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Shearwaters and petrels (hereafter petrels) are highly adapted seabirds that occur
across all the world’s oceans. Petrels are a threatened seabird group comprising 124
species. They have bet-hedging life histories typified by extended chick rearing periods,
low fecundity, high adult survival, strong philopatry, monogamy and long-term mate
fidelity and are thus vulnerable to change. Anthropogenic alterations on land and at
sea have led to a poor conservation status of many petrels with 52 (42%) threatened
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species based on IUCN criteria and 65 (52%) suffering population declines. Some
species are well-studied, even being used as bioindicators of ocean health, yet for others
there are major knowledge gaps regarding their breeding grounds, migratory areas or
other key aspects of their biology and ecology. We assembled 38 petrel conservation
researchers to summarize information regarding the most important threats according
to the IUCN Red List of threatened species to identify knowledge gaps that must
be filled to improve conservation and management of petrels. We highlight research
advances on the main threats for petrels (invasive species at breeding grounds, bycatch,
overfishing, light pollution, climate change, and pollution). We propose an ambitious
goal to reverse at least some of these six main threats, through active efforts such
as restoring island habitats (e.g., invasive species removal, control and prevention),
improving policies and regulations at global and regional levels, and engaging local
communities in conservation efforts.

Keywords: management, marine environment, marine predator, population dynamics, Procellariiformes, research
priorities, seabird conservation, threats

INTRODUCTION

Humans have transformed ecosystems on an unprecedented
global scale, driving a growing number of species to decline
and extinction (Jenkins, 2003). The increasing human population
living along coasts is putting a severe burden on marine and
coastal environments through urban development, infrastructure
for energy production and transport, fisheries, eutrophication,
ocean acidification and invasion by alien species (Barnosky et al.,
2016). Thus, it is not surprising that seabird populations have
declined faster than other bird taxa during last decades (Croxall
et al., 2012; Paleczny et al., 2015).

Seabirds are top predators and a significant component of
marine ecosystems, making them key indicators of marine
ecosystem functioning (including climate change). Changes and
fluctuations in seabird population sizes, ranges, foraging ecology
and breeding success have been used to detect environmental
changes, document direct threats (e.g., poaching) and monitor
success or failure of conservation management policies in
protected areas and beyond (Lescroël et al., 2016; Dunlop, 2017).

The Order Procellariiformes (Class Aves) is one of the
most endangered avian groups (Croxall et al., 2012) and the
percentage of threatened species is higher than Aves overall
(Figure 1). They are one of the most adapted groups of
seabirds to the marine environment, traveling long distances
and spending most of their lives over vast open oceans. In
this review, we focus on the 124 species of three out of four
families from the Order Procellariiformes: Procellaridae (petrels
and shearwaters), Oceanitidae (southern storm-petrels), and
Hydrobatidae (northern storm-petrels) (BirdLife International,
2018a), hereafter collectively referred to as “petrels.”

Petrels are colonial, nesting in cavities, crevices and burrows
predominantly on isolated and inaccessible islands; most visit
their colonies at night (Brooke, 2004a). These habits are
thought to be mainly an attempt to avoid predation and
piracy (Martin, 2017). These cryptic behaviors combined with
their relative small size and high mobility at sea make petrels

one of the most poorly known seabird groups, although
some shearwater species are well studied. Petrels are perfect
examples of slow species (Sæther and Bakke, 2000), exhibiting
extended chick rearing periods, low fecundity (single egg
clutch per breeding attempt), delayed maturity, long life
spans, high adult survival, strong philopatry, monogamy, and
long-term mate fidelity (Brooke, 2004a). They are highly
adapted to exploit the marine environment and to cope with
stable biological communities on breeding habitats (Brooke,
2004a). However, the exponential increase of the human
population has resulted in stress and habitat transformation
throughout natural petrel ecosystems. The poor conservation
status of many petrel species (BirdLife International, 2018a),
the importance of some as biodindicators (van Franeker and
Law, 2015) and their regular role as keystone species in
ecosystems (Brooke, 2004b) have resulted in many becoming
flagships for research and conservation by both professional and
citizen scientists.

Here, we take advantage of the experiences of seabird
scientists working on petrels all over the world to review
and synthesize threats that need to be addressed in future
research, identify information gaps, and propose the most
critical research needs to improve the conservation and
management of petrels (including shearwaters, diving petrels,
and storm-petrels).

MATERIALS AND METHODS

We follow the taxonomy of the International Union for
Conservation of Nature (IUCN) Red List of threatened
species (BirdLife International, 2018a). We based this review
on the 124 petrel species from three families of Order
Procellariiformes: Procellariidae (including diving petrels
Pelecanoides), Oceanitidae, and Hydrobatidae (BirdLife
International, 2018a) and on the expertise of 38 petrel
researchers from 34 institutions from 10 countries. We
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FIGURE 1 | The percentage of species categorized by IUCN threat category for birds (left; n = 11,126 species) and for petrels (right; Procellariidae, Oceanitidae, and
Hydrobatidae families; n = 124 species). Data from the IUCN Red List (BirdLife International, 2018a).

also used data from the BirdLife International Data Zone1

compiled and regularly updated by BirdLife Partners,
scientists, ornithologists, conservationists and birdwatchers.
Species are rated into the seven IUCN threat categories: Data
Deficient (DD), Least Concern (LC), Near Threatened (NT),
Vulnerable (VU), Endangered (EN), Critically Endangered
(CR), and Extinct (EX). VU, EN, and CR species are referred
to as threatened.

The assessment of threats followed the threat classification
scheme of the IUCN (2012). This scheme defines threats
as “the proximate human activities or processes that have
impacted, are impacting, or may impact the status of the taxon
being assessed. Direct threats are synonymous with sources
of stress and proximate pressures” (IUCN, 2012). Each of the
known threats were broken down into sections and written
by groups of two to seven experts, showcasing impacts and
potential solutions to the problems facing petrels worldwide.
We subdivided the threat category “Biological resource use”
into “bycatch” (stressor was “direct mortality by fisheries”),
“overfishing” (stressor was “indirect ecosystem effects” of
biological resource use, e.g., competition with fisheries or food
depletion, and availability of fishery discards), and “human
exploitation” (stressors were hunting, trapping, or harvesting).
The category “Invasive and other problematic species, genes, and

1http://www.datazone.birdlife.org

TABLE 1 | Impact scoring system of each threat for species following the
methodology of Garnett et al. (2018).

Scope/
severity

Very rapid
declines

Rapid
declines

Slow, significant
declines or
causing/could
cause fluctuations

Negligible
declines

Whole Very high High Medium Low

Majority Very high High Medium Low

Minority High Medium Medium Low

diseases” was partitioned into “invasive species,” “problematic
native species,” and “diseases”; and “light pollution” was split
from other forms of “pollution.” This gave a list of 12 threats:
(1) invasive species, (2) light pollution, (3) bycatch, (4) human
exploitation, (5) problematic native species, (6) climate change
and severe weather, (7) residential and commercial development,
(8) pollution, (9) disturbance, (10) energy production and
mining, (11) overfishing, and (12) diseases. These threats were
ordered in the text by the number of species affected according
to the BirdLife International database (Figure 2). Some sections
may overlap slightly given the multiple impacts of some activities.
BirdLife International staff (led by MPD and RM) assessed (1) the
timing of each threat (i.e., ongoing; past, likely to return; past,
unlikely to return; future); (2) threat extent or scope (i.e., the
proportion of the total population affected: minority; majority;
whole); and (3) threat severity (i.e., the rate of population decline
caused by the threat within its scope: Very rapid declines;
Rapid declines; Slow, significant declines; Negligible declines;
Causing/Could cause fluctuations) (IUCN, 2012). Finally, we
classified for each species the impact of each ongoing threat in
four levels based on scope and severity, from “very high” to “low”
(Table 1; Garnett et al., 2018). In addition, we comment on two
aspects we consider crucial for petrel conservation: improved
understanding of petrel biology and ecology, and the role of an
accurate taxonomy to develop taxon lists for conservation.

INVASIVE SPECIES

Invasive species are non-native organisms whose introduction
causes significant environmental harm. Invasive mammals are
the most harmful of all threats to petrels (Figure 2). For some
species, this threat is ongoing, high in scope and severity, and
causing very rapid population declines, affecting several species
across their entire range. Invasive mammals impact at least 78
petrel species, a critical contributing factor in all four species
classified as extinct or possibly extinct since 1500 (Large St
Helena Petrel Pterodroma rupinarum, Small St Helena Petrel
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FIGURE 2 | Threats to petrels sorted by the number of species affected according to BirdLife International (2018a).

Bulweria bifax, Jamaican Petrel P. caribbaea, and Guadalupe
Storm-Petrel Hydrobates macrodactylus) (BirdLife International,
2018a). Invasive mammals are present on 171 (55%) of the 313
breeding islands of the 42 species classified as threatened on
the IUCN Red List and 22 of those species occur with invasive
mammals across their entire breeding range (Spatz et al., 2014).

Predation by invasive mammals – including by mice, rats,
cats, pigs, and dogs – is a crucial threat, mainly where adult
mortality occurs, driving colony extirpations, population declines
and ultimately a higher risk of extinction. Rats (Rattus norvegicus,
R. rattus, and R. exulans) are the most widespread invasive
species affecting petrels (Figure 3), estimated to occur on 80%
of the world’s island groups (Atkinson, 1985). Rats can prey
on eggs, chicks, and adults, the relative severity depending on
the size classes of the petrel. Smaller burrow-nesting species
(<300 g) are most vulnerable (Jones et al., 2008), putting them
at high risk of extinction. House mice Mus musculus have only
recently been recognized as significant seabird predators – mainly
of chicks and seldom adults – typically on islands where they
are the only invasive mammal (Wanless et al., 2007; Caravaggi
et al., 2018). Mice currently threaten at least six endangered or
critically endangered petrel species. Cats Felis catus, both feral
and free-ranging, or domestic and subsidized by humans, can also
be significant predators of adult seabirds and chicks, including
multiple threatened species (Bonnaud et al., 2011; Figure 3).

Introduced herbivores, including lagomorphs and ungulates,
represent a threat primarily through destruction of breeding
habitat, including alteration or trampling of burrows, compaction
of soil, loss of vegetation leading to substrate instability and
erosion (both of which can cause mortality for birds in burrows),

or competition with petrels for burrows (Brodier et al., 2011;
Shaw et al., 2011). Ungulates and pigs can also depredate petrels
(Furness, 1988; Madeiros et al., 2012).

