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A B S T R A C T   

Bird collisions with wind turbines continue to be a major problem within the wind industry. Developing 
scarecrow technologies and other, more advanced, multi-sensory bird monitoring systems on the market are 
paving the way to resolving this perplex dilemma. Environmental Impact Assessments are required by regulatory 
bodies to prove that a wind farm will not cause adverse impacts to vulnerable avian populations. The Screening 
Tool Proof of Concept is intended to help with permitting, and to reduce seasonal curtailment events resulting 
from annual migration. It revealed a positive correlation between bird activity hotspots for Pink-footed geese 
species and distance to crops. The most favorable crops were winter and spring cereals located at Klim Fjord
holme Wind Farm in Northern Denmark. The 2 km test radius around the turbine revealed direct impacts of 
surrounding land use, however, for future developments, increasing the radius will provide further geospatially 
relevant information across a broader area. Avoidance through initial risk screening is arguably the most 
effective way to reduce impacts to biodiversity and ensure successful operation via coexistence with avian 
wildlife.   

Introduction 

Achieving a symbiotic relationship between wind turbines and avian 
wildlife conservation remains a challenging task, especially due to now 
larger turbines occupying available land, water, and free airspace. The 
Paris Agreement tells us that its goal is to limit global warming to well 
below 2, preferably 1.5 ◦C, compared to pre-industrial levels (Barston, 
2019) via reducing global carbon emissions. Nevertheless, preserving 
the balance of ecosystems is an integral part of sustainability, if we are to 
achieve sustainability in its highest sense of the word. Moreover, a 
crucial element that contributes to the success of a wind farm includes 
the Environmental Impact Assessment (EIA) and thereby granting con
sent approval by the relevant regional authorities. However, before an 
EIA takes place, risk-screening surveys are carried out before a wind 
energy project is further developed. More specifically, this involves a 
desk-based process for identifying any potential biodiversity and 
ecosystem service risks and opportunities related to an(y) area(s) of 
interest. Normally, this is performed at the early project planning stage 
(IUCN & TBC, 2021). This can include, for instance, an avoidance by 
site-selection approach, where wind turbines are not situated along high 
biodiversity sensitivity areas (such as along migratory flyways). In this 
way, alternative sites are identified in which wind turbines are least 

likely to incur a negative environmental impact. Considerations for 
project development may include aspects such as spatial planning and/ 
or sensitivity mapping information, to avoid developments taking place 
in sensitive areas (IUCN & TBC, 2021). Any such impacts to bio
diversity—be it cumulative, direct or indirect—should be accounted for 
at this time. 

Thus, the purpose of an EIA is to enable relevant authorities and/or 
governmental advisors to determine whether applicants can demon
strate that their development does not impose any adverse impact on the 
environment. It helps to reveal both the benefits and the downfalls that 
wind turbine projects introduce to local habitats. By applying processes, 
such as the Mitigation Hierarchy, in an iterative manner, it can help to 
reduce or mitigate any impacts to wildlife while also determining any 
residual impacts (IUCN & TBC, 2021). 

On the other hand, if a wind farm project is refused planning consent, 
it can mean one of two things: there was either insufficient scientific 
data collected through the undergone bird or bat surveys, or that survey 
findings actually revealed projections of more damage done to a specific 
species and/or habitat than what was permitted. An example of this 
occurred in the UK, where the Docking Shoal Offshore Wind Farm was 
refused planning consent over the estimate numbers of Sandwich terns 
Thalasseus sandvicensis predicted to be killed (Cook et al., 2018). Because 
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wind farms are also the cause for disturbance and displacement from 
feeding areas, this makes some larger bird species particularly suscep
tible to population-level impacts (Broadbent & Nixon, 2019), inhibiting 
their chances of survival. Additionally it can be unfavorable to both 
developers and other relevant stakeholders that the consenting process 
can be lengthy and costly; where, in some cases, it calls for several years 
of scoping, site characterization, and environmental data collection 
(Broadbent & Nixon, 2019). Therefore, it is crucial that a thorough and 
detailed investigation on avian wildlife impacts is done first-hand. This 
will help all involved parties, including the developer and other regu
latory bodies, make a scientifically based decision for granting planning 
consent. In order to accomplish this, the appropriate tools must be used 
which can collect sufficient amounts of data in order to predetermine 
any impacts to biodiversity. 

