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Abstract As a renewable energy resource, wind energy has developed fast in recent years, and its impacts
on climate have received widespread attention. In this study, a new wind farm fleet scenario is designed
based on Chinese wind farm data from the Chinese Wind Energy Association and Chinese cumulative
wind power capacity data from the Global Wind Energy Council. A mesoscale numerical model is used to
simulate the impacts of wind farms on climate. The results indicate that the wind farms in the designed
scenario could impact the local and regional climate in China, causing changes in both lower-level
atmosphere (changes within ±0.5 K for 2-m temperature) and upper-level atmosphere (changes within
±30 m2/s2 for 500-hPa geopotential height) over several specific areas. The momentum sink and the
turbulent kinetic energy source generated by wind farms are first separated to evaluate their respective
contributions to the impacts of wind farms on climate.

Plain Language Summary With the rapid development of wind energy, the impacts of wind farms
on environment have attracted increasing attention. A new wind farm fleet scenario is designed in the study
to analyze the climatic impacts of wind farms in China. The results show the local and regional climatic
impacts of wind farms in China (e.g., changes within ±0.5 K for 2-m temperature and ± 30 m2/s2 for 500-hPa
geopotential height), which are much smaller than the interannual climate variability. This research can
provide China, as well as other countries and regions, with useful scientific advice for the environment-
friendly development of wind energy.

1. Introduction

It is known that global power consumption keeps growing at present; the global primary energy consump-
tion reaches up to 13,276.3 Mtoe (≈154,403.4 TWh) in 2016 (BP, 2017). And because fossil fuels are gradually
being exhausted and cause serious environmental problems, renewable energy resources are now receiving
increasing attention. Wind energy, one of the renewable energy resources that do not emit gases during the
energy generation process, is currently in a stage of rapid development. According to the data from the
Global Wind Energy Council ( 2017), the global cumulative installed wind power capacity was 486,749 MW
until 2016. And China ranked first among all countries worldwide in terms of new installed wind power capa-
city, as well as cumulative wind power capacity, in 2016. Chinese National Energy Bureau reported that
Chinese wind power production was 185.6 TWh in 2015, increased by 16.17% compared with the wind power
production in 2014. Thus, wind power production in China is quantitatively large and undergoing rapid
development. According to the proposal for the thirteenth Five-Year Plan issued by the Chinese National
Energy Bureau, the wind power capacity in China will maintain an annual growth rate of 9.9% over the next
five years (2015–2020). Wind energy in China will continue to develop rapidly in the future.

With the rapid development of wind energy, the impacts of wind farms on local and regional weather and
climate have attracted increasing attention. Several studies have found that wind farms can significantly
decrease wind speed at the hub height of wind turbines within and downwind of wind farms (Baidya Roy
et al., 2004; Fitch et al., 2013; Hasager et al., 2015; Smith et al., 2013). Observations have shown a clear wind
speed wake from the wind farm installed in the Midwestern United States at a distance of 190 m or 2.4 rotor
diameters (Smith et al., 2013). Fitch et al. (2013) parameterized a 10-km × 10-km wind farm in the Weather
Research and Forecasting (WRF) model to study its mesoscale influence on the atmosphere in a diurnal cycle.
The results indicated a significant impact on the local atmospheric flow and on regions up to 60 km down-
wind at night. Studies also show that wind farms can influence temperatures within wind farms, as well as
over large areas around wind farms (Baidya Roy & Traiteur, 2010; Chang et al., 2016; Walsh-Thomas et al.,
2012; Zhou et al., 2012). Baidya et al. (2010) analyzed temperature data from a wind farm at San Gorgonio
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and found that the wind farm had a warming effect during the night and a cooling effect during the day,
which resulted from enhanced vertical mixing due to turbulence generated by wind turbine rotors. Chang
et al. (2016) analyzed Moderate Resolution Imaging Spectroradiometer land surface temperature (LST) data
during the period of 2005–2012. They identified noticeable nighttime warming trends in LSTs within wind
farm areas relative to nearby non–wind farm regions in Guazhou, which is located in northwestern China.
According to the study, the nighttime LST warming is strongest in summer (0.51 °C/8 years). Other studies
also suggest that wind farms have significant impacts on precipitation, sea level pressure, and so on (Barrie
& Kirk-Davidoff, 2010; Fiedler & Bukovsky, 2011; Vautard et al., 2014; C. Wang & Prinn, 2010). Vautard et al.
(2014) employed a regional climate model to describe the interactions between turbines and the atmo-
sphere. They found a statistically significant signal in winter, with changes within 0–5% for precipitation
and ± 0.5 hPa for sea level pressure. Therefore, even though wind energy plays an important role in reducing
both fossil fuel combustion and greenhouse gas emissions, it is still necessary to obtain a clear understanding
of wind farms’ impacts on weather and climate.

