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Interest in sources of renewable energy has led to increasing attention being paid to the
potential of strong tidal currents. There is a limit to the available power, however, as too
many turbines will merely block the flow, reducing the power generated. The maximum
average power available from a tidal stream along a channel, such as that between an
island and the mainland, is estimated and found to be typically considerably less than
the average kinetic energy flux in the undisturbed state through the most constricted
cross-section of the channel. A general formula gives the maximum average power as
between 20 and 24% of the peak tidal pressure head, from one end of the channel to the
other, times the peak of the undisturbed mass flux through the channel. This maximum
average power is independent of the location of the turbine ‘fences’ along the channel.
The results may also be used to evaluate the power potential of steady ocean currents.

Keywords: tidal power; tidal currents; renewable energy

1. Introduction

Exploiting ocean tides for energy production is usually discussed in terms of
closing off a bay and generating electricity through the release of water trapped
at high tide (Prandle 1984; Bernshtein et al. 1997). There are also proposals to
exploit tidal streams (Gorlov 1995; UK Parliament Select Committee on Science
and Technology 2001; Triton Consultants Ltd 2002; Pearson 2004; Peplow 2004;
Stone 2004), typically in channels with strong currents, in much the same way as
wind energy can be tapped.

The tidal stream may be in the entrance to a bay, or in a channel between, say,
an offshore island and the mainland. In both situations it is important to
estimate the maximum average power, i.e. the maximum average rate at which
energy can be extracted, and it is sometimes assumed that this is given by the
average flux of kinetic energy in the undisturbed state through the most
constricted cross-section of a channel where the currents are strongest. There is
no rigorous basis for this assumption, however, and no formulae exist for what
the maximum extractable power might be. What is clear is that little power is
generated if only a few turbines are placed in the flow, but that adding too many
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turbines chokes the flow and again limits the power. It should be possible to
determine the optimum number (and placement) of turbines and the associated
maximum average power production.

Garrett & Cummins (2004) examined the use of current turbines in the
entrance to a bay, and showed that, over a tidal cycle, the average power
produced need not be much less than in a conventional scheme with a dam. The
sea level difference from outside to inside the bay, required to drive the turbines
and produce power, can come from a difference in the time of high and low tides
outside and inside the bay, not just from a difference in the tidal range. Hence,
reasonable energy production is compatible with maintaining a tidal range in the
bay that is not much reduced from its undisturbed value, thus maintaining the
flushing that might be desirable for waste dispersal and aquaculture. Garrett &
Cummins (2004) also concluded that there is no simple relationship in this case
between the maximum average power and the average kinetic energy flux in the
undisturbed state.

In the case of a bay, the sea level outside may be prescribed reasonably
independently of the currents in the entrance, but clearly the sea level inside, and
hence the pressure head driving the currents in the entrance, is dependent on the
currents. In the present paper we consider a different scenario, as for a
constricted channel connecting two large bodies of water in which the tides at
both ends are assumed to be unaffected by the currents through the channel.
Once again, the problem is to determine the maximum average power that can
be extracted.

2. The model

We consider flow through a channel of variable cross-section (figure 1). The
current speed u(z, t) is assumed to be a function of time ¢ as well as the position z
along the channel, but independent of the cross-channel position.

The dynamical equation governing the flow is

Ju du a¢

0t+u8x+gax F, (2.1)
where the slope of the surface elevation { provides the pressure gradient to drive
the flow and F(z, t) represents an opposing force associated with natural friction
and possibly the presence of turbines. Taking the frictional force associated with
the turbines to be independent of the cross-channel position requires that the
turbines be deployed in a uniform ‘fence’ across the flow, with all the water
passing through the turbines. This is actually a more efficient scheme than using
isolated turbines, as that would lead to cross-channel current gradients
downstream and loss of energy as these gradients are smoothed by lateral
mixing (Garrett & Cummins 2004). There could, of course, be several
fences along the channel, so that the turbine-related part of F'is an arbitrary
function of .

If the channel is short compared with the wavelength of the tide (generally
hundreds of kilometres, even in shallow water), volume conservation implies that
the flux Au along the channel is independent of z and may be written as Q(t).
(We neglect small changes in A associated with the rise and fall of the tide.)
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Figure 1. A channel connects two basins with different tidal elevations. At any instant the current
through the channel has speed u, a function of the local cross-sectional area A(z), where x is the
along-strait coordinate. At the channel entrance the current enters from all directions, but at the
exit it may separate as a jet with speed u,, surrounded by comparatively stagnant water with
elevation the same as that in the downstream basin.

