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Abstract
Proactive conservation planning for species requires the identification of important spatial

attributes across ecologically relevant scales in a model-based framework. However, it is

often difficult to develop predictive models, as the explanatory data required for model

development across regional management scales is rarely available. Golden eagles are a

large-ranging predator of conservation concern in the United States that may be negatively

affected by wind energy development. Thus, identifying landscapes least likely to pose con-

flict between eagles and wind development via shared space prior to development will be

critical for conserving populations in the face of imposing development. We used publically

available data on golden eagle nests to generate predictive models of golden eagle nesting

sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By

overlaying predictive models of golden eagle nesting habitat with wind energy resource

maps, we highlight areas of potential conflict among eagle nesting habitat and wind devel-

opment. However, our results suggest that wind potential and the relative probability of

golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our

sample frame includes areas with disparate predictions between suitable nesting habitat

and potential for developing wind energy resources. Map predictions cannot replace on-

the-ground monitoring for potential risk of wind turbines on wildlife populations, though they

provide industry and managers a useful framework to first assess potential development.

Introduction
The increasing energy demands of a growing human population pose one of the greatest
threats to conserving wildlife populations and their habitats globally [1]. Impacts from energy
development can negatively affect wildlife through a suite of direct and indirect mechanisms
including habitat loss and fragmentation [2,3], increased mortality [4], spread of invasive spe-
cies [5], noise pollution [6], and environmental contaminants [7]. The negative impacts
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associated with these processes can have synergistic effects, and the associated risks to wildlife
may also be heightened by catastrophic events. The footprint of current energy development is
extensive, and will continue to encroach on wildlife habitats. World energy consumption is
expected to rise by>25% by 2030, with the highest growth rates of energy supplies coming
from renewable sources [8]. Developing sources of renewable energy pose a paradoxical chal-
lenge to wildlife conservation practitioners. Extracting more energy from renewable sources
will curb carbon emissions and potentially slow global climate change to protect the future of
wildlife populations and their habitats. However, the infrastructure required for developing
and maintaining renewable and traditional energy sources often occurs in disparate areas [9].
Therefore, renewable energy development has the potential to impact wildlife populations and
their habitats in some of the largest intact landscapes that remain outside of areas traditionally
developed for energy exploitation.

Wind energy is a potentially important source of renewable energy globally. In the United
States, the Department of Energy established a benchmark of generating 20% of the U.S. elec-
tric supply with wind energy by 2030 (http://www.20percentwind.org). This goal will require a
dramatic increase in the number of wind turbines throughout the U.S, and the potential effects
of large-scale wind energy development on wildlife are not well understood [10]. Thus, guide-
lines for selecting landscapes to minimize the potentially adverse impacts of wind energy on
wildlife are a research priority [11]. Proactively identifying areas for resource development
with limited potential impact to wildlife is a promising approach to facilitating energy develop-
ment while maintaining viable wildlife populations across landscapes [12,13, 14].

Golden eagles (Aquila chrysaetos) are a widely distributed raptor of conservation concern in
North America [15]. While many raptor species are potentially impacted by increases in wind
turbine development [16], golden eagles are a focal species for conservation planning in the
United States due, in part, to federal protection they receive under the Bald and Golden Eagle
Protection Act (1963). Wind development projects can displace raptors from otherwise suit-
able habitat, and are a significant source of mortality when placed in areas with high raptor
concentrations [17]. For example, Smallwood and Thelander [18] estimated approximately
one golden eagle mortality from collisions with wind turbines per 8.7MW of energy produced
annually. This level of mortality is of particular concern for long-lived vertebrates, such as
eagles, because even a relatively minor increase in adult mortality (3–5%) can lead to significant
population declines [19].

Wyoming is emblematic of the challenge to balance wildlife conservation and natural
resource development. Wyoming is among the top ten energy producers globally with
>100,000 producing oil and gas wells and 400 million tons of coal produced annually (http://
www.wma-minelife.com/coal/coalfrm/production.htm). Additionally, Wyoming is among the
top five U.S. states in generating electricity from wind power (www.awea.org). The energy-
based economy in Wyoming will likely experience continued growth with some of the world’s
largest deposits of oil and gas reserves [20], and potential undeveloped wind energy [13].

Our primary objective was to develop a landscape-level planning tool for golden eagle con-
servation to be used by resource managers and industry prior to the development of renewable
energy. Specifically, we aimed to 1) identify golden eagle nesting sites from available data across
Wyoming, 2) develop predictive spatial models of golden eagle nesting occurrence, and 3)
identify areas of potential conflict and opportunities for golden eagle conservation in the face
of expanding wind energy development. Overlays of predictive nesting habitat maps with maps
of potential for wind development explicitly delineated areas of potential opportunity for con-
servation (high quality habitat, low energy potential), and areas posing conflict between devel-
opment and nesting habitat (high quality habitat, high energy potential).

