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A B S T R A C T   

The depletion of fossil energy reserves and the environmental pollution caused by these sources highlight the 
need to harness renewable energy sources from the oceans, such as waves and tides, due to their high potential. 
On the other hand, the large-scale deployment of ocean energy converters to meet future energy needs requires 
the use of large farms of these converters, which may have negative environmental impacts on the ocean 
ecosystem. In the meantime, a very important point is the volume of data produced by different methods of 
collecting data from the ocean for their analysis, which makes the use of advanced tools such as different ma-
chine learning algorithms even more colorful. In this article, some environmental impacts of ocean energy de-
vices have been analyzed using machine learning and quantum machine learning. The results show that quantum 
machine learning performs better than its classical counterpart in terms of calculation accuracy. This approach 
offers a promising new method for environmental impact assessment, especially in a complex environment such 
as the ocean.   

1. Introduction 

With the increasing developments in technology and technological 
infrastructure, there is a rising demand, globally, for electricity. Given 
the promonent role of fossil fuels in electricity generation and supply, 
there is an increasing concern over the environmental impacts of 
burning fossil fuels. Meanwhile, the role of renewable energy is rela-
tively small and needs more research and development (Farrok et al., 
2020). With the global movement to reduce greenhouse gas emissions 
by 2050, countries are expected to ramp up their efforts towards 
developing renewable energy resources. This is one of the most impor-
tant areas discussed by the United Nations with the introduction of 
“carbon neutrality by 2050". To achieve this goal, many countries are 
committed to greatly reducing greenhouse gas emissions (Guo and 
Ringwood, 2021). For example, European countries plan to replace 32% 
of their energy demand with energy from renewable sources by 2030 
(Galparsoro et al., 2021). There has been a significant increase in the 
production of renewable energy, which promises to accelerate the 
commercial production of this energy, especially in North America, the 
United Kingdom, Europe, and China. Among the different types of 
renewable energy systems, ocean energy, especially tidal energy, has 
received significant financial support for research and development 

(‘REN21’ and 2021, 2021). One of the main goals of the development of 
renewable energy is to decarbonize and help reduce climate change. In 
addition, the development of renewable energy infrastructure to 
generate electricity for remote areas and places with limited access to 
energy requires the use of high-efficiency and reliable source of energy, 
and ocean energy meets this requirement (Galparsoro et al., 2021). In 
this regard, the use of machine learning methods, which are powerful 
tools for environmental assessments, especially in oceanic environ-
ments, is suggested. One of the key applications of machine learning 
algorithms is in the initial data analysis stage, where they manage and 
analyze large volumes of collected data and prepare it for further eval-
uation. It is another important application in continuous monitoring of 
natural environments. Here, machine learning is useful in continuously 
analyzing data to detect sudden changes in environmental models. 
Additionally, these algorithms help predict potential impacts by using 
historical data and making accurate predictions that can be compared to 
EIA standards. This comprehensive approach allows for a more effective 
and efficient environmental impact assessment process (Pourzangbar 
et al., 2023), (Hsieh, 2022). 

2. Overview of types of ocean power converters 

According to the National Oceanic and Atmospheric Administration 
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(NOAA), 71% of the Earth’s surface is covered by oceans (National 
Oceanic and Atmospheric Administration). Ocean energy has the po-
tential to generate 45,000 to 130,000 TWh of energy (I. Renewable 
Energy Agency, 2021), which can meet the earth’s need for electrical 
energy, which according to the statistics presented in 2021, was 25,300 
TW h and exceed it (Statista, 2023). Table 1 shows the potentials of 
various methods for generating energy from the ocean. The data pre-
sented shows the significant impact that these technologies could have 
on global energy production (Curto et al., 2021). 

Another factor that has enabled these emerging energy sources to 
rank highly among other renewable energies is that, according to sta-
tistics, 40% of the world’s population lives within 100 km from the 
coast. This factor can reduce the cost of transferring ocean energy and 
make it very effective and efficient. This, together with the reliability of 
these resources, makes ocean energy an attractive choice among other 
renewable energy sources (I. Renewable Energy Agency, 2021). 

