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Recent expansion in the capabilities of passive acoustic monitoring of sound-producing animals is providing ex-
pansive data sets inmany locations. These long-term data sets will allow the investigation of questions related to
the ecology of sound-producing animals on time scales ranging fromdiel and seasonal to inter-annual and decad-
al. Analyses of these data often span multiple analysts from various research groups over several years of effort
and, as a consequence, have begun to generate large amounts of scattered acousticmetadata. It has therefore be-
come imperative to standardize the types of metadata being generated. A critical aspect of being able to learn
from such large and varied acoustic data sets is providing consistent and transparent access that can enable
the integration of various analysis efforts. This is juxtaposedwith the need to include new information for specific
research questions that evolve over time. Hence, a method is proposed for organizing acoustic metadata that ad-
dresses many of the problems associated with the retention of metadata from large passive acoustic data sets.
A structure was developed for organizing acoustic metadata in a consistent manner, specifying required and op-
tional terms to describe acoustic information derived from a recording. A client-server database was created to
implement this data representation as a networked data service that can be accessed from several programming
languages. Support for data import fromawide variety of sources such as spreadsheets anddatabases is provided.
The implementation was extended to access Internet-available data products, permitting access to a variety of
environmental information types (e.g. sea surface temperature, sunrise/sunset, etc.) from awide range of sources
as if theywere part of the data service. Thismetadata service is in use at several institutions and has been used to
track and analyze millions of acoustic detections from marine mammals, fish, elephants, and anthropogenic
sound sources.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A large variety of marine organisms, including marine mammals,
fishes, and invertebrates, produce species-specific acoustic signals,
or calls (Anorim, 2006; Hawkins, 1986; Richardson et al., 1995;
Versluis et al., 2000). Knowledge of the occurrence of these calls
has been valuable in increasing our understanding of the biology
and ecology of these often visually elusive organisms (e.g. Aguilar
de Soto et al., 2011; Baumann-Pickering et al., 2014; Hernandez
et al., 2013; McDonald et al., 2006; Oleson et al., 2007c; Risch et al.,
2013; Simpson et al., 2005; Širović et al., 2004). The marine bio-
acoustics community has invested considerable resources in devel-
oping tools to detect, classify, track, localize, and determine the
. This is an open access article under
density of animals based on calls (e.g. Barlow and Taylor, 2005;
Blackwell et al., 2013; Deecke and Janik, 2006; Erbe and King,
2008; Gillespie et al., 2013; Kandia and Stylianou, 2006; Marques
et al., 2009; Mellinger et al., 2011; Nosal, 2013; Zimmer, 2011).
These calls are recorded on a variety of fixed (e.g. moored instruments,
bottom seafloor packages) and mobile (e.g. towed arrays, autonomous
underwater vehicles, animal tags) instrument configurations.

The tools for analyses of bioacoustic data sets, whether automated,
manual, or some combination thereof, can provide a range of informa-
tion about the calling animals and their environments such as signal
characteristics, temporal patterns in vocal behavior, source levels,
density estimates, measurements of anthropogenic noise, etc. It is
often possible to infer biologically relevant information, such as daily
and seasonal activity patterns over potentially large temporal and spa-
tial scales. Information derived from these recordings such as detections
of calling animals and the methods used for detection is considered to
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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be metadata (information describing the data) of the acoustic record.
However, these metadata have frequently been generated and stored
in idiosyncratic formats on the computers of individual researchers.
While combiningmultiple datasets or the results frommultiple analyses
might often lend more power to the ability to interpret patterns in the
data, consistent metadata formats and mechanisms of retrieval are re-
quired to remove the formidable obstacles that often hindermerging re-
sults from multiple analyses.

The proliferation of such tools for producing large quantities of
metadata poses a new set of data management challenges as well as
providing exciting opportunities for the bioacoustics community to
ask new types of questions in a data rich environment. By poolingmeta-
data from multiple sources, the scope of study that can be undertaken
can be significantly expanded, but care must be taken to ensure that
the data and methods are compatible.

Of particular importance in these metadata associated with
acoustic detections is documentation of the data processing method
applied to a given dataset: What portion of the data were analyzed?
What was the target and methodology of the analysis? Which
detections were gathered in a systematic manner and which were
opportunistic or incidental? The methods require enough detail to
determine whether studies are compatible. For example, consider
combining two studies that used different signal-to-noise ratio
thresholds for detecting animals with similar call source levels; for
some analysis questions, this difference should be factored into the
analysis of the combined data to prevent bias. In most cases, the
study with the lower SNR threshold will detect animals from farther
away, thus increasing the area over which animals are monitored.
Assuming a spherical spreading model (Urick, 1983 pp. 100–101)
and a lower detection threshold of half the acoustic pressure (6 dB)
will result in increasing the radius of the monitoring area by a factor
of 2, with a corresponding increase in area by a factor of 4. Studies
testing hypotheses related to call rates would need to take into ac-
count the number of calls detected with respect to the monitored
area while those considering characteristics of calls should consider
that there would be frequency-dependent differences in the attenu-
ation of the received signal.

Indicating what portion of the data were analyzed is important for
constructing valid inferences and is a separate issue from the actual re-
cording regime of the instrument. It is common to subsample data from
long-deployment passive acoustic monitoring data sets. The decision of
what portion of the acoustic data to analyze can be thought of as a sec-
ondary stage of sample design or survey effort, and in this article, we
will refer to it as analysis effort.

