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A B S T R A C T

The North Sea is facing a complex pressure landscape driven by a multitude of human activities and environ
mental drivers. Over the next decades, this landscape is expected to transform substantially due to accelerating 
changes in key sectors, such as the renewable energy and fisheries sectors, as well as climate change. These 
changes profoundly affect demersal fish communities through direct alterations to the seabed and modifications 
to the environmental conditions. Given the complex interactions between these pressures, the net effect remains 
uncertain. We used a trait-based Bayesian network model combining empirical data with expert knowledge to 
describe the probabilistic relationships between offshore wind farms (OWFs), fishing, temperature increase, 
nitrogen concentrations, and demersal fish traits. Specifically, we integrated model data on environmental 
pressures, survey data on fishing intensity and demersal fish distribution with qualitative information on the 
effects of OWFs. This approach allowed us to examine how the trait composition of demersal fish communities 
may change in the future and to develop trait-based indicators for identifying potential areas of concern. We 
show that the currently designated Natura 2000 areas have limited overlap (<10 %) with the most vulnerable 
fish communities, which were identified based on selected traits and stressors and were predicted to be pre
dominantly located in the northern part of the study area. These areas are also central to the ambitious expansion 
plans of OWFs, highlighting the need to understand whether OWFs can partially fulfil an ecosystem enhancement 
opportunity left unaddressed — a possibility suggested by our network predictions. However, our network also 
indicated that temperature increases by 2060 will cause substantial, area-wide shifts, while the effects of OWF 
expansion and potential fisheries spatial redistribution are highly localised, resulting in mild to moderate 
changes in trait distribution. These findings suggest that climate change will be the key driver of substantial 
community transformations by 2060.

1. Introduction

The North Sea, a hub of economic activities, is facing a complex 
pressure landscape driven by a multitude of human activities and 
environmental drivers (Halpern et al., 2008). This landscape is expected 
to undergo lasting transformations over the next two decades due to 
accelerating changes within key sectors. Among those is the renewable 
energy sector with plans to install 212 GW of offshore wind capacity by 
2050 (Gusatu et al., 2021), which will occupy a substantial area of the 
North Sea. The implementation and operation of offshore wind farms 

(OWFs) come along with various pressures, including noise, electro
magnetic fields, and hydrological changes (Dannheim et al., 2020). 
While some of these pressures exert localised effects, others extend their 
impact across a broader spatial range. Still, others are facilitated by the 
network characteristics of these installations (e.g., the invasion of 
non-native species, Watson et al., 2024). OWF turbines and their scour 
protection may also transform soft sediment habitats by introducing new 
three-dimensional hard substrates, which can alter the environment in 
various ways (Gimpel et al., 2023; Raoux et al., 2019; Slavik et al., 2019; 
Degraer et al., 2020).
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Bottom trawling was one of the most dominant activities in the North 
Sea but has steadily declined over the past years due to worsening socio- 
economic conditions and the decline of target stocks (Stelzenmüller 
et al., 2024a). Sectoral experts anticipate a further decrease in fishing 
intensity in the German part of the North Sea driven by the planned 
installation of OWFs and the expansion of nature conservation areas 
under the EU Biodiversity Strategy 2030 (Larsner and Barz, 2023; 
Stelzenmüller et al., 2024b). Excluding fishing inside OWFs can, in turn, 
have beneficial effects on fish communities by reducing the pressure 
landscape for target species across the North Sea.

These sectoral changes occur within a broader and spatially variable 
environmental pressure landscape, characterised by shallow depths and 
strong seasonal stratification (Ducrotoy et al., 2000). Sea-surface tem
peratures and wind are the key large-scale physical drivers of the system, 
influenced by regional factors and by the North Atlantic (Emeis et al., 
2015) as well as ongoing global warming trends (Weinert et al., 2016). 
The coastal areas are also strongly influenced by land-based activities 
such as agriculture and the land-based industry, particularly through the 
elevation of nutrient concentration levels (Stelzenmüller et al., 2024b), 
which in turn can affect primary production, oxygen dynamics and 
species composition (Camargo and Alonso, 2006). While there has been 
a considerable reduction in nitrogen concentrations since the 1990s, it is 
still above environmentally acceptable levels in many parts of the 
southern North Sea (Voß et al., 2009). Nitrogen can further interact with 
climate change-related pressures (Radach and Pätsch, 2007), leading to 
detrimental effects on food-web dynamics. Climate change itself directly 
affects fisheries target stocks, with projections for the North Sea indi
cating substantial temperature increases (Mathis et al., 2019; Mathis and 
Pohlmann, 2014) and latitudinal species shifts (Gordo-Vilaseca et al., 
2024). These effects may be especially pronounced in shallow and 
stratified coastal waters, where salinity levels can strongly vary due to 
freshwater input from continental rivers (Emeis et al., 2015).

