


 

 

 
 

Songbird Behavior 

and
 

Conservation in the 

Anthropocene
 

Editor 
Darren S. Proppe 

Research Director
 
Wild Basin Creative Research Center
 

St. Edward's University, Austin, Texas, USA
 



Cover Credit: Cover artwork and drawings on the front page of each chapter have been 
prepared by Jenna Atma. Jenna is a biologist and artist from southwest Michigan.  
Jenna can be reached at tigereye.jla@gmail.com. 

First edition published 2022  
by CRC Press  
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 

and by CRC Press  
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 

© 2022 Taylor & Francis Group, LLC 

CRC Press is an imprint of Taylor & Francis Group, LLC 

Reasonable efforts have been made to publish reliable data and information, but the author and publisher  
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors  
and publishers have attempted to trace the copyright holders of all material reproduced in this publication  
and apologize to copyright holders if permission to publish in this form has not been obtained. If any  
copyright material has not been acknowledged please write and let us know so we may rectify in any future  
reprint.  

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,  
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter  
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval  
system, without written permission from the publishers.  

For permission to photocopy or use material electronically from this work, access  
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, 
MA  01923,  978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@ 
tandf.co.uk  

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used 
only for identification and explanation without intent to infringe. 

Library of Congress Cataloging-in-Publication Data 

Names: Proppe, Darren S., 1975- editor.  
Title: Songbird Behavior and Conservation in the 

Anthropocene/editor, Darren S. Proppe, Research Director, 
Wild Basin Creative Research Center, St. Edward’s University, Austin,Texas, USA.  

Description: First edition. | Boca Raton : CRC Press, 2021. | Includes 
bibliographical references and index. | Summary: “Learned and fixed behaviors underlie many of 
the patterns we observe in songbirds. But the environmental context in which these patterns occur 
is changing quickly, often to the detriment of the individual and species. The goal of this book is to 
weave concepts of behavior more tightly into our conservation strategies. Each chapter describes the 
current understanding of behavior in relation to a particular songbird life history trait. The authors 
then evaluate challenges that songbirds face in the Anthropocene, and explore the role of behavior in 
addressing these challenges. The future is uncertain for songbirds, but broadening our management 
toolkit will increase the potential for success”-- Provided by publisher.  

Identifiers: LCCN 2021018816 | ISBN 9780367279288 (hardcover) | ISBN 
   9781032058382 (paperback) | ISBN 9780429299568 (ebook)  
Subjects: LCSH: Songbirds--Behavior. | Songbirds--Conservation. 
Classification: LCC QL696.P2 S594 2021 | DDC 598.8--dc23 
LC record available at https://lccn.loc.gov/2021018816 
 
ISBN: 978-0-367-27928-8 (hbk) 
ISBN: 978-1-032-05838-2 (pbk) 
ISBN: 978-0-429-29956-8 (ebk) 

DOI: 10.1201/9780429299568  

https://www.lccn.loc.gov
http://www.copyright.com
mailto:tigereye.jla@gmail.com


This book is dedicated to 

my wife and children who gave me the space and time to explore, 

write and edit; to the many authors who put in countless hours to 

write and edit each chapter; and to the songbirds that we aim to protect.
 



https://taylorandfrancis.com


 

 

  

Preface: How to Utilize this Book 

Darren S. Proppe1 

This volume is dedicated to explaining the role that behavior plays in the function and 
ecology of free-living songbirds with a particular focus on its importance in conservation 
and management. Understanding songbird behavior is no small task. Indeed, many 
have dedicated their careers to studying particular aspects of songbird behavior. In 
addition, there is a long history of study on the behavior of animals—often located 
across disparate fields and academic journals. Although the integration of behavior into 
conservation and management is a relatively new endeavor, many of the underlying 
processes and systems have been explored in detail. In fact, developing a text that 
merely explored bird behavior as a scientific study might have been redundant. Donald 
and Lilian Stokes wrote several volumes on bird behavior in the 1980’s [1], and in 2001, 
David Allen Sibley wrote an excellent and accessible text called The Sibley Guide to Bird 
Life and Behavior [2]. Other texts have extensively addressed the song system [3, 4] and 
elements of avian migration [5–7]. Still others have examined the impacts of urbanization 
on birds [8, 9]. In 2014, Dr. John Marzluff published a very informative and easy read 
for a lay audience called Welcome to Subirdia [10]. In part, I cite these texts here to direct 

1Research Director, Wild Basin Creative Research Center, St. Edward’s University 
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you to some of the excellent resources that are available. But I also wish to answer a 
question: Why another book? Our book is distinct from these texts because it explicitly 
addresses behavior in light of the conservation challenges we face in the human era—the 
Anthropocene. My goal in editing this book was to provide a ‘one-stop shop’ for those 
interested in integrating behavior into management or applied research programs. That 
is not to say that you will find every bit of known information contained within these 
pages—far from it. Rather, we aim to provide the needed groundwork to understand 
basic concepts and to recognize where research has led us at the time of publication. 

Chapters are broken into particular behavioral topics (e.g., habitat selection, foraging, 
personality, etc.). In reality, however, animal behavior is not a discrete set of responses 
that relate only to one topic – or ecological system. Rather, there is much overlap. What 
an animal eats, for example, is related to energetics and foraging strategies, but also 
associated with predation and social information. In the same vein, anthropogenic 
changes will likely alter many behavioral systems. Human-produced noise might impact 
communication directly, but also impact foraging and sexual selection. As the editor, 
I have worked with each author team to keep their chapter within the bounds of 
their particular subset of behavioral systems. But do not be surprised when particular 
behaviors, or particular anthropogenic stressors are addressed within several chapters. 
In fact, this repetition of themes should reinforce the notion that behavioral responses 
operate along a continuum and within a multi-sensory input and response system. To 
suggest, for example, that predation and habitat selection are not connected, and that 
personality would not impact both of these systems would be misleading. Thus, chapters 
are designed to be separate, but overlapping. One positive aspect of interconnected 
themes is the potential that a few management techniques might go a long way towards 
preserving many behavioral systems. 

To provide a foundational understanding of behavior, each chapter begins with 
a primer on the stated behavioral topic. Every chapter is written by experts in their 
particular niche of songbird behavior. Each author team is well published, actively 
engaged in scientific research, and well-regarded by their peers. However, each author 
was also instructed to write in a style that is accessible to fellow academic researchers, 
on-the-ground managers, and engaged community scientists alike (although we know 
that many of you will wear all of these hats). To get the creative juices flowing, each 
author has peppered their text with examples where particular species or systems 
display the behaviors being described. The intentional inclusion of examples was 
designed to display the phenomenal capabilities demonstrated by songbirds, but also 
to accelerate the application of information to your system of interest. These examples 
should also be particularly valuable for managing or conserving species with little 
published information. For example, Otter et al. (Chapter 5) describe that some lekking 
species might be more reliant on characteristics of ambient lighting than most birds [11]. 
Might the system or species that you manage be similar? What elements of your system 
might elevate, or not elevate, the role of light? Of course, most the time our examples 
will not directly address your particular species. But this is one of the beautiful elements 
about studying behavior–there is so much to learn! So, I challenge you to let the text 
push you to think more deeply, and more creatively, about your organisms and systems. 

