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Abstract

The purpose of this study is to determine the optimal location for siting an onshore wind
farm on the island of Skyros, thereby maximizing performance and minimizing the project’s
environmental impacts. Seven evaluation criteria are defined across various sectors, includ-
ing environmental and economic sectors, and six criteria weighting methods are applied
in combination with four multicriteria decision-making (MCDM) ranking methods for
suitable areas, resulting in twenty-four ranking models. The alternatives considered in the
analysis were defined through the application of constraints imposed by the Specific Frame-
work for Spatial Planning and Sustainable Development for Renewable Energy Sources
(SFSPSD RES), complemented by exclusion criteria documented in the international lit-
erature, as well as a minimum area requirement ensuring the feasibility of installing at
least four wind turbines within the study area. The correlations between their results are
then assessed using the Spearman coefficient. Geographic information systems (GISs) are
utilized as a mapping tool. Through the application of the methodology, it emerges that
area A9, located in the central to northern part of Skyros, is consistently assessed as the
most suitable site for the installation of a wind farm based on nine models combining
criteria weighting and MCDM methods, which should be prioritized as an option for
early-stage wind farm siting planning. The results demonstrate an absolute correlation
among the subjective weighting methods, whereas the objective methods do not appear
to be significantly correlated with each other or with the subjective methods. The ranking
methods with the highest correlation are PROMETHEE II and ELECTRE III, while those
with the lowest are TOPSIS and VIKOR. Additionally, the hierarchy shows consistency
across results using weights from AHP, BWM, ROC, and SIMOS. After applying multiple
methods to investigate correlations and mitigate their disadvantages, it is concluded that
when experts in the field are involved, it is preferable to incorporate subjective multicriteria
analysis methods into decision-making problems. Finally, it is recommended to use more
than one MCDM method in order to reach sound decisions.

Keywords: objective assessment; subjective assessment; onshore wind farm siting; comparative
MCDM

1. Introduction
Identifying sites that harmonize clean energy generation with environmental protec-

tion [1,2], economic viability, and social approval [3] is essential as the need for renewable
energy, such as wind power, escalates. Finding the optimal location for onshore wind farms
(OWFs) is a crucial process, with the aim of maximizing performance while minimizing
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or even mitigating environmental impacts. Selecting the right location for a wind farm
is vital to its success, as it significantly impacts the amount of energy it can produce [4,5].
Various methodologies that contribute to appropriate decision-making can be found in the
international literature, including multicriteria decision-making (MCDM) approaches and
geographic information systems (GISs).

MCDM is a useful tool that can address complicated issues that include vari-
ous different—and often controversial—criteria. The process of multicriteria decision-
making comprises four main steps: defining the assessment criteria, collecting data for
each criterion, computing the weights of the assessment criteria, and final ranking of
the alternatives [6].

Integrated energy planning, considering environmental, social, and economic con-
siderations, has spurred the routine adoption of multicriteria decision-making (MCDM)
methods [7,8]. In this setting, GISs prove indispensable for scouting sites and pinpointing
optimal wind farm locations due to their ability to generate comprehensive databases and
translate them into clear visual maps [9–11]. GISs are employed to collect and analyze spa-
tial data, integrating the information with MCDM techniques to aid in site selection [12–14].
In their 2021 review, Sotiropoulou and Vavatsikos [15] listed 35 journal papers that exam-
ined multicriteria GIS-assisted relative suitability analyses for wind farms, all drawn from
the Scopus database and published since 2001. Seven of these works (20%) were published
between 2001 and 2010, while the remaining 28 (80%) were published between 2011 and
2021. Recent case studies from the five last years that combine MCDM methods with GIS
are detailed below.

Moradi et al. [16] combined AHP and GIS to assess the suitability of Alborz province
in Iran for wind farm installations. Six evaluation criteria were considered in the analysis,
and three different scenarios were considered (equal weight, zero weight to two economic
criteria, zero weight to two electric criteria). Their findings demonstrated that the variance
in appropriate land for the highly favored classes varied across each scenario.

Xu et al. [17] proposed a methodology that combines the interval analytic hierarchy
process (IAHP) with the stochastic VIekriterijumsko KOmpromisno Rangiranje (VIKOR)
and a GIS tool to determine the degree of suitability of wind farm siting in the Wafangdian
region, China. Three exclusion criteria were defined, followed by six evaluation criteria.
The weights of the evaluation criteria were determined through the IAHP, while the final
ranking was obtained with the help of the stochastic VIKOR method. Both the evaluation
criteria and the final hierarchy of the Wafangdian areas after the application of MCDM were
spatially visualized through GIS maps. Although 30.2% of the study area was suitable for
wind farm deployment, only 3.36% was characterized as highly suitable for this purpose.
A sensitivity analysis was performed to investigate the influence of the weights on the
final result through three different scenarios (equal weight, economic scenario promoting
electricity generation, environmental- and social-oriented scenario).

Feloni and Karandinaki [18] reported a typical example of the application of MCDM
combined with GIS for the siting of wind farms in the regional unit of Chania in Crete,
Greece. Their aim was to develop and apply a GIS and MCDM methodology to identify the
most suitable locations for the deployment of wind farms, considering multiple technical,
environmental, and socio-economic criteria. The criteria were selected in accordance with
legislative frameworks and available data. The weighting of the criteria was carried out
using the AHP method, and the individual criteria were normalized on a standard scale
(0–1) with the aid of GIS tools. The final synthetic evaluation was conducted using the
weighted linear combination (WLC) method, which combines the normalized fields with
corresponding weights. Three different scenarios (technical, techno-economic, and techno-
economic-environmental) were applied, resulting in distinct suitability maps. The area
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east of the prefecture of Chania was characterized in all scenarios as more suitable for
the installation of wind farms, mainly in mountainous and semi-mountainous zones with
interesting wind potential.

Sotiropoulou and Vavatsikos [15] investigated the siting of an onshore wind farm
in Thrace, Greece, using the preference ranking organization method for enrichment of
evaluations II (PROMETHEE II) and GIS. The study began with the definition of 18 siting
criteria. In the model used, the PROMETHEE II multicriteria analysis method was applied
to a sample of 2095 initial locations, comparing the alternative options in pairs with respect
to the siting criteria. Finally, GIS maps were produced which illustrate the degree of
preference for the areas in which a wind farm can be sited. This method can serve as a
strategic planning tool, contributing to the decision-making process for the development
of wind facilities and functioning as a guide for siting large-scale wind farms (regional
or national).

Moltames et al. [19] applied GIS and AHP to Khuzestan province in Iran. The model
uses 14 thematic data layers (technical, environmental, economic) to assess the suitability of
the areas, and the approach is based on the use of GIS for the generation of layers, normal-
ization and filtering of the data, and spatial combination processing. The analysis involves
multiple criteria, which are combined to obtain a suitability score for each candidate site.
The findings indicate that Shadegan city possesses the greatest economic potential, while
Khorramshahr city exhibits the maximum technical capacity for electricity generation via
wind energy. For different sizes of wind systems (e.g., 550, 2500, 8000 kW), the model
shows that the 550 kW unit has the greatest spatial suitability in the area.

Ayalke and Şişman [20] examined the spatial placement of terrestrial wind farms
in the Amhara Region of Ethiopia, integrating the best worst method (BWM) with GIS
to identify suitable installation areas to serve as valuable resources for future decision-
making processes in spatial planning. Initially, eight criteria were defined that determine
suitability according to the values they receive. The classification of the areas according
to each criterion was depicted on eight GIS maps, respectively. Then, the weights of the
criteria were assigned and, based on the BWM, the final map was obtained, determining
the degree of suitability for the installation of wind farms in each region of Amhara. The
area’s appropriateness for wind farms is assessed on a scale from 0 to 5, categorized as
inappropriate, very low, low, moderate, high, and very high potential. The areas with
great potential for wind energy production are located in the eastern and western parts of
the region.

Vagiona and Alexiou [21] investigated the optimal location of a wind farm on un-
inhabited islets in the South Aegean Region. First, the exclusion and evaluation criteria
(environmental, technical, and economic) were identified. Then, the AHP was used to
assign weights to the criteria, and TOPSIS was employed to rank the optimal options for
the examined uninhabited islets, using four different scenarios that were developed (base-
line, uniform criteria weights, technical/economic oriented scenario, and environmental
oriented scenario). In parallel with the analysis of the criteria and the application of the
methods, a GIS tool was used to visualize the data.

