comparison

3.2.1. HDBN ecosystem model

The modelling approach is a dynamic Bayesian network model with
a hidden variable (HDBN, Fig. 2) that is a modified version of the model
developed in Trifonova et al. (2015, 2017). The model was developed
from the identified consistent physical and biological indicators from
Section 3.1. From the strongest relationships, up to three indicators (i.e.
“parent” nodes) were selected that drive each target ecosystem
component (i.e. “child” node) and were used to build the modelling
structure. Therefore, in this way the HDBN ecosystem model captures
the spatial and temporal variability of multiple biophysical interactions
throughout the trophic chain, ensuring that the strongest relationships
(i.e. relationships of high dependency that are predictive in an infor-
mative, not causal aspect), and so the most consistent indicators of
ecosystem change, are the ones identified in this process. The model
included a single hidden variable that was modelled as a discrete node
with two states.

When the model parameters are fitted with data, the value of the
hidden variable is set so that it maximizes the fit of the model to the data
(e.g. the log-likelihood). If the patterns of the observed variables change
in the time series, e.g. the slope of a dependency between two variables
changes, the value of the hidden variable linked to these variables’
changes. Thus, we use the hidden variable in this study, to represent a
change in the underlying ecosystem dynamics (i.e. ecosystem state). To
do this, the hidden variable was linked to all the ecosystem components
in the model.

We want to compute P (H'|X’, X' 1), where H! represents the hidden
variable and X represents all observed variables at times t. We use the
predicted variable states from time t to infer the hidden state at time t.
The hidden variable was parameterized using the Expectation Maximi-
zation (EM) algorithm (Bilmes, 1998). In this case, the log-likelihood is:

L(©) = logP(X|®) = log>_ P(X, H|©)

where )y is the sum over the set of hidden variables H, required to
obtain the marginal probability of the data. In the first step of the EM,
the hidden variable is inferred using the predicted states, whilst in the
second step the estimated likelihood function is maximized. When the
algorithm converges to a local maximum, the parameters are estimated.
We used an exact inference method: the junction tree algorithm
(Murphy, 2001).

3.2.2. HDBN + physics and HDBN + ecology ecosystem models

The variance (i.e., the square root of the standard deviation) was
calculated for all the physical and biogeochemical drivers and used to
populate their CPDs (i.e., gaussian distributions) when building the first
model variant, the HDBN + physics ecosystem model. In the second
ecosystem model variant (HDBN + ecology), the variance was calcu-
lated for the biological indicators (i.e., zooplankton abundance, fish
recruitment, birds breeding success and mammals’ abundance and/or
harbour porpoise encounter rate) and was used to populate their CPDs
when building the HDBN + ecology ecosystem model. In this way, we
can account for varying variance in different parts of the network (e.g.,
different variances for different conditional distributions), which will
potentially improve predictions by allowing the models to better reflect
the underlying uncertainties in the system. In contrast, parameters for
the HDBN model were not specifically assigned. In the case of gaussian
nodes, the following was assumed: if node is called Y, its continuous
parents (if any) are called X, and its discrete parents (if any) are called Q.
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Fig. 2. (a) General structural form of the dynamic Bayesian network model with a hidden variable (HDBN) where X;... Xy represents the set of variables and arrows
denote conditional independence relationships. (b) The strongest data-driven relationships, that were used to build the ecosystem models, however, only some
illustrative ecosystem components are shown, to maximise visual clarity. The same illustrative ecosystem components are presented in sub-section 4.12. Blue-
coloured links indicate relationships with the physical indicators, red with fisheries catch and landings, green with primary production components, orange with
zooplankton assemblages and purple with higher trophic levels. Symbols used to denote the ecosystem components are next to the relationships. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The distribution on Y is defined as follows:
YIX =%,Q =i~ N(mu(:,i)+W(:,:i) x,Sigma ( :,:,i))

where N (mu, Sigma) denotes a normal distribution with mean mu
and covariance Sigma (Murphy, 2001).

