Multi-year Operational Minimization Study in WV:

Potential Novel Strategy to Reducing Bat Fatalities at Wind Turbines

Michael Schirmacher¹, Alex Prichard², Todd Mabee², and Cris Hein¹

Bat Conservation International, Austin, TX

ABR, Inc., Fairbanks, AK

NWCC Wind Wildlife Research Meeting XI

I December 2016

Operational Minimization

- Bat fatalities are highest
 - Moving blades
 - Low wind conditions
- Lethal tip-speed?
- Variety of ways to change turbine operation

General Turbine Operations

- Turbine start-up speed speed at which rotor and blade assembly begins to rotate
- Cut-in speed minimum wind speed when turbines will generate useable power (e.g. 3-4 m/s)
- Rated speed minimum wind speed when turbine will generate its designated rated power (e.g. 1.5 mw)

General Turbine Operations

Modified from Fowler Ridge HCP by West, Inc.

Results: WV 2012 and 2013

Year	Treatment	Estimated bat fatalities/turbine/study period (95% CI)	Treatment decision framework
2012	3.0 m/s (Control)	74.5 (50.8–105.3)	3-minute average from turbine
	5.0 m/s (first 4 hours)	72.7 (49.6–104.4)	3-minute average from met tower ¹
	5.0 m/s (all night)	39.8 (25.9–59.7)	3-minute average from met tower
2013	3.0 m/s (Control)	90.9 (57.2–153.5)	10-minute average from turbine
	5.0 m/s (all night)	38.4 (18.4–68.9)	10-minute average from met tower
	6.5 m/s (all night)	23.0 (11.3–45.9)	10-minute average from met tower

Example of Cost-effectiveness

- Normal operation
 - ~ 91 (57.2–153.5) bats/turbine
- Turbine operation at winds speed >5 m/s
 - ~38 (18.6–68.9) bats/turbine
- Turbine operation at wind speeds >6.5 m/s
 - 23 (11.3-45.9) bats/turbine
- Arnett et al. 2011 showed similar fatality reduction
 - Loss of annual power at 5 m/s
 was 0.3%*
 - Loss of annual power at 6.5 m/s was 1%*

http://www.eia.gov/totalenergy/data/monthly/#appendices

* Influenced by many factors

Synthesis of Operational Minimization

Research Objectives WV 2015

- Improve the cost-effectiveness of "traditional" operational minimization strategies
- Treatments tested
 - Met 10-min (Control; standard operation at Facility)
 - Feathered below 5 m/s until 10-min rolling average based on the Met tower
 - Met 20-min
 - Feathered below 5 m/s until 20-min rolling average based on the Met tower
 - Turbine 20-min
 - Feathered below 5 m/s until 20-min rolling average based on the Turbine
- In theory, using a longer time period to initiate turbine start-up would allow
 - Turbines to operate at higher sustained wind speeds
 - Reduce the number of start-ups

Why is this important?

Background of the Concept

- Many turbines use a rolling average of wind speed over a period of time (e.g. 10 minutes) to initiate turbine start-up
 - In theory, hysteresis type events (e.g. wind gust) could inflate the measurement of wind speed and initiate start-up even though wind is still relatively low
- Wind speeds recorded downwind of the blades on the turbine's nacelle could affect wind speed measurements and thereby the effectiveness of this strategy.
- Cryan et al. 2014
 - Video results suggested bats tended to closely investigate turbines (i.e. blades, nacelle, monopole)
 - when blades were stationary or slowly free-wheeling (<1 RPM)
 - Fatality risk might exist when turbines start-up

Hypothesis

- Longer measurement of wind speed before initiating start-up (i.e. 20-min vs. 10-min average)
 - Would have less fatalities
 - Sustained 5 m/s wind speed
 - Less operational changes
- Measurement of "free-flowing" wind speed (i.e. Met tower vs. Turbine anemometer)
 - Would have less fatalities
 - Wind speed measurement more accurate when not influenced by blades

Methods WV 2015

- Daily searches at 15 of 23 turbines
- Randomized Block Design
 - Treatments changed nightly
- Fatality by treatment
 - Estimated fatality using Huso (2012)
 - Bayesian Poisson Regression
 - Modeled observed fatality by treatment
- Secondary analysis
 - Factors influenced bat fatality when turbines spinning
 - Logistic Regression Mixed Model

Results WV 2015

- Comparison of turbine operations under treatments
 - Turbine (80 m) to Met tower (76 m) anemometer
 - 97% of time turbine anemometer measured a higher wind speed than Met tower
 - On average, turbine anemometer wind speed was
 I.03 m/s higher than Met tower

Results WV 2015: Comparison of Turbine Operations

Metric	Met 10-min	Met 20-min	Turbine 20-min
Hours On	5.77ª	5.88ª	7.05 ^b
Hours Off (below 3 m/s)	0.12ª	0.28 ^b	0.27 ^b
Hours Curtailed	4.71 ^a	4.43 ^a	3.27 ^b
Curtailment Power Loss (MWh)	0.63ª	0.60ª	0.21 ^b
Number of Starts	1.75ª	1.25 ^b	0.88 ^c
Number of Stops	2.08ª	1.60 ^b	1.03°
Number of Starts and Stops	3.83ª	2.85 ^b	1.90°