One must also indicate the species and calls for which systematic
analysis effort is conducted. Studies focusing on a single species may
not typically record these types of details, especially when all of the
data are consistently analyzed due to manageable data size or effi-
cient automated classifiers. However, specification of the details of
systematic analysis effort facilitates the retrieval of records appro-
priate to a researcher's question and is critical for the selection of
metadata from data repositories containing diverse analysis effort.
It should be noted that in many fields, researchers will record oppor-
tunistic or incidental detections that are not part of their systematic
effort. Analogs to these type of detections exist in other types of sur-
vey studies such as visual point transect (Buckland, 2006) and trap
surveys (Buckland et al., 2006). Examples include an ornithologist
noting a rare species of bird when moving from one point transect
to another or an entomologist electing to perform several opportu-
nistic net sweeps to collect additional samples around a bee trap. In
both cases, additional information can be gained from the analysis
of these incidental detections or animals and they should be
retained. However, during analysis, they must be distinguished
from data that were obtained in a systematic manner. Systematic ob-
servations are necessary for well-founded inference about spatio-
temporal patterns.
Data analysis over large, spatially and temporally varied acoustic
data requires consistency, which is the first key feature of our approach.
This means that standardized names describing data types in the meta-
data must be selected along with constrained sets of values that can be
stored. As an example of this, onemay elect to store a species' common
name, scientific name, or a coded value representing the species name
such as the taxonomic serial numbers provided by the Integrated Taxo-
nomic Information System (ITIS Organization, 2014). Similarly, one
might elect to specify that acoustic sampling rate be measured in Hz
or kHz; specification of units is necessary to effectively querymetadata.

A hierarchy of concepts can beprovided by grouping names together
under the umbrella of a name that describes the group (sometimes
called a frame or structure). An example of this is to use the name
“parameters” to describe a collection of settings for a detection algo-
rithm. Names, their values, and hierarchical structure form the basis of
an ontology (McGuiness, 2003), a definition of how data are encoded
and related to one another.

Consistency must be balanced with the need to be extensible. As the
body of knowledge about species increases, new questions are posed.
An acoustic signal that was considered at one time to be stereotyped
may be found to have categorical or graded variations (e.g. Risch et al.,
2013 recently showed that minke whale, Balaenoptera acutorostrata,
thump trains had more pulse structure than previously thought), and
researchers may wish to study those variations with respect to individ-
uals, activity state, context, or ecosystem pressures such as habitat loss.
In addition, researchers with different goals, analysis techniques, and
working in a variety of habitats may have varying needs. Consequently,
our goalwas to define a system to capture acousticmetadata that is both
consistent and extensible.

In this article, we focus on acoustic metadata for marine mam-
mals and anthropogenic sources (e.g. shipping, naval operations,
and oil exploration). We have used this type of approach to analyze
the calls of numerous species of cetaceans on multiple datasets
collected throughout the Pacific, merging results from over
36 years of analysis effort (Baumann-Pickering et al., 2014; Širović
et al., 2015).

While the developmental effort focused on sounds from the ma-
rine environment, the methods have been extended to include the
terrestrial environment with few modifications. Preliminary unpub-
lished work conducted by Peter Wrege and Sara Keen at Cornell's
Bioacoustics Research Program on calls from African forest ele-
phants, Loxondonta cyclotis, has shown that this can be done without
changes to the data representation (personal commun. Sara Keen).
The only change to the implementation required was to update the
subset of taxonomic serial numbers (ITIS Organization, 2014) stored
in our database to include the family Elephantidae. The current im-
plementation has expanded this to all species described in ITIS. In
cases where altitude is needed (e.g. bird flight calls), our marine cen-
tric name depth would need to be changed or negative depth values
could be used.

We describe a set of metadata structuring rules that we call Te-
thys and provide a brief introduction to the Tethys Metadata Work-
bench, an implementation of this data framework that includes a
server program and client libraries. The Tethys Metadata Work-
bench can manipulate the metadata as well as access a large variety
of Internet-available geophysical, biological, and astronomical data
sources. The workbench is designed to be used by individual labo-
ratories. A web-services-based server permits data exchange be-
tween research groups, and summary data can be exported into
the Ocean Biogeographic Information System – Spatial Ecological
Analysis of Megavertebrate Populations (OBIS-SEAMAP; Halpin
et al., 2009).

We are developing data representations for instrument deploy-
ments and calibration information, acoustic detection, classification,
and localization data, and supplemental information. In this paper, we
restrict our discussion to metadata related to instrument deployments
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Fig. 1. Overview of workflow. Raw acoustic signals are analyzed via a variety of software packages to produce metadata describing animal calls and other aspects of the acoustic
environment. The implementation described in Section 4 is capable of processing output from a wide variety of formats. These metadata are stored in a data repository along with
details about the analysis protocol and the recording packages. Scientists then request these metadata through interfaces available for several programming languages. This same
interface also provides access to other Internet-available data products, which can then be combined with the analysis results to provide broader context for data interpretation. (Sea
surface height anomaly image courtesy NOAA Southwest Fisheries Science Center Environmental Research Division.)
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and call detection and classification. A general overview of the system
use can be seen in Fig. 1.

2. Metadata management

2.1. Background

There are several data standards (both authoritative and
community-driven) that have been proposed over the last several
years that address portions of the concepts required for acoustic
metadata, and when feasible, the proposed system borrows con-
cepts from these existing systems rather than defining new ones.
Specifications of equipment have been detailed in International
Standards Organization's ISO-19115 (2003) and in several of the
Open Geospatial Consortium's (OGC, 1994) standards. We adopt
portions of these standards, but they are not designed for biological
applications and do not cover many needed aspects such as de-
scribing species, their calls, analysis effort, etc.