Although current tools which are available for measuring avian 
biodiversity impacts in the wind industry have come a long way, 
knowledge gaps still remain, rendering wind energy coexistence with 
avifauna a challenge. First and foremost, human observation of birds 
around a wind farm via the human eye is an unreliable method of 
reporting bird counts and for identifying species. With increasing dis
tance, detection rate and accuracy decrease (McClure et al., 2018) as the 
clear image of the bird diminishes the further way it flies. While this is 
an unreliable method onshore, it is impossible offshore due to the ma
rine environment and logistics. Next, radar technologies alone are not 
enough for species identification, as they primarily provide information 
on movements of birds including their trajectory and altitude. That is 
why some bird monitoring systems such as TADS and MUSE (Dirksen, 
2017; Tjørnløv et al., 2021) pair their radar with a camera to help with 
the species identification component. This is further improved using 
thermal camera's for night-time species detection. However, in addition 
to thermal camera's being expensive, the dynamic marine offshore 
conditions can cause the applied clutter filtration method to erase an 
increasing proportion of bird echoes, leading to significant false nega
tive bird detection rates (Tjørnløv et al., 2021). This can paint an un
realistic picture of bird densities. Other camera-based technologies such 
as DTBird, and IdentiFlight do not show the size of bird activity occur
ring around a wind farm site, only the species identified and detected. 
Moreover, by combining accelerometers with camera's, such as in the 
WT-Bird system, this is limited by bird size in order to document a bird 
collision event (Wiggelinkhuizen et al., 2006) which can lead to 
misinformation on impacts. Systems pairing camera's with microphones, 
such as ATOM, combines thermal imaging with acoustic and ultrasound 
sensors to continuously monitor bird and bat abundance, flight height, 
direction, and speed (Willmott et al., 2015). However, its monitoring 
data is not delivered in real-time, adding a time delay for analysis 
(Willmott et al., 2015). The above-mentioned technologies do not pro
vide any information on correlations between bird activity levels at 
potential wind farm sites and surrounding environmental features such 
as water bodies and crops, which can influence bird behavior. Further
more, another tool available is shut down on demand, albeit this is an 
approach used already post-operation, it merely mitigates the avian 
collision problem. Technologies such as ROBIN Radar, DTBird, Identi
Flight, and MERLIN SCADA apply a curtailment module during calcu
lated high-collision risk situations (Collier et al., 2012; H.T. Harvey & 
Associates, 2018; McClure et al., 2018; Niemi & Tanttu, 2020). Although 
effective, stopping the turbine equates to lost energy production, 
therefore reducing Annual Energy Production (AEP) targets. This, 
however, negates the entire purpose of carbon emission reduction ef
forts through renewable energy generation. Using the Mitigation Hier
archy as the guide, the author aimed to explore reducing impacts to 
avifauna at the first and most effective stage – avoidance. 

In order to not only prevent bird populations from dwindling, but 
also to not further delay a wind farm project from going online, avian 
wildlife forecasting provided by the novel Screening Tool software can 
help mitigate these problem areas. For projects in the pre-construction 
and siting phase, the Screening Tool software will be applied. Its 

primary purpose is to forecast and identify all high-to-low density bird- 
activity areas including migration flyways, as well as to pinpoint hot
spots for flock formations where habitat suitability is ranked the highest 
for the local species of interest. This is accomplished through the 
assessment of local environmental parameters onshore, which may in
fluence bird activity. For already operating wind farms, the Screening 
Tool also has the potential to act as a non-stop surveillance device 
scanning for bird activity and performing round-the-clock data collec
tion. The various data streams used to help identify bird activity areas 
and corridors will be stored year-round in order to prompt adjustments 
and fine-tune future curtailment. More specifically, reducing the 
curtailment period for seasonal migration down to a period where it is 
deemed absolutely necessary. This ensures avoiding the excess onset of 
curtailment, which would otherwise lose the industry money and lead to 
more wear and tear on the turbine. With that said, this style of biodi
versity mapping may help all interested parties more effectively and 
scientifically site future wind turbines and resort to curtailing them less. 
Through successful implementation for an EIA, the Screening Tool Proof 
of Concept (PoC) has the potential to help warrant that AEP targets are 
met via reduced automated shutdown events. This is thanks to the 
combined approaches of biodiversity-friendly siting and real-time data 
analysis via spatial and temporal data streams. With a central, web- 
based platform housing the necessary environmental information 
related to wind farm siting and avifauna activity, it provides developers 
with an easy-to-use in-house tool, which can save time and reduce costs 
related to outsourcing for expert help. Finally, The Screening Tool 
provides a novel means of biodiversity screening whose purpose and 
application is becoming increasingly relevant as biodiversity-related 
issues become the center of attention for the success of future renew
able energy projects. 

Methods and materials 

This case study took place at Klim Fjordholme Wind Farm, located in 
the Northern Jutland region of Denmark, in Jammerbugt Municipality. 
Klim Wind Farm was a repowering project that originally consisted of 35 
Vestas V44 turbines and covered 111.5 ha. The repowering led to what is 
now a wind farm consisting of 22 Siemens 3.2 MW turbines with a hub 
height of 93 m and a rotor diameter of 113 m, giving a blade tip height of 
149.5 m (Drachmann et al., 2020; Kahlert et al., 2012) (Fig. 1). 

This wind farm is situated nearby an international NATURA-2000 
bird protection area number 16 (known as Vejlerne), which consists of 
5 EU bird protection areas (Kahlert et al., 2012):  

(1) The coast from Aggersund to Bygholm Vejle (EU-8)  
(2) Løgstor Bredning, Livø, Feggesund and Skarrehage (EU-12)  
(3) Eastern Vejler (EU-13)  
(4) Lønnerup Fjord (EU-19)  
(5) Western Vejler, Arup Holme and Hovsør Røn (EU-20). 

