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Abstract: Loggerhead shrike (Lanius ludovicianus) has declined across most or all of its geographic
range. The species’ raptorial behavior requires maintenance of large territories, which means popula-
tions of breeding shrikes require large areas of habitat and are therefore sensitive to habitat loss and
habitat fragmentation. We estimated breeding densities of loggerhead shrikes in the Altamont Pass
Wind Resource Area (APWRA), California, where annual shrike mortality caused by wind turbine
collisions was high until just before our study began in 2016. Based on surveys across an annual aver-
age 50 randomized sampling plots in 2016–2019, we estimated an average 129 breeding pairs/year
across the 167.6-km2 APWRA. Relative to the size of the study area, density in the APWRA was
relatively high compared to densities reported from other study sites across North America. It was
higher than predicted by application of the Partners in Flight estimator, which was based on Breeding
Bird Surveys along roads. We also found that loggerhead shrikes in the APWRA were limited by
the availability of nest substrate and by California ground squirrels (Otospermophilus beecheyi) and
their burrow complexes, which have keystone effects on vegetation and wildlife in the APWRA.
To most effectively conserve loggerhead shrikes in the APWRA, wind turbine mortality should be
minimized, ground squirrels conserved instead of eradicated as pests, and appropriate trees and
shrubs cultivated where they are needed.

Keywords: loggerhead shrike; Lanius ludovicianus; breeding density; nest sites; mortality; wind
energy; California ground squirrel; Otospermophilus beecheyi; Altamont Pass

1. Introduction

The habitat of loggerhead shrike (Lanius ludovicianus) in grassland, sagebrush, and
savannah environments has rapidly diminished as these environments have been con-
verted to intensive anthropogenic uses [1–3]. Due to habitat loss and habitat fragmentation,
regional abundances of loggerhead shrike have declined in California, including a signif-
icant decline in Breeding Bird Survey data from 1968 through 2004 [4]. Since 2004, the
spread of West Nile Virus (WNV) across North America 1999–2005, and into California
by 2005, might have contributed to the decline [5]. These declines prompted designations
of special status to the species. A subspecies was listed as federally endangered on San
Clemente Island, California. The U.S. Fish and Wildlife Service listed loggerhead shrike as
a bird species of conservation concern in Bird Conservation Region 32, which encompasses
coastal California. The California Department of Fish and Wildlife listed loggerhead shrike
as a California species of special concern, priority level 2.

Although the loggerhead shrike is a passerine, members of the species behave like
diurnal raptors. Loggerhead shrikes are predatory and territorial, and they occupy and
defend large home ranges during the breeding season. Distance between neighboring
breeding pairs averaged 203 m at one study site and 328 m at another site in southwestern
Idaho [6] and 545.7 m in Virginia [7]. Given the relatively large areas of habitat needed to
support a population, loggerhead shrike is sensitive to habitat loss [8], habitat degradation,
and excess mortality. A fundamental question, however, is what qualifies as a population of
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loggerhead shrikes; that is, how many breeding pairs of shrikes compose what is commonly
referred to as a population? Related questions go to what metrics most effectively express
population performance and how best to measure them, and whether they are intended to
represent a snapshot in time or a longer-term trend.

Perhaps the most common method for estimating relative abundance across space
and time is the roadside survey [9], such as that of the North American Breeding Bird
Survey (BBS). Roadside surveys have been used to estimate loggerhead shrike abundance
of 0.42 breeding pairs/km in Missouri [10], 0.11 and 0.14 breeding pairs/km in Iowa [11],
and 0.22 breeding pairs/km on the San Clemente Island off the coast of California [12].
Where there are no accessible roads, however, numerical rates based on road counts might
not be comparable. Breeding pairs/km of road can also inaccurately represent numerical
trends if breeding loggerhead shrikes generally avoid roads or if avoidance/attraction
varies by type of road or by variation in traffic volume. Partners in Flight (PIF) developed a
regional population estimator based on BBS survey outcomes (https://pif.birdconservancy.
org/ accessed on 29 September 2021), but the assumptions of the estimator have been
criticized [13]. We add our additional criticism that it mischaracterizes the population
concept as a term of convenience more than a biologically determined unit of demography.