Once each chapter reviews behavioral fundamentals and the latest research, the 
authors move on to describe some of the primary threats stemming from the human 
alteration of native habitats and ecosystems. Perhaps this is the crux of the text. If we 
are going to successfully maintain diverse songbird populations and communities, we 
must recognize the threats to their established behavioral systems–which may go way 
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beyond structural or vegetative changes to habitat. Again, specific examples from the 
scientific literature abound, allowing the reader to delve much more deeply into the 
topics they deem most pertinent or interesting. In each case, threats are followed by the 
presentation of potential solutions. On this front, some authors are fortunate to be able 
to report on protocols that have already been implemented, or experimental solutions 
that offer promise. Others must recognize that the solutions are yet forthcoming. But 
hopefully that is why you are reading this book – to play an active role in developing 
solutions that can sustain behavioral systems in songbirds, and thus their existence, in 
a world that is changing with incredible speed. Understanding the required habitats 
utilized by birds is critical, but failing to integrate the role of behavior into management 
is likely to produce subpar results. It is my hope that reading this book will lead you 
to agree, and that it will spur the development of holistic and novel techniques for 
managing songbirds. 
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Chapter 1 
Static Organisms in a 

Changing System? 
Darren S. Proppe1 

Introduction 

Domestic chickens are known for simple, predictable, and often stereotyped behavior. 
Eat, sleep, eat, sleep, eat, sleep… repeat. Although chickens are not songbirds, I open 
with this species here as an example of an organism with which many people are 
familiar; one that vividly portrays the types of behaviors that lead many to believe the 
actions of organisms are by-in-large static. But for those who have owned and raised 
chickens, or for that matter any domestic animal, the story is more complicated. Some 
chickens choose to feed primarily from a food cup while others forage predominantly 

1Research Director, Wild Basin Creative Research Center, St. Edward’s University 
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on the ground. Some individuals follow their owners incessantly, while others flee from 
human presence. Even behavior within an individual is not static. Not long ago, an 
unfortunate dog attack left one of my chickens severely injured. Although the chicken 
made a full recovery, her behavior was forever altered. The sound of a dog bark sent 
this free-ranging chicken in a full sprint back to the safety of the enclosed coop. Before 
her incident with the dog, she responded to an audible dog bark by merely raising, and 
sometimes cocking her head. Other chickens in the same flock continued to exhibit only 
this minimal response to the acoustic sounds of a potential canine predator. They had 
not experienced a fear-inducing interaction with a dog, and did not socially learn fear 
behavior from the injured chicken. Thus, they had no learned fear response as a result. 

While an experienced chicken owner will likely recognize the presence of among-
individual and within-individual variation in behavior, an educated owner also knows 
that some behaviors are largely static. No one expects that domestic chickens will 
suddenly become migratory. Nor will they begin building nests in trees, or nests at all 
for that matter. More narrowly, if an owner desires regular egg production, they must 
provide the right environmental conditions—which includes a relatively confined dry 
space with soft bedding. In fact, the importance of understanding and accommodating 
behavior is rarely lost on one who own pets or livestock. Dog owners speak regularly 
about good or bad behavior, and often elaborate about their pet’s personality. Ranchers 
know which heifer or horse to be wary of, and farmers know which goat or rooster 
should not be left with children. Despite the clear acknowledgement that behavior plays 
a role in the care of captive animals, behavior has not received the same attention when 
it comes to the management of non-captive organisms. 

I open this introductory chapter by providing the definition of behavior, and briefly 
describing the history of behavior as a scientific field of study. Next, I explore learning 
and cue-response systems as the mechanisms that underlie the behavioral responses 
we observe. This section is followed by an exploration of stability and flexibility in 
behavioral systems, with focus on relevant songbird responses to environmental cues 
and signals. I then place these systems within the context of anthropogenic change – 
addressing the need to bring an understanding of behavior to conservation and 
management plans. 

The Foundations of Behavior 

Behavior is broadly defined as, (1) the way in which one acts or conducts oneself, 
especially toward others, (2) the way in which an animal (non-human) or person acts 
in response to a particular situation or stimulus, or (3) the way in which a natural 
phenomenon or a machine works or functions [1]. For our purposes, we will focus on 
animal behavior, meaning that the second definition is most relevant. The beauty, and 
sometimes the curse, of animal behavior as a scientific study is that it covers a broad 
range of fields and expertise. For example, much of our initial understanding of learning 
and behavior was developed by prominent psychologists with an interest in explaining 
human behavior. More recently, entire branches of the psychological field have become 
dedicated to understanding the development of behavior and the proximal mechanisms 
that underlie non-human animal behavior. Lab and field studies often attempt to explain 
behavior under natural conditions – a particular scenario defined as ethology. Topics such 
as learning and cognition continue to be explored extensively among psychologists [2], 
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producing many advances that are relevant to biologists focused on behavior and 
management. Animal behavior has become a focus of study for many ecologists as 
well, with foundations of the field established in the early to mid-1900’s by scientists 
such as Nikolaas Tinbergen, Konrad Lorenz, and Karl von Frisch [3]. Perhaps one of 
Tinbergen’s most significant contributions to the field was his description of the four 
questions (or arenas) for the study of animal behavior [4]. Causation (or mechanism) and 
development (or ontogeny) of behavior describes many of the topics investigated using 
captive animals. Ecologists that study behavior tend to focus on Tinbergen’s second two 
questions: function (or adaptation) and evolution (or phylogeny) of behavior. These latter 
questions may be thought of as exploring why particular behaviors occur, which is often 
explained by the correlation between their performance costs and the benefits of their 
expression. This study of ultimate (as opposed to proximate) explanations of behavior is 
often defined as behavioral ecology [5]. 

While Tinbergen’s designations have been extremely beneficial for studying and 
understanding behavior, they have also had the unintended consequence of creating 
somewhat siloed fields of study. This unfortunate situation is exacerbated by the 
difficulty of tracking the vast literature found across many field-specific journals, 
and the sometimes differing study techniques used by biologists, ecologists, and 
psychologist [6]. To fully understand behavior, and to manage animals accordingly, 
will require an integrated understanding of all four of Tinbergen’s questions. The 
focus on collaborative management and ecosystem approaches in recent years has led 
to an exciting and unprecedented integration of information about the development 
and function of behavior [7–9]. This integration is timely and critical as we now work 
to sustain populations and communities of songbirds in landscapes that are changing 
rapidly. No doubt one of the keys to integrating behavior into management for songbirds 
will be understanding how, and how quickly, behavior can change to accommodate 
shifting environmental conditions. 