In this study, a new wind farm fleet scenario is designed to represent the Chinese wind energy development
level in 2015. The wind turbines in this designed scenario are parameterized as a momentum sink and a
turbulent kinetic energy (TKE) source (Fitch et al., 2012) in a WRF (Skamarock et al., 2008) to study their
impacts on climate. To obtain a deeper understanding of the interactions between wind farms and the atmo-
sphere, we separate the momentum sink and TKE source in wind turbine parameterization to evaluate their
respective contributions to the climatic impacts of wind farms. The research is expected to provide China, as
well as other countries and regions, with useful scientific advice for the environment-friendly development of
wind energy.

2. Experimental Method
2.1. Model Experiments

In this study, the WRF model is used to simulate the impacts of wind farms on climate under the designed
Chinese wind farm fleet scenario in 2015. Figure 1 shows the simulated domain, which covers the mainland
of China and some coastal areas. The shading represents the topography, and the purple dots represent
wind farms. Sixteen 1-year simulations are carried out within the period extending from March (this year)
to February (next year), and the initial and boundary conditions of each simulation are supplied by
1° × 1° final (FNL) data in different years (2000–2015) from the National Centers for Environmental
Prediction. The simulation has a horizontal resolution of 30 km. There are 32 eta levels in the vertical
direction, including 3 levels intersecting the turbine rotor area and 10 levels under 1 km. In addition, the
MYNN2.5 and Noah schemes are used to represent the planetary boundary layer physics and the land
surface, respectively.

2.2. Wind Energy Development Scenario

The wind farm fleet scenario designed in the study includes 722 wind farms, which are shown as purple dots
in Figure 1. The Chinese wind farm data (number and locations of the wind farms) used in the designed sce-
nario are provided by the Chinese Wind Energy Association (CWEA). In order to simplify the simulation, (1)
each wind farm contains 100 wind turbines; (2) both the rotor diameter and the hub height of each wind tur-
bine are 100 m; (3) the cut-in and cut-out wind speeds are 4 m/s and 25 m/s, respectively; (4) the WRF default
power curve in the Fitch module is used for each wind turbine here; (5) the nominal power of each turbine is
2 MW. Thus, the total power capacity in the designed scenario is 144,400 MW, which is close to the Chinese
cumulative wind power capacity (145,362 MW) in 2015 provided by the Global Wind Energy Council (2017).
On the one hand, compared with previous studies that adopted idealized wind farm fleet scenarios (in which,
e.g., all of the wind farms are grouped together), the wind farm fleet scenario designed in this study provides
a better representation of Chinese wind energy development level in 2015 (based on its real number and
locations of wind farms and its similar cumulative wind power capacity to the reality). On the other hand,
the simplification used to represent wind farms in the simulations determines that the designed wind farm
fleet scenario cannot perfectly represent the actual wind farms in China. Therefore, the wind farm fleet sce-
nario designed in this study provides a better, but not perfect, representation of Chinese wind energy devel-
opment level in 2015.
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2.3. Simulation Characteristics and Evaluation