Seyed Alavi et al. [22] studied the optimal siting options for wind farms among
50 proposed locations in eastern Iran. The 13 evaluation criteria used were divided into
4 categories: environmental, social, technical, and climatic. The weights of each criterion
were assigned using the entropy weight method (EWM). The 50 suitable areas for wind farm
siting were ranked using 3 different methods: simple additive weighting (SAW), TOPSIS,
and elimination and choice translating reality (ELECTRE). The ranking of areas differed
based on the method used. According to the TOPSIS and ELECTRE techniques, the Gezi
Bojnourd choice is the optimal site, whereas the Neishabour Hesar Yazdan alternative is the
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least favorable site. Moreover, the Bashirabad Torbatjam choice is the most advantageous
location for the SAW approach.

Amsharuk and Łaska [23] presented a methodological framework for the deployment
of wind farms in Podlaskie Voivodeship, Poland, using GIS and three MCDM methods;
namely, the AHP, Borda, and TOPSIS methods. Eleven criteria and six variants were
considered in the analysis. The AHP method was employed to evaluate the criteria weights,
and three MCDM techniques were utilized to rank the variants. Variant 6 was the top
choice in both the AHP and Borda methods; therefore, it was selected for further spatial
analysis. The spatial analysis was performed through QGIS. A total of 704 plots were
selected, covering a total area of 32.50 km2. These plots represent approximately 0.16% of
the total area in the western, southwestern, and southern regions of Podlaskie Voivodeship.

Badi et al. [24] carried out an integrated assessment to rank five sites within Libya:
Derna, Masalata, Misurata, Tripoli, and Tarhuna. Six criteria guided the evaluation, with
their importance calibrated through a hybrid of the analytic hierarchy process (AHP) and
best worst method (BWM). The final ordering of the five candidate locations was then
derived using the measurement alternatives and ranking according to compromise solution
(MARCOS) method. Derna emerged as the site for wind farm deployment, with Tarhuna
slotted in as the runner-up. To probe the stability of this ordering, a sensitivity analysis
was run, drawing on nine distinct MCDM approaches to compare the outcomes.

Yildiz [25] presented a GIS-driven spatial multicriteria decision-making (SMCDM)
approach, for scouting viable wind farm locations, in Balıkesir, Turkey. He extracted
the importance of nine chosen criteria via an AHP questionnaire and then layered the
scored criterion maps to generate a wind farm suitability map. The analysis revealed
that 2.34% of the surveyed area fell into the highest suitability bracket, while a further
9.34% was assigned to the next tier. When a sensitivity analysis was conducted with every
criterion assigned its weight, it was found that the findings were partly trustworthy.

In his 2024 assessment, Yaman [26] mapped the locations for wind farm deployment
around Adana, Turkey, by coupling the analytic hierarchy process (AHP) with GIS. He
weighed eleven exclusion constraints against fifteen siting criteria. After calculating the
weights, the final map was generated using GIS’s weighted linear combination (WLC)
method, which divides the area into five suitability categories. The numbers reveal that
in Adana province, approximately 10% of the land is genuinely suitable for wind farm
placement, while roughly 51.66% falls into the moderately suitable bracket.

Demir et al. [27] applied fuzzy stepwise weight evaluation ratio analysis (F-SWARA)
to assess seventeen wind farm siting criteria, while fuzzy measurement alternatives and
ranking by compromise solution (F-MARCOS) was used to select the most appropriate site
for wind farm deployment in the province of Sivas, Turkey. GIS was used to form a database
of criteria and alternatives, which was transformed into a fuzzy decision matrix. A total of
36.5% of the study area turned out to be highly suitable, and the districts that present the
most sites characterized as “highly suitable” were Ulaş, Gürün, and Kangal districts.

The purpose of the present research is to determine the optimal area for an onshore
wind farm in Skyros, with the aim of maximizing performance and minimizing the project’s
impacts. To achieve this specific objective, the international literature and Greek legislation
are considered, the current situation of the study area is analyzed, exclusion criteria are
determined, and the available areas are identified. Subsequently, seven assessment criteria
are defined; these are related to various sectors, including environmental and economic
aspects. Six weighting methods (four subjective and two objective) are applied in combina-
tion along with four siting ranking methods, resulting in the creation of 24 ranking models.
Their results are correlated through the Spearman coefficient. The multicriteria analysis
methods of the weighting stage are the AHP, BWM, rank order centroid (ROC), SIMOS,
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entropy, and importance of criteria through criterion correlation (CRITIC), whereas the
methods of the ranking stage are TOPSIS, VIKOR, elimination and selection translating
reality III (ELECTRE III), and the preference ranking organization method for enriching
evaluations II (PROMETHEE II). Geographic information systems (GISs) are used as a
visualization tool.

Considering the existing literature, the present study aims to address the research
questions presented below:

Q1. Does the application of different criteria weighting methods affect the weights of
the criteria?

Q2. Does the application of different subjective criteria weighting methods result in
different criteria weighting findings?

Q3. Does the application of different objective criteria weighting methods result in
different criteria weighting outcomes?

Q4. Does the application of different MCDM methods affect the final ranking of siting areas?
Q5. Which siting area is more suitable than the others?
The main contributions of the present study are summarized as follows: (i) this is

the first research to utilize six criteria weighting methods and four alternative ranking
methods; (ii) several method combinations, such as ROC-VIKOR, SIMOS-VIKOR, BWM-
VIKOR, ROC-ELECTRE III, SIMOS-ELECTRE III, BWM-ELECTRE III, ROC-PROMETHEE
II, SIMOS-PROMETHEE II, and BWM-PROMETHEE II, are used for the first time to
determine the most suitable onshore wind farm siting areas; (iii) to reduce the subjectivity
of subjective methods, objective methods are also employed to assign weights to the criteria,
and the results are compared both in terms of the weights of the assessment criteria and
the rankings of the suitable siting areas. Therefore, beyond a simple GIS–MCDM wind
farm siting application, this study contributes to the systematic comparison of criteria
weighting methods (objective and subjective) with four MCDM ranking methods, thus
comparing 24 distinct ranking models applied to a specific renewable energy spatial
decision-making problem. The use of Spearman’s rank correlation coefficient contributes
to quantitative insight into the consistency, divergence, and influence of subjective versus
objective weighting approaches in onshore wind farm siting. The comparative framework
used in the analysis enhances transparent and robust early-stage spatial planning decisions.

Section 2 describes the methodological framework of the study, defines the study
area, analyses the exclusion and assessment criteria, and describes the methods employed
for weighting and ranking. Section 3 clarifies the findings of the analysis, and Section 4
summarizes the conclusions.

2. Materials and Methods
The proposed methodological framework is applied to identify the most suitable areas

for wind farm deployment considering several criteria. The first step of the methodology
(Figure 1) involves identifying the exclusion and assessment criteria based on the legislative
framework and the international literature. Using GIS and applying the exclusion criteria,
suitable locations for siting a wind farm in the study area are identified. Additionally, GIS
contributes to the creation of the assessment matrix, as it is used as a tool to measure the
values of the assessment criteria in each suitable siting area.

Figure 1 presents the six criteria weighting methods and the four MCDM methods
used in the analysis. Criteria weighting is a necessary process in decision-making, as the
assessment criteria in most cases differ in importance and often conflict. To investigate
how assessment criteria weighting methods influence results, six methods are applied:
four subjective (AHP, BWM, ROC, SIMOS) and two objective (entropy, CRITIC).
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Figure 1. Proposed methodological framework.

After this step, MCDM ranking methods are employed to incorporate the weighted
assessment criteria and generate suitable area rankings. The four MCDM ranking methods
used are TOPSIS, VIKOR, ELECTRE III, and PROMETHEE II.

The criteria weighting methods were selected to ensure widespread acceptance in
the wind energy siting literature (e.g., AHP, BWM, CRITIC), as well as methodological
diversity, including both subjective approaches, which depend on expert judgment, and
objective approaches, which rely solely on raw data. The four selected ranking MCDM
methods represent the most common MCDM methods that use different computation pro-
cesses: compromise (TOPSIS), compromise programming (VIKOR), outranking with veto
thresholds (ELECTRE III), and preference flows (PROMETHEE II). They are comparatively
use with the aim of explaining how different decision processes might influence spatial
suitability rankings.

The integration of different criteria weighting methods with MCDM ranking meth-
ods resulted in 24 final ranking models (Figure 2), with which the most suitable areas
were selected. The results of Step 2 and Step 3 are compared using Spearman’s rank
correlation coefficient.
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Figure 2. Final site ranking models.