Golden Eagle Nesting Habitat andWind Development

PLOS ONE | DOI:10.1371/journal.pone.0134781 August 11, 2015 2 / 18

http://www.20percentwind.org
http://www.wma-minelife.com/coal/coalfrm/production.htm
http://www.wma-minelife.com/coal/coalfrm/production.htm
http://www.awea.org


Materials and Methods

Study area
Our sampled population included golden eagle nesting locations across Wyoming, USA. Wyo-
ming encompasses 253,300km2 of predominately sagebrush steppe habitat at the junction of
the Great Plains and Wyoming Basin ecosystems, with intermittent regions covered by the
Rocky Mountains. Land tenure in Wyoming is a mixture of private (44%), federal including
the U.S. Bureau of Land Management (BLM; 28%) and Forest Service (14%), and state (6%)
ownership. Predominant land uses in Wyoming include cattle grazing, tillage agriculture, and
oil and gas energy production.

Data collection
We requested records from state, federal, non-government, and private entities that collect
golden eagle nest data in Wyoming. Access to non-proprietary data resulted in 11,709 records
of golden eagle nests between 1974 and 2010. The majority of records were collected between
2000 and 2010 (57%). Records were primarily contributed by the BLM (51%), Wyoming Game
and Fish Department (WGFD; 38%), and Thunder Basin National Grasslands (9%). These
entities collected location data using a variety of survey methods; including probability-based
sampling surveys, mitigation surveys in response to development requests on public lands, and
opportunistic sightings. Nest searches included ground-based and aerial methods. We com-
piled all location data, date of observation, nest status, and source of data. Once the data were
compiled, we screened data for consistency in nomenclature and locational accuracy. Any con-
cerns with the data were addressed with the original data managers or censored if irreconcilable
problems existed (e.g. uncertainty regarding nest status). The minimum information required
for a data record to be included in our analyses was: 1) certainty that the location represented a
golden eagle nest (i.e., identification to species level), 2) accurate location data (<120m accu-
racy), and 3) the year of nesting. Most data had information that could be used to determine
the status of the nest following established nomenclature [21] as: active (nests in which eggs
have been laid), occupied (a nest with adult presence or strong sign of presence), and inactive
(a nest with no apparent recent use or adult presence).

Delineating the sample unit
The compiled dataset contained records that had considerable redundancy, both within and
across nesting seasons. Golden eagle pairs can maintain upwards of 14 nests in a territory [15],
and it is likely that groups of nearby nests represent single nesting pairs. Spacing between
golden eagle territories (cluster of nests maintained by one pair) varies from 0.8km in south-
west Idaho [22] to 44.7km in Quebec [23]. Thus, using all nest records in the full dataset for
analyses would likely result in pseudoreplication [24] by including multiple nests within a sin-
gle territory. We generated an algorithm that identified and reduced spatially dependent clus-
ters of nests to a single nest site based on a hierarchy by year and nest status, while enforcing a
minimum spacing between nest sites of 3km, the mean distance between occupied nests across
12 areas in Wyoming [15]. This algorithm minimized underrepresentation of true nest sites
available in the sample without proliferating pseudoreplication by treating all nests in the data-
base as independent. To identify nest sites, we first created a data frame of all known nest loca-
tions and neighboring nests within 3km. Starting with the most recent year, the algorithm
identified each cluster of active and occupied nests to select the nest site with the highest activ-
ity level (e.g., ‘active’ trumped ‘occupied’). All nests within 3km of the identified used nest site
in that year would then become associated ‘alternate’ nests, and the algorithm would continue
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to the subsequent year until no records remained to be classified. If there was>1 record with
the same year and status in a cluster (i.e. two nests in 2010 classified as active), then one record
was chosen randomly to represent the nest site.

Regional models
Regional variation in habitat availability can confound habitat selection models if not consid-
ered explicitly [25]. Landscape features relevant to golden eagle ecology can vary widely across
Wyoming, so we developed two regional models to minimize landscape heterogeneity. The
North American Commission of Environmental Cooperation (NACEC) Level II Ecoregional
Assessment identifies five distinct ecoregions in Wyoming: The Southern and Middle Rockies,
Northwestern Great Plains, High Plains, and the Wyoming Basin [26]. Our aim was to build
distinct models for each NACEC level II ecoregion (hereafter, ecoregion), though the majority
of golden eagle nest data were contained within the Wyoming Basin (WYB) and Northwestern
Great Plains (NWGP) regions. Other regions had insufficient data (<30 used nest sites) to esti-
mate RSFs and were censored from analyses. We focused our analyses on the NWGP and
WYB regions in the state, which encompassed roughly 2/3 of Wyoming and contained 95% of
available nest data.