Three simulations are carried out in the study, which are summarized in Table 1. No wind turbines are
employed in the CTL simulation. SCEN1 and SCEN2 simulations employ wind turbines under the designed
wind farm fleet scenario (described in section 2.2). The difference between SCEN1 and SCEN2 is the following:
wind turbines in SCEN1 are parameterized as both the momentum sink and TKE source in the Fitch module
(Fitch et al., 2012), whereas the wind turbines in SCEN2 are parameterized as only the momentum sink (the
TKE source in the Fitch module is modified to be a constant, which is 0). Therefore, the total impacts of wind
farms on climate are reflected by the differences between SCEN1 and CTL. The contributions of momentum
sink to the climatic impacts of wind farms can be determined by comparing SCEN2 and CTL; the contributions
of the TKE source to the climatic impacts of wind farms can be determined by comparing SCEN1 and SCEN2. It
should be pointed out that, only when the climatic impacts of the two components (momentum sink and TKE
source) in the wind turbine parameterization are linearly additive, the differences between SCEN1 and SCEN2
exactly represent the contributions of TKE source to the climatic impacts of wind farms. Thus, we should note
that even though we consider the differences between SCEN1 and SCEN2 as the climatic impacts of TKE
source here, the nonlinear interactions between momentum sink and TKE source also contribute to the dif-
ferences between SCEN1 and SCEN2.

The climatic means (temporal mean of the 16-year simulated period from March 2000 to February 2016) of
several variables (T2, wind-10 m, P-sfc, and HGT500 shown in Table 2) in the CTL simulation data
and European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA)-Interim reanalysis data
(0.25° × 0.25°) are calculated to evaluate the simulating effects of CTL. Figure 2 shows that the climatic means
of 2-m temperature in CTL simulation results (Figure 2a) and ERA-Interim reanalysis data (Figure 2c) have very
similar spatial distributions (the spatial correlation coefficient is 0.990). And there exists a systematic

Figure 1. Topography (shaded) of the simulated domain and the locations of wind farms (purple dots).

Table 1
Summary of Simulations Characteristics

Simulation Wind farms Wind turbine parameterization

CTL No wind farms
SCEN1 With 722 wind farms As both the momentum sink and TKE source
SCEN2 With 722 wind farms As only the momentum sink

Note. TKE = turbulent kinetic energy.
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deviation of 2-m temperature between CTL and ERA (the difference of
regional averaged 2-m temperature between CTL and ERA in Figure 2 is
�2.673 K). Since CTL is driven by FNL reanalysis data, this 2-m tempera-
ture systematic deviation (�2.673 K) between CTL and ERA mainly
results from the systematic deviation between FNL and ERA (the differ-
ence of regional averaged 2-m temperature between FNL and ERA in
Figure 2 is �2.120 K). Other variables, including 10-m horizontal wind
speed, surface pressure, and 500-hPa geopotential height, also show
high similarity between CTL and ERA (see Table 2). Therefore, the CTL
simulation results are generally similar to the ERA-Interim reanalysis
data and can be used to study the effects of wind farms on climate.

2.4. Data and Methods

All the analyses in this study are based on the monthly mean data calculated from the simulation results. For
example, Figure 4 shows the impacts of the wind farms on regional climate. Summer (left column in Figure 4)
represents the summer months (June, July, and August) from 2000 to 2015 (48 months in total), and winter
(right column in Figure 4) represents the winter months (December, January, and February) from 2000 to
2015 (December 2000 to February 2016, 48 months in total). More specifically, Figure 4a shows the difference
of summer mean (average of all the summer months from 2000 to 2015) 2-m temperature between SCEN1
and CTL.