Fig. 3 is an image of the entire wind farm. From the image, one can 
see that it is surrounded by agricultural fields on all sides. Fig. 2 is 
another map showing the study area in more detail, particularly in terms 
of its location to nearby habitat (denoted by a yellow outline color) and 
bird protection areas (denoted by blue stripes). Due to the wind farm's 
unique location, each day thousands of birds leave their roosting areas in 
Vejlerne and fly out to the nearby fields to find food, with many passing 
the wind farm (Vattenfall Press Office, 2020). In this special bird pro
tection area, 20–30,000 Pink-footed geese and several hundred cranes 
are found roosting (Vattenfall Press Office, 2020). 

Two Furuno FAR – 2127 x-band magnetron marine radars (hori
zontal and vertical) were installed about 10 m distance South-east of 
wind turbine #223. A radar trailer housing the PC, laptop, security 
camera, solid-state radar, and HD Motion Camera was situated 
approximately 5 m south of the turbine tower. The two magnetron ra
dars were installed and operational between May 2020 and August 
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Fig. 1. Klim Fjordholme Wind Farm project area post-repowering. 
(Adapted from Drachmann et al. (2020).) 

Fig. 2. Map of northern Thy and Vester Han Herred, including the study area for birds at Klim Fjordholme farm as well as nearby habitat and bird protection areas. 
(Adapted from Kahlert et al. (2012).) 
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2021, whereas the newer solid-state radar was installed in February 
2021 and operational until August 2021. This was due to the risk of the 
magnetron radars deteriorating over time (six months) and a more 

reliable radar was needed to continue data collection. The area where 
the trailer and radar were placed and operational was covered in gravel 
pavement. Due to the inherent presence of the turbine tower and the 

Fig. 3. Image of Klim Fjordholme Wind Farm (taken 16 January 2021) capturing migrating geese above the rotating turbine blades and operating radar and camera 
(indicated by the white radar trailer, located at the base of the right-most turbine). 

Fig. 4. Image of data collection site at base of turbine #223. On the right are the two Furuno FAR-2127 x-band marine radars (horizontal & vertical); on top of the 
trailer is the solid-state Furuno DRS25A-NXT radar. 
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Fig. 5. Two blind sectors within 2 km radius delineated in study area due to presence of radar trailer and nearby turbine tower in the form of a GIS layer via 
ArcGIS Pro. 

Fig. 6. TeamViewer screenshot showing the vertical and horizontal radar frame grabs via the local Windows image and video capturing software, Epiphan VGA/DVI 
Capture Tool. 
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trailer there were two blind spots to consider (given that azimuth North 
= 0, counting clock-wise). See Fig. 5 for details on:  

(1) Blind sector due to trailer: from 323◦ to 337◦ and  
(2) Blind sector due to the turbine tower: 344◦ to 358◦. 

In these blind sector angles, no bird tracking data was collected from 

the radars. These blind areas were delineated in the web tool, to avoid 
confusion for the end-user. The model of the HD motion camera was a 
Dahua 8MP Dome Camera IP ePoE 50M IR 2.8 mm Lens IPC- 
HDW4831EM-ASE. It was mounted onto the front side, top right 
corner of the radar trailer, facing the Eastern direction, as seen in Fig. 4. 
This IP camera allows the user to connect and configure online, by 
logging directly into the camera. Here it was possible to set up needed 

Fig. 7. Image annotation of single birds vs. flocks of birds via Labelbox.  

Fig. 8. Prediction score generated by the YOLO model; score of 0.88 on a flock of birds.  
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criteria, such as ‘Take a picture when moving - with the exception of 
these areas.’ Once the camera took a picture, the image was automati
cally sent to the user's digital bucket, and later stored, making access to 
the images possible. Power cables for the radar, trailer PC's and camera 
were connected to the wind turbine, which was the main power source 
for all electronic devices. Vattenfall provided the power supply. After 
establishing a secure internet connection, TeamViewer was used for 
remote-control access to the local PC's so that data monitoring could be 
achieved. In Fig. 6, one can see what is displayed through TeamViewer 
via remote access. The Epiphan VGA/DVI Capture Tool is a local Win
dows software used to capture the live-stream frame-grab images 
collected from the horizontal and vertical Furuno Marine Radars. The 
frame grabs were saved onto an external hard disc. As both the hori
zontal and vertical radars were capable of collecting ca. 10 GB of data 
per day, this storage scheme was crucial for the storage of large amounts 
of data, which were later needed for image processing. Altogether, three 
external hard discs were used to manage all the radar data that was 
collected. 