Invasive invertebrates, plants, and birds can also present
threats to petrel populations. Invasive tramp ants can be
particularly damaging, e.g., yellow crazy ants Anoplolepis
gracilipes on islets off Oahu leading to Wedge-tailed Shearwater
Ardenna pacifica nest abandonment, increased risk of chick
mortality and ultimately colony decline. Invasive plants can
threaten breeding habitat by changing vegetation structure,
limiting access to burrows, or entangling individuals leading
to injury or death, e.g., strawberry guavas Psidium cattleyanum
impacting Hawaiian Petrels P. sandwichensis (VanZandt et al.,
2014). Raptors introduced to islands have contributed to non-
native predation and mortality, such as Masked Owl Tyto
novaehollandiae predation on Little Shearwaters P. assimilis and
Black-winged Petrels Pterodroma nigripennis on Lord Howe
Island (Milledge, 2010), and Barn Owls Tyto furcata on multiple
petrel species in Hawaii (Raine et al., 2017).

Invasive species can also induce indirect threats on petrels
by affecting island ecosystems, including changes in community
composition or trophic interactions among introduced and
native species (Russell, 2011). An example is the case of invasive
mice, overwintering Burrowing Owls Athene cunicularia and
threatened Ashy Storm-Petrels Hydrobates homochroa on the
Farallon Islands.

One of the most effective conservation actions has been
the eradication of invasive species from islands. Worldwide,
eradications have been attempted on more than 1200 islands
with a success rate of 85%, thereby eliminating critical threats
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FIGURE 3 | Number of petrel species (Procellariidae, Oceanitidae, and Hydrobatidae families) affected by introduced mammalian species according to BirdLife
International database.

provided the islands remain free of threatening invasives (Jones
et al., 2016). A review of 151 populations of 69 seabird species,
including 28 petrel species, found a positive annual population
growth rate (λ) of 1.119 (1.161 for petrels) after successful
eradication (Brooke et al., 2018). The growth rate for many
petrel populations is faster than the biological limit, indicating
that recruitment of new breeders to these islands may play
a key role in the re-establishment of some populations after
an eradication (Harper, 1983; Smith et al., 2006; Bourgeois
et al., 2013). Some important petrel breeding islands are not
considered technically or socio-politically feasible to implement
eradications due to their size or human population. Alternative
conservation strategies to mitigate invasive mammals include
sub-island actions such as predator-proof fencing to create
predator-free environments, and localized control to reduce but
not eliminate threats (Spatz et al., 2017).

The most critical future action remains to tackle the threat of
invasive mammals, coupled with improved biosecurity for pest-
free islands (Spatz et al., 2014). In many jurisdictions this requires
strengthening of legislation and adequate resource allocation
for monitoring and enforcement. Eradicating invasive mammals
wherever technically feasible is key. Many suitable islands
occur in countries and territories with limited precedent (e.g.,
Peru), requiring partnerships with land management agencies
to undertake trial projects, and establish appropriate strategies
(Russell et al., 2017a).

Eradicating and controlling invasive mammals from human-
settled islands is a critical new conservation frontier for
protecting several globally threatened species (e.g., Isla Floreana
to protect Galapagos Petrel Pterodroma phaeopygia). This
requires consideration of new technical challenges, such as
commensal food waste, ensuring safe water supply, etc. As a
result, strong local partnerships are required to understand social
acceptability and alignment with community goals (Glen et al.,
2013; Russell et al., 2018). Continued research and application

of other restoration tools, including predator-proof fencing and
reintroductions, invasive plant management, habitat restoration,
and artificial nest construction, are required to protect remnant
colonies on islands, and to achieve gains in efficacy and
efficiency of pest control (Kappes and Jones, 2014). Improved
reporting of conservation outcomes and knowledge transfer
among seabird practitioners remains a key recommendation,
including workshops, exchange programs, online databases and
reporting in open access media. Investment in transformative
innovations are also required (Campbell et al., 2015), that may
allow unparalleled conservation goals such as Predator Free
New Zealand (Russell et al., 2015).

LIGHT POLLUTION

The use of artificial light at night, and the consequent increasing
light pollution, is a major threat to biodiversity worldwide (Kyba
et al., 2017). Light attraction and disorientation is a very well-
documented behavior of petrels across the world, including
coastal and insular communities (Reed et al., 1985; Troy et al.,
2013; Rodríguez et al., 2015b), ships at sea (Glass and Ryan, 2013),
and oil platforms (Montevecchi, 2006; Ronconi et al., 2015), with
fog and rainy conditions exacerbating impacts. The life history
of most petrel species includes underground nesting (95% of
species), nocturnal flight around the colony, and underwater
diving, with physiological and behavioral adaptation to low-
light conditions. Artificial lights can confuse them, resulting in
injury or mortality via collision with structures or the ground, or
becoming “grounded.” Grounded birds are unlikely to be able to
regain flight, and unless rescued, typically die from dehydration
or starvation, or are killed by cats and dogs or run over by cars
(Podolskyi et al., 1998; Rodríguez et al., 2012b, 2017c; Deppe
et al., 2017). Impacts are particularly evident on islands with
human communities, with fledglings affected during maiden
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flights to sea, especially during darker moon phases (Telfer et al.,
1987; Le Corre et al., 2002; Rodríguez and Rodríguez, 2009;
Fontaine et al., 2011; Rodríguez et al., 2014, 2015a).

Petrels are among the most at-risk seabirds from light
pollution; at least 56 petrel species are affected, including 24
globally threatened species (Rodríguez et al., 2017b). In many
cases, the light attraction is implicated in the long-term decline
of petrel populations and can result in the grounding of more
than thousands of individuals annually (Rodríguez et al., 2012c;
Gineste et al., 2016; Raine et al., 2017). The increase in the number
of grounded birds is often linked to an increase in light pollution
levels of coastal areas (Rodrigues et al., 2012; Troy et al., 2013).
Artificial light can not only affect birds breeding nearby but also
birds flying over lighted areas to colonies many kilometers away,
and even birds that have successfully fledged can be drawn back
in from the sea (Montevecchi, 2006; Rodríguez et al., 2014, 2015b;
Syposz et al., 2018).

Conservation actions include avoidance (turn off lights, part
night lighting) and minimization (limit number of lights, shield
lights, and prevent skyward light spill) during fledging periods
in high-risk areas (Reed et al., 1985). Rescue campaigns recover
a proportion of affected fledglings each year, though there
is little data on post-release survivorship. Priority actions for
future research include (1) testing avoidance and minimization
measures at affected sites via education, light ordinance and
enforcement, (2) investigating light characteristics (e.g., spectra
and intensity) to reduce threat (Reed, 1986; Rodríguez et al.,
2017a; Longcore et al., 2018), and (3) documenting rescued bird
fate to assess the merit and effectiveness of rescue programs.

BYCATCH

Fisheries bycatch (incidental mortality of non-target organisms in
fishing gear) causes more than 500,000 seabird deaths annually,
although this is expected to be a gross underestimate due
to poor reporting rates from many fisheries (Žydelis et al.,
2013). Procellariiformes are among the most caught groups,
particularly albatrosses, but medium-size and large petrels also
are affected, including several threatened species (Anderson et al.,
2011; Žydelis et al., 2013). Diving abilities, foraging and social
behavior, species size, and prey preferences are among the main
factors influencing bycatch risk. Medium to large species foraging
gregariously appear to be the most widely affected. The type
of gear and the particularities of each fishery are also critical
(Lewison et al., 2014). Demersal longline fisheries, which use
relatively small hooks and bait, may be particularly dangerous
for medium-sized petrels (Laneri et al., 2010; Cortés et al., 2017),
while pelagic longline fisheries also cause extensive bycatch,
mainly affecting medium-large-sized petrels (e.g., Macronectes
and Procellaria petrels) that swallow the larger hooks and bait
(Anderson et al., 2011; Yeh et al., 2013). Birds tend to get hooked
or entangled during line setting, when the line is sinking, with
the risk of bycatch increasing for deep diving species, as they can
reach the bait at greater depths farther from the vessel. Diving
species can facilitate access to non-diving seabirds, including
petrels, by retrieving baited hooks to the surface from depth

(Jiménez et al., 2012; Melvin et al., 2013, 2014). Gillnets can
also cause entanglements and mortality by drowning. This gear
type mainly affects proficient diving seabirds such as seaducks,
cormorants and auks, but some diving or scavenging petrels are
also caught incidentally (Žydelis et al., 2013). In trawl fisheries,
petrels mostly collide with cables attached to the trawl net, while
proficient divers (e.g., Puffinus and Ardenna shearwaters) may
also be caught in the net during setting or hauling (González-
Zevallos and Yorio, 2006; Sullivan et al., 2006, 2018; Maree
et al., 2014). However, mortalities from cable collisions are
difficult to quantify, leading to underestimates. Finally, there
is increasing evidence of shearwater bycatch by purse-seine
fisheries, particularly those targeting small pelagic fish. When
birds are attracted to the shoaling fish, they can be injured or
drowned during the closing and hauling of the net. Purse-seine
bycatch has been reported with proficient divers such as the
Balearic Shearwater Puffinus mauretanicus in Portugal, the Pink-
footed Shearwater Ardenna creatopus in Chile, and the Flesh-
flooted Shearwater Ardenna carneipes in Australia (Oliveira et al.,
2015; Baker and Hamilton, 2016; Suazo et al., 2017).

Estimates of bycatch scale up to the thousands for some
petrels, but population level effects are not as well-known
as for albatrosses. Because petrels are long-lived species and
their population dynamics are sensitive to changes in adult
survival, petrel bycatch must be regarded as a severe threat
(as for albatrosses). Recent evidence from the Mediterranean
indicates that bycatch is the main factor driving the decline
of the critically endangered Balearic Shearwater (45% of adult
mortality) (Genovart et al., 2016). Bycatch also has a strong
negative impact on Calonectris shearwaters demography, while
adult survival is negatively related to exposure to bycatch risk
(Ramos et al., 2012; Genovart et al., 2017, 2018). On the
other hand, bycatch may differentially affect individuals within
populations. Some studies show biases between sexes or age
classes (Gianuca et al., 2017; Cortés et al., 2018), and behavioral
traits of individual birds might also influence bycatch risk
(Patrick and Weimerskirch, 2014; Tuck et al., 2015).