A contrast experiment t test formulation (t ¼ d

sD=
ffiffiffi
n

p ) is adopted to test the significance of the atmospheric

changes caused by wind farms (such as crosshatched lines in Figure 4a). For example, each grid point in
Figure 4a has a time series, which contains 48 values (June, July, and August from 2000 to 2015) that repre-

sent the monthly mean 2-m temperature in SCEN1 (TSCEN11 , TSCEN12 ,…, TSCEN148 ) or CTL (TCTL1 , TCTL2 ,…, TCTL48 ). A time
series (Td), which represents the difference between monthly mean 2-m temperature in SCEN1 and CTL, is

calculated based on Tdi ¼ TSCEN1i � TCTLi ; i ¼ 1; 2;…; 48. For the t test applied in each grid point in Figure 4a

t ¼ d

sD=
ffiffiffi
n

p

n = 48 represents the number of summer months (June, July, and August from 2000 to 2015);

d ¼ 1
n

Xn
i¼1

Td
i represents the mean value of the time series Td; and

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Tdi � d
� �2s

represents the standard deviation of the time series Td.

Table 2
Spatial Correlations and Regional Averaged Differences (CTL-ERA) of Several
Variables Between CTL and ERA-Interim

T2 Wind-10 m P-sfc HGT500

Correlation 0.990a 0.938a 0.999a 0.997a

Difference �2.673 K 0.196 m/s 0.089 hPa 28.047 gpm

Note. T2 = 2-m temperature; Wind-10 m = 10-m horizontal wind speed;
P-sfc = surface pressure; HGT500 = 500-hPa geopotential height;
ERA = European Centre for Medium-Range Weather Forecasts Re-Analysis.
aMeans the correlation passes the 99% confidence level.

Figure 2. Climatic means of 2-m temperature in the (a) CTL simulation, (b) FNL reanalysis data, and (c) ERA-Interim reanalysis data during 2000–2015. FNL = final;
ERA = European Centre for Medium-Range Weather Forecasts Re-Analysis.
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Figure 3. Differences in climatic mean (a, c, e) horizontal wind speed and (b, d, f,) turbulent kinetic energy at hub height (100 m) between different simulations.

Regions with 95% confidence level of differences (calculated based on the contrast experiment t test formulation t ¼ d

sD=
ffiffiffi
n

p ) are highlighted with crosshatched

lines. TKE = turbulent kinetic energy.
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The t value (calculated based on t ¼ d

sD=
ffiffiffi
n

p above) in each grid point would be compared with t0.05(n) = 2.0,

n = 48 to determine the grid points with 95% confidence level of differences.

3. Results
3.1. Local Climatic Impacts of Wind Farms

Figures 3a and 3b show that wind farms have statistically significant impacts on 100-m horizontal wind speed
and 100-m TKE. The impacts of wind farms on wind speed and TKE at hub height are generally local impacts
since the changes of 100-m horizontal wind speed (Figure 3a) and 100-m TKE (Figure 3b) mainly occur around
the locations of wind farms (Figure 1). This is different from the impacts of wind farms on 2-m temperature
and 500-hPa geopotential height, which are considered as regional climatic impacts (shown in section 3.2),

Figure 4. Mean differences in (a, b) 2-m temperature and (c, d) 500-hPa geopotential height between SCEN1 and CTL in summer (June, July, and August) and winter

(December, January, and February). Regions with 95% confidence level of differences (calculated based on the contrast experiment t test formulation t ¼ d

sD=
ffiffiffi
n

p ) are

highlighted with crosshatched lines.
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because the changes in 2-m temperature and 500-hPa geopotential
height caused by wind farms are more centralized and are not exactly
around the locations of wind farms like changes in 100-m horizontal
wind speed and 100-m TKE.

Figure 3d shows statistically significant increase of 100-m TKE, which is
similar to Figure 3b, whereas there is tiny changes in 100-m horizontal
wind speed in Figure 3c. On the contrary, Figure 3e shows statistically
significant decreases of 100-m horizontal wind speed, which is similar
to Figure 3a, whereas there is tiny changes of 100-m TKE in Figure 3f.
Obviously, these tiny changes of 100-m horizontal wind speed in
Figure 3c, which may result from the redistribution of wind speed
caused by the increase of TKE, are much smaller than the changes of
100-m horizontal wind speed in Figure 3e; the tiny changes of 100-m
TKE in Figure 3f, which may result from the changes of vertical wind
shear caused by the momentum sink, are much smaller than the
changes of 100-m TKE in Figure 3d. Therefore, the momentum sink
(causes changes in 100-m horizontal wind speed) and TKE source
(causes changes in 100-m TKE) in the wind turbine parameterization
are successfully separated in general.