2.1. Wave energy technologies 

Wave Energy is a function of several factors, such as wave height, 
wave velocity, wavelength, and wave density. These factors have the 
highest efficiency at latitudes between 30◦ and 60◦ and in deep waters. 
Wave energy is one of the safest marine energies, accounting for nearly 
80% of ocean energy. The sun’s rays create winds on the surface of the 
oceans which in turn create ocean waves that contain a large amount of 
energy with little loss. Therefore, wave energy has a high-power density. 
Waves can have an energy potential of 30 kW/m, which is 10 times more 
than solar energy and 5 times more than wind (Sang et al., 2018). Also, 
one of the main advantages of this type of energy is that it is predictable 
from several hours to several days (OES, 2017). 

In general, methods of generating energy from waves are divided 
into three categories: oscillating water columns, oscillating bodies, and 
overtopping devices (Fig. 1) (I. Renewable Energy Agency, 2021). 

Wave energy converters are used onshore, nearshore, or offshore 
(Farrok et al., 2020) and they can be floating, semi-submerged or fully 
submerged. Distance from the shore is an important factor in the effi-
ciency of energy converters. 40 m is an optimal depth for efficient use of 
these converters, which is generally about 1 km from the shore. How-
ever, at this distance from the shore many problems are faced by these 
converters such as: increased cost of transmission, exposure to high and 
severe waves that sometimes cause damage and breakdown of devices, 
and increased cost of maintenance (Burhanudin et al., 2022). 

2.2. Tidal energy technologies 

Tides are generated by the rising and falling of the sea due to the 
gravitational pull of the moon and the sun and the rotation of the earth. 
Tidal converters use this potential to generate electricity. The structure 
of these converters has two main types: tidal range energy and tidal 
current energy. Tidal range energy exists in the form of gravitational 
potential energy at higher sea levels, and tidal current energy is the 
kinetic energy of tidal induction currents (Sang et al., 2018), (OES, 
2017) 

Tidal range energy systems consist of several main parts, which are: 
embankment, sluice gates, turbines. The function of this type of con-
verter is that after the ocean water rises, the water is trapped behind the 
embankments and when the ocean water goes down, the difference in 
height is used to produce electrical energy by the turbines installed in 
the embankment body. These models of tidal converters are divided into 

Abbreviations 

NOAA The National Oceanic and Atmospheric Administration 
SVM Support Vector Machine 
QSVM Quantum Support Vector Machine 
|ψ Qubite state 
|0〉 0 in quantum state 
|1〉 1 in quantum state 
OES Ocean Energy Systems 
OAT one-at-a-time technique  

Table 1 
Potential installable capacity and energy production from three types of marine 
energy sources (Curto et al., 2021).  

Ocean Energy Capacity (GW) Potential Generation (TWh/y) 

Tide 90 800 
Marine currents 5000 50,000 
Sea wave 1000–9000 8000–80,000  

Fig. 1. Different main types of wave energy generation methods. Oscillating Water Column (OWC) (a), overtopping device (b), Point absorber (c), Oscillating Water 
Surge Converter (OWSC) (d). 

Fig. 2. Different main types of tidal energy generating methods. Barrage (a), Horizontal-axis turbine (b), Vertical-axis turbine (c).  
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two categories: single basin and double basin (Sang et al., 2018). 
Tidal current energy is derived from the kinetic energy of continuous 

ocean currents resulting from salinity gradients, tides, ocean floor 
topography, and temperature. These currents can move in different di-
rections, which increases the system efficiency and improves the design 
of converters. In addition, due to the density of water, which is about 
800 times the density of air, the energy density of this converter is much 
higher than wind exchangers (Sang et al., 2018). Tidal current energy 
devices consist of three main types, which are axial flow turbines, 
crossflow turbines and reciprocating devices (Fig. 2) (I. Renewable En-
ergy Agency, 2021). 

3. Environmental impacts of ocean power converters 

Transitioning from fossil fuel-based energy to renewable ocean en-
ergies is a complex task and involves various challenges. One of the 
major obstacles is the established dominance of fossil fuels in the mar-
ket, which has been built over a long period of time and is deeply 
entrenched in industrial societies. To successfully replace fossil fuels 
with renewable ocean energies, certain factors must be in place that can 
effectively challenge the dominance of the fossil fuels market. These 
factors include economic viability and mass production of renewable 
ocean energy systems for all countries, which require large investments 
from both the government and private sectors. The mass industrial 
production and installation of energy converters on a large scale may 
have great impact on the environment and ecosystem of the areas where 
they are installed. In this research, the impacts of these ocean converters 
were investigated using the principles of the Ecological Risk Assessment 
(ERA) framework (Galparsoro et al., 2021). 