Learning and the Development of Behavioral Response 
Systems 

The development of particular behavioral systems (or responses) is shaped by the same 
processes of natural and sexual selection that leads to physical traits better suited for 
particular environments. If behaviors are thought of as responses to particular situations 
or environments, variation in these responses must exist for natural selection to shape 
the system. Within this range of responses, there must also be variation in how the 
resulting outcome impacts fitness (e.g., some responses provide better fitness gains 
than  others).  While  heritability,  a  keystone  of  natural  selection,  also  plays  a  role  in  
the development and maintenance of many behaviors we observe, learning can also 
maintain some elements of behavioral systems. The basic cue-response system that 
leads to standardized behavioral responses, and to changes in behavioral responses, 
can be represented as a triangle with cue, response, and outcome at the three corners 
(Box 1). Although each term is singular here, in reality it may take multiple cues to 
elicit a response, or responses. Here the cue represents the environmental stimulus that 
could trigger a particular response. To understand this in human terms, simply imagine 
that someone is cooking bacon for breakfast (if you do not like bacon, imagine your 
favorite food here). As most readers are probably aware, bacon that is being cooked 
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has a strong, distinctive smell. This smell could be classified as potential cue, which 
might trigger a response from nearby humans. The response to bacon is likely to differ 
among individuals, but for those that like bacon it is likely to trigger a desire to find 
and consume bacon. If this response does lead to consumption, the outcome in the bacon-
lover will be positive—a pleasurable dining experience. Repeated experience with this 
particular cue-response system would establish a ‘find-and-eat’ response to the smell of 
bacon. If bacon was the only, or perhaps the most beneficial food source available, the 
fitness of individuals with the ‘find-and-eat’ response would increase, and the behavior 
would be selected for. If genetics were to underly this response, selection would increase 
the prevalence of this response in the population by favoring the responsible genotype. 
Even without genetic underpinnings, experience and teaching (a phenomenon that is 
less prevalent, but not absent, in non-human animals) might increase the bacon-philic 
response. While this example is somewhat silly and underestimates the complexity of 
behavioral development, it does provide the basic level of understanding needed to 
grasp the development of behavior (for a deeper understanding see [10, 11]). Our bacon 
example also allows for a few extensions that can explain how the use of cues and 
responses can change over time. 

If bacon creates an automatic ‘find-and-eat’ response in many of us, that response is 
said to be an unconditioned stimulus (i.e., no training is needed to evoke this response). 
But through a procedure called classical conditioning, we could actively train individuals 
to exhibit the same ‘find-and-eat’ response to the sight of a pancake—if the sight of a 
pancake and smell of bacon are paired across several trials, and always result in the 
availability of bacon. Eventually, the ‘find-and-eat’ response would be learned and 
evoked by the sight of a pancake alone (conditioned stimulus; i.e., training was needed 
to evoke this response). The classic example of this process is Pavlov’s dogs, who were 
trained to salivate for food in response to the sound of a metronome [12]. In songbirds, a 
similar process likely underlies the selection for particular habitats or tree species. While 
selected trees or habitats likely supply better food sources than non-selected locations, 
it is unlikely that birds directly assess insect populations prior to selection. More likely, 
experience (or selected genetic preferences) has facilitated an association between the 
preferred habitat characteristics and food availability [13, 14]. 

A particular response can also be extinguished by changing the outcome in the cue-
response system [15]. For example, some alternative-fuel vehicles use recycled food grease 
as fuel [16]. The resulting exhaust can have a bacon-like smell. In this case, the ‘find-and-
eat’ response to the smell of bacon described above could result in the negative outcome 
of being exposed to vehicle exhaust or the danger of approaching a moving vehicle. If a 
particular response is no longer rewarded with a positive outcome, or results in a negative 
outcome, the response might be extinguished. If bacon smell becomes more commonly 
associated with vehicles than a preferred food source, the ‘find-and-eat’ response may 
become extinct. Similarly, most songbirds exhibit a fear of humans, but fear behavior is 
diminishing in populations that inhabit human-dominated systems (e.g., cities [17, 18]). In 
this case, repeated neutral or positive (e.g., food provided) interactions with humans in 
urban systems are likely extinguishing fearful behavior. While the altered cue-response 
system here might appear benign, the impact of changing the outcome in a cue-response 
system can come with negative fitness impacts. For example, songbirds are killed regularly 
by wind-powered turbines during migration [19]. This is potentially to due to their 
attraction to light [20] which also serves as an important cue for migration, or through 
other established migratory behaviors such as low-altitude flight in large groups [21]. 
Given enough time and experience, songbirds may learn to associate particular 
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characteristics of turbines with the danger that they represent (i.e., extinguish attraction). 
But for a time, there is a mismatch between the response and the expected outcome [22, 
23]. During this mismatch period, there is a high likelihood that more songbirds will 
be injured or killed by turbine blades. Simply put, behavioral changes may be too slow 
to avoid the negative impacts of environmental change (i.e., the outcome). 

Stability and Plasticity in Songbird Behavior 

As with most organisms, songbird behavioral systems exhibit a range of plasticity. Some 
genetically coded behaviors have become fixed, which can indicate that strong selection 
has nearly, if not completely eliminated genetic variability in the loci responsible for 
producing the particular behavior, and thus eliminated variability in the associated 
behavior. Other behaviors are crystalized after a short learning period. Some more 
plastic behaviors are shaped in individuals and populations through experience, and 
some responses are subject to high levels of within-individual plasticity based on the 
particular set of environmental conditions. In this section I provide an explanation 
of, and examples for songbird behaviors that are a typically characterized as innate 
or largely stable, learned, shaped by experience, and plastic. However, much remains 
to be learned about each system, and these categories should not be considered to be 
set in stone or mutually exclusive. In addition, plasticity itself may be under selective 
pressures that can increase or decrease variability over time [24]. I conclude the section 
by explaining why multiple behavioral responses to the same stimuli often exist within 
songbird populations and species. 

Innate or Largely Stable Behavior 

Immediately after hatch, hungry Cactus wren (Campylorhynchus brunneicapillus) nestlings 
lift their heads upward with their mouth agape at any detection of movement or sound – 
which most likely represents an adult approaching the nest to feed [25]. Although critical 
for their survival, this ‘gaping’ behavior does not stem from experience or tutelage. 
Gaping, which is a trait shared across songbird species, is innate [26]; likely coded within 
the genes. This is not to say that there is not variability in gaping behavior, but rather 
that natural selection will strongly favor individuals that exhibit this behavior over those 
that do not. Gaping and begging correlate with hunger level [27], and parents likely 
perceive these behaviors to be an honest indicator of a nestlings need for nourishment. In 
keeping with this hypothesis, experimental work with tree swallows (Tachycineta bicolor) 
and great tits (Parus major) indicates that parents increase feeding rates as gaping and 
begging rates increase [28–30]. A nestling that does not gape, or gapes less often, is less 
likely to be fed. An unfed nestling is unlikely to survive and carry this trait into the 
next generation. Although gaping and begging are an honest indicator of hunger that 
is critical for survival, variation in begging rates among broods may also be indicator 
of health. For example, great tit nestlings that hatched from eggs laid by a female given 
supplemental carotenoids, an important but limited antioxidant, begged more intensely 
than control nestlings [31]. Because carotenoids are associated with nestling health, more 
intense begging is still an honest indicator of fitness, and increased feeding of these 
carotenoid-rich chicks is probably a good investment on the part of a parent. Again, 
selection favors stronger gaping and begging behavior. 
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Migration, the seasonal movement between spatially distinct habitats, is a common 
songbird life history trait. The role of genetics and experience in navigation between 
breeding and wintering grounds has received much attention in the scientific literature, 
and is addressed more broadly in Chapter 7. However, I want to visit this topic briefly 
here because elements of migration are thought to be innate [32]. For example, zugunruhe 
refers the restlessness observed in both experienced and naïve birds around the time 
when migration should occur [33]. Further the direction and distance to the wintering 
grounds appears to be genetically encoded in first-time migrants. Good confirmation 
of this came from crossbreeding studies where hybrids from two populations with 
unique migratory routes and destinations exhibited an intermediate migratory path [34]. 
Displacement experiments have also found that naive birds are not able to consistently 
correct the angle or distance of their migratory path to reach the correct wintering 
ground [35]. In adults, however, experience with a navigational map allows for such 
corrections to be made [36]. Despite the innate components of migration, plasticity is 
more common than might be expected. Recent work suggests that juvenile migrants do 
have some ability to compensate for strong winds and minor displacements [37]. The 
presence of zugunruhe in a resident species of stonechat (Saxicola torquatus; [38]) suggests 
that this species may have been migratory in the past, or could become migratory in the 
future [39]. Indeed, migratory populations of blackcaps (Sylvia atricapilla) in Europe are 
staying closer to home as conditions on the breeding grounds become more favorable 
year round [40] despite the presence of genetic differences between migratory and 
already resident populations in this species [41]. In contrast to gaping and begging, these 
studies suggest that it is plausible that migratory behavior could appear or disappear 
in response to changing conditions – a good reminder that innate underpinnings do 
not preclude rapid change. 