Defining availability
Defining an available sample influences the inference derived from habitat selection models
[27] and should be conducted at a spatial scale that matches the hierarchical ordering of habitat
selection for the sampled unit [28]. We constrained random points to within the Wyoming
GAP vertebrate primary and secondary distribution for golden eagle, ensuring random points
were within habitat potentially suitable for golden eagle nesting [29]. We saturated the available
landscape with available points at 3km spacing [30]. To assign time-specific covariates to avail-
able sites, we first calculated the distribution of years represented in nest sites, and randomly
assigned a year to each available location based on the proportion of nest sites within that year
for each region. This allowed for a similar distribution of time-stamped covariates to be
appended to all points because available samples were temporally-varying at the same fre-
quency as nest sites in each region.

Scale selection
Measuring biotic and abiotic resources at spatial scales relevant to the ecology of a focal species
is critical in understanding patterns of habitat selection [31]. Golden eagles demonstrate hier-
archical selection for nest sites by choosing suitable cliffs or tall trees [15] locally, that are
within a landscape of reliable prey base, and terrain conducive to hunting [32]. Thus, we mea-
sured predictor variables at a 200m radius around the nest to capture local-scale attributes
associated with nest placement. We also measured predictor variables using a home-range esti-
mate of 3km [33], and 1 and 5km radii to test hypotheses that golden eagles select for habitat at
smaller and larger spatial scales.

Candidate predictor variables
We conducted a literature review and consulted experts to develop hypotheses about environ-
mental and anthropogenic features that influence nest site selection by golden eagles. To test
hypotheses, spatial predictor variables had to be available across both the NWGP andWYB
regions in Wyoming. For several relevant candidate predictors, complete spatial data were
unavailable and for these variables we used surrogate measures that were spatially complete.

Golden Eagle Nesting Habitat andWind Development
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Furthermore, many spatial data layers were indirectly derived from models and have associated
measurement errors (Table 1).

Prey abundance and availability were identified as the most important components of habi-
tat selection by golden eagles during the breeding season [33,34]. Golden eagle prey predomi-
nately on Leporids in the North American intermountain West, which comprise up to 70% of
their diet during the breeding season [35]. There are no spatial data related to the abundance of
Leporids in Wyoming, though recent evidence suggests a strong temporal and spatial correla-
tion between the abundance of cottontail rabbits (Sylvilagus sp.) and another prey item of
golden eagles, greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse [36]).
Sage-grouse leks (communal breeding grounds) are mapped across Wyoming and almost
completely (99%) contained within the golden eagle distribution across the state [29]. Each lek
has an associated annual male count that serves as an index to abundance [36,37]. We summed
the number of active sage-grouse leks (leks with�1 male counted in the most recent two years
of observation), for a temporally-varying covariate describing the presence of a lek. We used
male counts on leks as an index to abundance, generating year specific layers for the regional
variation in sage-grouse lek numbers at the largest scale (5km). To build layers we used the
maximum male count within years, and when male count data were missing we used the most
recent count for generating layers.

Large scale covariates related to climate and primary productivity may also covary with the
abundance of golden eagle prey. We extracted annual estimates of precipitation, and minimum
and maximum temperature data from PRISM for June (www.prism.oregonstate.edu). We

Table 1. List and description of spatial variables hypothesized to influence selection of nests by
golden eagles. Subscript denotes if multiple scales, quadratic terms, means and standard deviations, or if
temporal lag effects of variables were modeled.

Variable Description

ags Proportion of tillage agriculture

cliffs Proportion of cliff habitat

fos Proportion of flat and open habitat (Theobald 2007)

sts Proportion of steep habitat (Theobald 2007)

sls Proportion of sloped habitat (Theobald 2007)

ndvis,q Normalized difference vegetation index averaged between 2004 and 2007

treeds Proportion of deciduous and coniferous (non-riparian) tree habitat

r13s Proportion of primary road classes

elevq Digital elevation model of elevation at 30m resolution

ppt4q,t April precipitation

tmin4q,t April mean minimum temperature

tmax4q,t April max minimum temperature

herbms Estimate of continuous herbaceous cover at 30m resolution

sagems Estimate of continuous sagebrush cover at 30m resolution

shrhms Estimate of shrub height averaged at 30m resolution

shrbms Estimate of continuous cover of all shrubs at 30m resolution

countsofmalest Count of greater sage-grouse males on leks in 5km moving window

countsoflekst Number of active greater sage-grouse leks in 5km moving window

s variable modeled from moving window of scales 200m, 1-, 3-, and 5km.

ms calculated value at each moving window scale, and mean and standard deviation at each scale.

q variable modeled with quadratic term.

t temporally varying covariate modeled with current year, and 1 year lagged effect.

doi:10.1371/journal.pone.0134781.t001
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extracted the year specific estimate to each observation with a quadratic term for precipitation,
and also included a one year lagged term by appending data from the previous year of an obser-
vation. An index of primary productivity was derived from Normalized Difference Vegetation
Index (NDVI) fromModerate Resolution Imaging Spectroradiometer (MODIS) data. We aver-
aged NDVI estimates between a typically wet (2007) and dry (2004) year, and calculated mean
and standard deviation of neighborhood values at scales larger than 200m.