2.1. Study Area

Skyros is located at the center of the Aegean Sea (Figure 3) and is the southernmost
and largest island of the Northern Sporades, with a total area of 210 km2 [28]. It is a part of
Central Greece and, more specifically, of the regional unit of Euboea. The administrative
area of the municipality of Skyros coincides with the geographical unit of the island of
Skyros. It has a high relief, mostly in the southern part of the island, due to its mountainous
character, and it consists of nineteen settlements [29].

 

 
(a) (b) 

Figure 3. Definition of (a) the study area and (b) altitude.

2.2. Exclusion Criteria

In this step, the exclusion criteria (ECs) and their incompatibility zones derived from
either the Specific Framework for Spatial Planning and Sustainable Development for Re-
newable Energy Sources (SFSPSD RES) [30] or the scientific international literature are
identified (Table 1). The purpose of these exclusion criteria is to exclude areas that are
unsuitable for wind farm deployment due to various factors. The 16 exclusion criteria,
covering a wide range of factors, are divided into 6 broad categories: natural and envi-
ronmental areas of interest; cultural and historical heritage areas; residential networks;
technical infrastructure and networks; land uses; and geomorphology and wind potential.
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Table 1. Exclusion criteria and incompatibility zones.

ID Exclusion Criteria Incompatibility Zone Reference

Areas of Natural and Environmental Interest

EC1 Protected areas 1500 m -
EC2 Wetlands 500 m [16,26,31]
EC3 Bathing beaches 1500 m [30]

Cultural and Historical Heritage Areas

EC4

Monuments,
archeological sites,

and historical world
heritage sites

3000 m [30]

EC5
Declared cultural
monuments and
historical sites

600 m (7 d) [30]

EC6 Holy monasteries 500 m [30]

Residential Network

EC7 Traditional
settlements 1500 m [30]

EC8 Settlements < 2000
inhabitants 500 m [30]

Technical Infrastructure and Networks

EC9 Road network 130 m (1.5 d) [30]
EC10 Airport 2500 m [16,32,33]
EC11 Electricity network 250 m [16,25,34]

Land Uses

EC12 High-productivity
agricultural land 130 m (1.5 d) [30]

EC13 Mining and
quarrying zones 500 m [30]

EC14 Tourist infrastruc-
ture/activities 1000 m [30]

Geomorphology and Wind Potential

EC15 Slope >20% [31,35]
EC16 Wind velocity <6 m/s [33,36]

Notes: d = 85 m (wind turbine rotor diameter).

2.3. Assessment Criteria

The selection of assessment criteria is based on each researcher’s subjective percep-
tion. The goal of this study is to determine the most suitable sites for a wind farm while
minimizing social, environmental, and economic impacts and maximizing the project’s
efficiency. Therefore, seven assessment criteria are used (Table 2). The assessment criteria
are carefully balanced between cost criteria (where lower values are preferred) and benefit
criteria (where higher values are selected). It should be noted that the limited number
of assessment criteria is a deliberate methodological choice. A significant portion of the
environmental, spatial, economic, and institutional criteria is applied during the exclusion
stage in accordance with the national legal framework of SFSPSD RES. The assessment
criteria focus on key criteria systematically found in the international literature to ensure
that the modeling conducted in the present study includes the most important siting factors
(e.g., wind velocity, distance from road network, distance from electricity network) in the
decision-making process and concentrate on technical, economic, environmental, and social
parameters, as well as essential criteria based on the characteristics of the study area (e.g.,
distance from cultural heritage areas).
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Table 2. Assessment criteria.

ID Assessment Criteria Category Type Description

C1 Slope (%) Cost Technical/financial The smaller the slope, the lower the project’s
construction and maintenance costs.

C2 Wind velocity (m/s) Benefit Technical/financial The higher the wind velocity, the higher the
level of electricity produced.

C3 Distance from road
network (m) Cost Financial

The shorter the distance from the road
network, the lower the project’s construction

and maintenance costs.

C4 Distance from
electricity network (m) Cost Financial

The shorter the distance to the electricity grid,
the lower the project’s construction and

operational costs will be.

C5 Distance from
protected areas (m) Benefit Environmental

The longer the distance from protected areas,
the more environmentally friendly the project

is considered.

C6 Distance from
settlements (m) Benefit Social The farther from settlements, the less the

visual and acoustic impacts.

C7 Distance from cultural
heritage areas (m) Benefit Social

The farther the project is from cultural
heritage areas, the more unaltered the sites

tend to be.

2.3.1. Technical/Financial Criteria

C1—slope: the slope is closely related to the region’s geomorphology and signifi-
cantly impacts the project’s construction and maintenance costs. A high slope percentage
makes access to the project challenging, leading to higher construction and maintenance
costs [37,38].

C2—wind velocity: the financial impacts decrease when choosing an area with high
wind velocity because the produced energy is higher [39].

2.3.2. Financial Criteria

C3—distance from road network: roads provide access to the project for construction
and maintenance. The closer the wind farm is to the road network, the smaller the distance
to reach it. This means there is not a strong need to construct a new road, and human
interventions in the environment are less pronounced [40,41].

C4—distance from electricity network: the proximity of the wind farm to the island’s
electricity grid significantly reduces the project’s costs, as it ensures a connection to the
existing lines without the need to construct new roads or power lines [39]. Additionally, the
shorter the distance between the wind turbine and the power supply network, the lower
the electrical energy loss [38].

2.3.3. Environmental Criteria

C5—distance from protected areas: the distance of the wind farm from protected areas
helps retain natural environmental elements and ecosystems and preserve biodiversity [38].

2.3.4. Social Criteria

C6—distance from settlements: the distance of available areas for the wind farm from
urban settlements is one of the social criteria that was determined to consider the effects
of such a project on the island’s inhabitants. Wind turbines cause visual and acoustic
disturbances in the surrounding area, leading to adverse social reactions [38].
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C7—distance from cultural heritage areas: the selection of this criterion aims to protect
areas with distinct historical and archeological characteristics [42], which fosters greater
connection between people and culture and, potentially, the development of tourism.

2.4. Criteria Weighting Methods

The selected criteria often contradict each other and combine various factors, making
it challenging to prioritize them in terms of importance. Therefore, using the methods
defined in Step 2 in combination yields a ranking of the criteria that considers both objective
data and subjective factors. This aids in studying their correlation and determining the
ideal criteria weights. The criteria weighting methods applied in this step are AHP, BWM,
ROC, and SIMOS (subjective methods) and EWM and CRITIC (objective methods).

2.4.1. Subjective Methods

AHP (analytic hierarchy process)

For the pairwise comparison of the criteria in AHP, the following decision matrix is cre-
ated: (A) n × n, where n is equal to the number of assessment criteria [43]. For each element
of the decision matrix A, the following should be true: αij > 0, αji =

1
αij

and αii = 1 [8].

A =


α11 α12 · · · α1n

1
α12

α22 · · · α2n
...

...
. . .

...
1

α1n
1

α2n
· · · αnn

 (1)

Each researcher is called upon to assign the respective values using Saaty’s fundamen-
tal scale (1–9) to prioritize the criteria by importance. In Table 3, the scores of the numerical
values of the Saaty scale are presented [44].

Table 3. Importance of values based on the Saaty scale.

Value Importance

1 i equally important as j
3 i slightly more important than j
5 i more important than j
7 i significantly more important than j
9 i absolutely more important than j

2, 4, 6, 8 Intermediate values

Then, every element of matrix A is divided by the sum of its respective column to
obtain a new matrix, which is the normalization of the matrix. Therefore, the average of
each row of the new matrix is calculated to assign weights to each criterion. The sum of the
weights must be equal to 1.

One advantage of AHP is its ability to perform consistency checks, confirming the
accuracy of the results. For this reason, the consistency ratio CI is calculated for the resulting
weights using the equation:

CI =
λmax − n

n − 1
, (2)

where n is the number of criteria.
The consistency ratio CR is calculated using the following equation:

CR =
CI
RI

, (3)

where RI is the random index.
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BWM (best worst method)

According to Kumar and Ratandhara [45] and to Rezaei [46], assigning weights to
criteria through the BWM is a five-step process.