Within a biodiversity context, Darwin Core (Wieczorek et al., 2009;
Wieczorek et al., 2012) is designed to provide a geospatial inventory
of animals. The Federal Geographic Data Committee (2014) has a man-
agement plan that includes numerous themes for different types of data,
including one that encompasses marine biota (Marine and Coastal
Spatial Data Subcommittee, 2012). Ecologists have designed the Ecolog-
ical Metadata Language (EML, Fegraus et al., 2005) to provide metadata
for ecology measurements. As with the aforementioned standards that
focus on equipment, these standards do not specify many attributes
that are important to bioacoustics researchers, such as documentation
of analysis effort and methods for describing acoustic signals produced
by animals.

An information system that attempts to integrate many types of
data standards is the Integrated Ocean Observing System (IOOS
http://www.ioos.noaa.gov). IOOS uses a variety of data formats,
ranging from some of the Open Geospatial Consortium standards to
network common data format (National Oceanic and Atmospheric
Administration, 2013). Guan et al. (2014) have developed an IOOS
standard for passive acoustic recordings that addresses issues related
to equipment and the objectives for collecting the acoustic data such
as target species or the question being addressed in the collection effort.
Currently, there are ongoing efforts by Fornwall et al. (2012) to extend
IOOS to include visual line transect survey data and Fujioka et al. (2014)
have developed methods for incorporating both visual observation and
passive acoustic monitoring into OBIS-SEAMAP (http://seamap.env.
duke.edu; Halpin et al., 2009). OBIS-SEAMAP is designed to track sum-
mary information rather than detailed information such as per call
timing, call parameters, detailed localization information, etc.

The Tethys metadata schema is designed to standardize metadata
needed for representing bioacoustic analysis, such as analysis effort,
spectral and temporal parameters of biological, physical, and anthropo-
genic signals, localization data derived from synchronized acoustic

http://www.ioos.noaa.gov
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http://seamap.env.duke.edu
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arrays, instrument properties such as calibration information, recording
protocols such as duty cycle and sampling rate, and spatial effort from
mobile platforms such as track lines.

2.2. Data model

Acoustic detection events must specify the attributes of each
event and the context in which the event took place. Event attributes
might include categorical or descriptive labels, measurements, time
of occurrence, and location. This can be linked to both an analytical
context describing the process used to produce measurements as
well as to a data context describing the data fromwhich the detected
events were derived. This type of data lends itself to networked data
models, where one piece of data is related to another via a structural
linkage. Networked models are especially suitable when data are
heterogeneous and can vary significantly from one event to another as
they permit the encoding of complicated relationships. In the example
of Fig. 2, multiple levels of organization are associated with example
calls. The first detection contains a substructure with call parameters
that includes the points of a time/frequency contour whereas the sec-
ond call detected stores a spectrogram image of the call.

This contrasts with the relational database model where each re-
cord must have the same form, which gained popularity after the
landmark work of Codd (1970). Relational models can handle
limited types of diversity through the decomposition of tables into
normal form, but this quickly becomes unwieldy in the face of het-
erogeneous data. While relational databases offer efficiency in
Detection
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Fig. 2. A network data model provides linkages between different types of data. In this abstra
between an instrument deployment and a group of acoustic detection events that are assoc
example, two different detected events are represented. Call parameters were recorded for the
many cases, these models are challenged by loosely structured data
and a number of recent projects have looked to alternative ways to
organize data that do not fit well into the traditional relational data-
base format (e.g. Chang et al., 2008; Leavitt, 2010).

One method of conceptualizing a network of information is an ex-
tensible markup language (XML) document, the approach taken in the
OGC, ISO, and IOOS passive acoustic standards. XML documents consist
of a hierarchical tree of structuring elements that encapsulate data
(Connolly et al., 2007). An element consists of a pair of identical tags
(names), enclosed in angled brackets, betweenwhich data or other ele-
ments are encapsulated. The latter tag has a slash (/) to indicate the end
of the element, e.g. bLatitude N 32.7 b/LatitudeN. Elements may contain
other elements: bDeploymentDetails N bLatitude N 32.7 b/Latitude N …
b/DeploymentDetailsN. Throughout this article, we italicize tag names
when they appear in the main text and frequently refer to them as ele-
ments, indicating that we expect the tag to have associated data. The
linkages between items occur either implicitly from the hierarchy or
from data that reference other portions of a document tree by means
of a network path (sequence of tags leading to a specific element) or
an identifier that references a value associated with a specific element.
The downside of network models is that the user must know the net-
work organization in order to effectively extract information from it.
Consequently, standardizing the hierarchy of data organization is
important.

While both the OGC and ISO standards currently do not represent
bioacoustic metadata, we could have adopted a larger subset of either
standard in the description of instrument deployments. However,
pecies Call

pecies Call

terval 
arched
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ction that loosely mirrors the data organization used by Tethys, a relationship is shown
iated with the deployment. Network models allow for heterogeneous structure. In this
first call detected, while the call spectrogram was recorded for the second call detection.
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these standards were designed for querying instrumentation in hetero-
geneous sensor networks. We found that for many bioacousticians, the
amount of additional information that would need to be provided both
for assembling deployment data and subsequent queries was over-
whelming. Instead, we took inspiration from the portions of those stan-
dards that were relevant to the task at hand. We concur with Graybeal
et al.'s (2012) proposition that it is difficult to provide an ontology that
is all things to all users and that mediation can be used to translate be-
tween useful ontologies.