3.1. Ecological risk assessment framework has 4 main stages which are  

1 Risk identification: specifies the human pressure(s) of concern, 
which result in impacts on the environment and human health. The 
amount and probability of occurrence of pressure and its impact on 
the ecosystem depend on the sensitivity of each element to pressure 
(Gitinavard et al., 2020).  

2 Risk characterisation: highlights the likely impacts on ecosystem 
elements (Solgi et al., 2022). 

3 Risk assessment: requires the interpretation of the results, the iden-
tification of the most relevant pressures and the most critical 
ecosystem elements that could be affected, and the evaluation of the 
total risk (Solgi et al., 2019).  

4 Risk hazard identification: which would lead to the adoption of 
alternative management measures for hazard reduction or mitigation 
(Fig. 3) (Galparsoro et al., 2021). 

3.2. The environmental impacts of ocean energy converters can be divided 
into five general categories (Mendoza et al., 2019) 

3.2.1. Hydrodynamic impacts on water flow 
One of the important environmental factors in ocean environments is 

ocean currents. These currents, which follow certain patterns, are dis-
rupted by contact with foreign objects such as energy generators, and 
the structure of the water column changes due to the immersion of some 
converters. These changes in the flow patterns can have serious envi-
ronmental impacts on plants and aquatic organisms in the ocean 
(Mendoza et al., 2019). The deployment of these devices can alter 
physical processes in the ocean, including tidal circulation, waves, and 
ocean currents. This in turn can affect the habitats and water quality that 
support marine life. These converters can affect oceanographic systems 
by extracting energy from water currents, which may alter natural flow 
patterns around the devices and can also reduce wave height. These 
changes occur both in the vicinity of the devices (near-field effects) and 
in wider regional contexts (far-field effects) (Copping and Hemery, 
2020). 

3.2.2. Negative impacts on the ocean floor 
The ocean floor, a vast and vital component of the ocean ecosystem, 

is significantly affected by the installation of ocean energy converters 
such as tidal turbines and wave energy devices. These structures disrupt 
the existing ocean regime by changing water flow patterns and local 
currents. This disorder can lead to a change in the amount of sediment 
and an increase in scouring around the installation site. Such changes in 
the ocean floor environment can have profound effects on deep sea or-
ganisms, especially corals, which are very sensitive to changes in their 
sedimentary habitat. This can lead to reduced coral cover and reduced 
biodiversity in affected areas (Mendoza et al., 2019), (Copping and 
Hemery, 2020) On the other hand, the establishment of these converters 
can have a significant impact on the ocean ecosystem because a major 
part of this ecosystem includes aquatic animals that are very sensitive to 
changes in temperature, oxygen and other parameters. This sensitivity 
causes changes in temperature, oxygen and other environmental pa-
rameters to disrupt the ocean ecosystem. Since the widespread use of 
these oceanic energy converters in the depths of different waves changes 
the environmental factors, it is necessary to consider them in the envi-
ronmental assessment (Morris et al., 2022), (Kroeker et al., 2020) 

3.2.3. Chemical impacts 
Due to their mechanical structure, ocean energy converters use 

special chemicals such as hydraulic oils and lubricants necessary to 
move or improve their performance. These chemicals are essential for 
maintaining moving parts and efficient energy transfer. With these 
conditions, they are a significant threat in case of leakage into the ocean 
environment, and such leakage can occur due to damage or breakdown 
of transducers over time (Mendoza et al., 2019). When these substances 
enter the ocean ecosystem, they can cause severe pollution with 
devastating effects. For example, spills of these chemicals into the 
oceans can cover marine plants such as seaweed and phytoplankton, 
blocking their ability to photosynthesize by blocking sunlight. This not 
only damages the plants themselves, but also affects the entire food web 
that depends on them. In addition, these pollutants can be toxic to 
marine animals, especially those living on the edge of this device 
(Copping and Hemery, 2020) 