The more direct method for estimating population size and distribution is census of
breeding pairs within a study area. Most study areas used for numerical estimation of
loggerhead shrike have been single, contiguous units of land. The sizes of these study
areas have also varied, and this variation could bear on the demographic unit sampled
by the census [14]. Furthermore, the variation in study area size could correlate with
population density, as it has for species of raptor [15–17]. We had the opportunity to
estimate loggerhead shrike breeding density in the Altamont Pass Wind Resource Area
(APWRA), California, where one of us (K. S. Smallwood) has performed research since
1999 on wildlife mortality caused by wind turbines. Loggerhead shrikes contributed to the
annual toll of fatalities taken by the APWRA.

Our primary objective was to estimate the number of loggerhead shrike breeding pairs
within the 16,760-ha Altamont Pass Wind Resource Area (APWRA), based on randomized sam-
pling plots. Our second objective was to assess the degree to which loggerhead shrike density
responded to the availability of suitable nest substrate and to the availability of the keystone
animal species of the APWRA—the California ground squirrel (Otospermophilus beecheyi). Our
third objective was to contextualize our density estimates derived from sampling plots to those
of other studies. Our fourth objective was to assess our density estimates in light of estimated
fatality rates of loggerhead shrikes that collided with the wind turbines of the APWRA.

2. Materials and Methods
2.1. Study Area

The 167.6-km2 Altamont Pass Wind Resource Area (APWRA) is so-defined for its use
in generating electricity from wind channeled through a low pass between mountains of
the Diablo Range in eastern Contra Costa and Alameda Counties, California (Figure 1).
Wind turbines of multiple models, sizes, and ownership operate mostly from ridge crests
and hill peaks of the APWRA, which range 40 m to 500 m in elevation. The hilly terrain is
drained by ephemeral streams, which support riparian vegetation such as willows. Upland
ground cover consists mostly of non-native annual grasses, which are grazed by cattle over
most of the APWRA, and by sheep in the 540-ha Vasco Caves Regional Preserve (Vasco
Caves) in the north-central aspect of the APWRA. Trees in the upland areas include isolated
copses of California buckeye, valley oak, and blue gum eucalyptus (Eucalyptus globulus).
Shrubs in the upland areas include mostly coyote bush, poison oak, and blue elderberry.
East Bay Regional Park District owns and manages Vasco Caves and the land on which
the Buena Vista Wind Energy Project operates, but most of the rest of the APWRA is
privately held. Barbed-wire fences and gates bound lands by ownership and animal
stocking rates. Land stewardship also varies by ownership, particularly in the intensity
of control efforts directed towards California ground squirrels (Otospermophilus beecheyi),
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which are a keystone species of the APWRA for their roles as prey of large predators,
excavators of burrows used by many other animal species, and modifiers of vegetation
through consumption and seed dispersal (Figures 2 and 3).

Figure 1. A westward view of a portion of the Altamont Pass Wind Resource Area including Siemans 2.3 MW wind turbines
of the Vasco Wind Energy Project in the background and Vestas 660 KW wind turbines of the Diablo Winds Project in the
foreground, 14 June 2017.

Figure 2. Loggerhead shrike hunting from the stem of a large plant that had grown near ground squirrel burrows. Not only
did ground squirrels provide perch opportunities, but also bare ground where prey items were exposed to shrikes.
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Figure 3. Loggerhead shrike hunting from thistle that grew from a ground squirrel burrow complex
on survey plot 14, Altamont Pass Wind Resource Area, 30 July 2019. Note the presence of three
ground squirrels under the plant.

Only modern wind turbines operated in the APWRA at the time of our study. These
turbines ranged in rated capacity from 660 kilowatts (KW) to 2.3 megawatts (MW), and
totaled 268.58 MW within the APWRA. Before our study, thousands of old-generation
wind turbines composed the APWRA, ranging in size from 40 KW to 400 KW. However,
these old-generation wind turbines underwent repowering from 2002 through 2015, which
involved the project-by-project replacements of old turbines with larger modern wind
turbines. The installed capacity of wind turbines therefore varied. We tracked the installed
capacity from 1999 through 2019, and we tracked which turbines were monitored for
collision fatalities of birds and bats.