1. The assessment criteria are defined.
2. The decision-maker (DM) determines the best and the worst criteria, cb and

cw, respectively.
3. At this point, a comparison is made, and the degree of preference for the best criterion

(c b) over the other criteria is determined. The preferred values or pairwise compari-
son values are assigned using Saaty’s scale (1–9). This results in an order of the matrix
A as follows:

Ab = (ab1, ab2, . . . , abn), (4)

where abj is the degree of preference of cb over cj, and abb = 1.
4. A comparison is made, and the degree of preference of the criteria is determined in

relation to the worst criterion (c w), using Saaty’s scale (1–9) as in the previous step.
Thus, the column of the matrix A is obtained:

Aw = (a1w, a2w, . . . , anw)
T , (5)

where ajw is the degree of preference of cj over cw, and aww = 1.
5. The optimal weights are calculated for each criterion. To achieve this, a solution in

which deviations between the weights and the DM’s preferences are as minor as
possible must be found. The goal is to minimize the maximum absolute differences∣∣∣wb

wj
− abj

∣∣∣ and
∣∣∣ wj

ww
− ajw

∣∣∣ for each criterion j. Therefore, the optimal weight for each
pair wb/wj and wj/ww, is defined as the one where the following apply for each j:

wb
wj

= abj and
wj

ww
= ajw (6)

To do this, we need to solve for minξ, such that:∣∣∣∣∣wb
wj

− abj

∣∣∣∣∣ ≤ ξ, ∀j (7)

∣∣∣∣ wj

ww
− ajw

∣∣∣∣ ≤ ξ, ∀ j (8)

n

∑
j=1

wj = 1wj ≥ 0, ∀ j

Finally, to check the accuracy of the resulting weights, Rezaei [46] developed the
consistency index CI and the consistency ratio CR. Consistency decreases when abj × ajw

is lower or higher than abw; otherwise, abj × ajw ̸= abw, and the highest inequality oc-
curs when abj and ajw have the maximum value, which will result in ξ. In addition,

(w b/wj
)
×(w j/ww

)
= wb/ww, and given the highest inequality as a result of assigning

the maximum value by abj and ajw, ξ is a value that should be subtracted from abj and ajw

and added to abw as follows:
(

abj − ξ
)
×

(
ajw − ξ

)
= (abw + ξ). For the minimum con-

sistency abj = ajw = abw, we have (abw − ξ)× (abw − ξ) = (abw + ξ). Solving for different
values of abw [47], the maximum possible ξ and these values are used as the consistency
index (CI).
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The consistency ratio (CR) is calculated using the formula:

CR =
ξ

CI
(9)

ROC (rank-order centroid)

The ROC is used to calculate criteria weights by determining the centroids of all
possible weights and maintaining the ranking based on objective importance. In this way,
the maximum error of each weight is reduced to a minimum [47]. The calculation of the
weights is carried out after the criteria have been ranked by the DM based on importance,
according to the following equation:

wj =
1
n

n

∑
k=j

1
k

, (10)

where wj the weight of criterion j, and n is the set of criteria.

SIMOS

The steps followed for the ranking of the criteria are the following [6,48]:

1. The decision-maker ranks the criteria (cards) in ascending order, starting from what
they consider less essential and ending with the most important. In the case that
two or more criteria are equally important, a subset that contains the equal criteria
is created.

2. The decision-maker defines the weights of the criteria (cards). To carry this out, white
cards are used. The following are assumed:

• When there is no white card between two consecutive criteria (or subsets of
criteria), the difference between their weights is equal to u.

• When one white card is placed, the difference is equal to 2u.
• When two white cards are placed, the difference is equal to 3u, and so on.

Then, the ranking created according to the steps detailed above is used to determine
the criterion weights using the SIMOS method. Specifically, the procedure is as follows:

Let us say a family of 12 criteria F = {α, β, γ, δ, ε, στ, ζ, η, θ, ι, κ, λ} is provided.
Table 4 presents how the DM has ranked the criteria or groups of criteria by importance.
The criteria are converted according to the following steps [48].

Table 4. Criteria cards ranking based on the DM.

Ranking Criteria Cards/Groups of Criteria Cards Number of Cards

1 {γ, ζ, λ} 3
2 {δ} 1
3 White card 1
4 {β, στ, θ, ι} 4
5 {ε} 1
6 {α, η} 2
7 {κ} 1

a. The criteria or their groups are ranked from least to most important based on the
white cards.

b. Each criterion must be assigned a position or, according to Simos, a weight. Therefore,
criterion γ assumes position 1, ζ assumes position 2, λ assumes position 3, and so on.

c. The non-normalized weight (or average weight according to Simos) of each ranking is
calculated. To achieve this, the sum of the positions of all criteria in a specific ranking
is divided by the sum of the criteria in that ranking. For example, the non-normalized
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weight for ranking 1 is (1 + 2 + 3)/3 = 2, while the non-normalized weight for ranking
2 is 4/1 = 4.

d. The normalized weight (or relative weight according to Simos) of each criterion
is calculated by dividing the non-normalized weight of its ranking by the sum of
positions of all criteria excluding white cards. As the result should be an integer,
weight criterion γ and δ, respectively, are equal to 2 × 100/(1 + 2 + 3 + 4 + 6 + 7 + 8 +
9 + 10 + 11 + 12 + 13) = 200/86 ≈ 2 and 4 × 100/(1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 +
11 + 12 + 13) = 400/86 = 4.65 ≈ 5.

2.4.2. Objective Methods

EWM (entropy weight method)

The following steps are used to weight the criteria [22,49]:
To begin the process, an n × m assessment matrix must be formed, where n is the set

of alternatives (which, in this research, is the suitable sites for wind farm siting in the study
area) and m is the set of assessment criteria.

1. The values of alternative i are normalized with criterion j (pij), following the equation:

pij =
xij

∑n
i=1 xij

, (11)

where xij is the value of the specific element in matrix n × m.
2. The entropy

(
Ej
)

is calculated based on the formula:

Ej = −k
n

∑
i=1

[
pijln

(
pij

)]
, (12)

where k = 1
ln(n) and j = 1, . . . ., m criteria.

3. The criteria weights are assigned
(
wj

)
according to the equation:

wj =
1 − Ej

∑m
j=1(1 − Ej)

, (13)

where
(
1 − Ej

)
is the degree of uncertainty.

CRITIC (criteria importance through intercriteria correlation)

CRITIC is an objective MCDM, in which the weights of each criterion are calculated
according to the contrast and differing intensity that they exhibit between them [50].
According to Žižović et al. [51] and Hassan et al. [52], the steps followed to determine the
weights are as follows:

1. An n × m decision matrix X =
[
xij

]
n×m is created, where n is the set of alternatives,

m is the set of assessment criteria, and xij is the value of alternative i with respect to
criterion j.

2. The matrix X is normalized by applying the corresponding equations. For the benefit
criteria, where the higher value is more preferable, the following equation is used:

xT
ij =

xij − xmin
j

xmax
j − xmin

j
, (14)

For the cost criteria, where the lowest values are preferred, the equation used is
as follows:

xT
ij =

xmax
j − xij

xmax
j − xmin

j
, (15)
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where i = 1, 2, . . . , n are the alternative positions, j = 1, 2, . . . , m are the criteria,
xmax

j = maxj
{

x1j, x2j, . . . , xnj
}

, and xmin
j = minj

{
x1j, x2j, . . . , xnj

}
. This results in the

normalized matrix X.

3. The standard deviation
(
σj
)

of each criterion is calculated. xj is the average score of
criterion j, and n is the set of alternatives [6].

σj =

√
∑n

i=1
(
xij − xj

)2

n − 1
(16)

4. An m × m matrix R is created, the elements of which
(

rjk

)
constitute the linear

correlation coefficients between xj and xk.

R =
[
rjk

]
m×m

(17)

where j, k = 1, 2, . . . , m denote the criteria.

rjk =
∑n

i=1
(
xij − xj

)(
xij − xk

)√
∑n

i=1
(
xij − xj

)2
∑n

i=1(xik − xk)
2

(18)

5. The information measures Cj for each criterion are calculated.

Cj = σj∑m
k=1

(
1 − rjk

)
(19)

6. The weights
(
wj

)
of the criteria are determined. This method assigns greater weights

to criteria with high standard deviation and low correlation with other criteria.

wj =
Cj

∑m
k=1 Ck

, (20)

where Ck is the sum of the criteria’s set of information.

2.5. Ranking Methods

Step 3 of the methodology includes the assessment of alternative sites. Therefore, the
four MCDM ranking methods (TOPSIS, VIKOR, ELECTRE III, and PROMETHEE II; as
described below) are used, and their results are compared.