3.2. Regional Climatic Impacts of Wind Farms

Figure 4 shows the impacts of wind farms on 2-m temperature
(Figures 4a and 4b) and 500-hPa geopotential height (Figures 4c and
4d). A statistically significant increase in 2-m temperature is noted in
the eastern coastal area in summer, and the maximum increase is

~0.2 K (blue box in Figure 4a). A statistically significant decrease in 2-m temperature occurs over a large
Chinese inland area in summer, and the maximum decrease in temperature is ~0.3 K (orange box in
Figure 4a). In winter, a wide area of warming occurs in northeast China (green and purple boxes in
Figure 4b), and the greatest warming reaches more than 0.4 K. Moreover, we examine the 500-hPa geopoten-
tial height (HGT500) to analyze the wind farms’ effects on the high-level atmosphere. Figures 4c and 4d show
that wind farms could cause high-level atmospheric changes, with negative anomalies in HGT500 over
Chinese inland areas in summer and positive anomalies in HGT500 over northeast China in winter. It is also
interesting to note that even though the decrease in HGT500 over Chinese inland areas in summer is much
larger than the increase of HGT500 over northeast China in winter, this larger decrease of HGT500 in summer
(red box in Figure 4c) does not pass 95% confidence level, whereas the smaller increase of HGT500 in winter
(blue box in Figure 4d) passes 95% confidence level.

To explain this phenomenon, the regional averaged HGT500 changes in the selected areas (red box in Figure 4c
andblue box in Figure 4d) are calculated (Figure 5). The temporal average of the blue curve (�30.7m2/s2), which
represents the changes of HGT500 in summer, is much greater than the temporal average of the red curve
(2.5 m2/s2), which represents the changes of HGT500 in winter. Meanwhile, the fluctuations of the blue curve
over time are larger than those of the red curve, which is consistent with the statistical results that the standard
deviation of the blue curve (133.1 m2/s2) is much larger than that of the red curve (4.8 m2/s2). In addition, the
values represented by the red curve are generally positive. These results show that the changes in HGT500
caused by wind farms are larger and fluctuate dramatically in summer, so they could not pass 95% confidence
level. The changes in HGT500 caused by wind farms are smaller in winter but are primarily positive in value and
have much smaller fluctuations, which determines that the HGT500 changes in winter pass 95% confidence

level. This result means that even a very small change (d) could be statistically significant if its standard deviation
(sD) is also very small (like the red curve in Figure 5), a large change may not be statistically significant if its

standard deviation is also very large (like the blue curve in Figure 5), according to t ¼ d

sD=
ffiffiffi
n

p .

In winter, the increase of 2-m temperature (Figure 4b) and the increase of 500-hPa geopotential height
(Figure 4d) are both located over northeast China. Previous studies have suggested that the East Asian trough