3.2.3. HDBN + VAR + AC ecosystem model
Finally, variance and autocorrelation were calculated on a window

of data, set to size 10, so that each metric captures the value of interest
over the previous 10 years. The size of the window was found to be
optimum due to the length of the time series Note, the predictions from
this model variant will be available for a shorter time series due to the
windowing approach. The metrics were included in another ecosystem
model variant (HDBN + VAR + AC), and they were both linked to all the
remaining ecosystem components. We explore to what extent including
the two statistical metrics in our model impacts the expected values of



N. Trifonova et al.

the hidden variable but also whether including the two metrics in-
fluences the model accuracy. This model will not be addressed as a
competing model in the results and discussion, we simply wanted to
state the overall predictive accuracy during the learning process using a
windowing approach, however, the learned value of the hidden variable
will be discussed in the following sub-section.

We examine the models’ (i.e., HDBN, HDBN + physics, HDBN +
ecology and HDBN + VAR + AC, Table 2) accuracy in terms of their
ability to reproduce observations of the trends (increases versus de-
creases each year of the time series) in all the ecosystem components
(oceanographic processes as well as species/functional groups at all
trophic levels). The same modelling structure (learned from the identi-
fied relationships from Section 3.1) was used for all the model variants,
except for the HDBN + VAR + AC model, where variance and auto-
correlation were both linked to all the remaining ecosystem compo-
nents. In the HDBN + physics and HDBN + ecology models, the
difference was the added variance to the CPDs, but the graphical
structure was identical. Model performance, in terms of sum of squared
error (SSE), was assessed for each model and predictions were compared
on a year-to-year basis versus the original input data. Non-parametric
bootstrap (re-sampling with replacement from the training set, (Fried-
man et al., 1999) was applied 250 times for the model and its variants to
obtain statistical validation in the predictions. The data were stand-
ardised prior to conducting the experiments to a mean of 0 and standard
deviation of 1. We conduct all experiments using the Bayes Net Toolbox
in MATLAB (Murphy, 2001).

4. Results
4.1. Model comparison

4.1.1. Lowest SSE values

SSE per species, per model were compared to assess how well each
model performed against the annual input data values. The HDBN model
reported the highest number of ecosystem components (n = 9, 47 %)
predicted most accurately (least SSE per species), closely followed by the
HDBN + physics (n = 6, 32 %). These results are reassuring that the
inference scheme can handle the increased model complexity. The
model with the least accurately predicted ecosystem components was
the HDBN -+ ecology (n = 4, 21 %) with some SSEs higher than 30.00,
which highlights the importance of the level of variance when running
these types of models. We found the threshold of 30.00 to be most
appropriate based on examining the range of SSE values across models
as well as across ecosystem components. Although the general
improvement in predictive accuracy of the HDBN model over the

Table 2
Summary of HDBN models.
Models Name Comments
HDBN Hidden Dynamic Bayesian A hidden dynamic Bayesian

network model with no variance
specified in the CPDs

network model

HDBN + Hidden Dynamic Bayesian Variance was calculated for BT,
physics network model with conditional SST, PEA, max Chl-a, NetPP,
variance on physical and MLD, Hspeed, Vspeed, Oxygen
biogeochemical indicators and was used to populate their
CPDs
HDBN + Hidden Dynamic Bayesian Variance was calculated for
ecology network model with conditional zooplankton abundance, fish
variance on biological indicators ~ recruitment, birds breeding
success and mammals’
abundance and/or productivity
and was used to populate their
CPDs
HDBN + Hidden Dynamic Bayesian Variance and autocorrelation
VAR + network model with statistical were calculated on a rolling

AC metrics: variance and window of data

autocorrelation
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competing models, there is a similar level of accuracy (i.e., least SSE
difference: less than 5.00 between the generated overall predictions of
two models) for most of the ecosystem components. Two exceptions to
that were haddock and razorbill. For these species, the SSE difference
across the competing models was always higher than 5.00. Some
ecosystem components (e.g., the zooplankton functional group A6),
were generally predicted with higher SSEs values from two of the
competing models (i.e., SSE higher than 30.00) in comparison to the
remaining ecosystem components. Overall, the HDBN + VAR + AC also
performed well, specifically reporting some low SSE values for the lower
trophic levels (e.g., A2 zooplankton group) and higher trophic level
species like haddock and harbour seal (i.e., SSE less than 10.00). At the
same time, a higher SSE (i.e., SSE higher than 30.00) was reported for
the seabirds (e.g., razorbill).