2.2. Field Methods to Estimate Density

We utilized an existing proportional random sample of survey plots that was first
established in 2011 for burrowing owls [18]. From within 19 fields of wind turbines defined
by shared ownership, turbine model and size, and general location within the APWRA,
we used GIS to sample proportionately to the spatial extent of each field (Figure 4). The
spatial grain of the sampling was the slope bordered by its apex or crest and its valley
bottom, and between streambeds draining into the valley bottom. Each slope served as a
sampling unit, 952 of which composed the 19 turbine fields. Each randomly selected slope
served as the starting point from which additional adjacent slopes were appended using a
set of rules to build each survey plot of ≥40 ha in size [18]. Randomized plots varied in
size depending on the size of the final GIS slope polygon to be appended to achieve the
minimum size of 40 ha. This form of sampling enabled quick and accurate determinations
of plot boundaries by comparing the observer’s viewshed to handheld photos of the plot.



Diversity 2021, 13, 540 5 of 21

Figure 4. Randomly selected survey plots (black boundaries) and extended plots (purple boundaries) searched for
loggerhead shrikes in the Altamont Pass Wind Resource Area, California, 2016–2019. The sampling was originally designed
for burrowing owls. Plot 100 was inaccessible during surveys for loggerhead shrike. Our surveys for loggerhead shrikes
were insufficient in plots 7.1 and 12.4, so they were omitted from analysis. The APWRA was located between the Cities of
Livermore and Tracy.

We lost access to some turbine fields before we began surveying for loggerhead shrikes.
Therefore, where feasible, we added plots using the same proportional random sampling
approach to select slopes, and we used the same rules to build survey plots. We later
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regained access to all but three of the originally selected plots numbered 9, 9.1, and 100.
We also searched for loggerhead shrikes across seven extended survey areas that had been
established for burrowing owls. One extended area included all of the 540-ha Vasco Caves
Regional Preserve (Plot 107 in Figure 4), and the others were located between survey plots
where burrowing owl densities were highest in 2011–2012.

We surveyed during April through August of each year, 2016–2019. Surveys began as
visual scans from vantage points, most of which were located along wind turbine access
roads. We waited until mid-May and June before walking onto portions of survey plots
not visible from wind turbine access roads, and before mapping nest sites using a Trimble
GeoXT geographic positioning system (GPS). When mapping nests and checking on nest
status, we carefully approached nest sites when satisfied we were unobserved by potential
nest predators such as raptors and common ravens (Corvus corax). However, we mostly
refrained from checking on nest status because the risk of exposing the nests to predators
was too great. We used binoculars to view nests from as far away as possible. To minimize
our time near the nest, we relied on averages of three GPS positions at 5-s intervals. To
maximize our distance from the nest, we used a rangefinder and compass to measure
distance and bearing as inputs to a GPS offset function. Nest locations and nest status
were also recorded by K. S. Smallwood during his many routine visits to raptor behavior
observation stations located throughout the APWRA.

Nest site detection typically began with detection of loggerhead shrike foraging
activity within an area, which we would identify with a hand-drawn circle on a printed
photo of the survey plot. Food delivery to nests often enabled us to find the nest site
(Figure 5). However, loggerhead shrikes often refrained from returning to nest sites while
aware of our presence. We therefore updated our maps with subsequent visits, eventually
observing the center of loggerhead shrike activity or where shrikes made food deliveries
when unaware of us. Emergence of fledglings also revealed nest sites. Except for two plots
(plots 7.1 and 12.4), we surveyed every plot until we were confident that we detected all
nest sites.

Figure 5. Loggerhead shrike carrying a lizard’s tail to a nest in a nearby yucca that had been planted as an ornamental on
the south side of a cattle ranch in the northern aspect of the Altamont Pass Wind Resource Area, May 2016.
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Each year we tallied nest sites in each survey plot and we calculated density as nest
sites/km2. We assumed perfect detection of nest sites per survey plot, so we estimated
density without adjustment for detection rates. We calculated mean and 95% confidence
intervals from each year of surveys. We also compared our mean annual density estimate
to densities estimated elsewhere to assess population status of loggerhead shrikes in the
APWRA. An important part of this comparison was the size of the study area used to make
the density estimate, because most of the variation in density was explained by study area
size for other species of birds [15–17].

We also related mean annual nest attempts/km2 of loggerhead shrikes to availability
of nest substrate on the sampling plot, ground squirrel abundance, and whether squirrel
control was known to have been implemented during the same or the previous year of each
survey. We measured availability of nest substrate as: 0 = none, 1 = scarce (1 or 2 shrubs or
trees or patches of shrubs or trees on the plot), and 2 = moderate (≥3 shrubs or trees or
patches of shrubs or trees, where a patch would not support >1 typical nest territory). We
measured ground squirrel abundance as: 0 = none, 1 = scarce or a few, and 2 = moderate to
many on the plot. We also compared nest density against a composite predictor variable
defined as: 0 = no nest substrate, 1 = nest substrate but no ground squirrels, and 2 = nest
substrate and presence of ground squirrels on the plot.