Traditional thinking has been that elements of the nestbuilding process are also 
innate [42]. But, a role of experience has long been recognized, and experimental 
evidence to support claims of innate behavior were often lacking [43]. Evidence from 
hand-rearing experiments, field observations, and laboratory manipulations indicate 
that associative learning, social learning, and imprinting are important contributors 
to the nest building process [44]. While nest-building is probably not a hard-wired 
response [45], and thus not innate, the propensity to build nests is nearly ubiquitous 
across songbird species. This suggests that selection strongly favors nest-building 
as a strategy for increasing survival in offspring. This is not to say that alternative 
strategies are not plausible. A few passerines, including several cowbirds species (genus 
Molothrus), have abandoned nest building; instead laying parasitic eggs in the nests 
of other species [46]. Several non-passerine species, including a large percentage of 
shorebirds (order Charadriiformes) lay camouflaged eggs directly on the ground. This 
non-nest building strategy has been successful in many non-passerine bird species [47]. 
But in passerines, observing a shift from a nest-building to non-building strategy in 
response to management or environmental change is unlikely to occur. Nests provide 
many ecological benefits, including; protection from predation, providing a barrier for 
containment of nestlings, and to some extent buffering the variability in the environment 
(e.g., wind, rain, temperature) [48]. Nest characteristics, such as thickness, material, and 
even placement may be modified more quickly based on learning and experience. For 
example, orange-crowned warblers (Vermivora celata) nesting on Santa Catalina Island, 
California, USA, were more likely to place nests off the ground than their mainland 
counterparts, and offspring survival increased with nest height [49]. But when an aerial 
predator (blue jay, Cyanocitta cristata) found on the mainland was artificially presented 
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to the island population during nest building, nests were moved closer to the ground 
and to more concealed locations. 

Other songbird behaviors that exhibit innate components include; predator detection 
[50] and recognition [51], and some components of vocal production [52] and recognition 
[53]. In general, innate behaviors should exhibit relatively low levels of plasticity – 
especially in cases where alternative strategies are not available (e.g., begging). However, 
this does not preclude change. In the strictest situation, where a genetically encoded 
behavior has become fixed in a species, change will require genetic mutations that 
provide variability, and thus, the fodder on which selection can operate. But in most 
behavioral systems, genetic variation not so tightly constrained. Further, as exhibited 
through migration, innate behavior is often refined by experience. 

Learned Behavior—Systematic 
Here I address learned behavior as a systematic process that functions to maintain some 
level of stability within a range of potential behavioral responses. While experience 
also contributes to learned behavior, I will more explicitly address this situation in the 
next section. In songbirds, learning is often classified as open-ended (lifelong learning) 
or closed-ended (learning occurs during a set period) [54]. This system is often used 
to describe the development of song. The species-specific songs characteristic of most 
songbirds are learned only during development – being closed ended. Young birds 
listen to tutors (silent phase), practice (subsong), and establish adult song (crystallization) 
[55]. Once songs are crystallized, learning on the macro-scale ceases, although minor 
modifications to temporal and pitch characteristics can be made in many species [56, 
57]. Without tutoring, some elements of song may marginally mimic adult song, which 
indicates that there may be some genetic components of song development, but these 
loose mimics are unlikely to function normally [58]. Some species, including those in 
the suborder Tyranni (i.e., suboscines) are an exception, because they tend to produce 
adult-like songs without tutoring [59, 60]. One the other hand, some species, such as 
mockingbirds and other members of the family Mimidae are open-ended learners [61, 
62]. Song learning continues throughout adulthood. Still, species-specific characteristics, 
such as the number of times phrases are repeated, are maintained. In most songbird 
species, dramatic changes to song types can be made once per generation during the 
sensitive phase. The limited range of nearby tutors, which is not limited to the paternal 
parent [63, 64], serves to converge each generation of learned songs toward the species 
mean. Stabilizing selection is further supported by sexual selection, where females are 
more likely to pair with males that propagate songs that resemble the species mean [65]. 
Sexual selection may also serve to maintain more stable visual courtship displays, since 
females tend to prefer performances that exemplify the idealistic species-specific moves 
(e.g., highest leap, quickest flight) [66]. In manakins (genus Manacus) and other species 
with extreme courtship displays sexual selection may even drive the development of 
the physical traits required to perform otherwise atypical body movements including 
production of sound with other structures on their body like modified feathers [67]. 

While tutoring and sexual selection might place an outer limit on the rate of change 
in vocal or visual displays that will be observed within a particular individual or 
generation, it does not eliminate modification. A multi-decadal study of song types in 
the white-throated sparrow (Zonotrichia albicollis) recently revealed that a novel doublet-
ending version of the species-specific song arose in western Canada and replaced the 
typical triplet-ending version across the much of the continent [68]. Geolocator tracking 
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indicates that birds from spatially separate breeding regions mix on their wintering 
grounds, where tutoring is likely facilitating the broadscale vocal change. Experimental 
work in an isolated population of savannah sparrows (Passerculus sandwichensis) reveals 
the process by which a novel song can be integrated [69]. Researchers tutored five 
developing cohorts with a novel song exemplar played via loudspeakers. During six years 
of tutelage with the novel song type, 30 individuals incorporated the novel song type 
into their repertoires, and several second-generation birds learned the novel song from 
the previous generation. In this case, however, regulation from sexual selection may have 
been lessened because developing females were also exposed to the novel song type. 