2.3. Data consistency and extensibility

XML provides amechanism for describing data relationships, but ad-
ditional mechanisms are required to ensure consistency. A common
Fig. 3. Top-level view of the schema for a detections document. All detections documents have
indicate a sequence of elements: Description, DataSource, Algorithm, etc. Mandatory elements
(not shown here), such as a group of elements that describe the systematic analysis effort. O
submitted the group of detections to the database. Each element has a data type. With the ex
this figure are types that we have defined elsewhere in the schema.
method to specify this for XML is to use an XML schema (Walmsley,
2002), a specification document (written in XML) that provides an or-
dered list of data elements that should be in a document as well as sim-
ple integrity constraints on the data themselves. The top level element
includes a number of sub-elements that permit the denotation of detail.
For example, for the metadata describing acoustic events, the child ele-
ment related to a specific detection analysis effort would describe how
detections were made, including details such as the analysis effort,
methods used for the analysis, who conducted the analysis, etc.
(Fig. 3). Elements in Fig. 3 that contain the circle-plus symbol, ⊕, have
child elements that further describe their parent. In some cases, a
range of numbers will be shown along a link from parent to child, indi-
cating the number of times that an elementmaybe repeated. Extensibil-
ity is handled by permitting some elements to have arbitrary children.
a top-level Detections element. The stacked squares connecting Detections to its children
are denoted by bold lines. The majority of elements provide structure for child elements
ther elements contain data such as the UserID which identifies the person or entity that
ception of UserID, which has an XML primitive type for alphanumeric data, elements in

Image of Fig. 3
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3. Tethys schemata

Tethys schemata contain a number of functional groups: 1) in-
strument deployments, 2) detection and classification, 3) groupings
of instruments that are referred to as ensembles, 4) localization, and
5) instrument calibrations. We restrict ourselves to describing in de-
tail the first twowhich are themost mature. For brevity, details of the
schemata that are reasonably self-explanatory and not critical to
representing the metadata will not be discussed, but the complete
schemata are available on the Tethys web site (http://tethys.sdsu.
edu). These schemata form an implementation agnostic method for
representing data that can permit data interchange between differ-
ent groups using software that implement the schemata. Note that
while the implementation developed in Section 4 is built upon an
XML database, any database capable of constructing XML from its in-
ternal representation of the metadata could be used. As we are inter-
ested in developing an ontology that can pool metadata from
multiple acoustic metadata servers, the discussion will center on a
representation level that enables interoperability.

3.1. Instrument deployments

The Deployment schema (Fig. 4) contains information about specific
deployments of an instrument. The goal of this schema is to provide in-
formation sufficient to understandwhere, when, and how acoustic data
have been collected.

Each deployment is uniquely identified by a key that consists of
three elements: Project, DeploymentID, and either Site or Cruise. Project
is a name that identifies a group of deployments. Examples of such
names might include geographic regions, study names, or specific miti-
gation or monitoring projects. The DeploymentID is simply an integer
such as theNth deployment at a specific site. Thefinal element of the de-
ployment key is either the name of a Site for a fixed deployment or a
Cruise (mission) for mobile platforms such as towed arrays or gliders.
Collectively, the values of these elements must be unique within the
set of deployment documents.

Instrument provides a brief description of the instrument, permitting
a specification of an instrument Type (e.g. vendor/model) and an ID (e.g.
serial number) that identifies a specific instrument of the specified type.
The instrument's sensors are described in a separate element Sensors
that has three types of child elements: Audio, Depth, and a generic
Sensor. Zero or more children of each type of sensor are permitted al-
though they must be grouped together and in the order specified by
the schema. Repetitions allow for instruments with multiple instances
of a specific type of sensor such as a multiple hydrophone instrument.
All sensor types have a common set of elements used to describe
them: a SensorID (e.g. serial number), Geometry relative to the platform
position represented as an x, y, and z offset in meters, a Name, and tex-
tual Description. In addition to the common elements, audio sensor ele-
ments contain hydrophoneID and preamplifierID, and the generic sensor
contains a Type to describe the sensor type and a Properties that can con-
tain arbitrary child elements, thus permitting the specification of any
type of sensor (e.g. compass, temperature).

The information about howaudio sensors are configured throughout
a deployment is stored in SamplingDetails. Each hydrophone that is
active during a deployment must have one or more associated Channel
elements in SamplingDetails that identifies the hydrophone within the
set of audio sensors as well as the channel in the recording that is asso-
ciated with this deployment. The Channel element contains children
that specify the details about sampling (sample rate and quantization
bits), gain (in dB for calibrated gain and relative numbers for uncalibrat-
ed gain such as a number on a dial), and duty cycle. These details are en-
capsulated in Regimen elements that contain a timestamp indicating
when the settings were applied. All Tethys timestamps are represented
in universal coordinated time (UTC) and encoded using the W3c
Consortium's subset of the ISO8601 standard described by Wolf and
Wicksteed (1997). Regimen elements may be repeated, thus permitting
the representation of complex sampling regimes such as recordingwith
varying duty cycles during the same deployment. Note that calibration
data are specified in a different schema. Complete details are beyond
the scope of this paper, but each calibration document includes a
sensitivity curve, a timestamp of when the calibration was per-
formed, and an indication of whether the calibration was of a specific
hydrophone, preamplifier, or complete “end-to-end” system. The
schema does not currently support directivity patterns, although
adding this would be straightforward.

AQualityAssurance element permits the documentation of themeth-
odology and results of quality control checks that may be performed to
ensure the integrity of the acoustic data associated with a deployment.
It contains three types of elements: Description, ResponsibleParty, and
Quality. The Description allows text-based descriptions of the quality as-
surance process through sub-elements Objectives, Abstract, andMethod.
ResponsibleParty provides contact information for the person who is re-
sponsible for the quality assurance process. The final element Quality
permits the annotation of the quality control information itself and
may be repeated. EachQuality element instance containsmandatory el-
ements for Start and End times) as well as a Category element that al-
lows the denotation of the data as unverified, good, compromised, or
unusable. Optional elements provide further details about the data. A
FrequencyRange element contains elements to denote the bandwidth
to which the quality element applies (Low_Hz, High_Hz). One or more
Channel elements indicate the channels towhich the annotation applies.
Finally, a comment allows for a textual description of this instance, such
as “Instrument noise on disk writes.”