2.3. Wind Turbine Fatality Estimates

We integrated avian fatality monitoring data from wherever it was monitored in the
APWRA 1999–2019. Monitoring at the old-generation wind turbines, 1999–2014, was con-
ducted by human searchers who, at an average 39 days between searches, walked parallel
transects spaced 4–6 m apart and extending to 50 m from each wind turbine [19–21]. The
repowered Vasco Winds Energy Project was also searched by human searchers, 2012–2015,
but at this project, transect spacing was 10 m and the search area extended to 105 m from
each wind turbine [22]. At Vasco Winds, half the wind turbines were searched at weekly
intervals, and half were searched at monthly intervals. Starting in 2017, half of the wind
turbines in the repowered Golden Hills Wind Energy Project were searched monthly by
humans, and half were searched weekly by scent-detection dogs [23]. At Golden Hills,
the search area extended to 105 m, and transect spacing was 10 m for human searchers
but dogs did not search a regular pattern. We estimated fatalities using the following
estimator: F̂ = F

Dd , where the estimate F̂ was the fatality count F adjusted by the product
of two probabilities, D and d. D was carcass detection probability estimated from the
outcomes of carcass detection trials that were integrated into routine fatality monitoring
and then logit-regressed on the log10 body mass (g) of the placed carcasses [19,20,22]. d
was the probability that the carcass would be found within the search area [21], the data
for which were updated by the pattern of carcass distances from turbines that was dis-
cerned from more recent use of leashed scent-detection dogs in fatality monitoring [24]. We
estimated F̂/MW/year for each monitored wind turbine, and we extrapolated the mean
among turbines to each wind energy project to which the turbines belonged. We then
estimated APWRA-wide fatalities as the weighted mean among projects that were installed
in each year.

3. Results
3.1. Breeding Density Estimates

We detected nest sites of loggerhead shrikes on 26 of the 51 (51%) randomized survey
plots that we searched through ≥1 breeding seasons. Among the randomized plots that
we searched all four breeding seasons, 2016–2019, we detected nest sites on 26 of 46 (57%)
of them. We estimated a mean 129 nest sites per year across the AWRA, with a high of
138 nest sites in 2017 and a low of 106 nest sites in 2019 (Table 1).
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Table 1. Annual mean nest-site density among survey plots and estimated number of nest sites of
loggerhead shrikes across the 16,760-ha Altamont Pass Wind Resource Area, Alameda and Contra
Costa Counties, California.

Year Number of
Plots

Nest Attempts/km2 APWRA Nest Attempts

x 95% CI x 95% CI

2016 47 0.804 0.444–1.165 134.8 74.4–195.2
2017 49 0.826 0.483–1.168 138.4 81.0–195.8
2018 51 0.814 0.412–1.215 136.4 69.1–203.7
2019 52 0.635 0.377–0.893 106.4 63.1–149.6

Mean annual density estimates among studies [6,12,25–31] declined with increas-
ing study area size (r2 = 0.45, SE = 0.90, p = 0.0038; Figure 6A). Compared to density
estimates at other study sites, and considering the effect of the size of the study area
on density estimates, loggerhead shrikes in the APWRA represented a relatively high
density (Figure 6B). With mean annual estimate of 129 pairs, the APWRA estimate likely
represented a metapopulation composed of about six breeding populations.

Figure 6. Density of loggerhead shrike nest sites related as an inverse power function to increasing size of the study area
used to make the density estimate (A), and the mean annual number of nest sites increased with increasing study area size
(B) where the estimate at the largest study area was omitted so that the pattern of the relationship could be seen. The filled
red circle represented the mean annual density estimate in the Altamont Pass Wind Resource Area, 2016–2019. The open
circles far below the trend represented densities at San Clemente Island, where the species was endangered [12,25].