Golden eagles typically nest in mid-elevation cliffs [35,38], though they also use ponderosa
pine (Pinus ponderosa) and Douglas fir (Pseudotsuga menziesii) in forested habitats of Wyo-
ming (Bryan Bedrosian, Craighead Beringia South, personal communication). Because analyses
were constrained to sagebrush and grassland habitats of NWGP and WYB, we hypothesized
that eagles would prefer areas of strong topographic relief locally [39]. Using a 10m National
Elevation Dataset we extracted elevation data, and generated topographic indices to describe
cliffs, and other landforms. Using the directional landforms tool in Landscape Connectivity
and Pattern tools for ArcGIS within a 90m window, we identified flat and open areas, slopes,
and steep areas. We also included a covariate for elevation with and without a quadratic term.
We classified any pixel with a value<2400m (upper bounds of golden eagle nests) with a
change in slope>15 degrees as cliff feature. Pixels in the DEM were classified as a cliff or non-
cliff cell based on whether they met the topographic conditions, and the proportion of identi-
fied cliff pixels was calculated across all spatial scales.

High quality foraging habitat near nest sites is vital to raising young, and golden eagles typi-
cally choose undisturbed sagebrush-steppe habitats with little topographic relief to hunt prey
[15,39]. We used data that estimated the percent cover of herbaceous vegetation, sagebrush, and
shrub coverage, as well as shrub height at 30m resolution [40]. We calculated the mean and stan-
dard deviation of each habitat metric at each spatial scale to estimate landscape heterogeneity
which may be related to higher prey populations. Because golden eagles largely avoid forested
habitat while foraging [15], we hypothesized nest sites would have a negative association with
proportion of forested areas at large scales. To capture forested habitat, we reclassified LAND-
FIRE existing vegetation cover as forested and non-forested, classifying forested habitat as all
non-riparian treed vegetation types (www.landfire.gov). Anthropogenic features relevant to
golden eagle ecology that were spatially available across Wyoming, included roads, tillage agricul-
ture, and oil and gas wells. We hypothesized that golden eagles would avoid agriculture at all
scales [33,39,41,42,43], and quantified the prevalence of agriculture as the proportion agricultural
land within each scale. Data were interpreted from National High Altitude Program (NHAP)
color infrared aerial photography or collected with GPS units. WyomingWater Resources Divi-
sion provided data on irrigated agricultural lands that we used with a non-irrigated agricultural
lands data source, maintained byWyoming Geographic Information Science Center (WYGISC,
http://www.uwyo.edu/wygisc), and a University of Montana irrigated land layer.

Infrastructure associated with oil and gas development is a pervasive feature in Wyoming
sage-steppe habitats and includes transmission lines, well pads, roads, and compressor stations.
Federal land management agencies require wildlife surveys prior to development. Thus, most
survey efforts for golden eagle nests occurred within close proximity of oil and gas develop-
ments. Spatial survey bias can have important impacts on model interpretation in habitat suit-
ability studies [44]. The intention of selecting a background group of available sites is to
provide a sample of the set of conditions available to the species within the area of interest. If
the surveys are not representative of the sampled distribution—in our case, most of Wyoming
—then there will likely be bias within the data. Temporal predictor variables of nests and wells
may address the potential for biased relationships between nest site selection and well pad den-
sity, but sampling of golden eagle nests is still non-random with respect to the energy land-
scape. In fact,>90% (78% within 3km, 40% within 1km, and 6% within 200m) of nest
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territories in our dataset are within 5km of an active well underscoring the potential for sam-
pling bias. Thus, we did not include oil and gas well metrics or roads, often associated with
energy development, implicitly in our analyses.

We examined if the sampling bias associated with oil and gas development pervaded to
covariates in final models by calculating pairwise correlation coefficients between each covari-
ate in predictive models and a metric for oil and gas development among nest sites and avail-
able locations. To obtain a measure of oil and gas development, we calculated the number of
producing wells prior to nesting dates within each spatial scale around nest sites, using the
average date nesting of 23 May for all available sites and nest sites with missing date informa-
tion. Choosing the best fit scale similar to analyses above, we used the resulting metric for each
region for correlation calculations. We determined that covariates used to predict nest-sites
would not be biased by the sampling scheme if 1) covariates used in final models and oil and
gas measures were weakly correlated (|r|<0.3), and 2) correlations among variables at available
sites were not systematically larger than those at used sites. All spatial layers were processed in
ArcGIS Desktop V.10.1 (http://www.erdas.com) and retained or resampled to 30m raster data.