One learned behavior that may be less open to modification is imprinting. Young 
zebra finches selectively prefer their host nest via olfactory imprinting [70], which may 
also guide future nest building endeavors. Olfactory imprinting during development 
may also play a role in kin recognition [71, 72]. After fledging, most songbirds scout 
their breeding habitat before departure, imprinting on the habitat characteristics to 
which they will return [73, 74]. Although not confirmed in songbirds, pelagic birds [75], 
sea turtles [76, 77] and salmon [78] also imprint to the earth’s magnetic field during 
development, allowing for long-distance navigation back to their natal habitats as adults 
for breeding. Imprinting on olfactory or magnetic cues may also facilitate return trips to 
the breeding grounds in songbirds. Because imprinted behaviors are solidified during 
development, they may be relatively non-flexible in adults. In these cases, management 
during development may be required if an alteration to behavior is desired. One famous 
example is the imprinting of naïve whooping cranes (Grus americana) on an ultralight 
aircraft as surrogate adult guide, and then using this craft to guide birds along the 
new migratory route. Since 2001, imprinted adult cranes continue to use this trained 
migratory path, and are now making their own adaptations to the route [79]. 

Behavior Shaped by Experience 
In contrast with systematic learning, behavior that is shaped by experience is not 
always shared across individuals or populations. In humans, our experiences as a 
youth, our interactions with different cultures, and our exposure to particular traumatic 
or particularly rewarding events very much impact how we act as adults. Conversely, 
having a political figure or professional athlete in one’s family increases the likelihood 
of this career path in the next generation – or more broadly, parental values directly and 
indirectly influence the aspirations of their offspring [80]. Pavlov’s dogs, and extensions 
of classical conditioning make it clear that this process is not limited to the human realm. 

Animals, including songbirds, regularly respond to environmental stimuli and these 
experiences shape future behavior. One particularly poignant example comes from 
American crows (Corvus brachyrhynchos), which are members of the Corvid family, a 
group of birds known for their cognitive abilities. Researchers from the University of 
Washington wore masks while trapping and banding crows [81]. When these same masks 
were worn on campus in future years, crows responded with harsh calls and mobbing, 
but neutral masks were not treated with equal disdain. Like humans, crows also 
transferred their disdain for particular masks to their young [82]. In a novel laboratory 
experiment, food-caching scrub jays (Aphelocoma coerulescens) that had pilfered the caches 
of other jays moved their own cache sites when other jays observed them during their 
initial cache [83]. However, jays without previous experience pilfering another’s cache 
did not alter their own cache sites. While experience-dependent learning is particularly 
impressive in Corvids, it is certainly not limited to this family. Many songbird species 
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become less leery of people when they experience humans regularly [84]. Urban black-
capped chickadees (Poecile atricapillus) show less neophobia towards novel objects [85] 
than their rural counterparts, but are less likely to return to a feeder when a house cat 
model is present [86]. Both differences are likely due to a differing set of past experiences; 
more benign interactions with novel objects and more adverse interactions with cats in 
urban-dwelling chickadees. 

McGrath and colleagues provided a particularly compelling example of shaping 
behavior via experience in a field experiment with wild superb fairy-wrens (Malurus 
cyaneus) [87]. Ten individuals were exposed to novel alarm calls accompanied with 
a gliding predator model. Although none of the birds fled in response to the novel 
alarm prior to experiment pairing with a predator model, nine of ten individuals fled 
to the novel alarm after training. These experimental results clearly display the role of 
experience in shaping critical behavioral responses in songbirds, but they also reveal a 
potentially important conservation tool - managers may be able to intentionally modify 
cue-response systems in songbirds via artificial experiences that alter future behavioral 
responses. 

Within-individual Behavioral Plasticity 
In many cases, individuals possess the ability to respond and behave differently based 
on variation in a particular set of external cues. This is broadly known as within-
individual plasticity. Foraging demonstrates this concept well in that individuals will 
select prey species based on the combination of prey availability, energetic gain, and 
time required to capture and consume prey [88]. This idea, formalized as optimal 
foraging theory [89], proposes that variation in the aforementioned criteria will lead 
to a constantly shifting diet composition. For example, great tits offered profitable and 
unprofitable prey in a lab setting were not selective when both prey densities were 
low [90]. But when the encounter rate of profitable prey was increased, tits ceased to 
ingest unprofitable prey. Continued research indicates that optimal foraging is also 
shaped by competition from heterospecific species [91, 92], and by predation pressure 
(e.g., landscape of fear [93, 94]). In the urban setting, perceived risk – and therefore 
foraging behavior – may also be impacted by connectivity, where isolated patchy habitats 
are less likely to be used by foragers [95]. 

Plastic behavior may be thought of as possessing a suite of if-then tactics [96]. For 
the foraging example used above, this might translate to ‘if profitable prey is abundant, 
avoid unprofitable prey’. Alternatively, ‘if profitable prey is not abundant, consume any 
available prey’. Tactics can be distinct responses, or represent a range of responses along 
a continuum. A number of songbird species are cooperative breeders, such that related or 
unrelated, non-parental individuals will assist in raising offspring. In this case, a young, 
reproductively capable songbird must select categorically between having a nest of its 
own or helping at the parental nest. Which tactic is chosen is dependent on the costs 
and benefits of each option. In the well-studied Seychelles warbler cooperative system 
[97], the decision to help at a nest is based upon the availability of new territories, the 
quality of available territories, and the likelihood of finding a mate [98, 99]. The decision 
to breed or help will be revisited each year, with helping to raise genetically similar 
offspring selected when the likelihood of producing one’s own offspring is low. Habitat 
selection is another case where discrete tactics are employed each year in migratory 
species: settle or do not settle [100]. A number of interacting variables likely play a role 
in the selection of breeding and wintering habitats [101]; including patch size, vegetation, 
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and the presence of conspecific and heterospecific species [102, 103]. In this case, vocal 
conspecific cues have been used to train several species to utilize newly created [104], or 
alternative [105, 106], habitats. Here conservation objectives might include manipulating 
behavior by carefully altering flexible cue-response systems. 

In contrast to these discrete sets of tactics, a number of studies have demonstrated 
that songbirds can adjust the frequency of their adult songs along a continuum in 
response to the level of human produced noise, which tends to be low-frequency. While 
higher frequency songs that reduce masking by low-frequency anthropogenic noise 
could arise from selection for individuals that always sing higher-frequency songs, 
a number of studies indicate that individuals can shift their frequency in relation to 
current ambient conditions [107, 108]. In this case, individual songbirds may be balancing 
the need to be heard over elevated ambient noise, with the need to produce vocal cues 
of quality or dominance. Accordingly, we found that black-capped chickadees increased 
their frequency throughout the morning as traffic levels (and noise) increased [57]. In 
addition, chickadees sang at generally lower frequencies on weekends when traffic 
levels were lower. Here the tactics would likely be ‘if noise level is high, sing at high 
frequencies to be heard’, but ‘if noise level is low, sign at low frequencies to convey 
information about quality’. While behavioral plasticity might be a welcome trait in a 
rapidly changing world, it is important to remember that the range of tactics available is 
not boundless. Physical and physiological limits will limit capabilities. For example, song 
production is limited by the vocal tract and beak shape, while foraging will be limited 
by the ability to handle, digest, and procure sufficient nutrients from available food 
sources. Further, sexual and natural selection will tend to eliminate extreme diversions 
from typical, species-specific behavior. 