Figure 5. Time series of the regional averaged changes in HGT500 caused by
wind farms over the selected areas (red box in Figure 4c and blue box in
Figure 4d). The x axis represents the number of summer months (June, July, and
August from 2000 to 2015; 48 months in total) for the blue curve, as well as
the number of winter months (December, January, and February from 2000 to
2015, 48 months in total) for the red curve. “Mean” represents the temporal
mean of the curve; “Std” represents the standard deviation of the curve.
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(EAT) at 500 hPa could influence the East Asian winter monsoon, and the cold air in East Asia advances south-
eastward along the trajectories west of the EAT (L. Wang et al., 2009; Zhang et al., 1997). Therefore, this
increase of HGT500 (Figure 4d) in winter could weaken the intensity of the EAT, which would inhibit the cold
air sweeping across East Asia and cause the increase of 2-m temperature in northeast China (Figure 4b). The
respective climatic impacts of momentum sink and TKE source are shown in Figure 6. According to Figures 6a
and 6b, the increases of 2-m temperature in different areas may result from different components (momen-
tum sink and TKE source) in wind turbine parameterization. The TKE source causes the increase of 2-m tem-
perature over the inland of China (Figure 6a), whereas the momentum sink increases the 2-m temperature on
the northeast of China (Figure 6b). For 500-hPa geopotential height, both momentum sink and TKE source
tend to increase the 500-hPa geopotential height over the northeast China in winter. And the contributions
of TKE source (Figure 6c) to the increase of 500-hPa geopotential height are larger than the contributions of
momentum sink (Figure 6d).

Figure 6. Mean differences in (a, b) 2-m temperature and (c, d) 500-hPa geopotential height caused by the (a, c) TKE source and (b, d) momentum sink in winter

(December, January, and February). Regions with 95% confidence level of differences (calculated based on the contrast experiment t test formulation t ¼ d

sD=
ffiffiffi
n

p )

are highlighted with crosshatched lines.
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In summer, the momentum sink and TKE source caused by wind farms are also separated to evaluate their
respective contributions to regional climatic impacts of wind farms. Figure 7 shows the respective impacts
of the momentum sink and TKE source on 2-m temperature and 500-hPa geopotential height in summer.
The comparison between Figures 7a and 7b shows that the increase of temperature in the eastern coastal
areas is mainly caused by the TKE source (blue boxes in Figures 4a and 7a); the decrease of temperature in
the Chinese inland areas is mainly caused by the momentum sink (orange boxes in Figures 4a and 7b). We
find that the increase of 500-hPa geopotential height and the increase of 2-m temperature caused by the
TKE source are both located in the same areas (blue boxes in Figures 7a and 7c), and the decrease of
500-hPa geopotential height and decrease of 2-m temperature caused by the momentum sink both occur
in the Chinese inland areas (orange boxes in Figures 7b and 7d). Because the western Pacific subtropical high
(WPSH) at 500 hPa has an important influence on temperature in East Asia in summer, the increase of 500-hPa
geopotential height (Figure 7c) caused by the TKE source could be conducive to the development of WPSH in

Figure 7. Mean differences in (a, b) 2-m temperature and (c, d) 500-hPa geopotential height caused by the (a, c) TKE source and (b, d) momentum sink in summer

(June, July, and August). Regions with 95% confidence level of differences (calculated based on the contrast experiment t test formulation t ¼ d

sD=
ffiffiffi
n

p ) are highlighted

with crosshatched lines.
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summer, which would then cause the increase of 2-m temperature in
the coastal area (Figure 7a); the decrease of 500-hPa geopotential
height (Figure 7d) generated by the momentum sink could inhibit
the WPSH from moving into East Asia, which would result in the
decrease of 2-m temperature in the inland area (Figure 7b).

3.3. Evaluation on Climatic Impacts of Wind Farms

According to the analysis above, it can be concluded that the wind
farms in the designed scenario, which represents the Chinese wind
energy development level in 2015, have small impacts on regional cli-
mate. The impacts are considered small based on two aspects. First,
the changes in many meteorological variables caused by wind farms
are very small in most areas, and the statistically significant changes
only occur in several specific areas where the changes are also limited
(e.g., changes within ±0.5 K for 2-m temperature and within ±30 m2/s2

for 500-hPa geopotential height). Second, the impacts of wind farms on
regional climate are much weaker than the interannual climate variabil-
ity. Taking 2-m temperature as an example, several areas with extreme
changes of 2-m temperature caused by wind farms (boxes in Figures 4a
and 4b) are compared with the 2-m temperature interannual climate
variability in the corresponding areas (Figure 8). The results show that
the regional averaged changes of 2-m temperature caused by wind
farms (shown by colored bars with a magnitude of 10�1) are much
smaller than the interannual climate variability of 2-m temperature
(shown by colored line segments with a magnitude of 100). Similar

results are also found in other meteorological variables. Moreover, we should not ignore the fact that wind
energy plays an important part in slowing down the pace of global warming and protecting the environment
by reducing fossil fuel combustion.