Fig. 3. General framework implemented for ecological risk assessment of wave 
energy projects (Galparsoro et al., 2021). 
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3.2.4. Physical impacts (noise and magnetic field) 
Noise produced by marine renewable energy devices as well as 

electromagnetic fields emitted by electric cables are a major part of their 
environmental concern (Mendoza et al., 2019). Underwater noise from 
these devices can lead to physical and psychological stress in marine 
species, potentially causing hearing loss, changes in communication 
patterns, and disruption of normal behaviors. This effect varies among 
species, with cetaceans and pinnipeds being particularly sensitive due to 
their reliance on sound for navigation and communication. In the case of 
electromagnetic fields, there are concerns about potential interference 
with the sensory and navigational systems of marine species such as 
sharks and rays that use electroreception. There is evidence to suggest 
behavioral changes and disruption of movement patterns due to elec-
tromagnetic exposure. Actual risk levels from both noise and electro-
magnetic fields depend on the proximity of the animal to the source, the 
nature of the energy device, and the duration of exposure. Both sections 
highlight the need for further research to accurately assess environ-
mental impacts and develop mitigation strategies that minimize harm to 
marine life (Copping and Hemery, 2020). 

3.2.5. Impact on the flow regime in the ocean (collision risk) 
Migration is an essential aspect of the life cycle of many oceanic 

animals, especially mammals such as whales and dolphins, whose sur-
vival depends heavily on their ability to travel long distances across 
oceans. This migratory behavior is critical not only for finding food and 
breeding, but also for maintaining genetic diversity among populations. 
Large-scale installation of energy converters, such as wind turbines or 
tidal generators, in marine environments poses significant risks to these 
migration routes. By blocking these pathways, these structures can 
disrupt the natural movement patterns of aquatic animals and signifi-
cantly increase the likelihood of collisions. Such encounters not only 
result in direct mortality among these animals, but also contribute to 
wider ecological disturbances. For example, blocking migration routes 
can lead to reduced reproductive success, as animals may not be able to 
reach their breeding grounds. converters may suffer structural damage 
from collisions with large marine mammals, leading to costly repairs and 
maintenance (Mendoza et al., 2019), (Copping and Hemery, 2020). 

4. Novelty and motivation of research 

In general, the use of advanced machine learning algorithms is one of 
the most suitable options for improving environmental assessment, 
especially the assessment of ocean environments, due to the increase in 
the huge volume of data extraction from the ocean. In this regard, in this 
research, it has been tried to use this methodology in the environmental 

assessment of ocean energy converters. Accordingly, in this study, for 
the first time, machine learning algorithms and quantum machine 
learning algorithms have been implemented on data from ocean energy 
converters. The obtained results showed that the quantum machine 
learning algorithm has the best performance in terms of accuracy 
compared to its classical counterpart. 

5. Methodology 

In this research, different machine learning algorithms are used for 
environmental assessment, which are presented below. In the first stage, 
the data collected from different sources are clustered by one of the most 
popular and widely used unsupervised learning algorithms, namely K- 
means. This clustering categorizes the raw data into three default clus-
ters. In the second step, the label determined in the clustering step is 
considered as a target in the supervised learning algorithm. In the third 
step, the output of the support vector machine algorithm is evaluated 
using the accuracy criterion. The quantum support vector machine is 
implemented on the data in the second and third stages, and finally the 
results are compared (Fig. 4). 

5.1. Machine learning 

Machine learning is one of the important applications of artificial 
intelligence in various fields of science and engineering. Its primary 
function is to capture and learn the complex relationships between 
various parameters of a complex system without requiring direct human 
intervention. One of the key advantages of machine learning is its ability 
to predict future events and states in various fields, offering potential for 
practical applications (Korkmaz and Correia, 2019). The main purpose 
of machine learning algorithms is to process data so that it can learn 
different patterns and use them in other processes (Sarker, 2021). Ma-
chine learning is a very powerful tool in the process of learning the 
behavior of a system or structure in a large amount of data. In many 
cases it is very difficult (or sometimes impossible) to identify the 
appropriate patterns of data, and this is when machine learning can be 
used to extract these patterns (Mahesh, 2018). Machine learning can 
generally be done unsupervised or supervised (Sarker, 2021). In unsu-
pervised learning, the machine evaluates the data without direct human 
input and predicts their trends, while in supervised learning, the ma-
chine can capture the patterns from a set of input and output data and 
use them to predict future patterns in different data. Due to the rapid 
growth of data production, the assessment and analysis of big data 
require powerful and fast tools (Niranjan et al., 2016) 