Different Behavioral Strategies Among-individuals 

If individual songbirds alter their behavior in ways to maximize gain (benefits-costs), 
the existence of multiple tactics is not surprising. However, we also observe several 
behavioral patterns that are consistent within individuals, but differ between individuals. 
For example, wintering ovenbirds (Seiurus aurocapilla) in the West Indies were classified 
as sedentary [109] (e.g., holding stable territories) or floaters (e.g., holding small or no 
territories with regular foraging excursions). Only a small portion of the population 
exhibited a floating strategy, and artificially altering food availability did not produce 
changes in foraging strategies. So, the question might arise as to which strategy is best, 
and why both continue to persist. The answer here is that the fitness value of each 
strategy was dependent upon the environment. In years when food resources were high, 
sedentary, territory holders had higher body mass – an indicator of health. But, when 
food was scarce, floaters – who were more likely to search for and exploit novel food 
resources – had higher body mass. Thus, a fluctuating environment will maintain both 
behavioral strategies within the population. 

Even in a stable environment, multiple behavioral strategies can coexist. In the above 
example, floaters were always less common than sedentary birds. If the percentage of 
floaters in the population increases, there will be fewer territory holders. Under this 
scenario, defending a high-quality territory might become easier since fewer birds are 
doing so – and selection will favor territory holders. Conversely, if most birds hold 
territories, defense of new territories becomes costly, and intrusion by a few individuals 
into territories may go unnoticed. Under this scenario, individuals with a floating 



11 Static Organisms in a Changing System?

 

   

	

	

  
	

	
	

  
	  

  
  

strategy become favored. This is known as frequency-dependent selection, where the 
most stable situation will favor the existence of multiple behavioral strategies within 
the population [110]. At times, the relative frequency of multiple strategies can even be 
predicted. For example, floating should be consistently less common than a sedentary 
strategy. If a majority, or even a strong minority of individuals utilize a floating strategy, 
territory holders will likely strengthen their defenses to avoid a substantial loss of 
resources. This equilibrium of strategies is known as an Evolutionary Stable Strategy 
(ESS [111]). As with species and genetics, maintaining a diversity of behavioral strategies 
is often important for maintaining ecosystem function. For example, an environment that 
eliminates the floating strategy in wintering ovenbirds, will increase risk of population, 
or even species extinction during years with low foraging resources. 

Box 1 Plasticity in behavior 

●	 Behavior is the way in which an animal acts in response to a particular situation 
or stimulus 

●	 Behavior is shaped by selection through a cue, response, and outcome 

●	 Modified environments can misalign cue-response systems, potentially resulting 
in mismatches where behavior becomes maladaptive (e.g., evolutionary mismatch) 

●	 Behavioral systems can also shift to accommodate altered systems to some extent 
●	 Flexibility in a behavioral system depends on the strength of selection and the 

presence of variation or plasticity in responses 

●	 An evolutionarily stable strategy (ESS) might include multiple behavioral 
strategies, which are maintained by: 
○	 Variable habitats 
○	 Frequency dependent selection 
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Managing Behavior in the Midst of Anthropogenic Change 

Why Integrating Behavior is Important 

The structure and function of earth’s ecosystems are changing rapidly – perhaps more 
rapidly than at any time in history. The mere fact that ecosystems are changing is 
neither abnormal nor problematic. How many times have we been astonished to find 
ancient find marine fossils in high deserts [112], or signs of lush ancient forests in 
frozen ice cores [113]. The issue is not change, but rather, rate of change. In the examples 
above we are observing the remnants of dramatic changes that occurred over Millenia. 
Today, we are witnessing equally dramatic changes that occur over only a few years, 
or sometimes just days. While natural events, such as hurricanes or volcanoes can 
dramatically reshape landscapes over a short duration, the majority of the changes we 
are witnessing are anthropogenic – or human produced. Andy Sih and colleagues have 
labelled this pervasive phenomenon as Human Induced Rapid Environmental Change, 
abbreviated as HIREC [23, 114]. In its most extreme form, HIREC results in complete 
habitat conversion – which is typically equivalent to habitat destruction for native 
organisms. Examples include conversion of forest to housing developments and parking 
lots, grasslands to monocultures, rivers to dammed reservoirs, etc. In these cases, the 
fundamental resources required for life are typically removed, or altered to a point that 
they are no longer accessible to native organisms. Here an understanding of behavior 
and flexibility in cue-response systems may have little impact on a management strategy. 
But in many cases, anthropogenic impacts are more subtle. The food web in an urban 
park, for example, is probably different than a similar preserve located within a larger 
undeveloped habitat. However, an urban park may retain a number of trophic levels 
and a different, but functional, food web. Yet, as urbanization increases, these habitats 
often contain fewer species of nesting songbirds [115]. Why? 

Classical concepts from landscape ecology would suggest that managers consider 
larger-scale spatial variables, such as patch size, landscape configuration, and connectivity 
with other habitat patches [116–118]. There is no doubt that fragmenting habitat, 
restricting movement, reducing and isolating resources, etc. will directly impact fitness 
and population persistence. I am confident that every author in this text would advocate 
for assessing resource and landscape needs as priority objectives for managing songbird 
species. But we might also ask the question: Is this enough? For several years, I worked 
with a team of researchers to attract Henslow’s sparrows (Ammodramus henslowii) to four 
reconstructed warm-season grassland prairies in Southwestern Michigan. Each field 
was ~9–12 hectares in size. Despite the reintroduction of native warm-season grasses, 
Henslow’s sparrows, and several other grassland obligate species, were consistently 
absent. At first blush, an astute observer might state, “these prairies are too small.” 
Perhaps this is true, and this outcome does emphasize the importance of evaluating 
landscape variables prior to restoration efforts. But, if the landscape perspective that 
these habitats are too small is our final answer, the reconstruction of these four ~10 acre 
fields for the conservation of grassland birds was a wasted endeavor. 

Might an understanding of behavior yet open these fields to use by obligate 
grassland birds? At < 0.5 hectares [119], a Henlow’s nesting territory could fit easily 
within these fields with ample room for foraging. Our fields were flush with a diverse 
insect community, ample water was available in nearby habitats, and grasses provided 
the cover thought necessary for nest placement and concealment. If the fundamental 
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resource provisions are in place, perhaps an overlooked cue-response system is not 
functional – or has prevented the selection of these habitats. Alternatively, interspecific 
interaction might differ. For example, the greater composition of edge habitat might result 
in higher populations of avian or terrestrial nest predators. In this particular case, the 
landowner and managing organization wanted to investigate further. One hypothesis 
was that conspecific cues were missing. It is not uncommon for birds to use vocal cues 
that indicate conspecific presence when selecting breeding territories [120, 121]. But, two 
years of song playback resulted in only one nesting Henslow’s sparrow. Not zero, but 
not the resounding success that has been seen using this technique elsewhere [122]. 