How these various pressures interact and cumulatively reshape the 
North Sea remains uncertain. Yet, they are expected to significantly 
impact seabed communities, particularly demersal fish, by directly 
altering sea floor conditions. Understanding the combined impact is 
therefore crucial for identifying vulnerable areas and developing effec
tive mitigation strategies. Cumulative effects on the environment are 
typically assessed by examining their impact on specific species or broad 
ecosystem components (Halpern et al., 2008; Stelzenmüller et al., 2020). 
However, it is the traits of a species, rather than its taxonomic identity, 
that determine its vulnerability to specific pressures. Consequently, 
evaluating the potential effects of cumulative pressures on community 
traits offers a more mechanistic and process-oriented approach to un
derstanding these impacts (Butt et al., 2021; O’Hara and Halpern, 2022; 
Stelzenmüller et al., 2018).

To advance the assessment of future cumulative impacts on demersal 
fish, we adopted a trait-based Bayesian Belief Network (BN) approach 
that integrates both quantitative large-scale data and qualitative local 
information, offering a more comprehensive assessment. This is essen
tial given the limited spatial extent of existing offshore wind farms and 
the reliance on localised before–and–after or inside–outside assess
ments. Using this framework, we explore the potential impacts of the 
planned expansion of OWFs, a subsequent redistribution and further 
decline in fishing, and an increase in temperature on the demersal fish 
community in the southern North Sea, while considering the effects of 
nitrogen concentrations. We examine how the trait composition may 
change in the future and develop trait-based indicators for identifying 
potential areas of concern. The network was trained on model and 
empirical data from the southern North Sea spanning 1985 to 2020, as 
well as qualitative information from relevant literature. Our integrative 
approach provides a structured way to explore how future developments 
of human-related pressures may cumulatively reshape demersal fish 
communities.

2. Material and methods

2.1. Identifying key vulnerable traits of demersal fish communities

We identified species traits that potentially influence a fish’s 
vulnerability to temperature increases, nutrient enrichment, and pres
sures from OWFs and benthic trawling. We first identified the life- 
history characteristics body size (hereafter size), age at sexual matu
rity (hereafter maturity), and longevity to respond to biological 
extraction from benthic trawling and temperature changes. Larger spe
cies are often disproportionately removed by fishing (Dulvy et al., 2003; 
Jennings et al., 2001; Reynolds et al., 2005) and are potentially more 
vulnerable to increasing temperatures because warming will decrease 
the aerobic capacity and large species are less able to balance oxygen 
demand and uptake because of their smaller surface area to volume ratio 
(Baudron et al., 2014; Cheung et al., 2013; Jones and Cheung, 2018). 
Longevity and maturity are expected to be indirectly impacted as well 
because they are strongly correlated with size. We also identified the 
feeding type piscivory to be more vulnerable to habitat disturbances 
from benthic trawling and nutrient enrichment because of the increased 
turbidity and the resulting reduction in predation success (Breitburg 
et al., 2009; Stelzenmüller et al., 2010; Utne-Palm, 2002; Wenger et al., 
2017). Given the lack in understanding linkages between OWF-related 
pressures and species traits (Rehren et al., submitted), we only identi
fied two potential effects from the expansion of OWFs on species with 
specific traits. We first identified species associated with a complex sea 
floor structure to potentially benefit from the installations of OWF 
structures (hereafter, complex-bottom affine) as highlighted by empir
ical studies (e.g., Glarou et al., 2020; Methratta and Dardick, 2019). 
Second, from a meta-analysis of studies examining the abundance of fish 
inside and outside of OWF areas, we assumed that particularly piscivore 
fish (hereafter piscivory) may benefit from the artificial reef effect 
(Methratta and Dardick, 2019).

2.2. Data

2.2.1. Community-weighted mean traits
Changes in the community mean of the selected traits were analyzed 

to better understand potential shifts in the demersal fish community 
resulting from future changes in the cumulative pressure landscape. For 
this, we obtained fish abundance data (kg/km2) from (1) the Demersal 
Young Fish Survey DYFS, (2) the North Sea International Bottom Trawl 
Survey NS-IBTS, (3) the Beam Trawl Survey BTS, and (4) the German 
Autumn Survey in the Exclusive Economic Zone (GASEEZ Survey, 
Fig. 1). The first three surveys are coordinated by ICES and the data 
including records on haul length and survey information are available 
through the ICES DATRAS data portal (https://www.ices.dk/data/d 
ata-portals/Pages/DATRAS.aspx, accessed June 2024). The GASEEZ 
survey samples 14 rectangles in the southern, central and northern 
North Sea and was obtained from the Thünen database.