Seabird bycatch can be significantly reduced by applying
operational and/or technical mitigation measures, some of which
can be applied to multiple gear types (ACAP, 2014). A widely
used operational measure is avoiding offal discharge or any
discards during setting and hauling operations to avoid attracting
scavenging seabirds. Night setting could reduce the bycatch
of species that mainly forage by day (Barry Baker and Wise,
2005; Cortés and González-Solís, 2018), although many petrels
present varying degrees of nocturnal foraging (Dias et al., 2012).
Technical measures such as bird scaring lines (tori or streamer
lines) and fast-sinking longlines also reduce bycatch significantly
(ACAP, 2017). Bird-scaring lines, widely used in longline and
trawl fisheries, exclude birds from the area astern of the vessel
where bycatch risk is greatest. Fast sinking longlines (with
attached or integrated weights) limit the time and distance
astern that birds can access baited hooks. An extreme case
is that of Chile, where demersal longlines were changed to a
heavily weighted vertical longline configuration, which reduced
bycatch to practically zero (Moreno et al., 2008). For pelagic
longlines, hook-shielding devices have proved effective (Sullivan
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et al., 2018). Gillnet bycatch poses the greatest challenge at
present, as few proven technical or operational measures have
been identified. So far acoustic deterrents (pingers), visual panels
and LEDs have been tested with varying results (Martin and
Crawford, 2015; Mangel et al., 2018).

A collaborative approach involving fishermen is essential to
mitigate bycatch. Their experience is highly valuable to develop
practical and effective mitigation measures, and their acceptance
is crucial for successful implementation (Wanless and Maree,
2014). Best practice mitigation measures should be safe, simple,
easy to implement, technically feasible, cost-effective, and where
possible should not reduce fishing profits (ACAP, 2014, 2017;
Rouxel and Montevecchi, 2018). Moreover, such measures should
not increase the bycatch of other marine biota. Experiences such
as those of the Commission for the Conservation of Antarctic
Marine Living Resources (CCAMLR) show how the problem may
be tackled effectively with minimal effects in the fishing activity.
Implementation of mandatory technical mitigation measures and
seasonal closures over the past two decades reduced seabird
bycatch from several thousands to tens of seabirds annually in
most CCAMLR longline fisheries (Waugh et al., 2008).

Despite the attention that seabird bycatch has received in
recent decades, there are still several knowledge gaps to address
(Kirby and Ward, 2014). First, information on the extent of
bycatch remains patchy due to the absence of onboard observers
or data collection protocols in most fisheries. This gap is greater
in artisanal fisheries, where a large number of vessels and the
diversity of practices make systematic data gathering extremely
difficult (Lewison et al., 2014). Improved observer program
coverage and protocols, combined with self-reporting protocols
and electronic monitoring (e.g., video monitoring) are critical
to solving bycatch. Second, few studies are underway to explore
the link between bycatch and petrel demography, which is a
necessary step to understand the problem and to take the most
appropriate conservation actions. Monitoring programs on the
breeding performance of affected species should be promoted,
as should monitoring initiatives to collect information on dead
birds to assess bycatch mortality relative to other causes of
mortality, as well as to understand how different components
of the population are affected. Third, the adoption of mitigation
measures requires raising awareness and building trust among
fishermen to develop the most appropriate solution on a case-by-
case basis. Developing toolkits of proven measures, from which
fishermen choose the most appropriate combination for them,
could be the most direct path to reduction of petrel mortality in
world fisheries (Melvin et al., 2019).

HUMAN EXPLOITATION

Humans have been hunting petrels for food for centuries
(Anderson, 1996), with devastating consequences for some
species (e.g., Rando and Alcover, 2008). Breeding petrels are
particularly vulnerable to harvesting as they typically breed
synchronously and in large colonies, where adults, eggs, and
chicks can easily be accessed (Hunter et al., 2000). Many petrels
were also deliberately caught at sea for human consumption, and

this practice continues in some areas. Although most hunting
practices have ended, either due to regulation or the extinction
of the species, some species may remain at risk.

Species such as the Short-tailed Ardenna tenuirostris and Sooty
Shearwaters A. grisea are nowadays harvested. Approximately
360,000 ± 40,000 Sooty Shearwater chicks are estimated to be
taken annually around Stewart Island/Rakiura, New Zealand, for
commercial or personal use (Newman et al., 2009). Harvesting
of Short-tailed Shearwater is managed for ‘recreational’ (private)
and ‘commercial’ (indigenous) exploitation in Tasmania, with
52,000 ± 13,400 chicks taken annually for recreational use in the
2009–2017 period (DPIPWE, 2014, 2018). There are no public
data on indigenous harvest, and the extent of chick poaching is
unknown (Skira et al., 1996).

In the Atlantic Ocean, harvesting of petrels has occurred
for generations at the Azores, Canary Islands and Selvagem
Grande (Granadeiro et al., 2006; Lopez-Darias et al., 2011) and at
the Tristan islands (Richardson, 1984), although currently only
Great Shearwaters Ardenna gravis can be legally exploited. In
the northeast Atlantic, the hunt was historically focused on the
most abundant species, Cory’s Shearwater Calonectris borealis,
and direct persecution may have been the major cause of a 90%
reduction in the population size until the 1970s, when hunting
was banned (Granadeiro et al., 2006; Lopez-Darias et al., 2011).
Illegal hunting of this species still occurs on the Canary Islands
to an unknown extent (Lopez-Darias et al., 2011). Unquantified
numbers of Great and Sooty Shearwaters along the Atlantic coast
of Canada and of Scopoli’s and Yelkouan Shearwaters Puffinus
yelkouan in Malta are also illegally shot from boats (Merkel and
Barry, 2008; BirdLife International, 2018a).

Regulations on quotas, as those from New Zealand, Australia,
or the Arctic, have probably helped to reduce extinction risk.
Future research must prioritize quantifying the impact of
poaching relative to other threats, particularly on islands with
small populations.

PROBLEMATIC NATIVE SPECIES

Under natural conditions, interactions between native species
and petrels should not be a conservation challenge. However,
anthropogenic impacts can alter native species populations
leading to effects of conservation concern. The best documented
interactions types are predation on, competition with, or
modification of the nesting habitat of petrels. Problematic native
species have been mentioned as potential or real threats for
about 20 petrel species (16 out of them threatened; BirdLife
International, 2018a).

Like invasive species, native species can prey on petrels.
Populations of several gull species (Larus spp.) are increasing
due to anthropogenic factors (e.g., food supplementation),
leading to higher predation pressure on petrels and their eggs
and chicks (Vidal et al., 1998). For endangered Ashy Storm-
Petrels, the Western Gull Larus occidentalis seems to be at
least partly responsible for keeping numbers low at South
Farallon, Santa Barbara, and Anacapa Islands (Ainley, 1995;
Chandler et al., 2016). Heavy predation pressure by large
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Larus gulls is thought to be contributing to declines of some
Leach’s Storm-Petrel populations in Atlantic Canada (Robertson
et al., 2006). Paradoxically, however, regional populations of
large gulls have also declined over the last several decades
coincident with fishery closures and consequent removal of
discards (Regular et al., 2013). In the Azores, some adults of
the vulnerable Monteiro’s Storm-Petrel Hydrobates monteiroi are
killed by resident Yellow-legged Gulls Larus michahellis (Oliveira,
2016). This gull species also preys on vulnerable Deserta
Petrels Pterodroma deserta (IUCN, 2018a). Some individual gulls
specialize in feeding on petrels. On Selvagem Islands, where its
declaration as a reserve has led to increases in petrel numbers
(see Human exploitation), a small gull colony (<20 pairs)
consumes up to five petrel species (60% of the consumed biomass;
Matias and Catry, 2010). Breeding habitat transformations can
also lead to changes in interspecific interactions including
predation. In the Mediterranean, the Yellow-legged Gull preys
on European Storm-Petrels Hydrobates pelagicus at higher rates
at sites illuminated by nearby coastal cities than sites facing
the sea, i.e., unaffected by coastal light pollution (Oro et al.,
2005). In this instance, after the selective culling of 16 specialized
gull individuals, storm-petrel survival and breeding success
increased by 16 and 23%, respectively (Sanz-Aguilar et al., 2009).
Another case of predation by native species on petrels regulated
by anthropogenic factors is from Farallon Islands, where the
presence of invasive mice provides a reliable food source for
migrating Burrowing Owls during autumn, which may encourage
more owls to overwinter. When mouse populations crash in
winter, Burrowing Owls switch prey to globally threatened Ashy
Storm-Petrels (Chandler et al., 2016).

The predation conducted by native or vagrant owls is
concerning for some fragile small populations of the smallest
petrel species. For example, resident Long-eared Owls Asio otus
kill up to 40 adult Monteiro’s Storm-petrels per year, which has
a population of 295–999 mature individuals (Bolton et al., 2008;
BirdLife International, 2018a). Extreme cases are associated with
vagrant individuals such as a single Snowy Owl Bubo scandiacus
which consumed 5% of endangered Bermuda Petrels Pterodroma
cahow before it was eradicated (Madeiros et al., 2012; BirdLife
International, 2018a), a Short-Eared Owl Asio flammeus which
fed almost exclusively on Monteiro’s Storm-Petrels killing 1–
2 individuals per night during 2 weeks on Praia islet, Azores
(Bried, 2003) or vagrant falcons Falco spp. which could extinguish
the threatened population of Macgillivray’s Prions Pachyptila
macgillivrayi at Saint Paul Island (Jiguet et al., 2007).

Competition among seabirds for nesting habitat is another
threat. Although the particular nesting habitat preferences of
each petrel species helps to avoid burrow competition (Bourgeois
and Vidal, 2007; Troy et al., 2016), some species share nesting
habitat and fiercely compete for nesting sites. In such cases,
larger species tend to monopolize available burrows (Ramos
et al., 1997; Sullivan et al., 2000). Several storm-petrel species
have reduced breeding success because of the presence of
larger petrels (McClelland et al., 2008; Sato et al., 2010), and
Tahiti Pseudobulweria rostrata and Providence Petrel Pterodroma
solandri chicks are killed or ejected from burrows by Wedge-
tailed Shearwaters A. pacifica (Villard et al., 2006; Priddel et al.,

2010). The recovery of the Bermuda Petrel was initially hampered
by competition from White-tailed Tropicbirds Phaethon lepturus
for nest-sites until baffles were built in front of burrows (Madeiros
et al., 2012; BirdLife International, 2018a) and Little Penguins
occasionally kill Gray-faced Petrels (Friesen et al., 2016).