The Data element contains information related to measurements
that will have occurred during the deployment. While Tethys is de-
signed for specifying metadata about a recording rather than archiving
the acoustic recording data, it is important that the system tracks the
storage location of the acoustic data to permit users to locate acoustic
data for further analysis, verification, or other uses. One or more uni-
form resource indicator (URI) elements are used to specify the acoustic
data location. URIs are Internet identifiers and are divided into classes
for different types of resources (Joint W3C/IEFT URI Planning Interest
Group, 2002) such as web pages, digital object identifiers (DOIs), etc.
This provides flexibility for the user to specify anything from sophisti-
cated descriptions of where the data are published to something as sim-
ple as the description “file cabinet A, disk 12.” While the latter is not a
valid URI, the text-based description permits such useful annotations
when more sophisticated systems are not in place: these can easily be
recognized as not being a valid URI. In some instances, users may have
different copies of the data such as one that has come directly off the in-
strument in a proprietary format and data that have been processed in
some way such as decimation. Additional elements permit these data
locations to be specified. TheData element also lets one specify trackline
information (Track) for mobile platforms, either via a set of URIs or a list
of timestamped samples that can contain longitude and latitude mea-
surements, depth, pitch, and roll.

Information about deployment and recovery is contained in
DeploymentDetails and RecoveryDetails. They contain information
about the instrument at the beginning and end of deployment:
time and date, latitude and longitude, depth, and contact personnel.
Portions of this follow the OpenGIS SensorML specification (Botts
and McKee, 2003).

3.2. Detections

The Detections schema (Fig. 3) specifies how acoustic detections are
identified and to which data they are attributable. The Description ele-
ment contains several optional child elements (Objectives, Abstract,
andMethod) that permit a textual abstract describing the analysis effort.
For example, when detecting an International Union for Conservation of
Nature (IUCN) red-listed species such as North Pacific right whales

http://tethys.sdsu.edu
http://tethys.sdsu.edu
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(Eubalaena japonica), one might specify that the objective is to detect
every potential call, whereas for more common species, the objective
might be to minimize false positive detections. Brief summaries of the
project can be listed in the Abstract, and a high-level description of the
detection methods can be specified in Method.

DataSource contains elements that associate a detection document
with a specific instrument deployment or ensemble set of deployments
such as one might use in a wide-aperture array. This permits linkages
between the detections and one or more instrument deployment docu-
ments so that information about the recording can be accessed. The
identity of the person who is responsible for submitting the document
is stored in UserID.

Algorithm has the purpose of describing the detection process in
enough detail to make it reproducible. Like the Description element
described above, a text-based summary can be specified in Method.
The Software algorithm, its Version number, and a list of any
SupportSoftware that may be required to run the detection algorithm
should be listed. As an example, a user may be using a PAMGUARD
module (Gillespie et al., 2008) to detect baleen whale calls. Themod-
ule would be specified in the Software/Version elements as this is the
algorithm that provides the detections, and PAMGUARD would be
specified in the SupportSoftware. When analysts are responsible for
identifying acoustic events as opposed to an automated algorithm,
we recommend using “analyst” as the Method value and noting the
software they are using for their annotation in Software. Most algo-
rithms require the setting of parameters, such as analysis window
length, thresholds, kernels, etc. To be reproducible, these parameters
must be documented. This is a situationwhere the need for extensibility
is evident; one cannot plan for the types of parameters that future algo-
rithms may require. As a consequence, a Parameters element accepts
any type of element (Fig. 5).

The QualityAssurance element is similar to the one that appears in
the deployment schema in that it has child elements Description and
ResponsibleParty. It differs, however, in that Quality elements are
assigned to individual detections as discussed later.

The final three child elements ofDetections are related to analysis ef-
fort and detections: Effort, OnEffort, and OffEffort. These describe what
the detection method was systematically trying to find (Effort), the
detections found with systematic analysis effort (OnEffort), and oppor-
tunistic or incidental detections forwhich therewas no systematic anal-
ysis effort (OffEffort). Specification of effort consists of denoting the
portions of the acoustic record that were examined and target signals
to be detected. This is critical to analyzing acoustic detections in amean-
ingful way. As an example, suppose one queried for detections of blue
whale (Balaenoptera musculus) B calls over 10 years of recordings at a
location, but had only conducted analysis during August and September
Fig. 5. Examples of preserving information about howdetectionsweremade. Left box shows spe
right box shows the specification for an automated whistle detector.
of each year. Without consideration of systematic acoustic analysis ef-
fort, one could draw the erroneous conclusion that blue whales were
not present the rest of year.

The children of the Effort element (Fig. 6) contain a Start and End
time that must fall within the interval during which the instrument
was deployed. This refers specifically to the time span over which the
data are analyzed and should not to be confused with the effort related
to data collection. This is followed by a Kind list which indicates forwhat
the analyst, detector, or classifier is searching. Each Kind consists of the
mandatory elements SpeciesID, Call, and Granularity.