All gears other than GOV (Grande Ouverture Verticale) trawls were 
removed from the NS-IBTS survey to assure comparability across hauls. 
Hauls with no geo-information or catch data were removed from all 
surveys prior to the analysis. Data on wing spread and towed distance 
were used to estimate species densities (n/km2). Missing information on 
the towed distance was estimated from shoot and haul positions using 
the function ‘distGeo’ from the r-package ‘geosphere’ (version 1.5–18) 
and all towed distances above 6000 m were considered unrealistic and 
thus removed. Missing information on the wing spread for beam trawl 
gears was set equal to beam width. For GOV trawls, missing wing spread 
was estimated based on a linear regression between wingspread and 
depth. For the GASEEZ data, the wing spread was set to 23 m for KJN 
(Kabeljauhopser) gears and 14 m for beam trawls. All double beams 
have been corrected by doubling the wing spread estimate. Species 
abundance (n) was aggregated across length class and the species den
sity (n/km2) per haul was calculated by dividing the total number by the 
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swept area. We further removed rare species which occurred only in 
very few hauls (n ≤ 20). For an estimate of biomass (kg/km2), we used 
the length-weight relationship parameters from FishBase (www.fishbas 
e.org, data download at February 08, 2024 via the r-package ‘rfishbase’ 
Boettiger et al. (2023), using the ‘length-weight’-function), which were 
further complemented by an internal Thünen-data base (Wilhelms, 
2013). We classified 62 species from these surveys as demersal (i.e., 
demersal, bathydemersal, benthopelagic) following Probst et al. (2021)
and the FishBase classification (Froese and Pauly, 2023).

Size, longevity, and age-at-sexual-maturity, were expressed as 
continuous traits using a mean value per species. The feeding type and 
habitat preference of the species were assigned values from 0 (none) to 4 
(complete) expressing the affinity of a species to a modality (e.g., pis
civory, affinity to complex bottom structures) of the trait (i.e., fuzzy 
coding, Chevenet et al., 1994). We obtained information on mean spe
cies size from North Sea fisheries surveys (Wilhelms, 2013), com
plemented with information from FishBase (Froese and Pauly, 2023). 
The affinity to complex bottom habitats was taken from the 
meta-analysis of Methratta and Dardick (2019) and complemented with 
information from FishBase (Froese and Pauly, 2023).

Information for piscivory, longevity, and age at sexual maturity was 
obtained from FishBase (Froese and Pauly, 2023), giving more weight to 
information from the North Sea. A species list with trait information can 
be found in Appendix A.

Using the species-trait table and a log-transformation of the species 
biomass (to reduce the skewness in the biomass data), we calculated 
community-weighted mean traits for each haul by multiplying the trait 
value by the relative abundance of each species and then aggregating 
these weighted values across all species.

To obtain a regular grid, the community-weighted mean traits were 
interpolated on a 0.05◦ longitude x 0.05◦ latitude spatial grid (hereafter 
0.05x0.05 grid) using the inverse distance squared weighted algorithm 
of the R gstat package (Pebesma and Graeler, 2023) and converted back 
to a data frame using the rasterToPoints function from the raster package 
(Hijmans, 2023).

2.2.2. Pressure data
We used the total subsurface swept-area-ratio from ICES (ICES, 2021; 

https://doi.org/10.17895/ices.data.8294) to express the pressures bio
logical extraction and habitat disturbance (i.e., siltation, smothering). 
Information on the foundations of OWFs has been obtained from 4C 
Offshore Ltd (https://www.4coffshore.com/, last accessed April 2022). 
We included only those wind parks that have been fully commissioned 
during the study period (1985–2020). A 500-m buffer zone around the 
wind park polygons was calculated using the buffer function from the 
raster package to account for a potential effect distance and then ras
terized on a 0.05x0.05 grid.