Bird tracking model 

Next came the filtering process through a set of camera images 
collected between the months of September–November 2020. The im
ages were extracted from the image folder bucket, uploaded via FileZilla 
software and then downloaded. Filtering was done based on the pres
ence or absence of birds in the photos. If there were no birds captured 
within a specific image frame it was deleted. In contrast, those images 
with a bird visible in the frame were kept. This filtering was done for 
each time stamp, coming down to the date and time. After the filtering 
process was completed, the next step was annotating the saved images 
for single birds vs. flocks of birds (defined as a group of birds traveling 
together in cohesion with one another). In Fig. 7 a screenshot of the 
image annotation process is shown. The saved images were uploaded 
onto Labelbox in a designated folder and assigned two different types of 
classifiers: a polygon representing flocks of birds (blue color) and a 
square for a single bird (pink color). The classifiers are listed under the 
“tools” heading on the left-hand sidebar, while the number of each 

classifier found in the present image is listed under the heading “ob
jects.” In this example, one can see that there are seven blue polygons in 
the image indicating flocks, and two squares indicating single birds. 
Altogether, there were 337 images that were submitted; with 25 images 
being skipped after a re-evaluation of each image was done, concluding 
that there were no birds present. Of these 337 images, there were 658 
flocks of birds, and 120 single birds identified. This led to a total of 778 
annotations. Based upon the object counts listed in Table 1 the images 
primarily contained flocks of birds (85 %) in comparison to single birds 
(15 %). 

Following the image annotation process, a YOLO (“You Only Look 
Once”) model was trained on the annotated images to recognize birds in 
images from the motion camera. The researcher used the YOLO v5 for 
object detection. With the current algorithm, detection accuracy 
reached 68 %. Due to some operational malfunctioning of the camera, it 
had to be reset. From January the HD camera became unusable as it was 
no longer working properly. The cause of the malfunction is unknown. 
Nevertheless, to further optimize the detection accuracy, the same set of 
images were used to re-train the algorithm. Images were already cate
gorized with birds and their detection scores; however, in some images, 
the wind turbine blades or even airplanes flying in the sky were classi
fied as birds and this was obviously incorrect. Images with false- 
positives (false detection of birds) were separated into a separate 
folder named “No Bird.” This is important because the “No Bird” clas
sified images were used in the algorithm to teach it that objects such as 
moving blades, power lines, and airplanes are not birds. From Figs. 8 and 
9, the prediction scores generated by the automated Machine Learning 
(ML) model are displayed. 

After the training of the YOLO model was finished, sequences of the 
radar frame-grab images corresponding to bird sightings from the mo
tion camera were extracted. Everything in the radar image first had to be 
removed, except for the radar signals represented by the yellow colors in 
the image. As can be seen in Fig. 10, there are grid lines and a lot of green 
text that needed to be removed from the standard radar frame grab. 
Removing these extras allowed for clearer depiction of bird tracks. 

By means of a Gaussian mixture-based background/foreground 
segmentation algorithm, the researcher used one hundred previously 

Fig. 9. Prediction score generated by the YOLO model; score of 0.94 on a single bird.  
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saved radar images from the one hundred previous days as part of the 
background/foreground segmentation process. Following this, the color 
of these images was then converted to greyscale. A median filter was 
applied to reduce noise in the frame grabs. The total signal was then 
added up, and if it exceeded a threshold-value, it was considered to be 
raining and the image was disregarded. Afterwards, a couple of 

morphological actions were applied in order to piece everything 
together, such as opening (to reduce noise) and closing (to fill in the 
gaps). Morphological operations were done to make it easier to cluster 
objects together. Hence, these two actions taken together –opening and 
closing—helped to smoothen out the edges and fill in the gaps, as 
illustrated in Fig. 11. 

Screening tool development 

Data sources 
Development of the Screening Tool software was done using a GIS 

approach. Various layers were selected and were based on the different 
environmental factors that may influence either attraction or repulsion 
by birds. GIS layers allow for flexibility for the end-user to select or de- 
select a particular parameter as a layer, and therefore draw conclusions 
on where siting future turbines would make the most sense, based on the 
spatial information provided. Table 2 provides more insight on the GIS 
layers used, as well as on the sources that provided the relevant shape 
files for the associated GIS layers. Moreover, all GIS layer data was 
derived from an open-source. 

Crop favorability indices for 2019 and 2020 were generated based 
upon evaluating both the type of crop and the relative NDVI (Normal
ized Difference Vegetation Index) value, which was calculated by using 

Fig. 10. Frame grab from the horizontal scanning FAR-2127 Furuno radar (pre-processed image).  

Fig. 11. Graphic showing the process of opening and closing in terms of 
morphological actions to reduce noise and fill in gaps. 
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both the shape files for crops planted/harvested provided by Ministeriet 
for Fødevarer, Landbrug og Fiskeri: NaturErhvervstyrelsen and Landsat8 
imagery. Only years 2019 and 2020 were used in this study, due to the 
open-access limitation. Landsat8 imagery was downloaded from the 
USGS Global Visualization Viewer (GloVis) website. By setting the pa
rameters for a given scene in GloVis (in our case, Klim Fjordholme), it 

was possible to deduce the correct satellite data needed to perform the 
remote sensing analysis. Thus, satellite imagery was compiled for the 
time period 4 April 2013–4 March 2021, as the earliest Landsat8 satellite 
imagery was recorded from April 2013 at the specific coordinates for 
Klim (57.053242, 9.158134 Decimal Degrees). Cloud cover was then set 
to the range 0–20 %, in order to reduce the impacts of cloud presence on 

Fig. 12. BiCA Web homepage of Screening Tool.  