TOPSIS (technique for order of preference by similarity to ideal solution)

The steps of TOPSIS method are provided as follows [43,53,54]:

1. An n × m decision matrix X =
[
xij

]
n×m is created, where n is the set of alternatives,

m is the set of assessment criteria, and xij is the value of alternative i with respect to
the criterion j.

2. The elements of the matrix X are normalized in order to obtain a new normalized
matrix and compare the different criteria types.

rij =
xij√

∑n
i=1 x2

ij

, (21)

where i = 1, 2, . . . , n denote the alternatives, and j = 1, 2, . . . , m denote the criteria.
3. The weighted normalized decision matrix V is calculated based on the equation:

vij = wj × rij, (22)
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where vij is an element of V, and wij is the weight of criterion j.
4. The positive ideal solution (PIS; V+) and negative ideal solution (NIS; V−) are deter-

mined as follows, where J is related to benefit criteria, and J′ is related to cost criteria.

V+ =
{

v+1 , . . . .., v+m
}
=

{(
maxvij|j ∈ J

)
,
(
minvij|j ∈ J′

)}
(23)

V− =
{

v−1 , . . . .., v−m
}
=

{(
minvij|j ∈ J

)
,
(
maxvij|j ∈ J′

)}
(24)

5. The separation distance between alternative Ai and the PIS or NIS is measured by the
Euclidean distance as follows:

S+
i =

√√√√ m

∑
j=1

(
vij − v+j

)2
(25)

S−
i =

√√√√ m

∑
j=1

(
vij − v−j

)2
(26)

6. The alternative’s relative closeness to the PIS is calculated using the following equation.
The greater the C+

i value, the more preferable the alternative site:

C+
i =

S−
i

S+
i + S−

i
, (27)

where 0 ≤ C+
i ≤ 1.

VIKOR (VIekriterijumsko KOmpromisno Rangiranje)

VIKOR uses the following steps to rank the alternatives [55–57]:

1. Positive and negative ideal solutions are measured ( f+j και f−j , respectively) for each
assessment criterion.

For benefit criteria, the equations used are f+j = max fij and f−j = min fij. (28)

For cost criteria, the equations used are f+j = min fij and f−j = max fij. (29)

2. The Si and Ri values are calculated. Si is defined as the distance from alternative i to
the PIS, and Ri is defined as the distance from alternative i to the NIS.

Si =
n

∑
j=1

wj

(
f+j − fij

)
/
(

f+j − f−j
)

(30)

Ri = maxj

[
wj

(
f+j − fij

)(
f+j − f−j

)]
, (31)

where wj is the weight of criteria j.
3. The Qi value is measured. In the next equation, the following hold: S− = maxiSi,

S+ = miniSi, R− = maxiRi, R+ = miniRi, v is the weight of the strategy of “the
majority of criteria”, and i = 1, 2, . . . , m. The weight of the strategy v is assigned
values from 0 to 1, and is usually set as 0.5.

Qi = v
(
Si − S+

)(
S− − S+

)
+ (1 − v)

(
Ri − R+

)(
R− − R+

)
(32)

4. The alternatives are ranked based on the S, R, and Q values. Thus, three ranking
lists are constructed. The optimal alternative solution is the one where Q(minimum)

is true.
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ELECTRE III (elimination and choice translating reality III)

Ranking of the alternative areas is achieved using the following methodology [58,59].
The first three steps are identical to the TOPSIS method (Equations (22) and (23)). Then,
four more steps are applied:

1. The concordance (C kl) and discordance (D kl) sets are defined for each pair of alter-
natives. In this step, the examined alternatives are compared to each other based on
the criteria, and the best or worst is determined to obtain the final Ckl and Dkl .

Ckl =
{

j
∣∣∣vkj ≥ vl j

}
(33)

Dkl =
{

j
∣∣∣vkj < vl j

}
= J − Ckl (34)

2. The corresponding concordance (C) and discordance (D) matrices are constructed.

The matrix C is m × m and non-symmetric, and the concordance sets are taken into
consideration in its construction. The concordance index (c kl) equals the sum of the criteria
weights related to each set, which expresses the relative importance of the alternative Ak in
relation to the alternative Al . The element where k = l is true has no value. The remaining
elements are calculated based on the following equation:

ckl = ∑
J∈Ckl

wj, (35)

where j = 1, 2, . . . ., m denote the criteria, and 0 ≤ ckl ≤ 1.
The matrix D is m × m and non-symmetric. Element where k = l is true have no value.

Additionally, the higher the dkl value, the less preferable the alternative Ak is in relation
to Al . This step focuses on the assumption that one alternative is worse than another, and
each element is measured based on the equation:

dkl =

max
j∈Dkl

∣∣∣vkj − vl j

∣∣∣
max

j∈J

∣∣∣vkj − vl j

∣∣∣ , (36)

where j = 1, 2, . . . ., m denote the criteria, and 0 ≤ dkl ≤ 1.

3. The concordance dominance (F) and discordance dominance (G) matrices (m × m)

are determined. The matrix F is obtained through comparison of the concordance
threshold c with the elements ckl of C, where

c =
1

m(m − 1)

m

∑
k=1

m

∑
l=1

ckl , (37)

where m is the number of decision points.

The elements of matrix F are assigned the following values. A value of 1 means that
Ak outweighs Al .

I f ckl ≥ c ⇒ fkl = 1 (38)

I f ckl ≤ c ⇒ fkl = 0 (39)

The matrix G is obtained from the comparison of the concordance threshold d with
the elements dkl of D, where

d =
1

m(m − 1)

m

∑
k=1

m

∑
l=1

dkl , (40)

https://doi.org/10.3390/wind6010004

https://doi.org/10.3390/wind6010004


Wind 2026, 6, 4 17 of 31

where m is the number of decision points.
The elements of G are assigned the following values.

I f dkl ≥ d ⇒ gkl = 1 (41)

I f dkl ≤ d ⇒ gkl = 0 (42)

4. The aggregate dominance matrix (E) is then constructed. It is m × m, based on the
matrices C and D, and its elements are assigned values of 0 or 1, following the formula:

ekl = fkl × gkl (43)

The last step involves determination of the importance of the alternatives, where
the matrix E appears in the following form. Analyzing the matrix, it is indicated that
e12 = 1, e13 = 1, and e32 = 1. This means that alternative 1 is preferred to alternatives 2
and 3, and alternative 3 is preferred to alternative 2. Thus, the order of importance will be
A1, A3, A2.

E =

− 1 1
0 − 0
0 1 −

 (44)

PROMETHEE II (preference ranking organization method for enrichment of evaluations II)

The process of ranking the alternatives using the PROMETHEE II method is provided
as follows [60,61]:

The preference function P is determined to express the outcome of the comparison
between alternatives α, b ∈ A, where A is a finite set of possible alternatives. F(d) is a
monotonically increasing function of the observed deviation (d) between f (a) and f (b).

P(α, b) = F(d) = F[ f (a)− f (b)], (45)

where 0 ≤ P(a, b) ≤ 1.
Six preference functions are proposed to facilitate its selection. The decision-maker

is called to choose the function that will be used, and no more than two parameters (q, p,
or s thresholds) have to be determined. The preference function of the standard criterion
is frequently used, as it does not include extra parameters such as the preference and
indifference thresholds that are necessary for other kinds of preference functions.

In the next step, a preference index π(α, b), which shows the preference of alternative
a over b, is calculated following the formula:

π(a, b) =
∑n

j=1 wjPj(a, b)

∑n
j=1 wj

, (46)

where wj is the criteria weight.
The leaving and entering flows—denoted as φ+(α) and φ−(α)—respectively, are

calculated using the following equations. φ+(α) indicates the degree to which alternative a
outranks the rest, while φ−(α) shows the degree that the remaining alternatives outweigh a.

φ+(α) = ∑
b∈A

π(a, b) (47)

φ−(α) = ∑
b∈A

π(b, a) (48)
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Finally, the net flow φ(α) of alternative a is set as the difference between the leaving
and entering flows. The higher the value of φ(α), the more preferable the alternative is
considered to be.

φ(α) = φ+(α)− φ−(α) (49)

2.6. Spearman’s Rank Correlation Coefficients

After the weighting of criteria is completed, Spearman’s correlation coefficient (rs) is
used to compare the results from each MCDM. The same procedure is followed to rank the
alternative areas for wind farm installation. In this way, an integrated analysis is conducted
that contributes to the decision-making process.