4. Conclusions and Discussion

Based on the Chinese wind farm information (number and locations of wind farms) from CWEA and Chinese
cumulative wind power capacity data from Global Wind Energy Council, a new wind farm fleet scenario is
designed to represent Chinese wind farm development level in 2015. The climatic impacts of wind farms stu-
died in the article are intended to offer governments a scientific reference to support the environment-
friendly development of wind energy.

The results suggest that wind farms under designed scenario could impact the local and regional climate in
China, causing changes in both lower-level atmosphere (2-m temperature, 100-m horizontal wind speed, etc.)
and upper-level atmosphere (500-hPa geopotential height, etc.) in several specific areas. In addition, the
interactions between lower-level and upper-level atmospheric changes are fully discussed, which involve
the EAT in winter and WPSH in summer.

Two main comparisons are carried out in the study: the comparison between two seasons (summer and win-
ter) and comparison between two impacting factors (the momentum sink and TKE source). By comparing the
impacts of wind farms in summer and winter, we found that the wind farms cause an increase of 2-m tem-
perature in the eastern coastal area and a decrease in the Chinese inland areas in summer; the 2-m tempera-
ture mainly increases over a large area in winter. The slight positive anomaly in 500-hPa geopotential height
caused by wind farms in winter passes 95% confidence level, whereas the changes in 500-hPa geopotential
height caused by wind farms in summer, which are much larger than those in winter, do not pass 95% con-
fidence level. By comparing the respective impacts of themomentum sink and TKE source on climate, we find
that the momentum sink and TKE source sometimes play different roles in climatic impacts of wind farms,
such as the increase of 500-hPa geopotential height (Figure 7c) caused by the TKE source and decrease of
500-hPa geopotential height (Figure 7d) caused by the momentum sink in summer. This study evaluates
respective contributions of momentum sink and TKE source on wind farms’ climatic impacts; ongoing work

Figure 8. Regional averaged changes in 2-m temperature (colored bars) caused
by the wind farms (SCEN1-CTL) in the selected areas (boxes 1.0–4.0 in Figures 4a
and 4b) with 95% confidence intervals (shown as black line segments and cal-
culated based on d0:05 ¼ t0:05 nð Þ�sD=

ffiffiffi
n

p
; n ¼ 48). Twice the standard devia-

tion of 2-m temperature (CTL) in corresponding selected areas in the same
period (colored line segments).
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will study the physical mechanism of how these two components (momentum sink and TKE source) impact
the climate.

Our results show the impacts of wind farms on local and regional climate and the respective contributions of
the momentum sink and TKE source in the wind turbine parameterization. However, there still exist several
deviations between the climatic impacts of wind farms in our simulations and the climatic impacts of wind
farms in reality. These deviations are generally caused by several factors, such as the inability of the wind farm
data provided by CWEA to perfectly represent the actual wind farms in China (e.g., deserted wind farms and
individual wind turbines could be neglected by the survey), the simplification used to represent wind farms in
the simulations (e.g., same power curve applied in every wind turbine), and systematic deviations between
model simulations and reality. In addition, it is known that the climatic impacts of wind farms increase as wind
farm scale grows. Since wind farms under present development level are not in a very large scale, their cli-
matic impacts are actually not so remarkable (compare Figures 4d and S1a in the supporting information)
and could be easily influenced by other factors, such as using a different model or different wind turbine
parameterization. Therefore, correct experimental procedure is of great importance in this kind of research,
especially when the scale of wind farms is not large enough. And the statistical analysis is expected in a
higher standard (higher confidence level means less possibility of random fluctuations) in the future research
when the wind farms expand into a much larger scale (Figure S1).
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