Fig. 13. Heat map of bird activity by hour of day; red hexagons indicate high activity levels, orange hexagons indicate medium activity levels, and yellow hexagons 
indicate low activity levels. 
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the ArcGIS NDVI raster analysis calculator. Moreover, sifting through 
the remaining 0–20 % cloud cover images, some satellite scenes were 
additionally deleted from the final selection, as they included too much 
cloud cover, blocking the view of Earth's surface. This additional 
filtering step helped to ensure a more accurate vegetation analysis for 
the study site. The next step was the creation of a multispectral band 
through ArcGIS Pro, using all of the satellite images compiled for the 
given time period via GloVis. The NDVI calculator on ArcGIS Pro was 
then used to find the values for the study site area (radius 2 km from 
wind turbine). 

The general formula for NDVI is as follows: 

NDVI =
NIR − Red
NIR + Red

(1)  

where: 

NIR = Near Infrared 
NDVI = Normalized Difference Vegetation Index. 
Red = Red Spectral Band (Band 4 in Landsat8). 

Since the images for Klim were collected using Landsat8 satellite 
imagery (with 30 m resolution), Bands 5 and 4 were therefore applied to 
the calculation. The NDVI calculation here was, however, performed 
using the raster calculator tool in ArcGIS Pro. The below equation il
lustrates the relevant bands for Landsat8 imagery data. 

NDVI =
Band 5–Band 4

Band 5 + Band 4
(2) 

Table 3 gives more details about the various bands, their 

wavelengths and their corresponding resolution. 
A vegetation index is an indicator that describes the greenness (the 

relative density and health of vegetation) for each picture element, or 

Fig. 14. Bird Tracking Model illustrating the validation losses for three models tested (blue model tests distances to crops, lakes, and rives; orange model tests 
distances to crops, lakes, rivers, wind–speed/-direction, and temperature; and the green model represents hour of the day). 

Table 1 
Total counts of each object and percentage share of all submitted images.  

Object count 

Object Count Share 

Flocks-of birds  658 85 % 
Single-bird  120 15 %  

Table 2 
List of GIS layers, their definitions and corresponding data source (italicized) 
that provided the open-access shape files.  

GIS layer Definition 

Turbines The wind turbine layer contains information about the position 
of the wind turbines in Denmark; 
Energistyrelsen 

Rivers A layer containing rivers in the area of Klim; 
Styrelsen for Dataforsyning og Effektivisering 

Lakes A layer containing lakes in the area of Klim; 
Styrelsen for Dataforsyning og Effektivisering 

Natura 2000 The Natura 2000 layers is a network of nature protection areas in 
the European Union. The Natura 2000 areas are set aside to 
protect and preserve wild animals, plants and habitat types, 
which are endangered, rare, or characteristic for the countries 
within the European countries. The areas cover both land and at 
sea; 
European Environmental Agency 

Fav. Crop Index 
2019 

A layer illustrating a gradient of low-high favorability to birds 
for feeding, based upon crops which were planted around Klim 
in 2019; 
Ministeriet for Fødevarer, Landbrug og Fiskeri: 
NaturErhvervstyrelsen 

Fav. Crop Index 
2020 

A layer illustrating a gradient of low-high favorability to birds 
for feeding, based upon crops which were planted around Klim 
in 2020; 
Ministeriet for Fødevarer, Landbrug og Fiskeri: 
NaturErhvervstyrelsen 

Radar Buffer A multi-ring buffer around the position of the radar. There is a 
250 m of distance between each ring; 
*Own creation 

Blind Sector A layer indicating the blind sectors where the radar does not pick 
up any echoes. Blind sector due to trailer: from 323◦ to 337◦

(azimuth North = 0, counting clock-wise). Blind sector due to 
turbine shaft: 344◦ to 358◦ ; 
*Own creation 

Weather Stations Weather station locations found all across Denmark; 
Danmarks Meteorologiske Institute (DMI)  
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pixel, in a satellite image (Brown, 2018). NDVI is one of the most 
commonly used vegetation indices researchers use to transform raw 
satellite data into NDVI values. Thus, these values (ranging from − 1.0 to 
+1.0) can create images that give a rough measure of vegetation type, 
amount, and condition on land surfaces around the world (Brown, 
2018). By extracting the NDVI values of each land parcel around the 
wind farm and correlating it with its crop type, the favorability indices 
(as seen in Table 4) were created as a means of illustrating the effect of 
favorable food attracting the Pink-footed geese around the wind farm. 
Further details on the NDVI values and their corresponding vegetation 
type are found in Table 4. 

Results and discussion 

BiCA Web 

BiCA-Web was created to act as the private access web platform to 
test the Screening Tool PoC through. It was made possible thanks to the 
ESRI license provided by Aarhus University. The platform was only 
accessible to the researcher who had the link. Fig. 12 shows what the 
end-user encounters when first loading up the private access webpage. 