Native non-seabird species can modify the nesting habitat of
petrels such as soil erosion by expanding populations of Antarctic
fur seal Arctocephalus gazella in the breeding habitat of the
White-chinned Petrels Procellaria aequinoctialis at South Georgia
(Berrow et al., 2000).

Much of the available information on direct predation or
competition for burrows by native species is anecdotal, with
scant information for most species. Current evidence suggests
that native species have little effect on breeding success, except
for some highly threatened species (Gummer et al., 2015) or
in some exceptional circumstances under unnatural conditions
(Pierce, 1998). Identifying problematic species and assessing
their demographic impacts on petrels is a priority. Until such
information is obtained and following a precautionary principle,
some measures with low impact to other species could be
taken. For example, burrow competition and predation could be
reduced for small petrels by installing artificial nests that exclude
larger species (Libois et al., 2012; Gummer et al., 2015). This
action has increased productivity of Monteiro’s and European
Storm-Petrels (Bolton et al., 2004; Libois et al., 2012). For species
returning later than competitors to breeding grounds, blocking
burrows early in the season could ensure availability of burrows
to threatened species that return later to shared colonies (Gardner
and Wilson, 1999).

CLIMATE CHANGE AND SEVERE
WEATHER

The effects of climate change on petrels involve multiple
pathways and can be direct, through increases in
thermoregulation costs or loss of habitat, or indirect, through
changes in the structure and functioning of marine (and
terrestrial) ecosystems ultimately affecting food availability
(Ramírez et al., 2016) and predation (McClelland et al., 2018).

Increasing sea or air temperatures have generally detrimental
consequences for petrels (Figure 4). Warm temperatures are
often associated with poorer body condition (Peck et al., 2004;
Connan et al., 2008; Riou et al., 2011) and lower breeding
success (Inchausti et al., 2003; Nevoux and Barbraud, 2006).
Negative effects on survival and population size have also
been reported (Veit et al., 1997; Barbraud and Weimerskirch,
2003; Jenouvrier et al., 2003). However, some studies have
reported positive relationships between increasing temperatures
and petrel vital rates or abundance (Thompson and Ollason,
2001; Jenouvrier et al., 2005; Slater and Byrd, 2009; Soldatini
et al., 2014). The effects of warming temperature are often
assessed using large-scale climate indices (Supplementary
Material). In such cases, the relationships between changes
in these large-scale indices and local temperatures are not
always straightforward (Descamps et al., 2016), making their
interpretation difficult (Oro, 2014). Sea-ice loss in polar
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FIGURE 4 | Reported seabird responses to climate driven environmental changes. We compiled 64 studies (Supplementary Material) reporting up to 176 cases in
which petrel and shearwater species responded (any kind of response, 144) or not (32) to environmental features such as air or sea temperatures, large-scale
climatic indexes, sea-level or extreme weather events (A). These responses were grouped geographically to elucidate the spatial heterogeneity in the distribution of
reported responses (B). Responses that could be directly interpreted as a benefit or a threat for seabirds (e.g., changes in breeding performance or survival rates;
but not in breeding phenology or distribution) when facing climate driven environmental changes (e.g., increasing temperatures and extreme weather events or
decreasing extents of sea-ice; but not large-scale climatic indices) were selected and grouped geographically to show the spatially explicit effects of climate change
on petrel and shearwater populations; colored background represents the pixel-basis long-term (1983–2014) trend in sea surface temperature
(SST) (Ramírez et al., 2017a) (C).

environments is a direct consequence of climate warming that
has important consequences for polar ecosystems (Post et al.,
2013; Descamps et al., 2017; Ramírez et al., 2017b). The
effects of sea-ice decline on petrels appear quite different than
those of increasing temperatures (Supplementary Material).
Overall, the consequences of climate warming on petrels are
complex and can vary among species and even populations
within species. They may be a function of, for example,
the life-history trait (Barbraud and Weimerskirch, 2001), the
period of the breeding cycle (Jenouvrier et al., 2005; Olivier
et al., 2005; Waugh et al., 2015) or the rate of warming
(Mauck et al., 2018).

Increasing extreme events represent one of the most imposing
aspects of climate change that can affect petrels (Jentsch et al.,
2007). Few studies have quantified their impacts on seabird
individuals and populations but it seems clear that extreme
events like snow storms or hurricanes strongly affect the survival,
reproduction and movements of petrels (Franeker et al., 2001;
Quillfeldt, 2001; Descamps et al., 2015). Some of these impacts
may be exacerbated by ongoing sea-level rise for petrels that
nest in low lying coastal zones. Rising sea level will reduce the

availability of suitable breeding sites (Reynolds et al., 2015) that
could also be susceptible to flooding associated with storms
and hurricanes (Cadiou et al., 2010; Madeiros et al., 2012).
In fact, 17 threatened petrel species are at high or medium
risk of inundation due to sea level rise at their breeding sites
(Spatz et al., 2017).

Ocean warming and acidification can affect trophic pathways
from primary producers to upper-trophic levels through
simplification of marine communities or changes in the
abundance of prey (Burrows et al., 2011; García Molinos et al.,
2015). Such climate-driven changes in seabirds’ diets, and their
ultimate consequences on population parameters (e.g., breeding
performance) are very often assumed but rarely confirmed
(Connan et al., 2008).

Studies of the impact of climate change on seabirds are
geographically biased toward higher latitudes (Poloczanska
et al., 2016; Keogan et al., 2018; see also Figure 4 and
Supplementary Material) and little is known about tropical
species. Even in polar regions, there is a clear bias toward
specific areas (e.g., Adélie Land in Antarctica) that are not
necessarily the ones where climate change has been the most

Frontiers in Marine Science | www.frontiersin.org 9 March 2019 | Volume 6 | Article 94

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00094 March 15, 2019 Time: 16:47 # 10

Rodríguez et al. Conservation Research on Petrels and Shearwaters

pronounced. Further studies should also address the role of
intrinsic sources of variation in petrel responses to climate
change such as age, sex, breeding state, or physical condition
(Oro, 2014). Together with an understanding of the at-sea
ecology and spatial distribution of seabirds (particularly for the
smaller or rarer species), there is an urgent need to unravel
the mechanisms linking climate and vital rates to identify
the right spatial and temporal scale of climate effects and
their link with changes in food availability. Acknowledging
the non-linearity in climate change effects, their potential
long-lasting consequences (i.e., carry-over effects) and their
interactions with additional stressors (Darling and Côté,
2008; Montoya et al., 2017) is also necessary. Maintaining
and promoting long-term studies is key to fill most of
these knowledge gaps.

Climate change seems unlikely that it will stop or slow
down in the coming decades. However, even if there is no real
conservation measure to dampen the effects of climate change
at the scale of a species or population, the reduction of human
stressors operating locally (e.g., bycatch, invasive species or
human-induced loss of breeding habitats) has been proposed as
a more achievable way of retaining ecosystems within a “safe
operating space” (Sensu; Rockström et al., 2009), where they
remain resilient to ongoing climate change (Roberts et al., 2017;
Ramírez et al., 2018).

RESIDENTIAL AND COMMERCIAL
DEVELOPMENT

As human population continues to increase, land conversion
can seriously impact numerous petrel species. The most obvious
threat is the direct destruction of breeding habitat, particularly
in coastal areas. Coastal habitats are desirable locations for
residential communities, are more densely populated, and are
developed at a faster rate than hinterland areas (Small and
Nicholls, 2003; Neumann et al., 2015). These coastal sites also
provide critical nesting habitat for many petrels. Urbanization
can completely destroy colonies – either directly killing nesting
birds in the process or significantly reducing breeding ranges.
Breeding habitat also can be degraded or disturbed simply
by being in close proximity to housing and commercial units
and their associated artificial lighting, resulting in reduced
reproductive success and lower survival rates.

Development also requires significant infrastructure; road
systems, power plants, powerline networks, wind farms, oil
platforms, communication towers, which leads to increased light
pollution and noise pollution. Powerline networks and other
tall structures increase collision risk – particularly if these span
flyways from the sea to breeding colonies. Nocturnal seabirds
are particularly at risk, as powerlines are difficult to detect at
night. This is a poorly studied problem, but the impacts of
powerline collisions on seabirds can be high enough to impact
at a population-level (Raine et al., 2017). Often this is a hidden
impact, as dead birds can be very hard to find, particularly
as the terrain under lines is often not realistically searchable,
may be scavenged and may not die immediately under the lines

but could die of injuries kilometers away (Costantini et al.,
2017). Quantitative approaches are needed to better estimate total
mortality associated with powerlines (Costantini et al., 2017),
but mitigative measures, such as buried lines, lowering and
modifying existing lines, shielding by trees, rescue campaigns,
and reduction of light attraction should be implemented to
reduce risks (Rodríguez et al., 2017b).

Philopatric petrels could become victims of other threats, such
as light pollution or introduced predators (see previous sections),
once their natal or breeding grounds have been converted.
Noise pollution is another consequence of urbanization and
development. Its effects on petrels have not been assessed,
though it has been suggested that can attract some individuals
to dangerous areas (Miles et al., 2010).

Lastly, residential development will also result in a
concomitant increase in the presence of introduced predators.
These can be free-ranging house pets, unwanted feral animals,
feral colonies fed by humans, or animals raised as livestock.
The proximity of residential or commercial developments
to petrel colonies can therefore also have a knock-on
impact by introducing large numbers of these predators
into the environment.

POLLUTION

Petrels are at risk to many types of marine pollution.
Here we consider plastic, contaminant, oil, and radio-active
sources of pollution.