Spearman’s rank correlation coefficient (rs) takes values between [−1, +1], where
values close to +1 indicate a strong positive relationship, values close to −1 indicate a
strong negative relationship, and values close to 0 indicate weak or no correlation in
the compared rankings. The equation used to calculate this coefficient in Steps 2 and 3,
respectively, is as follows [62]:

rs = 1 − 6
∑ d2

i
n(n2 − 1)

, (50)

where n is the number of criteria or alternative sites, and di is the difference between the
ranking of the methods examined.

3. Results
This section analyzes the results of the methodological framework employed and

applied. ArcGIS Pro 3.0.2 was used to visualize the exclusion areas for wind farm siting,
as well as the available areas and their ranking resulting from the application of different
criteria weighting and MCDM ranking methods.

3.1. Exclusion Areas

For the creation of the thematic maps depicting the exclusion criteria, data from the
following sources were used: GEODATA, Global Wind Atlas, RAE, USGS Earth Explorer,
Ministry of Environment and Energy/Estia, National Archive of Monuments, European
Environment Agency, Copernicus Land, ArcGIS Online [63–71]. An essential prerequi-
site for wind farm siting is the exclusion of areas that have any status and have made
any decision regarding the installation of RES. Therefore, the corresponding areas in the
municipality of Skyros with either production licenses or rejection decisions were further
excluded from the analysis. Figure 4 presents six thematic maps, regarding: (a) areas of
natural and environmental interest, (b) technical infrastructure and networks, (c) land uses,
(d) settlements, (e) slopes, and (f) production licenses or rejection decision areas.

After applying the exclusion criteria and their corresponding incompatible zones,
20 suitable areas for wind farm siting emerged, occupying a total area of 4 km2 and ranging
in surface area from 0.007 km2 to 0.847 km2.

The selection of the final suitable areas for assessment in this study was based on
the number of wind turbines that can be installed within each area, ensuring the project
is considered viable. Specifically, the areas deemed suitable are those where at least
four Vestas V90 (2 MW) wind turbines with a rotor diameter of 90 m can be installed.
Following the guidelines of Appendix II of the SFSPSD RES [30], the minimum distance
between turbines is 2.5 times the rotor diameter (i.e., 2.5 d). Therefore, in this case, the
minimum distance was 225 m. Applying these data to each available area within the
municipality of Skyros resulted in eleven suitable sites (Figure 5); their surface area and the
number of turbines that can be installed at each site are recorded in Table 5.

https://doi.org/10.3390/wind6010004

https://doi.org/10.3390/wind6010004


Wind 2026, 6, 4 19 of 31

  
(a) (b) 
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Figure 4. Exclusion zones around (a) areas of natural and environmental interest, (b) technical
infrastructure and networks, (c) land uses, (d) settlements, (e) slopes, and (f) production licenses or
rejection decision areas.
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Figure 5. Suitable sites for wind farm siting in the study area.

Table 5. Surface area and number of turbines of suitable sites for wind farm siting in the study area.

Site Area Surface (km2) Number of Wind Turbines

A1 0.303 7

A2 0.345 8

A3 0.322 8

A4 0.303 8

A5 0.095 4

A6 0.297 7

A7 0.527 12

A8 0.253 7

A9 0.847 20

A10 0.103 4

A11 0.228 7

Total 3.623 92

3.2. Assessment of Suitable Areas

The assessment of the selected areas in terms of their suitability for the siting of wind
farms was divided into two stages. Initially, a weighting was assigned to the assessment
criteria by applying the six criteria weighting methods (AHP, BWM, ROC, SIMOS, CRITIC,
entropy). Then, the ranking of the areas for assessment followed, which was carried out
using each of the four MCDM methods (TOPSIS, VIKOR, ELECTRE III, PROMETHEE II)
in combination with the weights calculated from the six criteria weighting methods. As a
result, 24 different models for ranking the available areas were generated.

3.2.1. Criteria Weighting Method

The criteria weighting methods used at this stage were AHP, BWM, ROC, and SIMOS
(subjective) and EWM and entropy (objective). Each method assigns its own weight to
the assessment criteria and subsequently examines the correlation of its results using the
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Spearman coefficient. The results of the assessment criteria weighting methods used are
summarized in Table 6.

Table 6. Assessment criteria weights using four subjective (AHP, BWM, ROC, SIMOS) and two
objective (entropy, CRITIC) weighting methods.

Subjective Methods Objective Methods

AHP BWM ROC SIMOS CRITIC Entropy

C1 Slope 0.252 0.213 0.228 0.230 0.139 0.016

C2 Wind velocity 0.351 0.344 0.370 0.250 0.147 0.007

C3 Distance from road network 0.177 0.142 0.156 0.180 0.145 0.537

C4 Distance from electricity network 0.063 0.085 0.073 0.110 0.135 0.118

C5 Distance from protected areas 0.103 0.107 0.109 0.140 0.152 0.020

C6 Distance from settlements 0.035 0.071 0.044 0.070 0.138 0.074

C7 Distance from cultural heritage sites 0.020 0.037 0.020 0.020 0.144 0.229

The subjective methods yielded the same ranking of the criteria, with no significant
deviation in the values assigned to each. This is due to the incorporation of the researcher’s
subjective perception and judgment into all methods. The most important criterion is
the wind velocity. The AHP, BWM, and SIMOS assigned weights of 0.351, 0.344, and
0.250, respectively, while ROC produced the highest value, at 0.370. Conversely, the least
important criterion is the distance from cultural heritage sites, for which AHP, ROC, and
SIMOS assigned weights of 0.020, while BWM assigned a weight of 0.037. The entropy
and the CRITIC method determine the objective weights of the assessment criteria without
the decision-maker’s direct involvement. In the entropy method, the assessment criteria
weights depend on the degree of dispersion and, therefore, the variability in values within
each criterion, whereas in the CRITIC method, the assessment criteria weights are deter-
mined considering both the standard deviation of each criterion and the correlation between
criteria. In the current research, for the entropy method, wind velocity (C2) presents low
variability in values among suitable areas (A1–A11) and receives low assessment criterion
weight, whereas distance to road network (C3) and distance from cultural heritage sites
(C7) present high variability, resulting in a high assessment criterion weight. Regarding
the CRITIC method, the combined effect of variability and intercriteria correlation leads to
similar weights for C2, C3, and C7.

The calculation of the Spearman coefficient contributes to the investigation of the
correlation between the weighting performance methods and the way that they rank the
criteria. Specifically, the closer the coefficient value is to 1, the greater the relevance of
the multicriteria methods being compared. Additionally, the p-value indicates the level of
significance of the methods being compared, with the correlation considered statistically
significant when the values are <0.05 and statistically not significant when they are ≥0.05.

The conclusion drawn from Table 7 is that the criteria weighting methods AHP, BWM,
ROC, and SIMOS exhibit an absolute correlation among themselves, meaning that they
assign weights to the assessment criteria in a consistent manner. This is explained by the
Spearman correlation coefficient being equal to 1 and the p-value being less than 0.01 in the
binary comparisons conducted.
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Table 7. Spearman correlation coefficient and significance level (in terms of p-value) comparing the
ranking of assessment criteria weights.

AHP BWM ROC SIMOS Entropy CRITIC

AHP
Correlation 1 1 1 1 −0.61 0.43

p <0.001 <0.001 <0.001 0.148 0.337

BWM
Correlation 1 1 1 1 −0.61 0.43

p <0.001 <0.001 <0.001 0.148 0.337

ROC
Correlation 1 1 1 1 −0.61 0.43

p <0.001 <0.001 <0.001 0.148 0.337

SIMOS
Correlation 1 1 1 1 −0.61 0.43

p <0.001 <0.001 <0.001 0.148 0.337

Entropy Correlation −0.61 −0.61 −0.61 −0.61 1 −0.25
p 0.148 0.148 0.148 0.148 0.589

CRITIC
Correlation 0.43 0.43 0.43 0.43 −0.25 1

p 0.337 0.337 0.337 0.337 0.589

On the other hand, the CRITIC method exhibited a moderate correlation with all
subjective methods. In contrast, entropy showed either high (compared to AHP, BWM,
ROC, SIMOS) or low (compared to CRITIC) negative correlations with the other methods,
indicating an inverse ranking tendency and, therefore, proving that there are fundamental
differences between data-driven and expert-based weighting methodologies.