Fig. 4. Methodology implementation process.  
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5.1.1. Unsupervised machine learning 
Unsupervised learning is a machine learning technique that enables 

the discovery of patterns and relationships within data without the need 
for explicit labeling or classification by humans. This approach involves 
the analysis of unlabeled data, with the aim of identifying meaningful 
structures and groupings within it. In this process, relationships, featues 
and patterns are identified that might not be immediately apparent to 
human observers, providing valuable insight to the problem. One of the 
approaches to examine these relationships is measuring the distances of 
samples and placing them in specific clusters. The similarity of these 
clusters is checked by the distance of the samples from each other in the 
feature space (Károly et al., 2018). Applications of unsupervised 
learning include clustering, density estimation, feature learning, 
dimensionality reduction, finding association rules, and anomaly 
detection. In this research, unsupervised learning is used to cluster the 
data. The K-Means algorithm, which is one of the simplest and most 
widely used unsupervised algorithms, is used for data clustering in this 
research (Sarker, 2021) 

5.1.1.1. K-means clustering. In unsupervised clustering, one of the 
simplest methods used is K-Means. In this method, K centers are defined 
for clustering. The selection of these cluster centers is very important 
because the change in the position of these centers can change the re-
sults. In the next step, all points related to each cluster are connected to 
the center of the cluster and this continues until all members are 

connected. This completes the first stage. In the next stage the center of 
the new cluster is determined, and this process continues until the best 
center of the cluster is found (Mahesh, 2018). The Euclidean distance 
between the points and the cluster centers can be calculated using the 
vector that connects the two points (Károly et al., 2018), using the 
following equation: 

‖x‖=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + … + x2

n

√

(1) 

After finding the Euclidean distance between the cluster center and 
the samples, the steps of changing the clustering continue to find the 
best center (Károly et al., 2018). 

5.1.2. Supervised machine learning 
Supervised learning is the most widely used machine learning tech-

nique. In supervised learning, the database used is divided into training 
and testing datasets. The input and output data in the training dataset 
are used to derive a function that can describe the relationship between 
these data, and it is then tested on the unseen testing dataset. Once the 
accuracy of the model in describing the training and testing datasets is 
considered satisfactory, the model is considered sufficiently trained and 
can then be used to make predictions on other unseen data (Sarker, 
2021). 

5.1.2.1. Support vector machine classification. Support Vector Machine 
(SVM) is a widely used machine learning technique. In SVM learning 
algorithms are used to analyze the data for classification and regression 
analysis. In SVM, in addition to linear classification, non-linear classi-
fication can also be used, which considers the existing features in a 
higher space. The function of the support vector is to create a protected 
space between the classes and the margin, such that the maximum 
confidence space is created, and less error occurs in learning data as well 
as new data (Mahesh, 2018). 

In general, SVM is a binary classifier, but in recent years, it has been 
studied in the field of multi-class structures. In the binary structure, the 
separation of different classes in the SVM is done by a hyperplane. This 
hyperplane divides the incoming data into two parts that are in a higher 
space. In a multi-class structure, the same process is used for classifi-
cation, in which a group of data is scaled relative to the rest of the data, 
which can be referred to as an all-pair method (Fig. 5) (Bishwas et al., 
2018). 

5.2. Quantum machine learning 

Quantum machine learning emerged in the early part of this century. 
It employs the quantum structure to improve the efficiency of machine 
learning. With the remarkable progress in data mining and the very high 
speed of data production in various scientific and engineering fields, 
there is a growing demand for high-speed calculations and more so-
phisticated data structures (Park et al., 2020). Quantum calculations 
differ from classical calculations in that they rely on qubits instead of 
bits as the primary unit of information. Qubit | ψ〉 consists of two 
fundamental states | 0〉 and | 1〉, which serve as the basis for more 

Fig. 5. All-pair method (Kumar et al.b).  

Fig. 6. The Bloch sphere representation of a qubit.  
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complex quantum operations. 
This state of | ψ〉 in quantum computing enables a superposition of | 

0〉 and | 1〉, allowing for powerful and complex quantum computations 
(Martín-Guerrero and Lamata, 2022). 