Among survey plots, density averaged highest in plots 10.2 and 22.2, which were
in the north-central and northwestern Vasco Winds portions of the APWRA (Table 2).
The most consistently high-density plots included 2, 3.2, 12.1, and 22.2, all of which were
bisected by streams that supported shrubs or trees (Figures 7–10). Despite the interannual
consistency among these high-density plots, the pattern of density among randomized
survey plots was poorly predictive from one year to the next (Figure 11).
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Table 2. Estimates of loggerhead shrike breeding pairs by sampling plot in the Altamont Pass Wind Resource Area, Alameda
and Contra Costa Counties, California, 2011–2019.

Plot Area, Ha Years
Nest Attempts/km2

Ground Squirrel Abundance Nest Substratex 95% CI

2 49.085 4 2.824 1.027–4.622 Very few Moderate
2.1 44.257 4 0.509 0.000–2.130 Very few Scarce
3 45.739 4 0.000 Many None

3.1 47.06 4 0.000 Moderate None
3.2 46.737 4 2.140 2.140–2.140 Many Scarce
4 41.008 4 0.000 Moderate None

4.1 50.75 4 0.000 Very few None
4.2 51.481 4 2.428 0.883–3.974 Moderate Moderate
4.3 66.65 4 0.000 Many None
4.4 66.94 4 0.000 Some None
4.5 38.05 4 0.657 0.000–2.748 Some Moderate
6 72.176 4 0.693 0.000–1.966 Moderate Moderate

6.1 67 4 0.373 0.000–1.561 None Moderate
6.2 57.227 4 0.000 None Scarce
7 61.185 3 0.000 Moderate None

7.2 48.769 3 0.000 Some None
8 72.792 3 0.000 Many None

8.1 57.411 4 0.000 Many None
10 53.519 4 0.000 Few None

10.1 58.643 4 0.853 0.000–2.419 Moderate Scarce
10.2 42.148 3 3.163 0.000–6.566 Moderate Moderate
11 84.234 4 0.000 Very few None

11.1 53.701 4 0.000 Very few None
11.2 53.38 4 0.000 None None
12 61.759 4 0.000 Some None

12.1 60.738 4 2.881 0.000–6.178 Very few Moderate
12.2 41.261 4 0.000 Very few None
12.3 90.475 4 2.211 0.775–3.647 Few Moderate
12.5 93.027 4 0.749 0.000–2.125 Many Moderate
13 74.084 4 1.350 1.350–1.350 Few Moderate

13.1 50.885 4 2.948 0.000–6.075 Moderate Scarce
14 51.331 4 0.487 0.000–2.037 Few Scarce

14.1 58.149 4 0.430 0.000–1.798 Few Scarce
14.2 53.197 4 0.000 Few None
15 55.36 4 1.355 0.000–2.792 Few Moderate

15.1 48.773 4 0.000 Few Scarce
16 52.773 3 0.000 Moderate Scarce
17 57.953 4 0.000 Few None

17.1 69.087 4 1.086 0.000–2.237 Moderate Scarce
18 54.597 1 0.000 None None
20 45.531 4 1.098 0.000–3.116 None Moderate

20.1 58.718 4 2.555 0.990–4.119 Few Moderate
20.2 63.108 4 0.000 None Scarce
20.3 49.819 4 0.000 Few None
20.4 62.357 4 0.000 None None
21 51.993 4 1.443 0.000–2.973 Very few Scarce

21.1 49.031 4 0.510 0.000–2.133 Moderate Scarce
22 56.015 4 0.893 0.000–2.533 None Moderate

22.1 57.817 4 1.297 0.000–2.673 None Moderate
22.2 49.445 4 3.034 1.176–4.892 Very few Moderate
22.3 73.676 4 1.018 0.000–2.098 None Scarce
22.4 55.193 1 0.000 None Moderate
101 32 2 0.000 Moderate None
102 34 2 0.000 Many None
103 22 2 0.000 Many None
104 250 3 0.000 Few None
105 439 4 0.228 0.228–0.228 Moderate Moderate
106 71 2 0.000 Few None
107 456 4 1.262 0.896–1.629 Very few Moderate
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Figure 7. Pattern of loggerhead shrike nest-site density among survey plots of the Altamont Pass Wind Resource Area in
2016, Alameda and Contra Costa Counties, California.
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Figure 8. Pattern of loggerhead shrike nest-site density among survey plots of the Altamont Pass Wind Resource Area in
2017, Alameda and Contra Costa Counties, California.