The absolute correlation between the AHP, BWM, ROC, and SIMOS methods stems
from the fact that they are all subjective multicriteria methods, with the ranking of criteria
based on the researcher’s opinion and judgment, which remains constant across all cases.
At the same time, the objective method that most closely resembles the subjective ones in
terms of how weights are assigned was CRITIC; however, it did not show a statistically
significant correlation with any of them, as the p-values were all greater than 0.05.

3.2.2. Prioritization of Suitable Areas

After assessment of the importance of the criteria by each criteria weighting method
separately, the 11 suitable areas were compared with each other across the 7 assessment
criteria to determine their final ranking based on suitability for wind farm siting. The
assessment matrix is presented in Table 8. The data for the assessment criteria were drawn
from the following sources: GEODATA, Global Wind Atlas, RAE, USGS Earth Explorer,
Ministry of Environment and Energy/Estia, National Archive of Monuments, European
Environment Agency, Copernicus Land, ArcGIS Online [63–71].

At this stage, the four MCDM methods were applied six times, using the different
weights derived from the six criteria weighting methods. Therefore, a total of 24 final
rankings of the suitable areas were produced.

The application of different MCDM methods to rank suitable areas using weights
derived from various criteria weighting methods led to different hierarchies. In Figure 6,
the rankings from the 24 models are compiled to facilitate the selection of the optimal wind
farm location, including all the results.

As observed, in all four MCDM methods, the rankings showed consistency between
AHP, BWM, ROC, and SIMOS. Conversely, entropy and CRITIC differed in their rankings,
both among themselves and compared to the others. This is due to the fact that AHP, BWM,
ROC, and SIMOS exhibit an absolute correlation as they are subjective weighting methods
and, therefore, the evaluation criteria received similar weights.
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Table 8. Assessment matrix.

C1 C2 C3 C4 C5 C6 C7

Suitable
Area Slope (%)

Wind
Velocity

(m/s)

Distance
from Road

Network (m)

Distance
from

Electricity
Network (m)

Distance
from

Protected
Areas (m)

Distance
from

Settlements
(m)

Distance
from

Cultural
Heritage
Sites (m)

A1 12.4 6.9 130 6953 1500 3280 2761

A2 12.6 7.6 130 6214 1500 2339 1454

A3 11.5 6.8 130 5248 1924 3030 1459

A4 10.6 6.9 130 4937 1640 2752 915

A5 14.4 6.6 327 4507 1809 3260 523

A6 13 6.6 130 4766 2394 3374 1716

A7 10.4 6.8 130 5159 1500 3100 3004

A8 10.8 6.9 130 4100 1500 1975 3433

A9 8.9 7.3 130 3586 1506 1711 1725

A10 12.4 6.5 130 3083 1500 2556 964

A11 9.07 8.9 894 11,915 1500 5476 806

In general, fluctuations were observed regarding the rankings. VIKOR and PROMETHEE II
appeared to produce similar results in certain cases, such as in the prioritization with the
weights of ROC. Considering the weights of entropy and CRITIC, the greatest divergence
between the ranking methods was observed, as these are objective methods.

The area that was considered the most suitable was A9 (based on nine models), while
the areas that were least suitable were A5 and A11 (each based on nine models).

According to VIKOR, PROMETHEE II, and ELECTRE III, in combination with the
majority of the criteria weighting methods, areas A9 and A11—located in the central and
southern parts of the island, respectively—were the top two choices. Conversely, A5 and
A10—which are situated in the center of the island and in close proximity to each other—
were ranked last. TOPSIS designated A9 as the optimal location for wind farm deployment,
and A5 and A11 as the worst.

It should be noted that no parametric sensitivity analysis was performed in the present
research. However, the reliability of the results was examined through the systematic
comparison of 24 different weighting and MCDM ranking method combinations, allow-
ing for investigation of stability or fluctuations in suitable area rankings under different
assessment criteria weights.

For a more extensive investigation of the relationships between the ranking methods,
the Spearman coefficients were calculated. As shown in Table 9, very high correlations
were observed between pairs of methods with values greater than 0.7, such as VIKOR and
PROMETHEE III, using the weights of ROC. On the other hand, very low correlations,
indicating a clear differentiation in ranking, were observed for the combinations of methods
where the Spearman coefficient values are less than 0.3; namely, TOPSIS-VIKOR and
TOPSIS-ELECTRE III with the weights of SIMOS.
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Figure 6. Ranking of the alternatives based on the 24 models derived from the combination of the
6 assessment criteria weighting methods and the 4 MCDM ranking methods.

Table 9. Spearman’s rank correlation coefficient matrix of ranking methods using AHP, BWM, ROC,
SIMOS, entropy, and CRITIC weights.

TOPSIS VIKOR PROMETHEE II ELECTRE III

AHP TOPSIS 1 0.4 0.48 0.54
VIKOR 0.4 1 0.93 0.91

PROMETHEE II 0.48 0.93 1 0.94
ELECTRE III 0.54 0.91 0.94 1

BWM TOPSIS 1 0.32 0.45 0.42
VIKOR 0.32 1 0.9 0.89

PROMETHEE II 0.45 0.9 1 0.91
ELECTRE III 0.42 0.89 0.91 1

ROC TOPSIS 1 0.47 0.49 0.58
VIKOR 0.47 1 0.98 0.91

PROMETHEE II 0.49 0.98 1 0.91
ELECTRE III 0.58 0.91 0.91 1

SIMOS TOPSIS 1 0.18 0.48 0.26
VIKOR 0.18 1 0.77 0.91

PROMETHEE II 0.48 0.77 1 0.8
ELECTRE III 0.26 0.91 0.8 1

Entropy TOPSIS 1 0.99 0.99 0.91
VIKOR 0.99 1 0.98 0.89

PROMETHEE II 0.99 0.98 1 0.93
ELECTRE III 0.91 0.89 0.93 1
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Table 9. Cont.

TOPSIS VIKOR PROMETHEE II ELECTRE III

CRITIC TOPSIS 1 0.5 0.78 0.57
VIKOR 0.5 1 0.67 0.49

PROMETHEE II 0.78 0.67 1 0.87
ELECTRE III 0.57 0.49 0.87 1

Additionally, it was observed that all ranking methods using entropy weights exhibited
very high correlations with each other.

4. Conclusions
The study conducted within the proposed framework facilitated the selection of an

optimal area for onshore wind farm deployment on the island of Skyros through the
combined use of multicriteria analysis methods and geographic information systems (GISs),
which serve as a mapping tool.

Climate change has been worsening rapidly and its impacts are becoming increasingly
noticeable, both globally and nationally. Harnessing wind energy potential for electricity
generation is considered one of the most effective ways to contribute to mitigating the
phenomenon and to shift towards the use of green energy, promoting the adoption of
environmentally friendly practices.

For this reason, there is a steady upward trend in the exploitation of wind energy, with
the capacity derived from the operation of wind turbines reaching 1.017 GW worldwide in
2023. Like most human interventions, however, wind farms also have certain impacts on
the natural environment, as well as on the socio-economic sector. Therefore, to reduce the
negative effects associated with these projects and maximize their efficiency, it is considered
essential to use multicriteria analysis methods to select the most suitable available area.

By integrating criteria identified in the international literature and documented in
the SFSPSD-RES [30] with the current state of the study area, the most significant criteria
for deploying wind farms were selected along with those that exclude their siting. Thus,
20 available areas emerged, of which 11 were ultimately considered as areas for evaluation,
due to the requirement that at least four Vestas V90-2 MW wind turbines (the minimum
number set for the project to be considered efficient) can be installed within their extent,
based on the technical specifications for the minimum distance of the environmental impact
assessment for RES and the type of wind turbines chosen. As illustrated with the help of
the GIS, the final positions for evaluation were mostly located in the central to northern
part of the island of Skyros and are in close proximity to each other, except for one, which
was situated in the southern part.

The seven assessment criteria selected were as follows: slope, wind velocity, distance
from the road network, electricity network, protected areas, settlements, and cultural
heritage sites. The multifaceted nature of the issue, as well as the differing nature of
the criteria, makes wind farm siting a complex problem and led to the combined use
of different multicriteria analysis methods in the weighting stage, as well as in the final
ranking of the locations, resulting in 24 ranking models. The objectives were to minimize
the disadvantages and exploit the advantages of each method, as well as to explore the
different outcomes.