Overall, for higher trophic levels of fish and above (i.e., seabirds and
mammals) the addition of either physical or biological variance saw a
better fit (decrease in SSE) for 77 % of those 13 species (10/13). When
comparing predictions across the ecosystem components, mammal
species were most accurately predicted by either the HDBN + physics or
HDBN model. The seabird species were most accurately predicted by
either the HDBN + physics or HDBN + ecology, highlighting the
importance of including variance in the case of these higher trophic level
ecosystem components. Across the fish species, it was harder to find any
specific patterns in terms of which model reported most accurate per-
formance per species, however, some patterns were identified based on
what specific indicators (physical vs biological) were driving the fish
recruitment in the models. For example, sandeel and herring were both
most accurately predicted by the HDBN + physics model and their levels
of recruitment are both driven by a combination of physical and
biogeochemical indicators, whilst the sprat, which was most accurately
predicted by the HDBN was driven by biological indicators and catch.

Table 2. Sum of squared error (SSE) of the ecosystem components
predictions generated by the HDBN and its variants (a). The component-
specific interactions that are used to build the HDBN models are shown
inside the brackets. The * symbol indicates most accurate predictions for
ecosystem components across the three models (values of SSEs that are
less than 30.00). (b) shows SSE of the ecosystem components generated
by the HDBN + VAR + AC. In a separate table as the values are not
directly comparable to the other three models.

a) Ecosystem components HDBN HDBN + HDBN +
physics ecology
Max Chl-a (PEA, Hspeed, MLD) 22.48* 29.85 25.39
NetPP (Oxy, Hspeed) 6.34* 6.92 6.43
A2 (Hspeed, Vspeed) 29.96*  31.14 30.99
A4 (PEA, NetPP, Vspeed) 10.08* 10.13 11.33
A5 (PEA, Vspeed) 9.63* 10.47 9.85
A6 (BT, NetPP, Hspeed) 29.35* 32.50 41.32
Sandeel (BT, A4, Catch DEM) 20.15 17.59* 19.52
Herring (MLD, NetPP, Land PEL) 26.85 25.80* 29.50
Sprat (A2, A6, Catch PEL) 26.99*  27.96 29.46
Mackerel (BT, A2) 30.99 30.50 27.94*
Haddock (NetPP, Catch DEM) 26.01 20.03 18.03*
Cod (MLD, Max Chl-a, Land DEM) 14.64*  24.68 14.92
Kittiwake (Vspeed, Sandeel, Sprat) 29.1 27.04* 43.13
Guillemot (MLD, NetPP, Sandeel) 29.79 24.36* 30.57
Gannet (A6, Herring, Sprat) 29.44 36.13 29.84*
Razorbill (Mackerel, Haddock, Cod) 29.71 31.90 21.48*
Grey seal (BT, NetPP, A6) 14.80 13.12* 20.93
Harbour seal (Max Chl-a, A5, Cod) 29.41* 31.55 42.90
Harbour porpoise (Max Chl-a, Oxy, 15.51 11.55* 13.44
Sprat)
b) HDBN + VAR + AC
Max Chl-a 22.34
NetPP 16.72
A2 9.31
A4 16.17
A5 26.88
A6 22.52

(continued on next page)
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(continued)

b) HDBN + VAR + AC
Sandeel 17.07
Herring 26.69
Sprat 38.38
Mackerel 14.38
Haddock 9.11
Cod 23.87
Kittiwake 29.65
Guillemot 32.66
Gannet 10.39
Razorbill 37.64
Grey seal 10.92
Harbour seal 9.68
Harbour porpoise 11.87

4.1.2. Temporal trends

We compared example ecosystem components and their population
trend predictions in time across the three model variants. We want to
visually demonstrate how well the model variants performed in repro-
ducing the inter-annual variability and long-term patterns (always
shown as blue lines) versus the original input data (red lines). Note, we
only show some illustrative examples, with their 95 % confidence in-
tervals calculated from the bootstrap predictions’ mean and standard
deviation, shown in the Supporting information (SI). The models were
able to capture many of the changes (increases versus decreases) of the
ecosystem components across over time, predicting the general trends in
population dynamics for all lower trophic level functional groups and
higher trophic level species using three or fewer indicators.