Diversity 2021, 13, 540 12 of 21

Figure 9. Pattern of loggerhead shrike nest-site density among survey plots of the Altamont Pass Wind Resource Area in
2018, Alameda and Contra Costa Counties, California.
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Figure 10. Pattern of loggerhead shrike nest-site density among survey plots of the Altamont Pass Wind Resource Area in
2019, Alameda and Contra Costa Counties, California.
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Figure 11. Breeding densities of loggerhead shrikes among randomized plots regressed on breeding densities 1–3 years earlier,
Altamont Pass Wind Resource Area, California, 2016–2019. Dashed lines are theoretical lines of equivalence between years.



Diversity 2021, 13, 540 15 of 21

Among the 25 randomized survey plots that consistently supported no loggerhead
shrike nest sites, 21 (84%) lacked nest substrate. Of the four plots that consistently sup-
ported no loggerhead shrike nest sites but which did have at least minimally available
nest substrate, two (50%) lacked California ground squirrels, and one supported only a
few squirrels.

Nest sites/km2 averaged 1.087 (95% CI: 0.694–1.481) in 35 plot-years where ground
squirrels were not controlled. Nest sites/km2 averaged 0.696 (95% CI: 0.153–1.239) in
21 plot-years where squirrels had been controlled in the past but where it was unclear
whether they were controlled during the past year. Nest sites/km2 averaged 0 in 9 plot-
years where ground squirrels were certainly controlled during the past year. The differences
were significant (F = 3.76, DF = 2,62, p = 0.02869). Despite the implication of squirrel
control in the preceding test, mean annual nest sites/km2 did not differ by availability and
abundance of ground squirrels (F = 1.04, DF = 2, p = 0.36). However, this test outcome
was performed without consideration of the availability of nest substrate. Mean annual
nest sites/km2 differed significantly by availability of nest substrate in the plot (F = 22.77,
DF = 2, p < 0.0001) (Figure 12A). In 2-factor analysis of variance, the nest substrate × ground
squirrel interaction effect was significant (F = 3.04, DF = 4, p = 0.0252). Mean annual
nest sites/km2 differed significantly by whether plots included nest substrate and ground
squirrels (F = 26.65, df = 2, p < 0.0001) (Figure 12B).
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Figure 12. Responses of breeding loggerhead shrike density to variation in nest substrate (A) and both nest substrate and
ground squirrel presence (B) among randomized sampling plots in the Altamont Pass Wind Resource Area, California,
2016–2019.

Over the four years of our study, we recorded 45 nest sites where nesting was attempted
from 1 to 4 years of the study. We recorded 31 nest attempts in red willow (Salix laevigata),
16 in blue gum eucalyptus, 8 in blue elderberry (Sambucus nigra ssp. caerulea), 5 in poison
oak (Toxicodendron diversilobum), 4 in oak gooseberry (Ribes quercetorum), 4 in blue oak
(Quercus douglasii), 4 in ornamental trees at former home sites (1 in a fir, 1 in a pine), 3 in
coast live oak (Quercus agrifolia), 3 in Fremont cottonwood (Populus fremontii), 3 in yucca
(Yucca sp.), 3 in salt cedar (Tamarix sp.), 3 in coyote bush (Baccharis pilularis), 2 in iodine
bush (Allenrolfea occidentalis), 2 in California buckeye (Aesculus californica), 2 in almond
(Prunus dulcis), 1 in fig (Ficus carica), 1 in a wood pile, and 3 on unknown substrate, but
possibly milk thistle (Silybum marianum). Nest attempts in red willow occurred both within
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and outside riparian zones, but those in Fremont cottonwood and blue oak were along
streambeds. Nest attempts in blue elderberry were on isolated plants in upland areas
(Figure 13). Nests in oak gooseberry were within the only patch of oak gooseberry of which
we were aware in the APWRA (Figures 14 and 15). The three nest sites in coyote bush were
on shrubs whose main stems emerged from the rising waters of Los Vaqueros Reservoir,
and which were doomed by the Reservoir expansion. Nests in poison oak were in large
patches of tall, mature poison oak. The nests in the almond and fig were in the only almond
and fig trees of which we were aware in the APWRA. The nest in a wood pile was within
the only plausible nest substrate on that particular survey plot.

Figure 13. Nest site of loggerhead shrike within a lone blue elderberry in Vasco Caves Regional
Preserve. The photo was taken 14 May 2018.