0⟶ |0〉  

1⟶ |1〉 

The vectors | 0〉 and | 1〉 form an orthonormal basis of a two- 
dimensional Hilbert space which is also called the computational basis 

(Fig. 6) (Schuld and Petruccione, 2021). 

|ψ〉= α|0〉 + β|1〉  

In this equation α, β ∈ C and due to vector normalization |α|2 + |β|2 = 1. 
In general, each qubit can be displayed parametrically, and in this re-
gard, geometric representation can be very helpful (Schuld and Pet-
ruccione, 2021). Due to the need for high-speed data processing as well 
as high accuracy in calculations, quantum computing can be a more 
suitable and faster option for information processing compared to 
classical machine learning, especially in processing of big data. In recent 
years, there has been an increase in the use of quantum machine 
learning to create a transformation in the speed of exponential learning 
(Kerenidis et al., 2018). It has been proven that quantum computing can 
outperform its classical counterpart (Kerenidis et al., 2018). From a 
technical point of view, quantum computing is faster in dealing with 
complex problems and data and can provide better learning in data 
analysis compared to classical machine learning. Quantum machine 
learning can be used in quantum clustering, quantum automatic en-
cryptions, quantum reinforcement learning, quantum nonlinear 
modeling, improving the active learning process, as well as different 
types of machine learning methods to work more efficiently 

Fig. 7. Location of ocean power converters (Google, 2023).  

Table 2 
Summary of the status of wave and tidal converters (The Portal and Repository 
for Information on Marine Renewable Energy (PRIMRE)).  

Type of resource The number of projects Capacity (MW) status 

Wave 55 418 Active 
Tidal 94 15,833 Active  

Fig. 8. Classical K-Means clustering.  

Fig. 9. Elbow plot to select K value in cluster.  
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(Martín-Guerrero and Lamata, 2022). One of the important factors in 
quantum computing is the understanding of quantum environments and 
the provision of quantum algorithms that can improve the correlation 
between the learning agent and its environment. Quantum machine 
learning strives to increase the speed of calculations and reduce the 
complexity for more accurate analysis and more robust learning of re-
lationships and structures in databases. This increase in speed in quan-
tum environments, which can be easily done by increasing the number 
of qubits, can sometimes lead to the creation of new solutions with 
better performance (Martín-Guerrero and Lamata, 2022). Other uses for 
quantum machine learning include very complex statistical patterns that 
are very difficult to detect and even generate new data in the classical 
machine learning. Quantum machine learning holds the potential to 
generate data with significantly more complex statistical patterns than 
what is currently available (Park et al., 2020). 

5.2.1. Quantum support vector machine (QSVM) 
Support vector machine (SVM) is an efficient and widely used al-

gorithm for classification. However, as the complexity and volume of 
data increases, it becomes exceedingly difficult, and sometimes impos-
sible, for SVM to analyze and assess the data. In quantum support vector 
machines (QSVM), using quantum mapping, a feature map is prepared 
to improve the performance of the algorithm for complex data analysis 
(Kavitha and Kaulgud, 2022). The feature map transforms the data into a 
set of multi-qubit states. This allows the data to be classified by the al-
gorithm (Suzuki et al., 2020). QSVM, like its classical counterpart, SVM, 
attempts to create the maximum distance between data with 
high-precision classification. But in complex and large data, QSVM 
outperforms SVM (Park et al., 2020). In QSVM, by using the principle of 
superposition, it is possible to classify the data using a super-plane or a 
non-linear function for mapping. The feature map can be transferred in a 
space called Hilbert space in which the separation is done (Kavitha and 
Kaulgud, 2022). The classification methods have a binary structure, 
which can be used to classify data into several classes in a one-against-all 
manner. QSVM follows the same process to find the maximum margin 
between each class (Kavitha and Kaulgud, 2022). In the quantum 
multi-class classification used in this research, one-versus-others and 
one-versus-one strategies are used to build a multi-class QSVM that uses 
pre-designed quantum annealing to find the separating hyperplane be-
tween classes. The goal of this approach is to find the maximum margin 
between each class (Dema et al., 2020). 

It has been shown that using a quantum environment for data pro-
cessing can lead to better results (Kavitha and Kaulgud, 2022). Also, as 
the number of data points and the calculation time increase, quantum 

computation results can be much better than their classical counterpart 
due to the significant reduction in processing time. After running 
quantum codes on several standard datasets, it was found that the pro-
cessing time for quantum computing can be as low as 0.01%–1% 
compared to the classical methods (Kavitha and Kaulgud, 2022). 