For sandeel, the HDBN and HDBN + physics were better able to
capture the declining trend in the early 2000s, in comparison to the
HDBN + ecology (Fig. 3). The HDBN + physics (least SSE value) in
comparison to the HDBN was better in modelling some of the individual
yearly variations (e.g., years 2014, 2019), however, the declining trend
(from the 1990s to early 2000s) over time was better captured by the

Sandeel
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HDBN model. The HDBN + VAR + AC model variant performed well in
capturing some of the individual yearly variations (e.g., 2005).

Similarly, the two best performing models (least SSE values) were
able to capture the long-term trend in the case of cod recruitment,
specifically, the declining trend from the early 2000s, whilst the HDBN
-+ physics model was better in capturing some of the specific yearly
variations (mid to late 2000s, Fig. 4). Similarly, to the sandeel, the
HDBN + VAR + AC model for cod, was able to capture well a lot of the
individual yearly variations.

In the case of guillemot, all three model variants were able to capture
the declining trend from the mid 1990s- early 2000s (Fig. 5). However,
none of the models were able to capture the steep decline in 2006, with
the exception of the HDBN + VAR -+ AC model. After 2006, it was the
HDBN + physics, followed by the second accurate model (HDBN) that
were able to capture the inter-annual variabilities in the time series.

4.2. Hidden variable

To assist in characterizing the ecosystem state, we examine the
learned hidden variables from the HDBN and HDBN + VAR+ AC models
(Fig. 6). The hidden variable from the HDBN model was relatively stable
for majority of the time series: it modelled one state until 2010, followed
by some fluctuations in 2011 and 2018. The hidden variable from the
HDBN + VAR+ AC model was a bit more varied than the hidden variable
from the HDBN model.It still identified a change in the ecosystem state
around the same time, even, a year earlier in 2009, followed by two
changes in the ecosystem state in 2013-2015 and then in 2018 that
remained until the end of the time series.

5. Discussion
5.1. Summary of model variants

In this study, we examined whether adding variance as a measure of
uncertainty to the CPDs of specific ecosystem components would result
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Fig. 3. Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, HDBN + ecology and HDBN + VAR + AC) versus real data (red line)
for sandeel recruitment. SSEs are shown under the panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
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in a better performance of a hidden dynamic Bayesian network model
(HDBN). The HDBN model showed consistently accurate predictions of
the ecosystem components. The HDBN + physics (variance added to the
CPDs of selected physical and biogeochemical indicators) was the

10

second-best performing model which was reassuring that the increased
model complexity applied here has resulted in revealing some genuine
patterns of the underlying lower and higher trophic level relationships
identified by our approach and their heterogeneity. In addition, these
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Fig. 6. The learned hidden variables from the HDBN (top) and HDBN + VAR+
AC (bottom) models. Note, the shorter time series in the bottom plot due to the
windowing approach.