Model development
We developed resource selection functions (RSFs) with a use-availability framework to estimate
the relative contribution of predictor variables to nest-site selection by golden eagle [45]. Our
aim was to select the best fit term among related variables in the candidate set to use for multi-
variate modeling. This included choosing a best fit spatial scale among variables, determining
whether standard deviation added to model parsimony, and deciding if a quadratic term was
appropriate. We compared Akaike Information Criteria (AIC) values among models with the
same descriptive variable to determine the best fit spatial scale, and compared AIC values of all
models to that of a null logistic regression model. Quadratic terms were competed against the
same untransformed univariate models. Once the best fit term was selected from each variable,
we examined the correlation structure among variables using pairwise Pearson’s correlation
coefficients among all variables. Highly correlated variables (|r|�0.60) were not included in the
same multivariate model. When two variables were highly correlated, we selected the variable
with the lowest univariate AIC score for use in multivariate models. This resulted in a suite of
variables for each region that was included in the model set for RSF models. We used resulting
variables to fit regional global multivariate models for map-based predictions.

Model evaluation
Using a model evaluation technique developed for RSFs with a use-availability design by Boyce
et al. [46], we portioned data using k-fold cross validation with five folds for each region. We
iteratively fit global models for each set of training folds, and calculated the area-adjusted
observed number of observations falling into 10 binned RSF classes. We calculated the Spear-
man rank correlation between the RSF score and the area-adjusted frequency of validation
points for each of the five folds and the mean area adjusted frequency across folds. High corre-
lation values between RSF scores and area-adjusted frequencies suggest a model that is good at
predicting the occurrence of golden eagle nests [45].

Forecasting wind development risk
We converted NREL wind power class (WPC) maps from polygon to raster data, resampling
to 30m pixels to match GIS layers used in RSF development (http://www.nrel.gov/gis/wind.
html). NREL maps provide an estimate of the annual average wind resources at 50m, delin-
eated into 7 wind power classes (1 lowest WPC, 7 highest WPC), so we similarly reclassified
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regional RSF maps into 7 geometric bins. We combined WPCmaps with RSF maps and gener-
ated a raster with each pair of RSF and WPC categories for a total of 49 unique cell values. For
each region, we calculated the area of each RSF andWPC combination, and tabulated the num-
ber of nest sites and commercial wind turbines (as of 2009) within each category.

Results

Data and model results
Removing possible redundant nests with our hierarchical selection algorithm based on nest
spacing, observation year, and activity status (active, occupied, and inactive) identified 1,176
nest sites. Of the 1,176 nest sites 483 were located in the Northwest Great Plains region
(NWGP) and 693 were in the Wyoming Basin region (WYB; Fig 1). The oldest nest site data
were from 1974 and 40% of nest sites were from 2000–2010. Saturating each region systemati-
cally with available samples while enforcing 3km spacing between all data point resulted in
4,158 available samples in the NWGP, and 11,053 in the NWGP.

All variables considered in the regional models contained at least one term that fit better
than a null model. In the NWGP, best-fit scales associated with variables where either the

Fig 1. North American Commission of Environmental Cooperation (NACEC) level II ecoregions Northwest Great Plains (NWGP; dark gray), and
Wyoming Basin (WYB; light gray) portions of Wyoming, USA.Reducing nest site data to remove redundant and clustered data produced 1,176 total nest
sites, 483 in the NWGP and 693 in theWYB.

doi:10.1371/journal.pone.0134781.g001
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smallest (200m) scale for cliffs and steep landscapes; or the largest possible scale (5km;
Table 2), with AIC values increasing or decreasing monotonically towards each selected scale
(unpublished data). A standard deviation term improved the AIC score for all sagebrush met-
rics and an inclusion of a one year lagged effect better modeled the influence of sage-grouse
leks and precipitation on nest-site selection. Best fit multi-scaled variables in the WYB were
similar to NWGP models except for NDVI and sloped areas (Table 2).

Each regional suite of variables contained several predictors that were highly correlated (r>|
0.60|; Table 2). Remaining uncorrelated variables shared the direction of selection (positive or
negative) across regions used for global models (Table 2). Variables used in global models were
not correlated (|r|<0.24) with the number of producing oil and gas wells within 5km (Table 3).