Dr. Rob Keys, a colleague at a university in Grand Rapids, Michigan, hypothesized 
that these northern populations of grassland obligate birds were preferentially selecting 
old fields comprised of non-native, cool-seasons grasses (as opposed to our fields planted 
with warm-season grasses). While this would contrast with research from other parts 
of the range [123], a few anecdotal, but notable, observations supported this hypothesis. 
First, Henslow’s sparrows had been reported more regularly in our field before their 
conversion to warm-season grasses. Second, a broad survey of other potential grassland 
sites in the region indicated that locations dominated by cool-season grasses were 
for more likely to house populations of grassland obligates; including Henslow’s 
sparrows, Bobolinks (Dolichonyx oryzivorus), Eastern meadowlarks (Sturnella magna), 
savannah sparrows (Passerculus sandwichensis), and grasshopper sparrows (Ammodramus 
savannarum). In 2019, experimental mowing and replanting resulted in territorial 
establishment by eight individuals from two obligate species (Henslow’s and savannah 
sparrows; unpublished data). An analogous study in the historically forested piedmont 
region of North Carolina, USA, found that obligate grassland birds showed no preference 
for warm or cool-season grasses [124]. It is plausible that grassland obligate songbirds 
now breeding in regions that historically contained minimal native grassland habitat are 
cueing in on the cool-season grasses found more commonly in abandoned farm fields. If 
so, ‘restoring’ cool-season grasslands in these regions that accommodate this potentially 
altered cue-response system might be of value. Alternatively, facultative grassland bird 
species, such as the field (Spizella pusilla) and song sparrows (Melospiza melodia) that arrive 
earlier in the spring could be preferentially selecting warm-season grasses and excluding 
obligates from these territories – a case of heterospecific competition. Research on this 
particular topic is ongoing and it may be too early to alter management regimes, but it 
illustrates well the point that understanding behavior might lead to tangible shifts in 
management strategies. 

Potential Anthropogenic Changes to Cue-response Systems 
Some cue-response systems in songbirds are clearly more flexible than others. But all are 
to some extent engrained in individual birds and populations. As such, we must expect 
that any time human activities alter the environment, there is likely to be an impact on 
the established behavioral responses, and therefore, on fitness. But what anthropogenic 
impacts should be monitored beyond the obvious impacts of habitat destruction and 
modification? To answer this question conclusively requires an intimate knowledge of 
the species and behaviors present in the ecosystem of interest – indicating that location-
specific field studies and natural history scholars will remain paramount as we move 
through the Anthropocene. However, there are a few common, but often overlooked, 
disturbance regimes that I will address here. Specifically, I will briefly address sensory 
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ecology, range shifts and species invasions, and temperature change. Each topic is 
explored in more depth in the chapters that follow. 

Sensory ecology deals with how birds perceive and respond to cues through vision, 
olfaction, acoustics, taste, touch, and magnetoreception. These topics are explored 
in depth in the text, The Sensory Ecology of Birds [125]. Despite their critical role in 
eliciting particular behaviors, many of these changes are not quickly perceived by 
human observers. For example, because most of us have become accustomed to light 
and sound pollution near our homes and places of work, we are less aware of the 
potential impact of the noise from airplanes as they regularly pass over otherwise 
remote habitats [126] or the effect of the pervasive, ever-present glow of the city skyline 
in exurban landscapes [127]. If we fail to measure, mitigate, and manage the sensory 
environment, we may create visually pleasing habitats that are devoid of the species we 
aim to protect. Dominoni et al. [128] nicely describe how sensory ecology can contribute 
to conservation biology. In their perspective paper, they suggest that sensory pollutants 
impact cue-response systems in three ways. First, masking reduces an organism’s ability 
to detect or discriminate cues. Second, distraction interferes with an organism’s ability 
to process cues because other overlapping cues have captured the individual’s attention. 
Third, misleading cues result from conflation of sensory pollutants with natural cues, 
leading to an inappropriate response. The path towards resolution differs for each of 
these sensory pollution mechanisms. For example, spatial and/or temporal separation 
between competing cues may be required when distraction is the primary mechanism. 
As the literature on sensory ecology grows and summative reviews become available 
[7, 129], I recommend that managers incorporate the latest developments whenever 
possible. 

As the physical parameters that limit songbird establishment shift, we should expect 
that changes in species ranges and niches will respond accordingly – which will alter 
which set of species are interacting with each other in any given area. The impacts 
of climate change on regional and global temperature is one clear example that I will 
address in the next paragraph. But even small-scale changes to habitats can alter the 
distribution and interaction levels of heterospecific species. For example, oil extraction in 
Northern Michigan has perforated forest interiors with small anthropogenic openings. 
Between these openings, which are referred to as ‘pads’, the native forests remain largely 
contiguous. In many cases interior songbird species continue to nest near the edges of 
these pads. But research by some of my former students indicated that the insertion of 
small openings and edge habitats has increased the presence of edge-associated avian 
nest predators near pad sites, which resulted in significantly higher predation rates in an 
artificial nest study [130]. Competition from novel, non-predatory heterospecific species 
may also impact native species as ranges shift. The succession of old field habitat to 
shrub ecosystems in portions of the northern United States has facilitated the recent 
establishment of blue-winged warblers (Vermivora pinus) in locations previously settled 
by golden-winged warblers (V. chrysoptera). Although the mechanisms are not entirely 
clear, novel overlap in the range of these two species predictably results in the reduction 
or extirpation of the golden-winged warbler genetic phenotype [131]. Taken together, 
these studies serve as a reminder that understanding the interactions between predators 
and competitors is required when maintaining or reintroducing particular species, and 
that we must take into account the shifting ranges of the these heterospecific players 
in light of anthropogenic changes. 
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Climate changes may be the most concerning driver of external change to songbird 
cue-response systems in the near future. Temperature, and associated moisture levels, 
drive changes in vegetative ranges [132] and phenology [133, 134], insect emergence [135], 
and may directly alter the physiological parameters that facilitate songbird survival. 
Thus, changes in temperature and moisture are likely to drive alterations in songbird 
species ranges and heterospecific interactions, and may introduce foraging mismatches 
during critical life stages such as migration and nestling provisioning. Although 
attempting to prevent climate change may be largely futile at the local management 
level, planning accordingly is critical. For example, the conservation-reliant Kirtland’s 
warbler (Setophaga kirtlandii) breeds primarily in early-successional jack pine stands 
(Pinus banksiana), and most of their habitat is managed through intentional planting 
programs in Michigan, USA [136]. But some climate models indicate that future jack 
pine stands will exist largely to the north in the Canadian provinces [137]. Management 
must either recognize the Kirtland’s warblers reliance on the shifting jack pine range 
and act accordingly [138], or consider facilitating use of other habitats [105]. 