Fatality by Treatment

- Huso (2012) estimated fatality
 - Significant difference between met 20-min and turbine 20-min

	Bats/Turbine/Study Period	
Treatment	Estimate	
Met 10-min	17.18 (8.10–29.63)	
Met 20-min	13.05 (6.08–24.00)	
Turbine 20-min	30.75 (15.38–70.95)	

Poisson Regression

	Treatment	Mean
Expected Fatalities	Met 10-min	1.151 (0.572–1.920)
	Met 20-min	0.808 (0.368–1.429)
	Turbine 20-min	1.466 (0.783–2.336)
Percent Change	Met 10-min to Met 20-min	-29.8 (-68.0–24.2)
	Met 10-min to Turbine 20-min	27.4 (-32.0–103.0)
	Met 20-min to Turbine 20-min	81.4 (-3.1–189.1)

Not significantly different but trended similar to Estimated fatality results

Poisson Regression

Model	DICa	ΔDICb	ω _i c
Null Model	137.7	0	0.16
Hours On	138.0	0.3	0.13
Treatments	138.7	1.0	0.10
Number Starts/Stops	139	1.3	0.08
Number Stops	139.1	1.4	0.08
Number Starts	139.1	1.4	0.08
Hours On, Number Stops	139.9	2.2	0.05
Hours On, Number Starts	140.0	2.3	0.05
Hours On, Number Starts/Stops	140.1	2.4	0.05
Treatment, Hours On	140.3	2.6	0.04
Treatment, Number Starts/Stops	140.5	2.8	0.04
Treatment, Number Starts	140.5	2.8	0.04
Treatment, Number Stops	140.6	2.9	0.04
Treatment, Hours On, Number Stops	142.1	2.9	0.04
Treatment, Hours On, Number Starts/Stops	142.1	4.4	0.02
Treatment, Hours On, Number Starts	142.2	4.5	0.02

Logistic Regression Mixed Models

- Best logistic regression mixed model of bat fatalities found per hour the turbine was spinning
 - Number of stops (θ =0.156, 95% CI: 0.001–0.311)
 - Stops/starts and starts were within one AIC unit

Model	AICa	ΔAICb	ω _i c
Number of Stops	392.2	0	0.23
Number of Starts/Stops	392.5	0.3	0.19
Number of Starts	393.0	0.8	0.15
Null Model	393.7	1.5	0.11
Number of Stops, Temperature Change*	393.7	1.5	0.11
Number of Starts/Stops, Temperature Change*	394.0	1.8	0.09
Number of Starts, Temperature Change*	394.7	2.5	0.06
Temperature Change*	394.8	2.6	0.06

^{*}Temperature change was determined to be an uninformative parameter (Arnold 2010)

Fatality Probability to Turbine Stops

Summary WV 2015

- For this study
 - Treatment Met 20-min was the most cost-effective
 - Significantly less fatalities than Turbine 20-min
 - Less fatalities than Met 10-min
 - Not significant, likely related to small difference between treatments (i.e. difference of 10 minutes)
 - Less power loss and turbine on/off than Met 10-min
 - More energy production even though operated less
 - » Because of significantly more turbine on/off?
 - Less turbine "wear and tear"
 - Top model with turbine stops
 - Starts and stops highly correlated
 - Increase stops = wind speeds around the 5 m/s threshold

Limitations

- We cannot separate bat fatality risk at
 - Low wind speeds (i.e. 5 m/s)
 - Risk when turbines start-ups,
 - Thermal videography might be a better tool to address the potential risk to bats during start-up
- All turbines were feathered to 5 m/s as the standard turbine operations for this facility
 - We could not compare results to normally operating turbines (i.e. cut-in speed at 3 m/s)

Three-year Comparison

Year	Treatment	Estimated bat fatalities/turbine/study period (95% CI)	Treatment decision framework
2012	Control (3.0 m/s)	74.5 (50.8–105.3)	3-minute average from turbine
	5.0 m/s (first 4 hours)	72.7 (49.6–104.4)	3-minute average from met tower
	5.0 m/s (all night)	39.8 (25.9–59.7)	3-minute average from met tower
2013	Control (3.0 m/s)	90.9 (57.2–153.5)	10-minute average from turbine
	5.0 m/s (all night)	38.4 (18.4–68.9)	10-minute average from met tower
	6.5 m/s (all night)	23.0 (11.3–45.9)	10-minute average from met tower
2015	Met 10-min	17.18 (8.10–29.63)	10-minute average from met tower
	Met 20-min	13.05 (6.08–24.00)	20-minute average from met tower

30.75 (15.38-70.95)

20-minute average from turbine

Turbine 20-min

Next Steps

- Replicate these results at other wind energy facility
 - Maybe increase time difference between treatments
- Test longer decision framework vs. higher cutin speed
- Use thermal videography to
 - Determine risk during start-up
 - Determine lethal tip-speed

Acknowledgements

- Wind Energy Partner for financial & logistical support
- Field Crew for data collection & management
- WVDNR
- BWEC committees for Peer-review
- Wind Energy Operators & Developers for insight into turbine operations

www.batsandwind.org

Cris Hein; chein@batcon.org; 706-621-1975

Michael Schirmacher; mschirmacher@batcon.org; 843-408-1695