Global models for each region contained 15 covariates representing topographic indices,
prey density, land use, climate, and vegetation (Table 4; Fig 2). We removed an agricultural
predictor variable from the NWGP regional model because the coefficient estimate changed
significantly in direction and magnitude from the univariate estimate, suggesting variable
instability [47]. Among variables occurring in each regional model, elevation and temperature
differed in the direction for which they influenced nest site selection (Table 4). Spearman rank
correlation values between the area-adjusted frequency of validation points and RSF bin across
the five folds ranged from 0.86–0.95 in the NWGP, and 0.72–0.96 in the WYB, while averages
from across folds were high in the NWGP (1.0) and WYB (0.952).

Areas identified as moderate risk (orange and yellow colors; Figs 3 and 4) made up the
greatest portion of the study area when overlaying NRELWPC maps with reclassified golden

Table 2. Best fit univariate term among competing variables in the Northwest Great Plains (NWGP)
andWyoming Basin (WYB), and coefficient estimate. Asterisks denote correlated variables removed
frommultivariate RSF models.

Variable NWGP WYB

ag 5km (-0.28) 200m (-0.41)

cliff 200m (0.25) 200m (0.60)

ndvi 5km2 (-0.59, 0.06) 1km2 (0.01, -0.18)*

treed 5km (-0.72) 5km (-0.16)*

flat/open 200m (0.24) 200m (-0.34)*

sloped 5km (0.16) 1km (0.29)

steep 200m (0.18)* 200m (0.41)*

herb 5kmm,sd (-0.11, -0.36)* 5kmm,sd (-0.30, -0.13)

sage 5kmm,sd (0.23, -0.47) 5kmm,sd (0.08, -0.17)

shrh 5kmm,sd (-0.15, -0.56)* 5kmm,sd (0.08–0.12)*

shrb 5kmm,sd (-0.05, -0.17)* 5kmm (-0.18)

sg lek count lag (0.29) cur (0.14)

sg malecount lag (0.25)* lag (-0.06)*

tmin cur2 (0.21, -0.19) cur2 (0.19, -0.15)

tmax cur2 (0.14, -0.10)* cur2 (0.16, -0.16)*

ppt lag2 (-0.08, -0.15) cur2 (-0.10, -0.06)

elev (-0.49, -0.18) (-0.06, -0.18)

m—mean;

sd-standard deviation;
2-quadratic term;

cur—current year; lag– 1 year lagged

* Correlated variable removed for inclusion in multivariate model

doi:10.1371/journal.pone.0134781.t002
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eagle RSF maps (Figs 3 and 4). Cells considered the highest risk (RSF 7 and WPC 7) repre-
sented the smallest area in both regions (Figs 3 and 4), containing no observed nests in the
NWGP and 5 in the WYB. Across regions the lowest three WPC (1–3) contained 75% of the
known nest sites, while the highest 3 WPC contained only 10% of nests (Fig 4). The number of
wind turbines within each WPC increased monotonically in the WYB; in the NWGP, WPC 4
contained the most existing turbines (Fig 4). The most wind turbines across regions occurred
in RSF bins 3–4, with only 2 turbines occurring in the highest or lowest RSF bin (Fig 4).

Table 3. Pairwise correlation values between variables used in global RSFmodels and best fit term associated with oil and gas development (pro-
ducing wells within 5km).

NWGP WYB

Variable Available Used Variable Available Used

ag 5km 0.14 0.16 ag 200m 0.01 -0.04

cliff 200m -0.03 0.16 cliff 200m -0.02 -0.03

ndvi 5km -0.02 0.08 slope 1km -0.03 -0.14

ndvi 5km2 -0.11 -0.14 herb 5km m -0.03 -0.05

treed 5km -0.12 0.00 herb 5km sd 0.00 0.03

flat/open 200m -0.01 -0.05 sage 5km m -0.04 -0.21

slope 5km 0.00 0.23 sage 5km sd 0.00 -0.12

sage 5km m -0.03 0.01 shrb 5km m -0.04 -0.10

sage 5km sd -0.02 0.05 lek count -0.03 -0.08

lek count lag -0.03 0.02 tmin -0.05 -0.09

Tmin -0.07 -0.20 tmin2 0.04 -0.07

tmin2 -0.06 -0.06 ppt 0.02 0.04

ppt lag 0.04 0.14 ppt2 0.02 -0.05

ppt lag2 -0.08 -0.12 elev -0.03 -0.13

Elev 0.00 -0.09 elev2 0.01 0.03

elev2 -0.14 -0.03

doi:10.1371/journal.pone.0134781.t003

Table 4. Coefficient estimates and standard errors for global RSFmodels in the Northwest Great Plains (NWGP) and theWyoming Basin (WYB).