Using this in equation (2.1) and integrating along the channel implies

d L 1
Cd—?_gz() Z_JOFd$_§Ue|ue|a (2'2)
where ¢= fOL A7 dz and (1) is the sea level difference between the two basins,
assuming that this difference is unaffected by the flow through the channel and
hence unaffected by changes in F' as turbines are deployed. We note that the
geometrical factor c¢ is insensitive to the locations of the ends of the channel at
x=0, L if A is large there. This is the case at the channel entrance where flow is
drawn in smoothly from a region with large A, weak currents and prescribed tidal
elevation. We allow for flow separation at the channel exit, however, where the
flow is likely to emerge as a jet once the channel widens significantly, but with
the sea level continuous across the edges of the jet and matching the prescribed
downstream elevation. Thus, there is a small sensitivity of ¢ to the location of the
point of separation. More importantly, however, if u,(¢) denotes the current
speed at the exit, there is an associated pressure head loss (1/ 2)pu§, where p is
the density of the water. (The pressure head loss is just pg times the change in
elevation. We shall use the term ‘head loss’ to refer to either this change in
pressure or the reduction in the sea level.)

There are clearly different basic states, and hence different problems to be
considered for tidal power extraction, depending on whether the imposed head
difference is balanced in the basic state by the acceleration term on the left-hand
side of equation (2.2), or the friction and flow separation terms on the right-hand
side. We consider them in sequence and look for general results.

(a) The simplest case

The natural frictional term and the head loss associated with separation at the
exit are likely to be significant, or even dominant, unless the channel is long
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and deep. Nonetheless, we start by assuming that these influences are small, so
that the natural regime has a balance between the sea level difference and
acceleration. We take {y=acos wt, a sinusoidal tide with amplitude a and
frequency w. This forcing can, of course, be the difference of sinusoidal tides at
each end of the channel rather than representing forcing from just one end. The
associated volume flux from equation (2.2) is Q= Q, sin wt where Qy=ga(wc) ™ '.
The power generated at the turbines is the integral along the channel of the
product of water density p, current wu, cross-section A and the local frictional
force F representing the turbines. Thus, the average power extracted from the
flow by the turbines is

L L
P = J pFQdr = pQJ F dz, (2.3)

0 0
with the overbar indicating the average over a tidal cycle. This would need to be
multiplied by a turbine efficiency factor to give the average electrical power
produced. We note that P is the average power extracted over the whole channel;
the factor @ in equation (2.3) implies integrating over the cross-section and the
integral over z allows for the distribution of the turbine fences along the channel.
We first assume that the drag associated with the turbines is linearly
proportional to the current u= @/A at any cross-section. Then we may write

IOL Fdzx=2Q and P= Ap@, where A is related to the number of turbines and
their location along the channel. The governing equation

d
cd—cf — gacos wt = —AQ (2.4)
is easily solved to give
90\ vt (1/2)prg’a®
“Re[(; 2 o], p= L2 25
Q ¢ A—lcwe 22+ w? (2:5)

As expected, P at first increases with A (more power is generated as more
turbines are added), but then decreases as too many turbines choke the flow. The
maximum average power, obtained when A= cw, is

Py = ipg?a?(cw)_1 = %pcw@% = %pgaQo- (2.6)
The peak flow through the channel is then reduced to 272, or 71%, of its
original value. The head loss associated with the turbines is also 71% of the
original head difference along the channel. The maximum average power is
independent of the location of the turbine fences along the channel (but with the
fewest turbines clearly being needed if they are deployed at the smallest cross-
section where the currents are strongest). This result does not depend on the
linear representation of the turbine drag.

(b) Different drag laws

A more realistic representation of the turbine drag would be quadratic in the
current speed. We have considered an arbitrary exponent, with drag A|Q|" ™' Q
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Figure 2. The scaled maximum power as a function of a parameter A’, representing the frictional
drag associated with the turbines, for various values of n where the turbine drag is assumed
proportional to the nth power of the current speed.

(as for a turbine drag proportional to the current speed to the nt}% power),
and then non-dimensionalized with t=w " 't', Q= QyQ', A= A’chg(n_ )50 that
the governing equation is

/

dt’

—cost' = =X1Q" Q. (2.7)

We have solved this numerically and evaluated P/Py=4X|Q'|"'Q? as a
function of A’ for different values of n (figure 2).

The maximum power for n=2 (quadratic drag) is 0.97 times the value P,
derived for n=1. Moreover, it does not seem that any other drag law could lead
to more power than for n=1.