Plastic Pollution – Ingestion and
Entanglement
A candlestick in the gut of a Wilson’s Storm-Petrel Oceanites
oceanicus was the first report of a seabird ingesting a man-
made item (Couch, 1838). Since then hundreds of seabird species
have been reported to ingest marine litter (Kühn et al., 2015).
While petrels are vulnerable to plastic entanglement in ghost nets
such as fishing gear or other large debris items (Ryan, 2018);
they are particularly vulnerable to ingesting plastics because
they feed at the surface where plastics float, and they retain
ingested plastics for long periods due to the constricted structure
of their pyloric valve (Ryan, 2015). Indeed the only official
seabird monitoring program for marine plastics focuses on
Northern Fulmars Fulmarus glacialis as a biological indicator
in the North Sea (van Franeker et al., 2011; Provencher et al.,
2017), although many other long-term studies collect data on
the issue. Intergenerational transfer of plastics among seabirds
have been demonstrated in petrels, illustrating how seabirds
may be affected by marine plastics (Ryan, 1988; Carey, 2011a;
Rodríguez et al., 2012a). Plastic ingestion could damage or
block the digestive tract, reduce stomach volume and transfer
chemical compounds both endogenous or absorbed while plastic
items drifts at sea (Tanaka et al., 2015; Provencher et al., 2018).
Petrels are particularly at risk from plastic-related toxins because
they retain plastics in their stomach for protracted periods,
giving the chemicals sufficient time to transfer into the birds
(Tanaka et al., 2015). However, population level impacts from
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plastics have yet to be shown. This may be a function of the
lack of long-term coordinated study efforts to date (Rochman
et al., 2016; Avery-Gomm et al., 2018), but impact probably is
only significant for individuals with large plastic loads, which
comprise only a small proportion of birds even among species
where virtually all individuals contain some ingested plastic
(Ryan, 2019).

While the removal of marine debris could reduce
entanglement mortality, plastic ingestion is a greater
conservation concern for petrels. Given that plastic items
larger than 5 mm account for more than 75% of plastic mass at
sea (Lebreton et al., 2018), removing them from the environment
now will have a major beneficial impact in future by preventing
them from degrading into microplastics. Unfortunately, no
coordinated international agreement on plastics exists to reduce
the release of plastics into the environment (Borrelle et al.,
2017). As clean-up efforts continue and plastic reduction policies
come into effect, assessing if and how these measures reduce the
impacts of plastics on vulnerable species such as petrels is critical
to evaluating these approaches.

Contaminants
Anthropogenic environmental contaminants, including heavy
metals and persistent organic pollutants (hereafter, POPs), can
be taken up by and cause negative impacts to marine wildlife.
Given that such contaminants have global distributions and some
contaminants, such as mercury and POPs, tend to bio-magnify up
food chains, petrels may be globally vulnerable to accumulating
high levels of contaminants (Mallory and Braune, 2012). Negative
effects vary by contaminant, species, and concentration but can
include behavioral changes, physical deformities, mortality, and
reduced reproductive success.

Contaminant accumulation (e.g., mercury, POPs,
organochlorine pesticides, PCBs, and perfluorinated compounds)
has been documented in several species (Braune et al., 2010;
Carravieri et al., 2018; Escoruela et al., 2018). Blévin et al.
(2013) reported mercury contamination in all 21 species of
sympatric breeding seabird species at Kerguelen, nine of which
are procellarids with documented bio-magnification according
to trophic position. Petrels can also be exposed to heavy
metals and contaminants via plastic ingestion (Tanaka et al.,
2015; Lavers and Bond, 2016; Provencher et al., 2018). Future
research priorities include evaluating: (1) the use of petrels as
bio-monitors of contaminant levels in marine systems and the
role of regulations on contaminant loads; (2) the implications
of variability in contaminant levels in tissues throughout their
annual cycle; and (3) the impact of contaminants, including
those leached from ingested plastic debris, on vital rates.

Oil Pollution
The episodic nature of oil spills, blowouts and discharges are
both chronic and acute in nature. Magnitude of oil impacts are
determined by spill locations, duration, and more importantly,
the spatial-temporal overlap with seasonal bird distributions
(Burger, 1993). Quantification of these impacts is difficult,
especially for pelagic birds where carcass detection and collection
can be challenging or impossible. Chronic oil spills kill tens

of thousands of seabirds each year in eastern Canada (Wiese
and Robertson, 2004), although petrels accounted for less than
0.4% of the carcasses collected during the Deep Water Horizon
blowout in the Gulf of Mexico (Haney et al., 2014b). Petrels are
largely unreported in other major oil spills worldwide (ICES,
2005; Munilla et al., 2011) although possibly owing to spill
location and timing but potentially due to undetected mortality.

Birds that survive initial oiling are vulnerable to hypothermia
because of a decline in the waterproof properties of feathers when
oil clumps and sticks to feathers. A reduction in body condition
and reduced foraging opportunities can result in dehydration and
mobilization of energy stores leading to starvation (Crawford
et al., 2000). Birds that survive may also attempt to preen
oil off, resulting in significant ingestion leading to a series of
oil-induced diseases, such as aspergillosis, cachexia, haemolytic
anemia, ulceration of the stomach, and immuno-suppressant
effects (Crawford et al., 2000). In addition, indirect effects on
habitat and prey could be severe (Zabala et al., 2011).

Assessment of oil spill impacts will require better estimates of
at-sea distribution and abundance of petrel species which can be
used in exposure probability models (Wilhelm et al., 2007; Haney
et al., 2014a,b); damage assessment models may be informed
further by telemetry data now being collected for some of the
smallest petrel species (Pollet et al., 2014) which are difficult to
detect and identify during surveys, especially during spills. Future
work on oil spills in the vicinity of colonies should consider
short- and medium-term management solutions and ecosystem
restoration to mitigate the impacts of oil spills on petrels. For
example, ship rats were eradicated from the Rakiura Titi Islands
in New Zealand as compensation for the Command Oil Spill off
California (McClelland et al., 2011).

Radioactivity
During the Fukushima nuclear disaster in 2011, reactor cooling
waters were diverted into the Pacific Ocean (Reardon, 2011;
Buesseler, 2014). Trans-equatorial migrants, such as Flesh-footed
Shearwaters foraging within the contaminated marine zone (Reid
et al., 2013) were likely exposed to radioactive isotopes, including
caesium-137, which has a 30 year half-life, may bio-accumulate
in seabird prey, and can be incorporated into animals’ bodies
via the dermis or ingestion (Buesseler, 2014). The consequences
of radioactive isotopes incorporated into the food chain could
include reproductive failure, mutations, and stunted growth in
seabirds (Buesseler, 2014). However, no formal research has
been specifically conducted in petrels. Long-term monitoring is
needed to determine the extent of these contaminant burden
and if there are individual, sub-population or population-level
impacts for exposed birds.

DISTURBANCE

Human disturbance can have detrimental effects on wildlife
including petrels (Carney and Sydeman, 1999; Carey, 2009).
Given that petrels are highly pelagic seabirds, disturbance by
humans is more frequent on land at breeding areas. Thus, all
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evidence of human disturbance on petrels comes from breeding
colonies, mainly related with research or recreational activities.

Handling of eggs, chicks, and adults during research or
burrow access hatches can lead to negative effects on breeding
rates (Blackmer et al., 2004; Carey, 2009), although other
studies did not find such effects (Vertigan et al., 2012). For
example, manipulating the smaller species at egg stage could
result in clutch abandon. Even the presence of observers
during the hatching period can produce lower hatching and
breeding success, as observed in Northern Fulmars (Ollason and
Dunnet, 1980). Physiological effects have also been reported. Nest
manipulations and human approaches by a single person on foot
caused considerable increases in heart rates and modified energy
expenditure during incubation of surface-nesting Northern Giant
Petrels Macronectes halli (de Villiers et al., 2006).

In the Mediterranean, European Storm-Petrels were not
chronically stressed (measured by adrenocorticotropic hormone
levels) by the presence of tourist boats inside a tourist-exposed
breeding cave, but birds breeding in undisturbed caves could
be more susceptible to novel stressors (Soldatini et al., 2015).
Nestling mortality was higher in areas exposed to high visitor
pressure than remote areas at the Shetland Islands (Watson et al.,
2014). Noise pollution may have a short-term negative effect
on parental care and chick provisioning behavior of Scopoli’s
Shearwaters (Cianchetti-Benedetti et al., 2018a).

In comparison with other seabirds like penguins and
albatrosses, there are fewer field studies describing effects of
human disturbance on breeding biology and physiology of
petrels. Underground nesting behavior of petrels, which might
make them less susceptible to human disturbance owing to the
absence of direct visual contact, could explain the few studies
(Watson et al., 2014). Long-term studies on anthropogenic stress
will contribute to understanding the extent of consequences of
human activities on animal populations, especially those of rare
or endangered species (Carney and Sydeman, 1999; Carey, 2009).

ENERGY PRODUCTION AND MINING

Energy production and mining are highly lucrative industries
with potential to impact pelagic seabirds offshore and at colonies.
Direct impacts kill individuals, while indirect influences can
modify movement behavior and remove or alter foraging and
nesting habitats as detailed in previous sections.

Mining, Quarrying, and Other Terrestrial
Infrastructure
Loss or degradation of breeding habitat through mining and
quarrying is a threat for at least six IUCN Red-listed petrel
species; for three overall impact is assessed as medium. For
the endangered Peruvian Diving Petrel Pelecanoides garnotii,
which burrows in thick guano, guano extraction is thought
to have precipitated the massive historical declines along the
Chilean and Peruvian coasts, and the extraction continues today,
albeit at lower intensity (BirdLife International, 2018a). Nickel
mining occurs within current and former breeding locations
of the Tahiti Petrel, where feasibility of chick translocation

as a means of mitigating the impact of mining is being
investigated (BirdLife International, 2018a). For the critically
endangered Beck’s Petrel Pseudobulweria becki, locating nesting
colonies within the Bismarck Archipelago and Solomon Islands
is paramount, as mining, logging and agriculture are rapidly
removing forest nesting habitat (Bird et al., 2014). The impact
and numbers of affected species worldwide by other mining
operations is unknown. Permanent habitat loss likely precludes
mitigation strategies, so conservation efforts should identify
vulnerable colonies and limit development near these sites.

Offshore Oil and Gas
Impacts of offshore hydrocarbon development on seabirds have
been poorly studied and specific information related to effects
on petrels is extremely sparse, often anecdotal (Ronconi et al.,
2015). Impacts include mortality associated with attraction to and
collisions with platforms, lights and flares (Wiese et al., 2001;
Montevecchi, 2006), increased exposure to oil (Fraser et al., 2006;
Wilhelm et al., 2007), and potential changes to at-sea distribution
of birds using habitats around platforms and drilling rigs (Baird,
1990; Burke et al., 2012).