The Rate of Change Problem 

Anthropogenic processes are quickly changing our landscapes. A moderately zoomed 
out aerial map of almost any location will reveal signs of human development. But 
ecosystems are not static, and neither is songbird behavior. In the preceding sections, I 
have outlined several instances where changes in behavior have been observed naturally 
in response to anthropogenic alteration [49], or as a result of human manipulation [87]. 
The real question though, is whether songbird behavior can change fast enough to 
accommodate rapid anthropogenic change. In many cases the answer may be no. 
Migration research, for example, has indicated that shifting arrival and departure 
dates do not necessarily mitigate rising temperatures on the breeding grounds 
[139]. Correspondingly, we found that the arrival temperature at a fall stopover site 
in Western Michigan increased over the decades despite significantly later arrival 
times in four commonly captured short-distance migrants [142]. To estimate the 
impact of anthropogenic change a-priori, I recommend assessing the rate of change in, 
(1) the anthropogenic variable of interest and, (2) in critical behavioral systems. A 
dynamic and flexible cue-response system might be better pre-adapted to accommodate 
change than largely innate or heavily selected behaviors. But it is good to remember 
that all cue-response systems have rate of change limitations and absolute limits to the 
range of potential changes on the short-term timescale. 

Behavioral Conservation and Management 

Where anthropogenic processes threaten to disrupt cue-response systems, mangers have 
two primary options: decrease the rate of anthropogenic change or increase the rate of 
behavioral change in animals by manipulating the learning process. Where possible, 
decreasing the rate of anthropogenic change is generally the preferred method. This may 
rightly sound intuitive, but it does contrast with the stark assessment that either human 
development or functional ecosystems must cease completely. If academics, managers, 
politicians, and communities can join forces to slow the rate of land transformation and 
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sensory pollution we may be able to buy time for cue-response systems to redevelop 
and adjust to novel cues and shifting outcomes. Practical guidelines might include 
developing neighborhoods and urban landscapes slowly, preserving native vegetation 
whenever possible, reducing edge or patchy ecotones by maintaining the integrity of the 
tree canopy, maintaining areas of grass-shrub pollinator supporting patches, minimizing 
and dimming lighting, abating noise, etc. A parallel principle might also be to contain 
anthropogenic impacts within limited spatial areas, allowing organisms to accommodate 
these changes within a larger intact landscape. As a young adult who loved to hike 
and backpack in the United States, I was taught to leave the trail to urinate. The goal 
(in addition to privacy) was to spread the human impact across the landscape. As a 
graduate student in Canada, however, the advice of many in the outdoor community 
was to urinate directly on the trail – with the goal being to limit human impact to a 
small portion of the landscape. Urban centers are an example of this concept on a much 
larger scale. High impact in a spatially compact area. Taking this development principle 
to heart might also slow the overall rate of change across our native landscapes. 

Slow change might also be a pertinent principle for restoration efforts. Is converting 
large swaths of old field into restored prairie in one instance disruptive to communities 
that have already established there? Might a few acres at a time better increase diversity? 
Does a quick removal of all non-native species from a forest decimate vegetative cover to 
the point that songbirds are not able, or not inclined, to nest in these habitats? Perhaps 
an incremental invasive removal program will allow birds to continue nesting until 
natives can take hold, even if productivity is somewhat lower. 

As ecologists we often have to recognize that there are many situations where we 
simply do not have the power to moderate the rate of development. Further, restoration 
of native habitats or the removal of sensory pollutants may be an impossibility in many 
circumstances. In these cases, it may be worth asking whether we can increase the rate of 
behavioral change in songbirds themselves. Specifically, can we use learning paradigms 
to alter cue-response systems in songbirds to reduced or eliminate maladaptive 
responses? Manipulating behavior, just like manipulating genetics, may be unappealing 
to some. Some may consider this to be meddling in biological systems, which can 
have the potential for unexpected outcomes. But often the alternative is to be a casual 
observer of slowly (or rapidly) declining populations as evolutionary mismatches fail 
to resolve themselves quickly enough to facilitate recovery. For example, the recovery 
of small populations in many species may be inhibited by the Allee effect – which 
points to a reliance on social interaction for successful breeding [140]. Can managers 
artificially create the appearance of social groups in the field by manipulating the 
sensory environment (e.g., visual models and vocal playback)? Could reintroduction 
programs use similar cues in captive settings paired with live models from similar 
species? Certainly, the successful development of a new migratory route in a captive-
raised group of whooping cranes was a heavily manipulated management regime. Are 
there other areas, other ways, that we can manipulate behavior to enhance or rescue 
songbird populations? 

Several years ago, I worked with students to see if we could draw songbirds into 
forested areas near low-use road in Northern Michigan. Previous data suggested 
that vehicular noise reduced bird abundance and diversity up to a kilometer from 
roadsides [141]. But my own observations were that noise levels were quite low beyond 
a few hundred meters from the roadway. I hypothesized that in these areas where noise 
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levels were low but not absent, entrenched cue-response systems prohibited settlement 
because preferred habitats were historically quiet [8]. To over-ride aversion to low-level 
noise, we attempted to place another cue on the landscape known to enhance site 
settlement – conspecific song. Although our experimental progress has been slow, we 
were able to draw several species into roadside habitats using song playback [106]. I 
close with this example to demonstrate an area where I see promise for using behavioral 
manipulation to advance conservation goals, but also to demonstrate the complexity 
and need for caution when manipulating behavior. The first point is that the trained or 
manipulated behavior (settlement in low-noise areas in this case) must confer a fitness 
benefit. Or at the very least, it must not result in a fitness decrease (e.g., a population 
sink). Perhaps there is another impact of low-level noise we are not accounting for 
(e.g., distraction, increased predators). In our case, if playback draws birds from high-
quality areas into an area that is unsuitable, we will likely decrease productivity, and 
thus population sustainability. Conversely, if non-territory holders (i.e., floaters) settle 
and breed successfully, populations may increase. We must examine productivity and 
survivorship before using such a technique on a broader scale. Second, if birds are 
retrained to use a novel cue-response system, how will it be maintained? The positive 
outcome in response to the behavioral choice must be reinforced. Our hypothesis was 
that natal imprinting might facilitate site return by some individuals, and provide 
conspecific song for addition generations – reinforcing establishment without artificial 
song playback. But this hypothesis remains untested. 

I invite you to consider how you might decrease the rate of anthropogenic changes 
and how you might increase the rate of behavioral change in the systems and species 
where you work. The challenges we face in the Anthropocene are profound. Those 
whose job and passion is to see songbirds thrive for generations to come will need to 
be creative. We must be ready to employ an array of conservation tools – and managing 
habitats and species in relation to behavior must be among these tools. 

Box 2 Anthropogenic and Behavioral Change 

● Anthropogenic changes will impact birds directly by removing required 
resources 

●	 Anthropogenic changes will also impact bird behavior by altering cue-response 
systems 

●	 Ignoring behavioral impacts might lead to subpar management. Two examples, 
include: 
○	 Ignoring sensory ecology, which drives behavior and ultimately physical 

functions 
○	 Ignoring changes to species ranges, which drives novel heterospecific 

interactions 
●	 Anthropogenic change moves on a rapid scale 
●	 Changes in songbird cue-response systems may not change rapidly enough to 

mitigate mismatches before irreversible negative impacts on populations and 
species are incurred 
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Box 2 (Contd.) Anthropogenic and Behavioral Change 

●	 Where preventing change is not an option, slowing the rate of change might 
provide benefits by allowing behavioral cue-response systems time to adjust 
or shift 

●	 Behavioral management falls into two primary categories 
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