When first navigating the Screening Tool via BiCA Web, the end-user 
will come across a google-maps-based satellite image automatically 
zoomed into the projects study area in the Northern region of Denmark. 
Here, the wind turbines are automatically selected from the layer list to 
display the wind turbines from Klim Wind Farm, with black x's, dis
played in two rows. Already from the first page, the end-user can find 
bird activity information displayed in the form of histograms on the 
bottom, along with an “About” section, describing the purpose of the 
Screening Tool. The bottom left histogram data displays the daily bird 
activity in October 2020 (1–28 October), in addition to hourly (24 h) 
bird activity data presented in the histogram to the right, for the same 
month. October 2020 was selected for the PoC because this was the 
month where data across all of the assessed parameters (represented in 
the form of layers) could be extracted. In this way, it was possible to set 
out finding relationships between these inputs for the same period. 
When the end-user moves the cursor along individual bars on the graphs, 
the highlighted bar will then display the level of bird activity with a set 
number in a pop-up. Moreover, when selecting the layer for bird activity 
levels either by day or by hour from the drop-down layer list (as seen in 
Fig. 13), a heat-map is generated displaying where bird activity hotspots 

are located. Such a map also helps delineate where potential migratory 
corridors fall along the wind farm. As Klim is situated between a nearby 
roosting site and nearby feeding sites, activity levels around the wind 
farm are prevalent. From Fig. 13, one can see that high levels of activity 
occurred in the Southwestern area of the wind turbine. This is indicated 
by the red hexagonal colors. Neighboring orange and yellow hexagons 
indicate either medium or low level of bird activity. 

As part of the ML component for this project, the researcher set out to 
combine various environmental parameters (distances to lakes/rivers, 
wind speed/direction, and distance to crops) to predict where bird 
tracks were most likely to occur (refer to Fig. 14, the Bird Tracking 
Model). 

Distances to lakes/rivers and to crops were selected due to the 
attractive influence of birds to water-bodies and crop fields for preening, 
drinking and feeding. Wind speed and direction were tested due to the 
varying effects of wind on avian flight behavior and collision risk. While 
it was unsuccessful finding a correlation with these parameters to bird 
activity, our findings did reveal a positive correlation between the dis
tance to crops present and where bird activity hotspots were highest. 
Fig. 14 illustrates at which Mean Squared Error (MSE) value the model 
converges – or rather, where the MSE value does not improve anymore. 
The blue model converged at a lower MSE value than both the orange 
and green models, and therefore this lower MSE value of the blue model 
is an indicator of the relationship. More specifically, the blue model 
converged at epoch 282, with an MSE loss of 0.00171, the orange model 
converged at epoch 159, with an MSE loss of 0.00198, and the third 
model converged at epoch 257, with an MSE loss of 0.00224. After these 
epoch values, however, the model starts overfitting the data. The model 
that performed best was the combination of distance to crops, lakes and 
rivers–disregarding wind speed, wind direction and temperature (blue 
model). For purposes of understanding, it is important to note here that a 
higher MSE value indicates the model performed poorly. In addition, 
neural networks were trained on combinations of these parameters in 
order to reveal any possible relationships, which may influence bird 
attraction around the wind farm at Klim Fjordholme. 

With that said, the concentrated red/orange area seen in the heat- 
map includes crops such as Spring Wheat, Spring Barley, Winter 
Wheat, and Alfalfa. Corresponding to this, the NDVI values for this high 
bird activity area were primarily in the range of 0.1–0.3. Sparse vege
tation such as shrubs and grasslands or senescing crops may result in 
moderate NDVI values (approximately 0.2 to 0.5) (Brown, 2018), and 
this was the overall case for the study site area. Through monthly field 
observations, the researcher primarily encountered shrub cover, 
amongst the surrounding agricultural fields. By using the tool, and after 
selecting Marker_2019 and/or Marker_2020 from the layer list, the end- 
user is able to click on each land parcel colored in the map image and 
retrieve further information such as what kind of crop, and the assigned 
favorability index. Additional information is also available in the pop- 
up; however, these were not particularly relevant for our assessment. 

Limitations and future scope 

At the initial start of the project, the intention of the HD motion 
camera was to be able to act as a second registration system, to ensure 
that we had another data collection source confirming a bird sighting. 
Moreover, it was also intended as a means of trying to capture the 
species-specific information about what kind of avian species was 
captured within the camera's field of view. However, after four months 
of the camera's operation, it was made apparent that the camera's ca
pabilities were insufficient in capturing the species-specific data for bird 
activity. The researcher could identify the species type when the bird 
flew within at least 40 m of the camera. This was extremely limiting, 
particularly in terms of being able to capture the migratory species 
flying about the wind farm – it was too far away to perform any kind of 
valuable deduction. Moreover, the camera began to malfunction after 
six months of operation. The cause for its malfunction is unknown, but 

Table 3 
Landsat8 Bands displayed as red, green, blue (RGB) taken from (Interior, 2014).  