Attraction to artificial night-lighting associated with offshore
hydrocarbon platforms and ships is a major risk for petrels (see
Light pollution section). In the northwest Atlantic, Leach’s Storm-
Petrels Hydrobates leucorhous collide with and strand on offshore
platforms (Ellis et al., 2013), and mortality assessments associated
with attraction to both structure and flares is urgently needed
(Hedd et al., 2018). Light attraction on migration and wintering
grounds also requires study, e.g., in the oil and gas exploration
and production fields off North-West and West Africa which
provides important non-breeding habitat for several species
(Pollet et al., 2014; Grecian et al., 2016). In the Falkland Islands,
where there is a developing offshore hydrocarbon industry and
regionally significant populations of petrels, data gaps around the
distribution and movement of small petrels limit risk assessment
for this vulnerable group (Blockley and Tierney, 2017; Augé et al.,
2018). Best-practice recommendations include filling seasonal
data gaps for distribution and abundance of vulnerable species,
establishing monitoring and management plans at the outset of
industrial development, and deploying independent observers on
offshore platforms to quantify the occurrences and mortality of
seabirds (Burke et al., 2012; Ronconi et al., 2015; Blockley and
Tierney, 2017).

Oil and gas platforms and drill rigs also produce discharged
water containing hydrocarbons and greasy drilling fluids that
compromise seabird feather structure (O’Hara and Morandin,
2010), possibly contributing to cumulative mortality (Fraser
et al., 2006; Ellis et al., 2013). Mitigation of this mortality is
likely unfeasible for most platform operations, but cumulative
impacts should be considered with environmental impact
assessments and monitoring.

Renewable Energy
Marine and coastal renewable energy developments may also
represent threats to petrels. Overall, the potential impacts of
renewable energy installations on small petrels, whether positive
or negative, are poorly understood.
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Offshore wind farms may affect petrels directly via collision
and displacement (Garthe and Hüppop, 2004; Cook et al., 2018).
However, formal assessments conclude that impact risks are low
for petrels (Furness et al., 2013; Bradbury et al., 2014), partly
because of their low flight costs and flight altitudes below the arc
of most turbines. Such studies are restricted to a small number of
(mostly North-European) sites, therefore further work is needed
to quantify the potential and realized risk on shearwaters and
petrels over a much broader range of locations and species.

Land-based wind farms may also impact some species,
particularly those breeding at high altitudes or inland, as they
commute from terrestrial colonies to marine foraging areas.
Land-based wind turbines are among potential threats for
Newell’s Shearwater Puffinus newelli (BirdLife International,
2018a). For all species, the impact of collisions is either unknown
or assessed as negligible-low.

Wave-powered energy installations have extremely low
collision and displacement potential for flying birds, but are
a direct collision risk to diving species (Grecian et al., 2010).
Currently, most wave-powered devices are located in shallow
coastal waters, whereas petrels frequently forage in pelagic waters,
meaning minimal risks of impact. Research could, however,
be targeted on understanding the diving behavior of some
coastal small tubenoses in areas where wave-powered devices
may be constructed.

Offshore wind farms and wave-powered energy installations
may also indirectly impact petrels via changes in ocean habitat
and foraging conditions. These processes are not well understood,
but available research suggests that such indirect effects are
beneficial (Inger et al., 2009). For instance, wind farms might
act as de facto Marine Protected Areas (Campbell et al.,
2014) and petrels could benefit from such effects, but formal
research is lacking.

At-sea distribution during the breeding season, and
particularly the non-breeding season, is poorly known for
many species, and consequently so is our ability to assess spatial
risk from the traditional (oil and gas) and renewable (wind,
tidal) energy sectors. Current technology allows both fine-scale
and year-round tracking of even the smallest species. Filling
the research gaps about petrel seasonal marine distribution will
improve our ability to assess potential impacts and should be a
focus moving forward.

OVERFISHING

Food Depletion
Food depletion herein is considered to be the adverse
consequence of human extractive activities (fisheries)
influencing prey availability by direct exploitation with an
implicit competition between fisheries and seabirds for forage
fish (pelagic fish, crustaceans, and cephalopods) (Furness, 2006;
Cury et al., 2011; Grémillet et al., 2018).

Among threatened species, two endangered (Peruvian diving-
petrel and Hutton’s Shearwater Puffinus huttoni) and one
critically endangered species (Balearic Shearwater) have been
identified to be affected following IUCN assessments. There is

evidence of the relationship between forage fish availability and
breeding success in some species (Louzao et al., 2006). Prey
reduction could adversely affect breeding success (Bourgeois
and Vidal, 2008; Sommer et al., 2009) and species’ survival
through increasing mortality from incidental bycatch. Low food
availability may increase attraction to vessels, and thus, increase
bycatch (Laneri et al., 2010; Soriano-Redondo et al., 2016).

Fishing activities can also affect petrel populations by reducing
pelagic marine predator populations (e.g., Thunnus spp.) and
therefore reducing their feeding opportunities, as tuna drive
pelagic fishes to the ocean surface making them available
to foraging seabirds. Only one endangered species (Newell’s
Shearwater) has been shown to be affected by the removal of
subsurface predators, through an increase of foraging effort at
sea (Mitchell et al., 2005), although few studies have properly
addressed this issue.

For most petrels, there is no evidence of the (in)direct
effects of food depletion. Understanding the processes by which
competition with fisheries may affect seabird foraging ecology
and life-history traits are essential to quantify the interactions and
impacts (Bertrand et al., 2012).

Proposed conservation actions could be directed to promote
sustainable fishery management by studying both the forage fish
and tuna populations to assess the degree of (over-)exploitation,
and thus potentially limiting fish catches to secure prey
availability and feeding opportunities. Fisheries could be also
limited within specific seabird foraging grounds to secure prey
availability in these localized areas through adaptive marine
protected areas (Bertrand et al., 2012; Sherley et al., 2018).
Other research actions should be directed to assess the impact
of food depletion on the foraging ecology, breeding performance
and survival by implementing long-term population monitoring
(Arcos, 2011; Karris et al., 2018).

Discards
Discards provide important food for petrels, with the potential
to support high numbers of scavengers, influencing movement
and demography. Global fisheries produce ∼10 million tons of
discards each year (Zeller et al., 2018), providing an important
energetic subsidy for some species (Bicknell et al., 2013; Oro
et al., 2013). Discards in the North Sea potentially supported
∼3.2 million Northern Fulmars annually during the 1990s
(Garthe et al., 1996). Even Critically Endangered species such
as the Balearic Shearwater may make extensive use of this
resource, amounting up to 40% of their energy requirements
(Arcos and Oro, 2002), which is likely reinforced by the
overexploitation of their natural prey. Discard volumes are
decreasing globally (Zeller et al., 2018), with the potential to
impact upon currently dependent species, at least in the short-
term (Genovart et al., 2018).

Discard availability can shape shearwater movement ecology
when trawling activity provides a predictable foraging resource
every weekday (Bartumeus et al., 2010). Northern Fulmars alter
their at-sea movements even when they are as far as 35 km
from a fishing boat (Pirotta et al., 2018). Furthermore, discard
availability can alter seabird life-history traits (Bicknell et al.,
2013), such as inter-annual variation in breeding performance
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(Louzao et al., 2006) or survival due to seabird interactions
with multiple fishing gears. In the absence of discarding,
Scopoli’s Shearwaters might switch from trawlers that generate
considerable discards (with minimal bycatch) to long-liners
which have a higher bycatch risk (Laneri et al., 2010; Soriano-
Redondo et al., 2016; Cianchetti-Benedetti et al., 2018b). Such
broad-scale impacts on seabird movement and bycatch risk are
important in the context of understanding individuals’ behaviors,
and in terms of marine spatial planning and conservation.

While most work on discard use by petrels is focussed on
breeding birds, fisheries waste may also be important during non-
breeding periods (Meier et al., 2017). Understanding fisheries
interactions during the non-breeding period is important as this
period typically represents >60% of the annual cycle. Further
research is required to determine the extent to which movement
of other species throughout the annual cycle is influenced and
in what manner by fisheries. Only a limited understanding of
the extent to which scavenging varies among and within species
is currently available. A review of species-specific and regional
differences in discard use is required to better understand the
incidence and implications of discard use.

DISEASES

Although disease emergence is recognized as a major threat for
conservation, current knowledge on the ecology, epidemiology,
and evolution, of infectious diseases in petrels, remains
very limited. Transmission (both direct and vector-borne) of
bacteria and viruses has been documented in other species of
Procellariiformes, with sometimes devastating effects on the
reproductive success of endangered species, e.g., Pasteurella
multocida – the avian cholera causative agent – in Yellow-
nosed albatrosses Thalassarche carteri (Jaeger et al., 2018). In
petrels, Puffinosis has been recorded in Manx Shearwater Puffinus
puffinus more than 30 years ago (Brooke, 2013), but the drivers of
pathogen transmission are yet to be clearly determined. Negative
effects associated with petrel infestation by ticks and other blood-
parasites would also require further investigation (Dietrich et al.,
2011). Studies on the mechanisms involved in transmission
dynamics (e.g., population structure, environmental factors), but
also on host-pathogen and pathogen-pathogen interactions (e.g.,
host susceptibility, co-infections with synergistic or antagonistic
interactions) are required to fully assess the extent of pathogens
and parasite transmission in petrels, and their consequences
on conservation.

GENERAL BIOLOGY KNOWLEDGE

Effective conservation actions and assessments require well-
documented knowledge on breeding biology, habitat use, as well
as on population trends of the species that we aim to conserve
or use as environmental indicators of the marine ecosystem.
These specific fields of research are not often addressed for
many petrel species, including both knowledge acquired on
land in colonies and knowledge acquired at-sea during foraging

trips, migration, and pelagic distribution. Indeed, despite a
few extensive monographs on the petrels’ breeding biology
(Warham, 1990, 1996; Brooke, 2004a), there are still major gaps
in the aforementioned areas of research for many species. For
example, only a few petrels are currently considered as well-
known species: Cory’s Shearwater being the most studied species
among the petrels, and Northern Fulmar (Fisher, 1952), Manx
Shearwater (Brooke, 2013), and European Storm-Petrel (Lockley,
1983) providing the few specific monographs currently available.
Therefore, we review here the current knowledge gaps in the
breeding biology, habitat requirements, population size, and
trends that could help in understanding the current conservation
status of petrels and shearwaters.