5.2.2. Application of quantum computing to assess impacts of wave and 
tidal devices 

UK is one of the leading countries in the production of energy from 
the ocean due to its geographical conditions and the existence of wide 
beaches (Farrok et al., 2020).The dataset used in this research includes 
149 devices of wave and tidal energy converters located in England 
(longitude: 350.5, latitude: 49.5) (Fig. 7). In general, 55 wave energy 
devices with a total capacity of 418 MW and 94 tidal energy devices with 
a total capacity of more than 15,800 MW have been analyzed in this data 
(Table 2). This dataset consists of 21 parameters. These parameters 
include temperature, water salinity, oxygen concentration, as well as 
related ocean parameters collected from the NOAA website of the Na-
tional Oceanic and Atmospheric Administration (National Oceanic and 
Atmospheric Administration). Also, some information about the phys-
ical characteristics of converters such as single device or array, the 
number of devices and the area occupied by the device has been 
collected from papers and documents related to the converters. But some 
important features such as the extent of the devices’ impact on the 
ecosystem and water quality, the impact on aquatic life and aquatic 
organisms, and the impact on the ocean floor regime are taken from the 
OES-Environmental 2020 State of the Science Report (Copping and 
Hemery, 2020). This report presents a dashboard to classify the impacts 
of ocean devices between very low impact to very high impact. This 
categorization is used in the current research to evaluate the qualitative 
data available in the dataset. This classification helps to score converters 
more accurately for each feature (Copping and Hemery, 2020). Gener-
ally, Information about converters has been collected from various 
sources, including websites of designers or manufacturers and related 
scientific articles. In addition to the technical details of the converters, 
oceanic data were also collected for the same geographic coordinates 
(The Portal and Repository for Information on Marine Renewable En-
ergy (PRIMRE)). In this paper, a new approach involving the use of 
quantum computing to investigate the environmental impacts of wave 
and tidal devices on the ocean is introduced. This paper uses two 
different (classical and quantum) structures for data analysis and 
compare the results of these two structures. 

Fig. 10. The process of running SVM and QSVM algorithms.  
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6. Results 

In the first step, the K-Means algorithm is implemented on the 
existing dataset and then the proposed clustering is determined by the 
model (Fig. 8). 

After running this algorithm and finding the inertia value for each 
cluster (which is calculated from the sum of squares of the distance of 
each data point to the center of the cluster and drawing the knee chart), 
it was found that the 3 selected clusters are the correct choice for data 
analysis and prediction. are. In general, in most cases, increasing the 
number of clusters does not help to improve the performance of the 
algorithm. It may even complicate the calculations unnecessarily. 
Therefore, choosing more than 3 clusters will not have a noticeable 
change in performance improvement (Fig. 9). 

In the next step, the clustering obtained from the K-Means model is 
considered as the final class in the classical SVM model. Then, with the 
investigations carried out on the clustered data, these three clusters were 
classified with the labels of low impact, medium impact, and high 
impact. After analyzing the dataset in the three classes by the classical 
SVM, this research was able to obtain an accuracy score of 87.5%. Ac-
curacy is a common performance measure that is a measure of the 
proportion of observations that are correctly predicted. This score in-
dicates the accuracy of model in making predictions by SVM and its 
ability to predict the environmental impacts of new devices. In the final 
stage, the labeled data (which were produced by the K-Means model), 
were implemented in the quantum support vector machine (QSVM) 
model. The results show the accuracy of the QSVM was significantly 
higher (98%) than its classical counterpart (87.5%) (Fig. 10). The higher 
accuracy of the quantum vector machine compared to the supporting 
vector machine shows the superior ability of this model to predict the 
state of new data. This means that if new converters are proposed, this 
model can accurately predict which category these converters would fall 
into. With a highly accurate prediction of the influence of new con-
verters on the marine environment, it is possible to reduce the possible 
impacts or revise the design to reduce the environmental impacts. 

6.1. Silhouette score 

Determining the number of clusters is one of the important factors in 
data clustering. One of the common measures to determine the number 
of clusters for the K-Means algorithm is the silhouette score. This index, 
which ranges from − 1 to 1, uses the average intra-cluster distance a, and 
the average distance of the nearest cluster for each data point b (Sha-
hapure and Nicholas, 2020). 

Silhouette score=(b-a) /max(a,b)

The highest silhouette score for the dataset considered in this 
research was 0.465 for three clusters. According to Fig. 11, the place-
ment of the data in the selected clusters has been appropriate; except for 

Fig. 11. Silhouette plot.  

Fig. 12. One-at-a-time (OAT) sensitivity analysis bar chart.  
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a few data points, the rest of the data correspond to the cluster to which 
they were allocated. 