SpeciesID specifies a taxonomic identifier for the species that is under
consideration. The identifier consists of a taxonomic serial number
(TSN) from the US government-sponsored Integrated Taxonomic
Identification System (ITIS Organization, 2014) which maps to a taxon
name. ITIS TSNs are unique positive integers and can be mapped by
the Tethys Metadata Workbench to and from scientific and common
names as well as local names or abbreviations specified by the user.
Upon occasion, one may not know the exact identity of a species
when a call is detected. In these cases, the recommended practice is to
select a SpeciesID that is wide enough to encompass the call. As an ex-
ample, an echolocation click detector might not report to the species
level. In such cases, the suborder Odontoceti (TSN 180404) may be
assigned as the SpeciesID. XML allows element attributes to provide
additional information about an element, and we use the attribute
Group to denote subpopulations as well as species where the identi-
ty is unclear. As an example, McDonald et al. (2009) recorded a
beaked whale near Cross Seamount for which the species is not yet
known. To represent effort for these calls, we use family
Hyperoodontidae (TSN 770799) and specify Group “BWC” to denote
the unknown beaked whale echolocation signals first observed at
Cross Sea Mount. For anthropogenic data that can typically be associ-
ated with human designed technology such as pile-driving, shipping,
explosions, etc., we use Homo sapiens (TSN 180092) as the species
name and identify the activity as if it were a type of call. As Tethys
permits the storing of physical phenomena, we reserve TSN-10 (to
avoid collisions with future ITIS TSNs that are all positive) to specify
other abiotic phenomena such as sounds from earthquakes, rain, etc.,
and use the Call element to denote the phenomenon.

Call indicates the type of the species' acoustic signal. Values for Call
are not restricted as the literature does not always agree on how partic-
ular calls should be named. In the supplemental materials, we provide a
table of recommended call types for cetacean species with which the
authorswork. A call type is a categorical description of an acoustic signal
produced by an animal and covers both stereotyped calls such as a
southern right whale (Eubalaena australis) “gunshot” (Clark, 1982),
and a general description of highly variable signals such as delphinid
cification for an analyst annotating datawith Raven (Cornell Univ., IthacaNY)whereas the

Image of Fig. 5


Fig. 6. Specification of systematic analysis effort within the Detections schema. Start and End times are followed by a list of one or more elements of Kind, specifying the species being
detected, specific call type (and optional subtype), and an indication of the level of detail (granularity) for the detection.
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(Cetacea: Delphinidae) whistles (Steiner, 1981). Calls are typically
assigned to categories based on their temporal and spectral characteris-
tics either using automatic classifiers or by trained analysts. The desig-
nation “Undescribed” can be used to annotate calls that have not yet
been described in the literature, while “All” indicates that the call type
was not noted, simply that the detector was looking for all call types
of the given species. It is also possible to specify effort for variants, or
subtypes, of a call. Subtypes are discussed in detail later in the context
of individual detections.

Granularity describes the level of detail used in the search and can
contain one of three values: call, encounter, and binned. Call indicates
that the detector will be providing the start time and possibly the end
time of each individual call. Encounter is used when the start and end
times of a set of calls are to be denoted. An example of this is when a
group of calling animals travels through an area. The start and end
times of the set of detections denote the period over which the calling
animals were within detection range. We do not specify a threshold
for distinguishing one encounter from the next as this may vary de-
pending upon the behavior of species. Binned is used when specifying
presence/absence or the number of detections within a given time bin.
Binned specifications require the presence of XML attribute BinSize_m
indicating the bin size in minutes. We restrict this to being divisible
into a 24 h day and the implied bin edges for detections associated
with this granularity are restricted to aligning with day boundaries
(e.g. a BinSize_m of 15 m is allowable whereas 17 m is not). These re-
strictions ensure that bins are aligned with one another from one day
to the next and permits simple computation of daily call counts or
other aligned units. As an example of how relaxing this restriction
could be problematic, a 17 m boundary starting at midnight on the
first day of recording would span the time from 23:49 of the first day
to 00:05 of the second. If the on-duty portion of duty-cycled data does
not align with these edges, care must be taken in analysis to not overes-
timate systematic analysis effort or the resultant detections.

The final two elements of a Detections document are the OnEffort
and OffEffort elements. Both of these can contain sequences of Detection
elements. Any on effort detection must correspond to the parameters
specified in the systematic analysis effort (Effort). Detections within
the off-effort section are unrestricted.
Each Detection (Fig. 7) entry conveys information about a specific
detection. At a minimum, it requires a Start time and a SpeciesID. For
binned detections, Start should fall on a bin boundary, and if desired,
the number of detected calls can be stored with Count. End times are
mandatory for encounter granularity, and otherwise optional. The
Input_File element is an optional URI providing a link to the audio file
from which the detection originated. This is a convenience element for
file naming conventions that do not permit filenames to be automatical-
ly derived from the Start time and the DataSource.

At times, it is useful to be able to reference a specific detection
(e.g. for referencing components of a song, or a call that was localized)
and the optional Event element provides a mechanism to provide an
alphanumeric identifier that is unique within the set of detections de-
scribed by a specific detection. For example, Northeast Pacific blue
whale AB song (Oleson et al., 2007a,b) might consist of an A call follow-
ed by two B calls. Identifiers could consist of sequentially numbered de-
tections or the timestamps indicating when the analyst or algorithm
made the detection. To denote the song, one would document the indi-
vidual vocalizations separately and a song event that references each in-
dividual detection: A, B, and B, by their Event identifiers.