Bands Wavelength (μm) Resolution (m) 

Band 1- Coastal aerosol 0.43–0.45  30 
Band 2- Blue 0.45–0.51  30 
Band 3- Green 0.53–0.59  30 
Band 4- Red 0.64–0.67  30 
Band 5- Near Infrared (NIR) 0.85–0.88  30 
Band 6- SWIR 1 1.57–1.65  30 
Band 7- SWIR 2 2.11–2.29  30 
Band 8- Panchromatic 0.50–0.68  15 
Band 9- Cirrus 1.36–1.38  30 
Band 10- Thermal Infrared (TIRS) 1 10.6–11.19  100 
Band 11- Thermal Infrared (TIRS) 2 11.50–12.51  100  

Table 4 
NDVI Ranges and their corresponding vegetation type indicator (adapted from 
Brown, 2018).  

NDVI 
range 

Vegetation type 

− 1.0–0.1 Barren rock, sand, or snow 
0.2–0.5 Shrubs, grasslands, or senescing crops 
0.6–1.0 Dense vegetation (corresponding to temperate and tropical forests) or 

crops at their peak growth stage  
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one possibility could be due to the heavy rains and water leaking into the 
hole, where the electrical wiring was fastened. Hence, the camera was 
discontinued, as its data inputs were no longer valid. For future de
velopments of the Screening Tool, it would be extremely beneficial to 
have a camera of higher quality (i.e. durable and resistant to heavy 
rainfall depending on regional climate conditions) and with increased 
capability, allowing for recognition of a species from a further distance 
(≥1 km). This would add onto further details of the kind of species 
within a particular area of interest, and further enhance awareness and 
knowledge on impacts to protected species of interest, or those covered 
under the EU Birds Directive. In essence, this would be added as an 
additional layer of information that the end-user could then select/de- 
select. Having a camera that has infrared capabilities for species- 
detection at nighttime would also be advantageous, allowing for a 
larger data collection range. As the hardware setup for the Screening 
Tool could theoretically be translated in an offshore context too, the 
camera would then need to be capable of handling marine-conditions 
and include a self-cleaning system for the lens. If the Screening Tool 
software were used in the offshore realm, instead of using crops as a data 
input for NDVI calculation and habitat suitability, more information on 
wind speeds, visibility conditions and weather patterns (such as storms) 
could be analyzed in order to identify correlations and changes in bird 
behavior around a site. 

Furthermore, as part of the PoC, the radar range was set to cover only 
a 2 km radius from the radar trailer as the center point. While this helped 
us assess the direct impacts of nearby farmland, and other water bodies 
such as scattered streams, in order to gain a broader more comprehen
sive understanding of how particular environmental parameters (i.e. 
wind, water or crops) affects bird activity, it would have been beneficial 
to expand the coverage area of bird tracking. As for the Bird Tracking 
Model, increasing this range to landscape scale may better help identify 
migratory corridors and other patterns of bird behavior, which would 
otherwise be beneficial for the intended purpose of the Screening Tool 
for an EIA. Through the inclusion of more varying landscapes and land- 
use systems, the Screening Tool could potentially find more correlations 
between certain conditions and bird activity hotspots which would aid 
in decision-making during the siting phase. This additional range would 
also more likely include the other nearby feeding areas, which influ
enced geese flight behavior. 

With that said, at the moment, the current YOLO model is limited to 
identifying single birds vs. flocks of birds, and the primary focal species 
at Klim Fjordholme were the Pink-footed geese. Further refinement of 
the model is needed through additional training data sets. This may lead 
to more accurate detection rates (>68 %) of birds. Additionally, 
expanding the focal species beyond the Pink-footed goose also would be 
beneficial. By collecting larger datasets from camera imagery and radar 
frame grabs, for more than a single year, there is opportunity for addi
tional training of the model thereby improving the software's capabil
ities in terms of detection and tracking as well as expanding the 
software's application to different regions. 

Notwithstanding, the Screening Tool PoC is currently focused on the 
siting of future wind farms, and it explores how, through avoidance, 
instances of wildlife interaction can be reduced. However, for the future 
development of the Screening Tool, it should also be able to assess the 
post-construction projects by utilizing the same multi-layer and multi- 
sensory approach, and therefore mitigate wildlife interactions. This 
would be, for example, through 24/7 active and passive data collection 
methods, which would be used to curb curtailment time, in order to both 
optimize on energy delivery and also on wildlife conservation. Partic
ularly, looking at wind farms that are operating which have either 
excessive curtailment regiments or operating wind farms which are 
exploring a curtailment regime. 

Other potentials of the Screening Tool PoC include that it is a soft
ware that is not spatially limited; meaning that it can be applied and 
used anywhere in the world and adapted to different avian species (birds 
and bats) and contexts (onshore and offshore). A Wind Resource Area 

Map, provided through the developer's company, could potentially also 
be integrated into this web-based platform, thereby not only housing 
environmental, geo-spatial, and bird activity data, but also crucial wind 
speed and location data which is key for optimal wind farm siting. This 
would make this PoC software a central hub for scientific data-driven 
decision-making. Limitations here could be, for example, that the 
Wind Resource Area Map may not be in a suitable format to begin with 
and will require extra time and work to merge formats so that it func
tions with the GIS-based application. 