Difficulties in Investigating Petrels on
Land
The biology and ecology of petrels and shearwaters, especially the
smaller species, can be challenging to study due to their specific
behavior and nesting habits. First, some of these species are
very sensitive to handling, such as most storm-petrels and small
shearwaters, for which handling adults at specific time periods
(e.g., incubation) can result in nest abandonment (Carey, 2011b).
Second, most species usually visit their colonies exclusively at
night, with only about 15% of petrel species attending their
colony during daylight. Third, they often nest underground, in
deep and inaccessible burrows, some of them excavated in soft
soils, including sand. Fourth, they breed in remote locations,
such as offshore islands, island summits or inaccessible cliffs.
Thus, reaching burrows or colonies is sometimes difficult, e.g.,
tropical cliff-nesting petrels such as the Black-capped Petrel
(Jodice et al., 2016). Indeed, colonies of, at least, eight species of
petrels are only partly known: Elliot’s (or White-vented) Storm-
Petrel Oceanites gracilis, Pincoya Storm-Petrel O. pincoyae,
New Zealand Storm-Petrel Fregetta maoriana, Hornby’s Storm-
Petrel Hydrobates hornbyi, Heinroth’s Shearwater Puffinus
heinrothi, Fiji Petrel Pseudobulweria macgillivrayi, Beck’s Petrel
Pseudobulweria beckii, and Jouanin’s petrel Bulweria fallax.
Until very recently, some species were even considered extinct
(Shirihai, 2008). Rediscovery of lost species could still be
possible, e.g., the Jamaican Petrel Pterodroma caribbaea and the
Guadalupe Storm-Petrel H. macrodactylus. Thus, the secretive
breeding habits of petrels, not only hinder accurate our
understanding of their breeding biology and their population
estimates (see below), but also the identification of nesting areas
and potential threats affecting these pelagic species on land.

Challenges to Understanding Ecology
at Sea
Recent advances in miniaturization of tracking devices (e.g.,
in light-level geolocators, accelerometers, GPSs, and PTT-
Argos devices) have provided detailed knowledge on the at-
sea distribution and the foraging ecology of many petrels
(Ramos et al., 2017; Hedd et al., 2018) as well as our
understanding of their behavioral flexibility to deal with a
changing environment (Dias et al., 2011). The number of
datasets collected for petrels increased exponentially between
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FIGURE 5 | (A) Cumulative number of datasets (i.e., data collected for a single species in a given colony and with a specific type of device – GPS, PTT-Argos or
GLS) collected between 1995 and 2018 (line), and cumulative number of species tracked during the same period (points). (B) Number of datasets per petrel groups
(black bars) and respective percentages of species (gray bars). Data held (April 2018) in the Seabird Tracking Database (BirdLife International, 2018b).

2005 and 2015 (BirdLife International, 2018b; Figure 5). In the
same period, we saw an increase of the number of tracked species
(Figure 5). Currently, the Seabird Tracking Database managed by
BirdLife International holds data for 46 species. However, caveats
remain for the spatial ecology of some of the rarest species as
well as the smallest ones, i.e., most storm-petrels, diving petrels
and some prions. From almost 500 datasets collected in the
Seabird Tracking Database for petrels and shearwaters, only eight
are for storm-petrels (Leach’s and Band-rumped Storm-Petrels).
A particular challenge is lack of information on juvenile survival
and biology at sea (Afán et al., 2019; Weimerskirch et al., 2019).
As tracking technology use is growing in small petrel species and
immatures, we foresee this data gap will be addressed, at least at
some extent, over the next 5 years.

Species distribution models (SDMs) can delineate habitat
preferences of a given population based on spatial, count and
tracking data (Guisan et al., 2013). SDMs enable researchers to
draw species suitability maps based on the habitat preferences of
certain populations. In this regard, important foraging grounds
and habitat use for a given species may not be identified
adequately by tracking a single (or a few) population(s), as
dispersed populations across international boundaries will likely
provide a more comprehensive picture of space/habitat use of
the species (Ramos et al., 2013). This information is certainly
needed to properly delineate key conservation areas and to
inform conservation planning in the vast marine ecosystem.
Finally, the use of intrinsic markers on the smallest species, such
as stable isotope analysis (SIA), can ascertain specific features of
their feeding and foraging ecology (Ramos and González-Solís,
2012). For instance, SIA of carbon (δ13C) and nitrogen (δ15N) on
specific feathers have unraveled the year-round feeding ecology
of the smallest seabirds breeding in the Atlantic Ocean (Quillfeldt
et al., 2005; Hedd and Montevecchi, 2006; Paiva et al., 2018).

Challenges to Count and Estimate
Population Size and Trends
Poor estimates limit our ability to accurately measure and report
on status and trends, though these parameters are essential
to develop conservation actions. Producing accurate estimates
of population sizes or trends has proven extremely difficult,
especially for nocturnal nest-burrowing seabirds (Sutherland and
Dann, 2012). This is mainly because most of these species (a)
breed in inaccessible colonies (e.g., cliffs) on remote islands,
(b) nest in deep burrows, cavities or screes, (c) have nocturnal
habits at breeding colonies, (d) share same breeding places with
other species (more than 12 species may breed on a single
island), and (e) have clumped colonial distributions so hard to
extrapolate. Therefore, ensuring, assessing and counting their
presence becomes difficult if not impossible (Pearson et al., 2013).
Census techniques rarely account for inaccurate detection and
habitat selection for nesting (Rayner et al., 2007; Whitehead et al.,
2014). Detectability of nocturnal burrow-nesting seabirds can
benefit from using both visual and acoustic detection (Barbraud
and Delord, 2006). Records of the vocal activity of seabirds
obtained from autonomous acoustic devices may be promising
tools to detect occurrences or estimate population sizes of
secretive species on remote islands, although such information
requires validation to determine its value as a measure of
abundance (Borker et al., 2014). Radar could be useful for
estimating distribution and population trends, particularly for
species breeding inland (Raine et al., 2017). Complementarily,
SDMs can allow estimating suitable habitat for nesting, and,
therefore, predicting nest density in a given area. Finally,
integrating and combining these techniques (i.e., correction
for detectability and SDMs) appears to be the best solution
for providing reliable estimates of distribution, abundance and
trends for these species (Oppel et al., 2014; Russell et al., 2017b).
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Next Priorities
The key priorities to fill the gap in our knowledge of petrel
biology include: (a) Identifying breeding localities of rare and
threatened species. This does not mean necessarily finding the
breeding colonies but at least the general breeding locations
(e.g., island, mountain), to evaluate the extent of the colony,
the approximate size and numbers of colonies, and their current
threats. Several species are currently data deficient (all are storm-
petrels). (b) Collecting data on at-sea distribution for less studied
taxa or populations. Though improving, our current knowledge
of the foraging ranges and distribution at sea is far from complete,
especially for the south Pacific taxa, and for the juveniles of
most species. (c) Standardized surveys to assess population trends.
Censuses could be based on visual and/or acoustic detections,
but they should be repeatable. (d) Searching for possibly extinct
petrels. Unsuccessful searches for Guadalupe Storm-Petrel as well
as Jamaican Petrel have already been conducted, but there is
still hope for finding them. For instance, evidence of Pterodroma
hasitata breeding on Jamaica has been found, so the survival of
P. caribbaea is possible (Shirihai et al., 2010).

Finally, it should be stressed that knowledge on the breeding
biology, especially for the rarest species, should not be targeted
at any cost and unnecessary disturbances should be avoided.
A sound evaluation of the costs and benefits of visiting breeding
colonies, excavating burrows, or fitting tracking devices should
be conducted for any threatened species before engaging in
such operations.

TAXONOMY

Taxonomy is tightly linked with conservation (Mace, 2004).
Species concepts are extensively debated (De Queiroz, 2007), and
so defining which populations should be recognized as distinct
taxa, and therefore added to and assessed on species lists, such
as the IUCN Red List and the Convention on International
Trade in Endangered Species (CITES), can be difficult. However,
this endeavor is necessary because ‘species’ are critical units
for wider conservation planning and legislation (Mace, 2004;
Ely et al., 2017).

The taxonomy of many petrels is still unresolved. The reasons
for obscure and confusing taxonomy result from systematic
decisions being based almost exclusively on morphological
characters (biometrics and coloration), and many petrel groups
are morphologically cryptic, i.e., similar in their external
appearance (Brooke, 2004a). Two major factors can limit
morphological change even between genetically divergent
populations: use of non-visual reproductive signals, and
constraints on morphology due to adaptation within a niche
(Bickford et al., 2007). Behavioral cues used by petrels for
reproductive isolation are mainly vocal, given that most species
are nocturnal on their breeding grounds, and so differences in
their calls are likely a better indicator of reproductive isolation
than differences in morphology (Bretagnolle, 1989, 1995;
Curé et al., 2010, 2016).

Procellariiformes have a well-developed sense of smell which
facilitates finding their way to specific colonies (Brooke, 2004a;

Gagliardo et al., 2013), and could therefore play a role in
philopatry. Strong philopatry reduces genetic mixing between
colonies and could also generate genetic divergence without
morphological change. Their keen olfaction also appears to be
used for individual recognition (Bonadonna, 2009; Bonadonna
and Sanz-Aguilar, 2012). So we could hypothesize a role for
scent in reproductive isolation, again without morphological
change. This idea is untested and would be difficult to apply
in experiments to determine levels of reproductive isolation
between colonies (Zidat et al., 2017).

Many seabird populations diverge genetically without the
presence of physical barriers to gene flow (Friesen, 2015).
Divergence is often driven by adaptation to foraging in different
ocean regimes, breeding phenology, and philopatry (Friesen
et al., 2007; Gómez-Díaz et al., 2009; Friesen, 2015; Taylor
et al., 2018). The lack of recognition that divergence can occur
without physical barriers to gene flow until relatively recently,
coupled with low morphological divergence, may have hindered
recognition of seabird species. Indeed, recent recognition of
cryptic species in petrels has flourished: for example C. borealis
(Zidat et al., 2017), H. monteiroi (Bolton et al., 2008), Pelecanoides
whenuahouensis (Fischer et al., 2018), and P. bannermani
(Kawakami et al., 2018).