Figure 14. An oak gooseberry in which loggerhead shrikes nested in 2016 on survey plot 20.1 of the
Altamont Pass Wind Resource Area. This oak gooseberry was 1 of about 10 on the same slope, which
was the only slope of which we were aware that this species occurred in the APWRA. These shrubs
often harbored northern Pacific rattlesnake (Crotalus viridis oreganus), which likely added predator
defense in addition to the long sharp thorns of oak gooseberry.
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Figure 15. A loggerhead shrike fledgling at its nest site on oak gooseberry—the only patch of oak
gooseberry of which we were aware occurred in the Altamont Pass Wind Resource Area. This patch
of oak gooseberry was used as a nest site all four years of our study, and produced fledglings every
year. Photo was taken 2 May 2018.

3.2. Wind Turbine Fatality Estimates

Prior to our study, and while old-generation wind turbines continued to operate,
estimates of wind-turbine-caused fatalities of loggerhead shrikes averaged 93.4 per year
(95% CI: 93.2–93.6). During our study, and after old-generation wind turbines had been
removed from the APWRA, estimates of wind-turbine-caused fatalities of loggerhead
shrikes averaged 10.6 per year (95% CI: 10.3–10.8). Estimated fatalities varied greatly
between years, but both the magnitude and variation in fatalities lessened substantially
once the old-generation wind turbines were removed (Figure 16).

Figure 16. Annual estimates of loggerhead shrike fatalities caused by wind turbines in the Altamont
Pass Wind Resource Area, 1999–2019.
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4. Discussion

A substantial number of loggerhead shrikes breed in the APWRA, averaging 129 breed-
ing pairs per year. However, our estimates might have been of a metapopulation long
suppressed by wind turbine collision fatalities. We estimated an annual fatality rate over
the preceding 15 years that averaged 36% of the number of breeding shrikes we estimated
during our study. Until the old-generation wind turbines were removed, the APWRA
might have served as an ecological sink for loggerhead shrikes.

Based on the trend in fatality rates, the repowering of the APWRA should substantially
reduce loggerhead shrike mortality. Blades of modern turbines tend to sweep the airspace
higher off the ground than did the old-generation turbines. However, annual mortality of
loggerhead shrike will likely increase in the APWRA. More repowering is proposed, and
two new projects have already been approved. The installed capacity of modern turbines
that existed during our study could nearly double within a few years, thereby increasing
loggerhead shrike mortality to about 20 per year in the APWRA. This increased mortality
would be twice the mortality during our study, but still much lower than the mortality
before our study.

We hypothesize two behaviors that contributed to loggerhead shrike collisions with
wind turbines. One was hovering in high winds while scanning the ground below for prey
items. Just as American kestrels (Falco sparverius) and red-tailed hawks (Buteo jamaicensis)
behave, loggerhead shrikes hover and kite in the slope-deflected updrafts near the tops
of slopes, which is where most of the wind turbines are sited. Another was the frequent
and determined chasing of birds of other species. Once a chase begins, loggerhead shrikes
pursue fleeing birds for up to hundreds of meters. Both of these behaviors, hovering and
chasing, distract shrikes from the threat posed by wind turbines. However, it is possible
that an entirely different causal factor is at work.

Additional limiting factors for loggerhead shrikes in the APWRA include the avail-
ability of nest substrate and California ground squirrels. As the APWRA is repowered,
nest substrate is lost to construction grading for wind turbine pads and access roads. Nest
substrate is also lost to slope failures and other forms of soil erosion caused by the cutting
of slopes for construction grading. Construction grading also destroys California ground
squirrels and their burrow complexes. The greater threat to ground squirrels, however,
is the expanding and intensifying efforts to eradicate ground squirrels, which are often
accused of competing with cattle for forage. Over the decade leading to the end of our
study, the extent of ground squirrel burrow complexes in the APWRA declined >65% (K. S.
Smallwood, unpublished data). Only rarely did we find loggerhead shrikes breeding on
sampling plots without the presence of California ground squirrels.