Call types can be listed. As binned and acoustic encounter effort can
encompass multiple call types, more than one call can be listed. While
this element is optional to provide for detectors that do not distinguish
call types (usually used with an effort of “All”), it is highly recommend-
ed to populate this element when it is known. The Parameters element
allows the recording of optional information about a call or set of calls
and contains many of the parameters that bioacousticians are likely to
collect (Fig. 8). In addition, Parameters can contain information about
categorical variants via Subtype (e.g. the “A” and “B” type echolocation
clicks of Pacific white-sided dolphins in Soldevilla et al., 2010) andmea-
surements associated with the detector/classifier. Detection and classi-
fication systems ultimately make categorical decisions that are
frequently associated with a measurement score (e.g. a likelihood
score, linear discriminant analysis projection value, etc.). Some systems
attempt to determine the probability that a decision is correct. Tethys
provides optional elements Score and Confidence for the respective stor-
age of classifier scores and probability of correctness. For species that
produce so many calls that they are no longer distinguishable from
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Fig. 7. Schema for individual detections.
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one another, some researchers have developed indices that indicate the
strength of the signal (e.g. finwhale 20 Hz calls; Širović et al., 2004), and
in such cases an alternate use for Score is to store the index value. Relat-
ed to these elements is the detection QualityAssurance element, which
simply shows whether or not this detection has been reviewed and is
restricted to the values of unverified, valid, and invalid.We recommend
treating the QualityAssurance value invalid as a transient value and that
these detections be removed once the classification verification is com-
plete. If not, queries for detections should explicitly filter out invalid
detections to prevent these false detections from being included in the
analysis.

The majority of the parameters associated with detected events are
temporal-frequency measurements with which bioacousticians are fa-
miliar, such as minimum and maximum frequency content, received
level, duration, etc. For individual calls, these measurements are self-
explanatory. When measured for groups of detections (binned or
encounter analysis effort), these are assumed to represent typical or
mean measurements within the specified time period, and the

Image of Fig. 7


Fig. 8. Call parameters. A number of standard measurements of call characteristics are allowed with the possibility of providing project-specific measurements.
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Image of Fig. 8


Fig. 9. Excerpt from a data source translationmapdesigned to translatemetadata stored in
a multiple sheet workbook (e.g. Excel, Microsoft Corp., Redmond, WA) to an XML
document compliant with the Tethys detection schema. This section handles the
specification of analysis effort. For emphasis, context sensitive reserved tags are shown
as bold text and control the translation. Other tags (e.g. Effort) will appear in the
generated XML. The Sheet element specifies the name of the sheet from which data are
to be translated. Workbook sheets are expected to have column headers naming each
type of data. Data in these columns are translated to elements through the use of Entry
elements. The first Entry maps the column containing the text “Effort Start” on sheet
MetaData to the Start element and will produce an element with the start date value.
This is repeated for each entry in the sheet. Details are available in the Tethys manual
(http://tethys.sdsu.edu).
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Description and Algorithm sections should contain information that clar-
ifies the measurement methods used.

The EventRef element can be used to reference other events and will
contain values from Event elements in different detections. An example
use would be to reference individually detected calls that comprise the
aforementioned blue whale AB song. A final elementUserDefined can be
used to note measurements that are of interest to researchers address-
ing specific questions. Sample items that could be stored include
odontocete burst-pulse interclick intervals or the time-frequency con-
tent of whistles.

The final three optional elements of aDetection are Image, Audio, and
Comments. The first two allow storage of a small amount of data from
the acoustic record in image or audio formats and are intended to per-
mit storage of illustrative examples. Comments provide analysts or soft-
ware the capability of noting any interesting or unusual aspects of the
detection.

4. Implementation

The schemata described above represent a proposed method for
specifying passive acoustic metadata. Such relationships can be im-
plemented using a variety of database technologies. The Tethys
Metadata Workbench provides a reference implementation of the
Tethys schemata that uses Oracle Corporation's freely available
open source Berkeley DBXML (Redwood Shores, CA) data store.
While complete details are beyond the purview of this article, we
provide a brief overview of the current implementation and capabil-
ities. Details on version 1.0 (current version is 2.3) of the Tethys
workbench can be found in Roch et al. (2013).

4.1. Architecture

The Tethys workbench uses a client-server architecture where ana-
lysts and scientists connect to a server from their own workstations.
Communication is via a representational state transfer (RESTful) para-
digm (Fielding, 2000).Messages are sent using hypertext transport pro-
tocol (HTTP) by client programs as web requests and the server sends a
response. Prior to the introduction of RESTful architectures, web servers
needed to maintain detailed information about current data associated
with each client conducting sequential operations. RESTful architec-
tures encode this information into the web address that a client pro-
gram uses, simplifying the web server design.

Implementation of this architecture is built using the open source
Python CherryPy framework (CherryPy Team, 2014). A set of client
libraries have been developed for Java, Python, and Matlab that
permit users to create, retrieve, update, and delete information
from the server. Client libraries for the R programming language
are in development.

The server currently must be run on 64-bit Windows (Microsoft
Corporation, Redmond, WA) platforms to support importing meta-
data from proprietary Microsoft formats such as Excel workbooks
and the Access database. Client software is highly portable and has
been tested on Windows and open source Linux (Linux Foundation,
San Francisco, CA) platforms. For Windows platforms, an installation
program allows the user to select the appropriate components to in-
stall on their computer.

4.2. Adding metadata

Utilities exist to translate inputs from sources such as databases,
spreadsheets, comma separated value (CSV) files, etc. An XML file
must be provided to map names from the data source (e.g. column
headers in spreadsheet/CSV files, or table attribute names in a relational
database) to those used in the Tethys schemata. Data translation is driv-
en by the contents of the data source translation map file; there is no
programming required (Fig. 9).
If one prefers to generate XML directly from detection algorithms,
the provided Nilus library can be called from the user's detection code
to generate documents that conform to Tethys schemata. Nilus is
written in Java and is accessible from any language that supports a
Java interface (e.g. Matlab, R) and does not require installation of
other Tethys products. Regardless of the import source, Berkeley
DBXML validates the document against the appropriate schema and
the server provides additional constraint validations that cannot be
specified by the XML schema (e.g. ensuring that detection End times
are after Start times).