Testing for direct indicators of reproductive isolation between
colonies of petrels, e.g., using playback experiments, is a good
way of investigating species boundaries under the biological
species concept (Bretagnolle, 1989; Bretagnolle and Lequette,
1990). However, these methods can be time consuming and
logistically difficult (Bolton, 2006). Such experiments can and
should continue to be carried out when possible. However, we
encourage both academic researchers and applied conservation
biologists to collect DNA samples of hard to sample and little
known petrels to collaborate with conservation geneticists, as
molecular investigation will be valuable for systematic and
conservation biology. The shrinking costs of high-throughput
DNA sequencing will continue to resolve the taxonomy of
cryptic petrel lineages, such as for example Monteiro’s Storm-
Petrel (Bolton et al., 2008), Bryan’s Shearwater Puffinus bryani
(Pyle et al., 2011), and the Gray-faced Petrel Pterodroma gouldi
(Wood et al., 2016).

A recent and ensuing debate about approaches to global
taxonomy, especially regarding conservation practices, is
bringing this issue to the forefront of the conservation priorities
(Garnett and Christidis, 2017; Hollingsworth, 2017; Lambertz,
2017; Thomson et al., 2018). With many articles calling for more
recognition, funding and training for taxonomic research (Mace,
2004; Ely et al., 2017), we hope to see a renewed vigor in the field
of systematics given its relevance for applied conservation.

SYNTHESIS

Effective conservation requires well documented knowledge
(Simberloff, 1998). However, the cryptic behavior of petrels at
breeding grounds (i.e., nocturnal colony visits, underground
nesting, remote, and inaccessible reproduction areas), their
small size, and their high mobility at sea hinder and, in some
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cases, prevent their study, management and conservation
(Brooke, 2018). The petrel use of vast areas of the ocean does
not help either, as it puts them under different regulations
of many national and international jurisdictions, and
boundaries (Lascelles et al., 2014; Harrison et al., 2018).
Thus, there are major knowledge gaps in many species’ basic
biology and our research is highly segregated by country
and species, usually biased to the richest countries and to

the most common, large body-sized species. A total of 16
out of 124 petrel species have unknown population status,
and six out them are threatened (BirdLife International,
2018a). Under this scenario, assessing the importance of
threats is subjective and probably biased by our knowledge
on species or threats. Despite all these difficulties, ranking
or prioritization lists have important implications for
conservation and management.

TABLE 2 | Measures and future research needs to reduce the severity of threats to petrels around the world.

Threat What can be done? Management What is needed? Research Reference

Invasive
species

Eradicate (or control) introduced species.
Exclude introduced species using fences.
Increase awareness of invasive species impacts
to reduce species introductions. Raise
awareness and liaise with animal right
movements

Increase acceptance of eradication and control
by policymakers and the public

Jones et al., 2016

Light pollution Turn off artificial lighting (or minimize its use).
Reduce light intensity. Adapt light sources to
avoid skyward emissions. Reduce or eliminate
blue emissions from LEDs spectra

Decrease impact on population. Increase
impact of mitigation measures, i.e., rescue
campaigns. Determine sensitivity to intensity,
spectra (wavelengths) and spatial distribution of
lights. Implement seasonal adjustments to light
use during fledging and migration periods

Rodríguez et al., 2017a,b;
Longcore et al., 2018

Bycatch Implement proper monitoring programs to
assess incidental catch in fishing gear: consider
different approaches, ideally combined (e.g.,
observers, logbooks, video and/or monitoring).
Develop educational programs for fishers. Raise
awareness and generate trust by collaborative
work among fishers and conservationists

Quantify bycatch in different types of fishing
gear. Assess mitigation gear modifications and
fishing and scaring techniques. Provide a toolkit
with multiple mitigation options, to encourage
fishers to use the most convenient option in
each situation

ACAP, 2014, 2017; Hedd et al., 2016; Tarzia
et al., 2017

Human
exploitation

Develop regulations and control. Raise
awareness in local communities

Assess illegal rates of hunting Lopez-Darias et al., 2011

Problematic
native species

Exclude larger species using specifically
designed artificial nests. Remove problem
individuals when proven necessary

Conduct long-term monitoring. Assess
population impacts of pressure from native
species

Climate change
and severe
weather

Support long-term research programs (e.g.,
population trends, breeding success, diet, and
foraging)

Assess impacts of climatic conditions on
biological traits (breeding success, trophic level,
and mass mortality events). Model future
projections

Residential and
commercial
development

Bury power lines (or shield by planting trees).
Minimize upward and lateral light emissions.
Restrict/ban development in sensitive areas

Quantify nesting habitat lost (or transformed)
and model future projections

Pollution Ban unnecessary use of plastic. Conduct
regular beach and marine cleanups. Develop
and implement prevention policies for spills and
acute events, including response plans. Raise
awareness and promote reduction, reutilization
and recycling

Investigate plastic ingestion impacts on
individuals and populations

Avery-Gomm et al., 2018

Disturbance Minimize disturbances at terrestrial and marine
protected areas

Estimate impacts of ecotourism in protected
areas and researcher disturbance

Energy
production and
mining

Use independent observers at energy facilities
to monitor impacts

Conduct systematic monitoring of seasonal
seabird occurrences and mortality at offshore
platforms and facilities

Burke et al., 2012

Overfishing Employ ecosystem-based fisheries
management

Estimate the forage fish and sub-surface
predator biomass required to sustain the
viability of petrel populations. Assess the
combined effect of overfishing and discard
reduction on petrel populations

Cury et al., 2011

General biology
of rare secretive
species

n/a Determine population sizes and breeding
parameters. Assess threats and relative impacts

BirdLife International, 2018a

Taxonomy n/a Clarify taxonomic status Friesen, 2015
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In typical long-lived species such as petrels, the most
pernicious threats must be those causing direct adult mortality.
Given the extreme vulnerability of petrels on land due to
their limited terrestrial locomotion, the introduction of invasive
mammalian predators seems to be their most severe threat,
occurring on over 50% of petrel breeding islands, impacting
at least 78 petrel species and being a key contributing factor
in the extinction of some petrel species (BirdLife International,
2018a). Other invasive species, such as invertebrates, plants,
birds, and non-predatory mammals, threaten petrel populations
by changing community composition, trophic interactions or
habitat (Russell et al., 2017a).

As human demands on seafood increases, fisheries-related
threats are expected to increase, even more if no correctional
actions are taken (Table 2). Bycatch mortality seems to be already
critical for some threatened medium-large species, although
more information is urgently required on smaller petrel species.
However, proper management could buffer the impact of the
increase of seafood demand (Moreno et al., 2008; Waugh et al.,
2008) and actions can be already put in practice to minimize it
(Table 2). In addition, food depletion by overfishing could have
also important consequences by reducing prey populations or
mutualist predators during fishing such as tunas or cetaceans.
Therefore, a better management of fisheries, with an ecosystem-
based approach, is essential for the sustainability of this activity
and the well-being of the marine ecosystem in the long term.

With human settlement on islands and the increase in
density and development, loss and alteration of breeding
habitat is expected to increase. Permanent habitat loss likely
precludes mitigation strategies, so conservation efforts should
identify vulnerable colonies and limit development near these
sites. One of the main alterations of petrel breeding habitat
is light pollution, which affects at least 56 petrel species
(Rodríguez et al., 2017b), although impact is low for many
of them (Figure 2). However, for some species with restricted
breeding grounds on small islands densely inhabited by
humans, this threat must be offset to reduce impacts on
population dynamics by the high light-induced mortality of
fledglings (Fontaine et al., 2011; Griesemer and Holmes, 2011;
Gineste et al., 2016).

Global threats such as climate change or plastic pollution
are impossible to address meaningfully without collaboration
and commitment at a global scale to achieve stabilization
of greenhouse gas concentrations in the atmosphere and
reduction in the amount of plastic produced and released
in the environment. Although our understanding is generally
limited with regards to their impact on petrel populations, at
least in the case of microplastics (Avery-Gomm et al., 2018),
it is likely that there will be population-level consequences
for many petrel species. Evidence indicates that climate
change may affect petrel survival or reproduction through
changes in the food chain (and thus prey availability) and
an increase in extreme weather events, while plastics can
cause mortality by ingestion and entanglement. Local or
national agencies could also enhance ecosystem resilience to
these global stressors by managing interacting stressors that
operate at local or medium-scales, e.g., fisheries or sources of

pollution (Ramírez et al., 2018). There is still a considerable
lack of knowledge regarding thresholds of petrel stressors,
and the manner in which these thresholds are lowered by
additional stressors. In this regard, long-term studies, monitoring
programs, and conservation plans will certainly improve our
understanding of the thresholds of interacting stressors and
the patterns and mechanisms by which these stressors are
impacting petrels.

An ambitious goal to reverse the population declines is
to address at least some of these six main threats (invasive
species, bycatch, overfishing, light pollution, climate change,
and plastic pollution). Tackling these main threats through
active efforts such as restoring island habitats (e.g., invasive
species removal, control and prevention), improving policies
and regulations at global and regional levels, and engaging local
communities in conservation efforts, will maximize opportunities
to reverse the population declines of most petrel species.
Raising awareness among general public will be crucial to
drive changes in political will. Until such global decisions are
collaboratively engaged by the international community, and
scientists find responses to critical research questions, many
actions can be already taken with the current knowledge
(Table 2). Meanwhile, the improvement of communication and
information exchanges between scientists and stakeholders are
essential to help develop effective conservation strategies and
activities to prevent petrel population declines and species
extinctions (Croxall et al., 2012). This effort has already
been enhanced by important knowledge sharing tools such
as the Seabird Tracking Database, the Threatened Island
Biodiversity Database, and the various IUCN databases (BirdLife
International, 2018a,b; IUCN, 2018b). In addition, the bio-
logging revolution, i.e., the miniaturization of tracking or logging
devices and the development of new ones, which has enabled
seabird researchers to answer questions that 20 years ago
would have been unanswerable (Brooke, 2018), will continue
to reveal the secret life of the most enigmatic, small-sized,
shy petrels in the near future. The clear message that emerges
from this review is the continued need for research and
monitoring to inform and motivate effective conservation at
the global level.
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