6.2. Features analysis 

An approach for determining the relative weights of various input 
variables in a model is called one-at-a-time (OAT) sensitivity analysis. 
This type of local sensitivity analysis only considers the impacts of 
altering one input variable at a time while holding the others constant. 
The OAT method entails repeatedly running the model while methodi-
cally altering the value of one input variable at a time. The output from 
each run is then used to assess the model’s sensitivity to each individual 
input variable. The output from the model is compared between the 
various runs to determine the sensitivity of the model to each input 
variable. The range of possible values for each output variable is 
determined, and for each unit change in the input variable, the per-
centage change in the output is determined. This provides indicators of 
the model’s sensitivity to a specific input variable. There are some 
drawbacks to the OAT method as it only considers the impacts of altering 
one input variable at a time and ignores interactions between variables. 
As it calls for running the model multiple times, it is also a computa-
tionally intensive method. However, it can be a useful tool for deter-
mining the relative significance of various input variables and directing 
further investigations (Borgonovo) (Fig. 12). 

Based on the study of several aquatic species in the waters of 
southwest England, the most populous species of this region live in the 
epipelagic zone (Devon wildlife trust, n.d.). This area forms the upper 
part of the ocean and its depth is 200 m. Due to the penetration of 
sunlight, this part of the ocean hosts many marine species that use 
sunlight for photosynthesis. It should be noted that this area is shallower 
in the coastal strip and many aquatic animals live near the shore (Sutton 
et al., 2017). According to the evaluation results, two important factors 
are important in the way they move: the depth and the specific range of 
horizontal movement of aquatic animals on the water surface. In these 
geographical coordinates where the converters have been studied, it is 
known that a large percentage of aquatic and marine mammals dive at a 
depth of 30–50 m and most large mammals generally swim in this area. 
Another important point in the behavior of some aquatic animals, 
especially marine mammals such as dolphins and whales, is the degree 
of breathlessness. This causes the mammals to surface and dive back into 
the water at regular intervals. This group of aquatic animals needs airing 
at the water surface for 10–30 min (Kooyman and Ponganis, 1998). This 
allows the mammals to move between the 30 m depth and the surface in 
constant motion. This traffic greatly increases the risk of aquatic ani-
mals’ collision. As a result, the obtained results about the sensitivity of 
the depth feature are consistent with the real data (Devon wildlife trust, 
n.d.). 

7. Conclusion 

Environmental impact assessment in all aspects of engineering is a 
complex task. This assessment increases the complexity in large envi-
ronments such as oceans where various factors are involved and 
interact. Because of their vastness, the oceans are the habitat of many 
species of living organisms on this planet. In recent years, with the 
advancement of technology, the extraction of data from the oceans has 
greatly increased (Brett et al., 2020). Therefore, examining and 
analyzing these data for environmental assessments, focusing on marine 
renewable energy generation converters, requires powerful data anal-
ysis tools that can provide us with more accurate answers in a shorter 
period of time. Therefore, due to the high accuracy and learning ability 
of quantum machine learning compared to classical machine learning 
for various databases, especially big data, quantum machine learning is 
expected to perform better in the analysis of marine environment data. 

In this paper, the application of quantum machine learning in eval-
uating the environmental impacts of wave and tidal energy devices was 

investigated. Quantum machine learning was used to analyze and 
evaluate ocean energy generation converters at a specific location off the 
coast of England. In this research, it has been determined that QSVM 
algorithm of quantum machine learning provides better accuracy for 
data analysis with 98% accuracy compared to 87.5% accuracy of clas-
sical machine learning SVM algorithm. QML provides a new approach to 
marine environmental impact assessment. This approach provides a 
powerful bridge between ocean environmental assessment and the use 
of emerging technologies in artificial intelligence and quantum me-
chanics. It can be confirmed that researchers can achieve much better 
and more accurate results using a larger and more complete data set in 
the future. 

On the other hand, the analysis of ocean data by quantum machine 
learning provides a new window to increase speed and accuracy. This 
will increase the accuracy of engineers and especially designers in 
important areas such as the design of ocean energy converters with 
better capabilities and lower costs. Another important point in big data 
calculations is time. And also one of the important points is that quan-
tum machine learning algorithms will decrease the costs and increase 
the flexibility of decisions by reducing the calculation time. 
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