Last but not least, the crop favorability index as it currently stands, is 
merely a crude representation of how Pink-footed geese species are 
attracted to certain kinds of crops. A ranking of low-high favorability is 
over-simplified, and yet it highlights the importance of how plant stage 
growth and types of crops present attract varying species of birds. A crop 
index, which would otherwise be used as a type of bird-use scoring 
system, is an incredibly complex form of measurement to create. To 
create it is a study in itself, and would require much time spent out on 
the fields documenting which fields birds use the most (Wejdling, 2021). 
Hence, if a crop index were to be included as a form of measurement on 
how often a species exploits an area, documenting where such foraging 
occurs via time-lapse photography would be a good start; otherwise, it 
would be a massive undertaking (Wejdling, 2021). If the Screening Tool 
were to include a crop favorability index, methods that are more effi
cient would have to be explored. 

Conclusion 

As a result of future wind development projects, aiming to reduce 
global carbon dioxide emissions, these tall manmade structures are more 
frequently appearing across our horizons. With more businesses 
investing into the renewable energy agenda and more stakeholders 
expressing interest in transitioning to clean energy sources, fossil-fuel- 
free energy demands will continue to rise. In countries where good re
sources and cheap financing are available, wind and solar PV plants will 
challenge existing fossil fuel plants. Looking at the picture overall, re
newables are to set to account for 95 % of the net increase in global 
power capacity through 2025 (Kent, 2018). In addition, the total 
installed wind and solar PV capacity is on course to surpass natural gas 
in 2023 and coal in 2024. Thanks to further cost declines, annual 
offshore wind additions are set to surge, accounting for one-fifth of the 
total wind annual market in 2025 (Kent, 2018). 

Nevertheless, biodiversity interactions with the wind sector are 
bound to occur, and this is why it is ever so important to reiterate that 
either avoiding (via strategic siting and avoidance of sensitive areas) or 
mitigating (via scarecrow technologies) the adverse impacts to avian 
wildlife is essential, in order for the two worlds to coexist. Since there 
are eight migration flyways occurring worldwide, this leaves a high 
probability of migratory birds encountering wind turbine towers in their 
airspace environment. This can potentially lead to these long-distance 
travelers experiencing effects such as displacement, habitat disruption 
and/or flight behavior changes. Project developers will only face further 
delay in a project going online, if the demands and thresholds for 
wildlife impact surveys are not met. The best way to circumvent this 
problem is through addressing the problem at the earliest point possible, 
by using the relevant technology and data streams, and that can be best 
accomplished at the siting phase. 

BiCA Web's Screening Tool PoC software solution illustrated that 
through understanding flight behavior influencers in a given area, one 
can better deduce which factors have a particularly strong effect, in 
comparison to others. Whereas most market solution's focus on mitiga
tion measures to biodiversity impacts, this PoC illustrates how the 
approach to the avian collision dilemma may be more effectively 
resolved or reduced through avoidance – an approach that is arguably 
the most effective according to current scientific literature. The 
Screening Tool's flexibility in application allows it to be used in both the 
onshore and offshore contexts, giving it an added advantage in targeting 
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a larger market. Furthermore, through the testing of the Bird Tracking 
Model, the researcher could see that distance to crops had a positive 
correlation to where bird activity hotspots occurred, in comparison to 
distance to water bodies and wind speed changes. This was primarily 
due to the type of crops present in the surrounding land parcels, which 
were winter and spring cereals—a type of food that Pink-footed Geese 
like. The generated heat-maps along with the bird activity statistics 
provided the end-user with an easy-to-understand visual representation 
as to the counts of corresponding bird activity areas. Moreover, using a 
layer-based approach like GIS allows the end-user to deduce which areas 
in a site of interest would theoretically make sense if wanting to site a 
wind farm project. The drop-down menu provided in the tool, which 
includes a number of environmental parameters, helps paint an over
arching picture of what Klim has to offer in terms of habitat suitable 
areas. The use of the Furuno Marine Radars showed to be an effective 
way to not only track large numbers of birds, but also an efficient 
manner in which the researcher does not have to use traditional time- 
consuming methods, such as manual logging of individual bird sight
ings, to track bird trajectories. 

For the future, wind developments must consider the associated risks 
to the continued delivery of ecosystem services, i.e. the benefits and 
values that people obtain from natural resources. If not carefully 
managed, such developments can change the supply of, or limit access 
to, ecosystem services, including provisioning services, such as food and 
water as well as recreational, cultural (including a sense of place and 
belonging) and other non-material benefits (IUCN & TBC, 2021). In 
markets like the United States, Denmark, and Germany, where cases of 
wind farms suffering from lack of consent approval or shutting down 
altogether as a result of documented kills to sensitive or protected avian 
species have resurfaced, the biodiversity issue is yet to be resolved. 
Hence, while the siting phase may not be the most favorable phase 
where developers in the industry have the opportunity to alter their 
approaches, it remains as the stage where impacts to wildlife and avian 
mortality may be greatly reduced, and for coexistence to be achieved. 
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