NWGP WYB

Variable β SE Variable β SE

cliff 200m 0.38 0.042 ag 200m -0.07 0.087

ndvi 5km -0.53 0.083 cliff 200m 0.64 0.028

ndvi 5km2 -0.02 0.072 slope 1km 0.11 0.052

treed 5km -0.53 0.146 herb 5km m -0.41 0.079

flat/open 200m 0.38 0.051 herb 5km sd 0.03 0.089

slope 5km 0.29 0.064 sage 5km m -0.01 0.071

sage 5km m -0.02 0.065 sage 5km sd 0.00 0.070

sage 5km sd -0.40 0.066 shrb 5km -0.20 0.081

lek count lag 0.23 0.045 lek count 0.18 0.030

tmin -0.07 0.069 tmin 0.11 0.057

tmin2 -0.10 0.049 tmin2 -0.11 0.037

ppt lag -0.15 0.065 ppt -0.11 0.057

ppt lag2 -0.10 0.050 ppt2 -0.07 0.037

elev -0.75 0.079 elev 0.21 0.086

elev2 0.06 0.055 elev2 0.01 0.052

doi:10.1371/journal.pone.0134781.t004
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Discussion
Wemodeled breeding habitat selection for a wide-ranging predator across large spatial scales—
over twice the land area of Austria. Our models performed well, despite the generalist nature of
golden eagles, likely due to the large number of samples and availability of high-quality GIS data
across our study areas. Processes influencing nest site selection in golden eagles are dynamic
and complex, including land forms, vegetation, and a temporally-variant climate and prey base.
Cliff features at local scales were important predictors in both regions. Selection for flat and
open areas in the NWGP could appear at odds with selection for cliff; however, the landform
metric for flat and open areas was summarized at 90m, in contrast to the 30m resolution of the
cliff metric. The apparent disparity between these metrics likely reflects the selection for areas of
sharp relief within flat and open areas.

Eagles demonstrated slight preference for less vegetated areas, demonstrated by a negative
association with the Normalized Difference Vegetation Index (NDVI) in the NWGP at the
largest scale, and negative coefficient estimates for herbaceous cover at large scales in the WYB.
Higher NDVI values and herbaceous cover may result in higher densities of primary

Fig 2. Resource selection function (RSF) probability grids across the Northwest Great Plains (NWGP) andWyoming Basin (WYB) regions in
Wyoming, USA.RSF values represent the probability proportion to use of golden eagle nest site. Predictions are based on a global model for each region.

doi:10.1371/journal.pone.0134781.g002
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consumers including multiple prey species for golden eagle, though they may also obscure visi-
bility of prey. Lower NDVI values could also distinguish sage steppe from grassland habitats, as
golden eagles preferentially selected for sagebrush cover in large contiguous tracts at large
scales.

Prey abundance and distribution is paramount in explaining space use of predatory species.
Though spatial data on prey abundance and distribution is rarely available across landscape
scales. Researchers have used models of prey distribution, including coefficients drawn from
RSF models, to explain attributes of predator habitat use [48,49]. However, our research uses
direct measures of prey distribution and abundance to estimate the influence on predator habi-
tat selection. Models suggest golden eagles selected nest sites within landscapes containing
greater numbers of sage-grouse leks. This preference may likely capture the spatial and tempo-
ral correlation between sage-grouse and cottontail rabbits [36], a primary prey resource of
golden eagles [15, 35].

Infrastructure associated with oil and gas development may influence golden eagle nest-site
selection; however, the potential sampling bias within energy landscapes rendered these variables

Fig 3. Spatial delineation of overlay between seven NREL wind power classes (WPC; 1-low wind value, 7-high wind value) and regional resource
selection function maps grouped into seven geometric bins (see Fig 4 for color legend).Hatched areas are predicted low value for golden eagle
nesting and wind development.

doi:10.1371/journal.pone.0134781.g003
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inappropriate for nesting models. This bias did not pervade to the covariates we sampled, as the
best estimate of oil and gas was only weakly correlated with variables included in regional mod-
els. Investigating the impacts of development requires mechanistic studies beyond the scope of
our data, and should include measures of habitat use and overall fitness of individuals. Human
disturbance may decrease the probability of golden eagles occupying territories [50] and many
wildlife species inWyoming including sage-grouse [51], antelope [52], mule deer [53], and grass-
land birds [6] alter habitat use in response to oil and gas development. However, the avoidance
documented in other wildlife species may not apply to raptors. Indeed, raptors may selectively
use anthropogenic features associated with oil and gas development such as power lines and
roads for hunting. In fact, ferruginous hawks (Buteo regalis) have been documented nesting on
drilling equipment in tree-sparse prairies [54]. Though a lack of avoidance does not necessarily
indicate a lack of impact, and it is possible that features selected in a human-modified landscape
may have unintended consequences on overall fitness of raptors [55].