We thus take P, as a reasonable estimate of the maximum power available in
the case of negligible background friction and exit separation effect. We may
evaluate it in terms of conditions at the constriction with smallest cross-sectional
area A, where the amplitude of the undisturbed tidal current is .. To do
this we write ¢= fOL A7V dz= L/ Apin, where this effective length Leg is likely to
be considerably less than the total channel length L. Then

1
P() = prLeffAminurQnaX' (28)

This may be compared with the reference value

pAmin|u1nax COS &)t|3 = Aminu;axa (29)

gﬁ

N |

P flux —

which gives the average undisturbed kinetic energy flux through the smallest
cross-section of the channel and is sometimes used as an estimate of the available
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power. The ratio is

PO _ 3 (,z)LCff
Pﬂux 8 Umax

: (2.10)

and can either be less than 1 (short channel, strong currents) or greater than 1
(vice versa). For example, if w=1.4X10"" s7', as for the semidiurnal tide,
Leg=5km and =3 ms ', then Py/Pg,=0.3, 50 Py, would overestimate
the resource. With these values and A,,;,=5X10° m? (as for a width of 5 km and
a depth of 100 m), then Py=800 MW.

(¢) Including background friction

The calculations so far have neglected background friction and the separation
effect. These can be lumped together in a single term if, as is realistic, the friction
is quadratic in the current u and represented in water of depth h by Cyu*/h where
Cy is the drag coefficient, which may be a function of . The momentum equation
is then

d L
Cd—?_gco = _J Fturb da:—a|Q|Q, (211)
0
where
L 1
a= J Ca(hA®) ™ dz + 5,4;2, (2.12)
0

and A, is the cross-sectional area at the exit. There is a balance at any instant
between the acceleration, the surface slope, the drag fOL Fi dz associated with
the turbines, and the internal friction and separation effect.

If we non-dimensionalize as before and assume that the turbine drag is also
quadratic in the local current, equation (2.11) becomes

4’
ar’

where Ay= gaa(wc)~? represents the background friction and separation effect
and A; corresponds to the turbine drag. Here, « and hence Ay may be functions of
time if A, varies with time (particularly between ebb and flood), but we ignore
this for the moment.

Note that equation (2.13) is just equation (2.7), which we have already solved,
with n=2 and A’=A;+24;. The power produced by the turbines is just
the fraction A;/1'=(1"—2)/A" times that shown in figure 2 for n=2, starting
at A’=2,. The multiplier effectively pulls down the first part of the curve in
figure 2, so that its maximum is now a decreasing function of Ay, as shown in
figure 3. This maximum can be used to provide estimates of the average power
available in any situation. For large values of 1y, dQ'/d# can be neglected in
equation (2.13), and | Q'|=2A"""/?|cos ¢'|"/*. The average power P produced by the

—cost' =—(4 +4)|Q¢, (2.13)

turbines is then given by P/Py=4(X — A))A’ ™/*|cos ¢'|*?, with a maximum of
0.86161/ 2, as shown in figure 3. This asymptotic estimate is only 20% too large
even for Ag=2.

Proc. R. Soc. A (2005)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on June 18, 2012

Power potential of tidal currents 2569

1.0-|‘-'|"'|"'|"'|

0.8

max(P/Pg)

Ao

Figure 3. The scaled maximum power as a function of the dimensionless parameter 4,
representing friction and flow separation in the basic state. For large values of 4y, this maximum
power tends to 0.864q Y 2 shown by the dashed curve.

(d) The quasi-steady limit

This large Ay limit, in which the acceleration is unimportant, is best
appreciated in the dimensional version of the problem. In the absence of
turbines, the volume flux Q; has magnitude | Q| = (g|%o|/a)"/? and the same sign
as {o. With turbines, the power produced at any instant is, using equation (2.11)

L
”QL P dz = pQ(g%y — 2| Q| Q). (2.14)

This has a maximum as () is varied of (2/33/2)ng1C0=O.38ng1C0. The flow at
any instant is 371/2=0.58 of what it was in the absence of the turbines, and two-
thirds of the head loss along the channel is now associated with their operation.

The fraction of two-thirds is close to the 71% derived earlier in the linear case
with no background friction or separation. It thus seems that the effectiveness of
tidal power development in a channel can partly be assessed by considering
whether 70% or so of the natural head (typically rather small) can be used
efficiently.