results also suggest more insight into the relevance of physical and
biogeochemical indicators, such as stratification, temperature and
NetPP when evaluating ecosystem structure and function in efforts to
determine the ecosystem state. It is evident that changes in the popu-
lation dynamics of higher trophic levels are likely to reflect those of their
preferred prey, which may, in turn, be bottom-up driven by dynamic
bio-physical oceanographic processes like across spatial and temporal
scales (Bertrand et al., 2014; Boyd et al., 2015; Cox et al., 2018). Tem-
perature is another major driver of marine ecosystems and one of the key
factors affecting the physiology and ecology of all marine organisms
(Edwards et al., 2020; Evans and Waggitt, 2020; Simpson et al., 2011).
BT was found to be a better indicator, in comparison to SST (Table 2a),
with the mechanism for that potentially being that BT reflects steady
changes over longer periods of time, including integrated trends in
warming/cooling, whilst changes in SST reflect a wider range of the
daily/seasonal extremes (Trifonova et al., 2022). NetPP was another
indicator that was found to be a key driver for majority of the higher
trophic level species dynamics. It is through energy transfer along the
food web, that NPP provides bottom-up control on fisheries production,
identified within the North Sea and across other large marine ecosys-
tems around the globe (Barange et al., 2014; Blanchard et al., 2012;
Chassot et al., 2007). NPP plays a significant role in determining habitat
preferences and facilitating foraging for both fish prey and top predator
species, highlighting that prey and predators are selecting aspects of the
habitat type very differently and that might be a reflection of prey
species avoiding areas with predators (Cox et al., 2018; Sadykova et al.,
2017). With the improved understanding of the exact bottom-up (e.g.
levels of mixing and stratification) versus top-down (e.g. predators and
fishing) mechanisms that influence habitat use by marine animals across
spatial (< 1 km through to 1000 km) and temporal (days through to
years) scales, the effects of biophysical interactions on populations and
ecosystems and how these vary with climate change can be better
understood.

Predictions from all models were sensitive to the observed variables
incorporated due to the complex natural processes involved in gener-
ating the ecological input data. We reported some higher SSEs (e.g.,
zooplankton functional group A6, Table 2) which could be due to
structural uncertainties (i.e. species-specific relationships and/or
colony-specific drivers used to build the models) but also due to

11

Ecological Informatics 92 (2025) 103510

empirical data uncertainties perhaps due to some sampling variation in
the survey data. In addition, there was some similarity in accuracy of
generated predictions from different models that might be attributed to
the similar effects of changing climate on many species (Fernandes et al.,
2013), as previous work has demonstrated the potential effects of
continuous warming with cold-water anomalies and salinity changes
(Trifonova et al., 2021).

The HDBN model performed consistently well across the ecosystem
components, because the model evaluates the relative influence of
different driving factors when modelling ecosystem-level dynamics. Our
results highlight the need to include region-specific ecosystem level
changes and dynamics of the multiplicity of interactions when building
predictive models of complex and heavily exploited ecosystems within
shallow seas, such as the North Sea. The recognition of a hidden variable
is important which was adopted here to capture unmeasured effects and
changes in ecosystem components variance that are not purely con-
strained within the model structure. This is very different from mass
balance model approaches (Christensen and Walters, 2004) whose
fitting is conditioned completely upon the model structure.

However, for some of the species, prediction accuracy was improved
once variance was included by the HDBN + physics model, suggesting
that accounting for additional sources of variation removed spurious
interactions and let to a more plausible network structure (Aderhold
etal., 2012; Faisal et al., 2010). The successful performance of the model
variant highlights the heterogeneous nature of the ecosystem
component-specific lower and higher trophic level interactions (e.g.,
driven by physical, biological and/or combination of both) and gives us
more accurate insights on the structure of the underlying ecological
system. Through the applied BN approach, we were able to make trac-
table predictions of the true dynamic nature of physical, biogeochemical
and biological relationships and their patterns across trophic levels, and
their changes over time. This increases knowledge necessary to add to
the traditional use of top predator population dynamics as separate as-
pects of marine systems and will reduce uncertainties of the level of
direct and indirect effects on populations across a range of trophic levels.
By accounting for varying variances in the CPDs of the drivers, the
model becomes better equipped to handle uncertainty in a way that
reflects the true underlying system (Yildirim and Liaw, 2024).

Some dependencies between variables might be complex and non-
linear. It is often assumed by statistical and mechanistic modelling ap-
proaches that the underlying functional relationships (i.e., the govern-
ing ecological processes) are assumed to be static. This assumption, of
course, is overly simplistic, and maybe inaccurate, as ecosystems are
subject to increasing human pressures that can lead to drastic changes,
including regime shifts (Scheffer et al., 2009). However, the assumption
of static relationships is a necessary feature of mechanistic models, as
these models are built on the best available current understanding of
how systems function. While this static representation reflects our best
knowledge at the time, we are unable to account for ‘unknown
unknowns’.