Despite good model performance, the nest data used to develop our models were not col-
lected according to an optimum sampling design when considering the state of Wyoming as a
single study site. Most of the data were collected to address localized research and management
needs regarding golden eagle nesting ecology. When designing a research study, investigators
should carefully consider the optimum sampling design to address the questions of interest

Fig 4. Area (km2) and the known number of nests (in parentheses) found overlapping cells between golden eagle RSF and NREL wind power class
(WPC) map in the Northwest Great Plains (NWGP) and theWyoming Basin (WYB). Values on outside of tables represent the number of wind turbines in
each category as of 2009. Cell colors correspond to map in Fig 3.

doi:10.1371/journal.pone.0134781.g004
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prior to data collection [56]. Yet design-based studies in ecology are currently rare at large spa-
tial and temporal scales, and investigators often must combine data from multiple sources.
Careful consideration of sampling design and species ecology can help ensure valid conclusions
are drawn from the data. For example, the first step in designing a research study involves
defining a sampling frame and unit. We defined the sampling frame as the known distribution
of golden eagles within Wyoming, though identifying the sampling unit required more consid-
eration. We developed a hierarchical approach to parsing available data to define a biologically
meaningful sampling unit. Our approach focused on our specific study objectives and incorpo-
rated species behavior, sampling time frames, data quality, and the spatial distribution of rec-
ords. We recommend the development of similar approaches when working with datasets
collated from multiple surveys with varying study objectives.

NREL wind power class (WPC) and RSF map overlays demonstrated 1) Wyoming land-
scapes are dominated by areas of moderate suitability to nesting golden eagles and wind devel-
opment, 2) high quality eagle habitat and high WPC values have minimal overlap, 3) nests
tend to occur in lower WPC, and 4) existing turbines tend to occur in lower RSF values. It is
important to note that potential wind resources are but one factor leading to the likely installa-
tion of wind turbines, demonstrated by the non-monotonic relationship between existing tur-
bines and WPC. Various social, political, infrastructure, and environmental factors likely
converge in the decision-making process among stakeholders. Yet energy development is ulti-
mately linked to available resources, and NREL maps provide a powerful broad-scale tool with
utility in applied research [13,57,58] for resource managers and industry. Viewed in total, we
found that high quality golden eagle nesting habitat and areas of high value for wind energy
installations are largely disparate. Yet our models did classify over 700km2 as containing the
highest quality golden eagle nesting habitat (RSF 5–7) in the three highest WPC. These “risky”
areas encompassed 98 known golden eagle nest sites and roughly 1/3 (250) of the commercial
turbines in the study area.

Our risk maps provide a biological basis for helping to guide the siting of wind development
at local and landscape levels. Our predicted maps contain 30m resolution, and thus have the
ability to provide guidance for site-level placement of turbines within existing permitted fields,
though we do not suggest that models displayed as maps should replace empirical on-site mon-
itoring. In particular, non-breeding habitat-use should be evaluated when making siting deci-
sions. Anecdotal evidence suggests that most eagle turbine strikes occur during spring breeding
months, though mortalities are seasonally ubiquitous [59,60]. Identifying winter raptor con-
centration areas, juvenile (non-breeding) dispersal areas, and understanding migratory path-
ways, will be important contributions of applied research towards eagle conservation.

Conclusions
Minimizing golden eagle mortality and displacement is the major goal in research efforts to
identify areas of high species use prior to wind development. Currently, most preconstruction
risk assessments are based upon site-level monitoring prior to wind turbine placement. Typi-
cally, assessments use abundance indices and assume linear relationships with future mortality
(i.e., risk scales directly with observed bird counts). However, studies have found that local
abundance is often not correlated with mortality at wind farms [61], and that environmental
impact assessments based upon bird counts at sites do not share a relationship with recorded
mortality following construction [62]. Large scale, spatially explicit, and empirically driven
habitat use models such as those presented here may be better predictors of mortality risk for
certain species. For example, Carrete et al. [63] found that models predicting the distribution
and aggregation (e.g., breeding colonies and roost sites) of griffon vultures (Gyps fulvus) across

Golden Eagle Nesting Habitat andWind Development

PLOS ONE | DOI:10.1371/journal.pone.0134781 August 11, 2015 14 / 18



large extents had a positive and linear relationship with mortalities at wind farms. Indeed, large
scale spatially-explicit models near aggregation areas (e.g., nests) far outperformed pre-con-
struction counts for estimating mortality risk [63]. Our overlays of wind potential and proba-
bility of nest selection have taken this a step further in an attempt to identify high risk areas
prior to development. We suggest the consideration of our models in concert with site-level
multi-season data to help inform development concerned with minimizing impacts to golden
eagles in Wyoming. The greatest strength of our products to managers lies in the ability to pro-
actively target areas for conservation where the biological value is highest and the energy devel-
opment risk is minimal. Used in concert with additional species-level habitat maps purveying
risk across Wyoming, including sage-grouse, managers in Wyoming have a scientifically-
defensible toolbox to help achieve multiple-species conservation at a landscape level.
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