For {y=acos wt, |@Q;| may be written as Q.x|cos a)t|1/2

. After averaging over

a tidal cycle, with |cos 0|3/2 = 0.56, equation (2.14) leads to an average power of
P, =0.21pgaQ - (2.15)

This may be compared with the last formula in equation (2.6), which, after
scaling by 0.97 to correspond to quadratic turbine drag, would give a maximum
power of 0.24pga)y. This shows that, if the maximum power is compared with
the peak pressure head along the channel times the peak volume flux in the
undisturbed state, the multiplier only changes from 0.24 to 0.21 as we progress
from a natural regime with no background friction to one dominated by it.
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Figure 4. Solid line, left axis: the multiplier y giving the maximum average power YpgaQuax as a
function of the parameter Ay representing the effects of friction and separation in the undisturbed
state. Dashed line, right axis: the phase lag (in degrees), in the undisturbed state, of the peak
volume flux behind the maximum forcing.

The transition is not monotonic, however, as A, increases from 0 to . If we
write the maximum average power as vpgaQu.x, we see (figure 4) that y dips to a
minimum of 0.196 for Ay=1.4. Nonetheless, we conclude that, if data are
available on the head and flux in the natural state, the maximum average power
available may be estimated with an accuracy of 10% using a multiplier y of 0.22,
without any need to understand the basic dynamical balance. Within the context
of our simple model, however, the value of 4y, and hence a more precise value of v
from figure 4, may be obtained by evaluating the phase lag, in the undisturbed
state, of the peak volume flux behind the maximum of the forcing. As expected,
and shown in figure 4, this decreases from 90° when A;=0, with a balance
between the pressure gradient and acceleration, to zero as Ag— o, with a balance
between the pressure gradient and friction. The monotonic nature of the decrease
means that the phase lag implies a unique value of Ay and hence of 7.

If the friction within the channel is much less important than the separation
effect, equation (2.14) may be written as

1 -
P, =0.38 <§pAe|ueo|3>, (2.16)

where u,= (2g§0)1/ 2 is the exit speed at any instant in the natural regime. This
formula is similar to equation (2.9), but we note the reduction factor of 0.38 and,
particularly, the fact that it must be evaluated at the exit, probably giving a
considerably lower value than would be obtained at the most constricted part of
the channel. The turbines could still be deployed there, however.

As remarked earlier, the separation point, and hence A., may vary with time,
particularly between flood and ebb tide. This is easily allowed for in equation
(2.16) by including A, in the averaging.
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(e) Non-sinusoidal forcing

Our analysis so far has been for sinusoidal forcing. For a more complicated
tidal regime we may still use equation (2.14) if the balance in the basic state is
quasi-steady with maximum instantaneous power proportional to |CO|3/ 2 For
example, if we had two tidal constituents, with {y= a cos wit+ a; cos w,t replacing
a cos wt, then the available power is increased from what it would be with a; =0
by a factor which can be shown to be 1+ (9/16)r? for small values of r=a,/a.
Actually, this expression is remarkably accurate even for r=1, giving a
multiplier of 1.56 rather than the true value of 1.57. On the other hand, if the
basic dynamical balance is between the pressure head and acceleration, the factor
is 1+ 7?2 for any value of . With many constituents of amplitudes a,, as,...
and r,=a,/a, 5= ay/a,... the multiplying factor becomes 1+ (9/16)(ri + r3 + -+
if the basic balance is frictional, at least for small 7y, 7y, ..., and 1+ (7 + 75 + -+
if the basic state is frictionless. The conclusion is that the effect of several
constituents can be included, but doing so correctly depends on the basic
dynamical balance.

3. Discussion

The results of this paper can give good preliminary estimates of the power
potential of a number of suggested sites around the world, though further
consideration for particular sites will require more detailed analysis. One general
result is that, to within 10%, the maximum average power available is
approximately 0.22pgaQnax for a sinusoidal tidal head acos wt and with @ .«
denoting the peak volume flux in the undisturbed state. This upper bound on the
available power assumes that turbines are deployed in uniform fences, with all
the water passing through the turbines at each fence, but ignores losses
associated with turbine operation.

Another factor we have ignored is the back effect on the forcing of changes in
the channel flow. The effect is likely to be small if the basins are large and deep,
but there may be a positive feedback that will increase the head as turbines are
introduced. This will slightly increase the available power.

We have also assumed that the current is independent of the cross-sectional
position. If there is shear vertically and across the channel, we may deal with
the average speed in the acceleration term, but there will be minor changes in
other parts of the theory. These changes will need to be considered in, for
example, evaluating the power potential of sheared unidirectional ocean
currents such as the Florida Current, but the present theory should provide
guidance.

Further analysis is also required for situations where the tidal current is
not constricted, as in a channel, but flowing along an open coast. Here,
too, there should be optimum designs for a tidal fence, or fences, in part of
the flow.

We thank Mike Foreman, Graig Sutherland and Sok Kuh Kang for discussion and two reviewers
for comments.
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