From the modelling and data analysis perspective, these pose a
challenge, since the same functional forms may not describe the re-
lationships between the variables before and after the change
(Blenckner et al., 2015). By allowing variances in the physical and/or
biogeochemical drivers to vary, our HDBN model + physics can better
capture complex and nonlinear lower and higher trophic level re-
lationships where the uncertainty might vary depending on certain
conditions. For example, in a previous study using a larger ecosystem
region (i.e., deep central North Sea), that enclosed the study region in
this work, the region was shown to be controlled by both types of
forcing: bottom-up (e.g., primary production) and top-down (e.g., fish-
eries exploitation) leading to complex patterns of control on the
ecosystem (Trifonova and Scott, 2024). This further explains the better
performance of the models with added variance for some of the
ecosystem components, i.e., the Firth of Forth region is characterized by
a changeable ecosystem state prone to variability, therefore, a more
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complex model is needed to capture the underlying ecosystem dy-
namics. For example, in the case of breeding success, every bird species
was better predicted by either the HDBN + physics or HDBN + ecology
model, however, the SSE difference was still <5.0 between the HDBN
model and the model variant, except for razorbill. This suggests that
breeding success might be influenced by more complex factors than
some of the other ecosystem components that were better predicted by
the HDBN model alone. This could also suggest that seabirds might be
more prone to variability, thus, highlighting them as potentially more
sensitive indicators to pressures.

Interestingly, once the variance was added to the CPDs, the models
were better able to capture some of the specific yearly variations in the
time series. It seems that the variance adds to the overall model per-
formance by specifically capturing the inter-annual variability in the
time series. The potential explanation for this is that in some cases where
variables are inherently noisy or more prone to variability (e.g., seabird
breeding success), the more complex Bayesian network model applied
here can help prevent overfitting by modelling the noise appropriately
with higher variance (Lépez et al., 2022; Ramampiandra et al., 2023).
This prevents the model from becoming overly influenced by outliers or
fluctuations in the data, resulting in more accurate predictions. This was
particularly the case for guillemot for which the HDBN + VAR + AC
model was the only model that was able to capture the steep decline in
breeding success in 2006. Overall, the HDBN + VAR + AC model was
able to capture the trends and inter-annual variations with high accu-
racy, including some specific yearly variations. The accurate perfor-
mance of this model is also likely due to the inclusion of a rolling
window that has been previously discussed as successful in detecting an
impending regime shift in ecosystem time series (Carpenter et al., 2014).
The successful performance of a dynamic hidden BN model that was
used in combination with variance and autocorrelation has been pre-
viously demonstrated, but in the context of detecting early-warning
signals of functional changes in fisheries across a range of geographic
regions (Trifonova et al., 2014).

5.2. Hidden variable

A hidden variable was used in this study to learn and therefore,
represent the ecosystem state, and specifically capture any changes in
the ecosystem interactions that lead to changes in state. We compared
the hidden variable from the HDBN model to the hidden variable from
the HDBN + VAR+ AC model to identify to what extent including the
statistical metrics impacts the expected value of the hidden variable and
therefore, the expected ecosystem state.