4.3. Querying metadata

Queries to the database are written in the XQuery language
(Walmsley, 2006), and the Matlab client library provides numerous

Image of Fig. 9
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functions for querying the server without needing to learn XQuery. The
Matlab client also provides visualization capabilities (e.g. Fig. 10). The
query facility also supports data retrieval of solar and lunar ephemeris
data from the NASA Jet Propulsion Laboratory's Horizons system
(Giorgini et al., 1996) aswell as data from any data source usingNOAA's
Environmental Research Division's Data Access Program (ERDDAP;
Simons, 2011) protocol which provides access to a large variety of plan-
etary data sources such as the NOAA Tropical Atmospheric Ocean (TAO)
buoys, the United Kingdom's Met Office surface temperature anomaly
data, or NASA's Ocean Color.

5. Discussion

The Tethys schemata have been used to represent nearly 300 years
of combined systematic analysis effort across multiple species and
many instrument deployments, producing millions of detections via
analyses of the authors. Tethys has been used in work by several of
the authors of this manuscript, ranging from production of reports on
long-term presence of cetaceans to research on classification and formal
spatiotemporal analysis (Baumann-Pickering et al., 2014; Roch et al.,
2015; Širović et al., 2015). The ability to query information related to
consistent descriptions of instrumentation, detections, and physical
phenomena greatly enhances the researcher's ability to analyze large,
complex data sets. Ecosystems vary atmultiple year time scales (e.g. in-
fluences of El Niño and the Pacific Decadal Oscillation; Mantua et al.,
1997; Rasmusson and Carpenter, 1982). Therefore, methods that focus
on long-term ecosystem trends must have the potential to analyze
and visualize data overmultiple years or decades. As an example, the vi-
sualization of themulti-year diel and detection datasets used to produce
Fig. 10 were queried and plotted with approximately 5 minutes of pro-
gramming effort by an experienced Tethys user and a few minutes of
runtime for each.

While Tethys provides flexible schemata for describing a variety of
situations, it is expected that the schemata will continue to evolve
over time. The flexible nature of XML schema specifications allows Te-
thys users to define new and complex data representations when they
need them, such as additional time-frequency information (Fig. 2)
that is not currently part of the Tethys schemata.

Over time, it is possible that the use of some researcher-defined ex-
tensions to schemata may become prevalent. Examples of this include
parameters that may provide insight to a call that has a graded struc-
ture. We expect such extensions to be incorporated into the schemata.
Currently, the procedure for this consists of proposing the extension
Fig. 10.Automated detections of bluewhaleB calls (left) and echolocation clicks fromodontocet
(33.514° N, 119.25°W) showing seasonal and occasional diel patterns. Dark blue shading repres
no analysis effort, and the gray hourglass pattern on the odontocete plot shows nighttime as r
with the Tethys development team, but should the use of the Tethys
schemata become more widespread, more formal procedures will be
developed as part of a standards process. Schemata changes that simply
involve extensions will not require any changes to existing XML
documents nor to any code that queries the Tethys server. Changes to
element names would require modifications to the XML, and themech-
anisms for doing this are dependent upon the implementation but are a
tractable problem.

A difficult area for the current detection schema is the representa-
tion of song. We follow the definition of Berwick et al. (2011), where a
song consists of sequences of distinct sound types thatmay be repeated.
These sequences can be organized into higher organizational structures.
A simple example of this is the aforementioned Northeast Pacific blue
whale AB song,whereas the humpbackwhale (Megaptera novaeangliae)
has a more complex song with multiple organizational levels (Payne
and McVay, 1971). To represent the hierarchical nature of song, ele-
ments could be nested (e.g. adding structure to the Parameters/
UserDefined element of a detection). However, doing so would make it
difficult to perform analysis on the individual song units. As a conse-
quence, the currently recommended strategy for representing song is
to create individual detections for each song unit and to create detec-
tions for song structure that reference the individual units and/or higher
levels of organization such as phrases. As song has not been extensively
documented using Tethys in any of the authors' organizations, the effi-
cacy of this recommended approach has yet to be demonstrated and
further refinements are likely to be needed before representation of
song is more formally introduced into the detections schema.

Any system capable of representing complex data relationships has a
learning curve, and potential users should not expect immediate pro-
ductivity. The current set of client libraries has been developed for ana-
lysts who will be performing complex statistical analyses across large
datasets, and the focus is on providing programmatic interfaces, the
ability to organize data for statistical analysis, and visualization capabil-
ities to enable users to address sophisticated hypotheses. The Tethys
documentation (http://tethys.sdsu.edu) provides detailed instructions
on getting startedwith the system including a “cookbook” guide for get-
ting started with the Matlab client.

6. Conclusions

The Tethys schemata and workbench implementation are a needed
extension to the capabilities for processing large bioacoustic data sets.
The current implementation has been used to annotate and derive
es (right) overmultiple years froman instrument deployed in the Southern California Bight
ents detections. Light blue shaded rectangular regions indicate periods forwhich therewas
etrieved from the Horizons ephemeris system, making the diel activity pattern apparent.

http://tethys.sdsu.edu
Image of Fig. 10
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information from millions of cetacean, pinniped, fish, and elephant call
detections as well as anthropogenic sources from most ocean basins
over nearly a decade of deployments. Thesewere generated by a variety
of algorithms and numerous users, thus demonstrating their ability to
represent long-term bioacoustic data in a productive manner. Tethys
is suitable for research in a wide variety of applications such as density
and abundance estimates, long-term, seasonal, and diel patterns, social
network analysis, etc.

The Tethys schemata, metadata server/client workbench, sample
metadata, and associated documentation are freely available from
http://tethys.sdsu.edu.
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