In the assessment criteria weighting stage, six multicriteria analysis methods were
applied, of which AHP, BWM, ROC, and SIMOS are subjective methods, while entropy and
CRITIC are objective. The analysis of the results using Spearman correlation coefficients
indicated that the subjective methods exhibited perfect correlations with each other, indi-
cating that they assign weights to the assessment criteria in the same way; this is due to the
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incorporation of the researcher’s personal opinion, and remained consistent across all cases.
On the other hand, the CRITIC method showed moderate correlations with all subjective
methods, while entropy showed strong negative correlations with all subjective methods
and a low negative correlation with the other objective method. Subsequently, for the
final ranking of the suitability of the areas, four multicriteria methods were used—TOPSIS,
VIKOR, PROMETHEE II, and ELECTRE III—each applied six times with the different
weights derived from the different criteria weighting methods. According to the Spearman
coefficients, the ranking methods with the highest correlations were PROMETHEE II and
ELECTRE III, while those with the lowest were TOPSIS and VIKOR. The TOPSIS and
VIKOR methods are quite similar regarding their methodology, as they are based on an
aggregating function that represents closeness to the ideal solution (distance measure-
ments). Although they rank the alternatives based on their proximity to ideal and non-ideal
solutions, they yield different results: TOPSIS selects the alternative closest to the ideal
solution and furthest from the non-ideal solution, whereas VIKOR determines a “compro-
mise solution.” Additionally, the differences in the results are due to the different methods
used to normalize the assessment matrix: TOPSIS uses vector normalization, while VIKOR
uses linear normalization. On the other hand, the strong correlation between PROMETHEE
II and ELECTRE III is due to the fact that they are both compensatory methods that belong
to the group of outranking methods, in which the computations are based on pairwise
dominance and not on absolute distances (as in TOPSIS and VIKOR). Suitable sites are
compared in a pairwise manner based on each assessment criterion, providing rankings
that show a strong correlation.

Furthermore, the rankings showed consistency across results using the weights from
AHP, BWM, ROC, and SIMOS. Conversely, with the weights from entropy and CRITIC, the
areas differed in their rankings both among themselves and compared to the others. The
majority of the combinations identified area A9—located in the central to northern part of
the island—as the most consistently high-ranking potential area, providing a prioritized
alternative for early-stage spatial planning and further detailed investigation (e.g., produc-
tion license, micro-siting, environmental impact assessment approval, installation license,
grid connection). The results of the present study could support strategic early-stage
decision-making, which should be followed by detailed wind resource analysis, analysis
of grid capacity constraints, environmental impact assessment studies, and stakeholder
engagement processes. Finally, based on the preceding analysis, this work recommends
incorporating subjective multicriteria analysis methods when researchers are experts in
the field, as the results align with the decision-maker’s opinion. Conversely, when the
researchers are not specialized in multicriteria decision-making, the use of objective mul-
ticriteria analysis methods is advised, as their results are derived from the values of the
assessment matrix. It should be noted that the proposed methodology is applied under
the constraints of the Greek Spatial Planning and Sustainable Development for Renew-
able Energy Sources (SFSPSD RES), ensuring that all assessed areas are legally compliant
and meet a minimum project viability threshold. Therefore, the proposed GIS–MCDM
framework should be considered as a strategic, early-stage spatial planning and screening
tool that can support planners and decision-makers, aiming to identify and comparatively
assess suitable areas for wind farm siting, and not as a substitute for developer-led project
feasibility assessment.
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Abbreviations
The following abbreviations are used in this manuscript:

AHP Analytic hierarchy process
BWM Best worst method
CI Consistency index
CR Consistency ratio
CRITIC Criteria importance through intercriteria correlation
DM Decision-maker
ECs Exclusion criteria
ELECTRE Elimination and choice translating reality
EWM Entropy weight method
F-MARCOS Fuzzy measurement alternatives and ranking by compromise solution
F-SWARA Fuzzy stepwise weight evaluation ratio analysis
GIS Geographic information system
IAHP Interval analytic hierarchy process
MARCOS Measurement alternatives and ranking according to compromise solution
MCDM Multicriteria decision-making
NIS Negative ideal solution
OWFs Onshore wind farms
PIS Positive ideal solution
PROMETHEE II Preference ranking organization method for enrichment of evaluations II
RI Random index
ROC Rank order centroid
SAW Simple additive weighting
SFSPSD RES Spatial Planning and Sustainable Development for Renewable Energy Sources
SMCDM Spatial multicriteria decision-making
TOPSIS Technique for order of preference by similarity to ideal solution
VIKOR VIekriterijumsko KOmpromisno Rangiranje
WLC Weighted linear combination
Symbol Description
A Pairwise comparison matrix in AHP
n Number of assessment criteria in subjective criteria weighting methods
aij Element of pairwise comparison matrix representing importance of criterion i over j
λmax Maximal eigenvalue
cb Best criterion in BWM
cw Worst criterion in BWM
Ab Best-to-others vector in BWM
abj The preference of the best criterion b over criterion j in BWM
Aw Others-to-worst vector in BWM
ajw The preference of the criterion j over the worst criterion w
wb Weight of best criterion in BWM
wj Weight of criterion j
ww Weight of worst criterion in BWM
ξ Consistency (deviation) parameter in BWM
u Difference between criteria weights in SIMOS
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F Family of criteria in SIMOS
n × m Matrix of n alternatives and m assessment criteria
pij Normalized values of alternative i with criterion j in EWM
xij The value of alternative i with respect to criterion j in the n × m matrix
Ej Entropy value
k A normalization constant for scaling entropy values within the interval 0–1
X Decision matrix (n × m)
xT

ij The normalized value of alternative i with respect to criterion j

in the CRITIC method
xmax

j Maximum value of criterion j across all alternatives

xmin
j Minimum value of criterion j across all alternatives

σj Standard deviation of normalized values of criterion j
xj Average of the normalized values of criterion j across all alternatives

in the CRITIC method
R Intercriteria correlation symmetric matrix (m × m) in the CRITIC method
rjk Correlation coefficient between criterionj and criterion k in the CRITIC method
Cj Information content of criterion j in the CRITIC method
Ck Information content of criterion k in the CRITIC method
rij Normalized value of alternative i with respect to criterion j

in the TOPSIS method
vij Weighted normalized value of alternative i with respect to criterion j

in the TOPSIS method
V+ Positive ideal solution
V− Negative ideal solution
S+

i Euclidean distance of alternative i from the positive ideal solution
S−

i Euclidean distance of alternative i from the negative ideal solution
C+

i Relative closeness coefficient of alternative i to the ideal solution
f+j Ideal value of criterion j among all alternatives in the VIKOR method

f−j Non-ideal value of criterion j among all alternatives in the VIKOR method

fij Performance value of alternative i for criterion j in the VIKOR method
Qi VIKOR compromise ranking index of alternative i
Si Group utility measure of alternative i
Ri Individual regret measure of alternative i
S− Maximum (worst) value of the group utility measure among all alternatives

in the VIKOR method
S+ Minimum (best) value of the group utility measure among all alternatives

in the VIKOR method
R− Maximum (worst) value of the individual regret measure among all alternatives

in the VIKOR method
R+ Minimum (best) value of the individual regret measure among all alternatives

in the VIKOR method
v Weight of the strategy of the majority of the criteria (usually 0.5)
Ckl Concordance set containing the criteria for which alternative Ak is

at least as good as Al

Dkl Discordance set containing the criteria for which alternative Ak is worse than Al

vkj Veto threshold on criterion k relative to alternative j
vij Veto threshold directly indexed by the pair of alternatives
C Concordance matrix
D Disconcordance matrix
ckl Partial concordance index for criterion k when comparing two alternatives
dkl Partial discordance index for criterion k when comparing two alternatives
Ak Alternatives k under comparison
Al Alternatives l under comparison
F Concordance dominance matrix, derived from comparing ckl with c
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G Discordance dominance matrix, derived from comparing dkl with d
c Concordance threshold, defined as the average of all ckl values
d Discordance threshold, defined as the average of all dkl values
fkl Element of matrix F
gkl Element of matrix G
ekl Element of matrix E
E Aggregate dominance matrix
F(d) Monotonically increasing function of the observed deviation
d Observed deviation between f(a) − f(b)
P(a, b) Preference degree of alternative a over b
q Indifference threshold
p Preference threshold
s Scale parameter
π(α, b) Global (aggregated) preference index of a over b
Pj Preference of a over b with respect to criterion j
φ+(α) Positive (leaving) flow of a
φ−(α) Negative (entering) flow of a
φ(α) Net flow of a
rs Spearman’s rank correlation coefficient
di The difference between the ranking of the methods examined
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