Both hidden variables modelled a change in the ecosystem state after
2010, with the hidden variable from the HDBN + VAR + AC modelling
the change in state a year earlier in 2009, allowing detection of early-
warning signals of functional change across different geographic re-
gions (Trifonova et al., 2014). This change in the ecosystem state has
been discussed previously for much larger ecosystem regions and it was
thought to be due to changes in the bottom temperature (e.g., cold-water
anomalies: Gonzalez-Pola et al., 2019; Trifonova et al., 2021), with the
mechanism behind being the interplay between the physical indicators
(temperature and mixing) and productivity (Capuzzo et al., 2018). Here,
we were able to add further insight on the potential extent of the
functional change, even at the smaller spatial scale in this study. Most
importantly, with the now added uncertainty (i.e., variance) to the
model, we were able to detect such changes earlier in the time series.
The hidden variable from the HDBN + VAR+ AC model identified an
additional change in the ecosystem state (i.e., 2013-2015) whilst both
hidden variables modelled another change in state in 2018. The period
2015-2018 has been previously identified as a period of change with
relatively low values in net primary production, most likely attributed to
changes in mixing (Capuzzo et al., 2018; Trifonova et al., 2021). Simi-
larly, with the added results from this study, and specifically, once un-
certainty was included in the model, we were able to further identify the
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timing of a second potentially important period in the context of
reconstructing the ecosystem dynamics. These results highlight that the
use of a hidden variable when modelling ecosystem change is potentially
useful in providing insights on the underlying dynamics and patterns in
terms of ecological stability and resilience that can contribute towards
the general advice on potential response of the system to pressure.
Indeed, it is by examining the learned ecosystem state that allows us to
conclude whether the environment is in a desirable (predictable) or less
desirable state and during which years the state is desirable. Thus, the
hidden variable, once set up and updated with rather low effort, could
potentially be used to check for possible new changes in the underlying
ecosystem dynamics, indicative of major changes in the ecosystem,
which could be further investigated (Uusitalo et al., 2018).

6. Conclusion

The dynamic Bayesian network approach is a promising method to
analyse complex ecosystem-level interactions, and it may help reveal
underlying ecological patterns. Here, we demonstrated that the applied
hidden dynamic Bayesian network model can handle the increased
complexity by accounting for uncertainty (i.e., variance) in the condi-
tional probability distributions (CPDs) of selected physical, biogeo-
chemical and biological indicators. Indeed, model performance was
improved for 77 % of the higher trophic level species (fish, seabirds and
marine mammals) once variance was included in the CPDs. Therefore,
models that account for additional sources of variation seem to better
reflect on the underlying ecosystem-level dynamics. These results pro-
vide real insights into the characteristics of the study region, which is a
changeable ecosystem state prone to variability, and pave the route for
better understanding of the ecosystem structure and function under
different pressures. Most importantly, the methodology provides an
effective baseline that can be used within marine spatial planning con-
siderations of the relevant implications of future climate change versus
anthropogenic impacts (e.g., offshore large-scale wind developments).
Our results show temporally specific ecological interactions that indi-
cate a regional relationship of ecosystem components and their habitat
with the mechanisms varying from bottom-up (e.g., primary production)
through to top-down (e.g., fisheries). We were able to identify the
consistent drivers and illuminate the likely mechanisms that led to
consistently accurate model predictions. However, it must be noted that
perfect reconstruction is unlikely due to the noisy input data and com-
plex ecological process involved in generating such data (Faisal et al.,
2010). However, our findings complement more traditional mechanistic
(Heath et al., 2021) and statistical (Lynam et al., 2017) approaches; and
have extended our knowledge into the ecosystem-level understanding of
this North Sea region and its ecological structure and stability. Further,
the success of applying the HDBN + VAR+ AC model highlights the
usefulness of the rolling window approach in combination with the use
of statistical metrics in characterizing the temporal dynamics of this
region, specifically improving predictive performance in capturing the
inter-annual variability in the time series. The two hidden variables
successfully modelled changes in the ecosystem state, one attributed to
cold-water anomalies and a second one attributed to the interplay be-
tween the physical indicators (temperature and mixing) and produc-
tivity. The hidden variable from the HDBN + VAR+ AC model was able
to capture these changes earlier than the hidden variable from the HDBN
model.

Future work can use the methods shown here with the hidden dy-
namic Bayesian network model and with added variance in the CPDs
from selected physical and biological indicators to produce a range of
“what-if?” scenarios to better understand the combined ecosystem-level
effects of offshore large-scale wind developments, climate change and
fisheries displacement. Such approaches will be useful to guide what
habitats/species are more representative of what disturbances and what
management decisions are required to steer towards more ecologically
sustainable conditions under the influence of future changes (Trifonova
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and Scott, 2024). These types of outputs can be used to assess the cu-
mulative effects across a range of trophic species to support the devel-
opment of evidence-based policy and marine management.
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