Although we did not quantify functional relationships between loggerhead shrikes
and ground squirrels, we often observed evidence of the relationship. Tall herbaceous
vegetation clusters at ground squirrel burrow complexes and serves as hunting perches
for loggerhead shrikes. Ground squirrels also attract many small mammals, grassland
birds, and arthropods, which benefit from the squirrels’ subterranean burrows and from
the cleared ground around squirrel burrow complexes. Loggerhead shrikes can perch at
squirrel burrow complexes, putting them close to potential prey that are also often more
visible on the open ground amid the burrows. We observed loggerhead shrikes capture
prey items, which the shrikes would either deliver to the nest or pin onto a nearby thistle,
sharp stem of a dried plant, or barbs of barbed-wire fences. The prey that were pinned to
sharp objects were often eaten by the shrikes, but many were left dead or dying without
having been consumed.

Loggerhead shrikes in the APWRA shifted locations interannually to the degrees that
they were able, given the availability of nest substrate and ground squirrels. Densities of
nest sites in one year could only poorly predict nest site densities the following year. That
loggerhead shrike densities were spatially dynamic was consistent with the tendency of
animal populations to shift activity centers every generation or so [32]. The persistence
of shrikes in the APWRA might also depend on the capacity of breeding pairs to shift
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locations between years to exploit food resources where they have been rested and to
escape parasite and predator loads. It might also be important for new breeders to move
away from natal areas.

Loggerhead shrikes exhibited the tendency to shift activity areas between years, but a
few nest sites were used repeatedly. These nest sites tended to be located where alternative
nest sites were unavailable, or where squirrels were abundant or the nest substrate offered
greater protection against predators. Oak gooseberry appeared particularly protective
of shrike nests, as it bore many long, sharp thorns and often hosted northern Pacific
rattlesnakes. Each year that we checked on the nest site amid oak gooseberry, we saw
numerous fledglings. The site was productive. Another nest site that fared well was located
just above a hornets’ nest in a blue gum eucalyptus. Another was within a yucca, the sharp
leaves of which probably discouraged most potential predators. Nests within red willow
were typically constructed deep into the interior amid thickets of branches. We found
that loggerhead shrikes selected shrubs and trees that provided protection from predators,
consistent with findings elsewhere [33].

Although it has been asserted that shrikes are attracted to roads due to the barbed-wire
fences and shrubs often lining roads [2], we located few nest sites near roads. Portions of
plots with the highest densities of nest sites tended to be in the remotest portions of the
APWRA. The canyon with the most nest sites required a half day’s hike over difficult terrain
to access vantage points to observe the shrikes. Most other nest sites were accessible by
ranch roads or short hikes from wind turbine access roads. The pattern of distribution we
observed did not support the notion that regional population estimates could be accurately
made from roadside counts. Indeed, the Partners in Flight estimate for Bird Conservation
Region 32, projected to the area of the APWRA, would predict 160.6 (95% CI: 82.3–281.0)
shrikes. Assuming our estimated number of breeding pairs included all of the adult
loggerhead shrikes in the APWRA, which we realize it probably did not, we estimated 258
adult loggerhead shrikes in the APWRA in the average year. Even without accounting
for floaters, our estimate was 1.6 times more than the PIF prediction. In our experience,
loggerhead shrike abundance increased at greater distances from roads.

5. Conclusions

The Altamont Pass Wind Resource Area supports substantial numbers of breeding
loggerhead shrikes in California, but until recently might have also served as an ecological
sink for shrikes due to wind turbine collision mortality. Repowering the APWRA reduced
mortality caused by wind turbines, but as repowering continues towards the capacity
desired by Alameda County, more loggerhead shrikes will be killed by wind turbines than
the 10 per year during our study.

Loggerhead shrikes in the APWRA are limited in their nesting distribution by avail-
ability of nest substrate and California ground squirrels. These limitations are increasing
as construction grading removes shrubs and trees, as well as ground squirrels and their
burrow complexes. Already, half of the APWRA is unused by loggerhead shrikes for
nesting. The trend could be reversed by conserving nest substrate and ground squirrels,
and by cultivating trees and shrubs that offer superior protection against predators. Oak
gooseberry would be an ideal candidate for cultivation to conserve loggerhead shrikes.

Our findings were at odds with the often-repeated assertion that loggerhead shrikes
are attracted to roads, and therefore that road counts can support accurate regional es-
timates of abundance. Partners in Flight’s estimator substantially underestimated the
number of loggerhead shrikes in the APWRA. We found that where feasible, loggerhead
shrikes established nest sites in the remotest portions of our study area. Where feasible,
census of loggerhead shrikes across study plots would likely contribute to more accurate
estimates of distribution and abundance than would roadside counts.
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