High-resolution information (1.5–4 km) on annual averages of bot
tom maximum temperature and dissolved inorganic nitrogen (proxy for 
nutrient enrichment) for the periods 1985–1989 and 2004–2012 were 
obtained from a long-term simulation for the southern North Sea (Xu 
et al., 2020), which was performed using as key components the hy
drodynamic model GETM (Burchard and Bolding, 2002) and the 
trait-based pelagic ecosystem model MAECS (Kerimoglu et al., 2017; 
Wirtz, 2019), integrated using the generic coupling frameworks FABM 
and MOSSCO (Lemmen et al., 2018). All data is available from Wirtz 
et al. (2024). Maximum bottom temperature and dissolved nitrogen 
were transformed to raster format on a rectangular raster grid with a 
resolution of 0.025◦ longitude x 0.025◦ latitude accounting for an 
average distance between grid cell centres of 3.262 m. We extracted 
information on all pressures on each point of our 0.05x0.05 grid using 
the extract function of the raster package.

2.3. The Bayesian Belief Network

We constructed a directed acyclic causal Bayesian Belief Network 
using the software Netica 6.05 Win (CoGFMs64), where each node 
represented a variable or state corresponding to the selected pressures 
and demersal fish traits (see section Identifying vulnerable traits of 
demersal fish communities). All nodes except the presence/absence of 
OWFs were continuous data. Since Netica only handles discrete data, 
each continuous variable was converted into discrete states (Table 1) 

Fig. 1. Study area and sampling points of the scientific surveys between 1985 and 2020 used in the analysis. We used the key fisheries independent demersal surveys 
bottom trawl survey (BTS), demersal young fish survey (DYFS), German Autumn Trawl Survey in the German exclusive economic zone (GASEEZ), and the North Sea 
International Bottom Trawl Survey (NS-IBTS).
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through a binning process, ensuring that each bin contained approxi
mately equal frequencies and thus more robust estimates of probabili
ties. We limited the number of states to only 2–3 to avoid insufficient 
observations per category affecting the reliability of probability esti
mates. We adjusted the binning of the pressure nodes maximum bottom 
temperature, benthic trawling, and nitrogen to account for potential 
pressure thresholds. We set the bins of the temperature node based on 
the temperature preferences of the modelled species obtained from 
AquaMaps (https://www.aquamaps.org., accessed 08/2023). Thresh
olds were set at the mean and the third quartile of the maximum tem
perature ranges observed for the modelled species. Information on 
thresholds for nitrogen and subsurface swept-area-ratio were taken from 
a recent study on the identification of human and environmental stressor 
thresholds of seascape fauna composition in the southern North Sea 
using a Gradient Forest approach (Kraan et al., 2024). The bins of the 
two nodes were adjusted according to values in these stressor gradients, 
where significant shifts in the demersal fish community composition 
occurred. Further, we added a no fishing pressure state (i.e., bin) to the 

benthic trawling node to model the effect of fisheries exclusion from 
future OWFs. While, the available data for nitrogen and maximum 
bottom temperature span 1985–2012, subsurface swept-area-ratio data 
span the period 2009–2020. To address this mismatch in periods, we 
added a year node with three bins (1985–1989, 2004–2012, and 
2013–2020) and manually adjusted the probabilities for missing periods 
using linear regression.

The probabilities of the parent nodes (pressures) and all conditional 
probabilities of the child nodes (traits) were learned from data, except 
those related to a zero-fishing state and the presence of OWFs. Since the 
survey data had insufficient observations for the zero-fishing state, we 
used linear regression on the probabilities from other states to estimate 
the conditional probabilities for size, longevity, age at sexual maturity, 
and piscivory under zero-fishing. The conditional probabilities of pis
civory and complex-bottom affinity under the presence of OWFs could 
likewise not be learned from the data, because the survey data lacked 
stations within OWF areas. We used the effect sizes of 0.9 and 0.8 from 
the meta-analysis on studies examining the abundance of fish inside and 

Table 1 
Description of variables (nodes) of the Bayesian Belief Network (BN) modelling the effects of cumulative stressors on community traits of demersal fish. Abbreviations: 
SAR = Subsurface Swept Area Ratio; prop. = proportion.

Node name Description States Unit Data source

Year ​ 1985–2004 
2004–2013 
2013–2020

yrs n.a.

Pressure nodes
Maximum bottom 

temperature
Maximum bottom temperature between 1985 and 2012 obtained from a long-term 
simulation of the MOSSCO GETM-MAECS model for the southern North Sea. Probabilities 
for the period 2013–2020 were adjusted using linear regression.

11–14 
14–16.2 
16.2–24

◦C MOSSCO-GETM- 
MAECS (Wirtz, 2019)

Benthic trawling Spatial data layers on fishing intensity/pressure within the OSPAR Maritime Area for 
2015–2020. SAR is the cumulative area contacted by a fishing gear within a grid cell over 
one year (≥2 cm penetration depth of the gear components). Probabilities for the period 
1985–2013 were adjusted using linear regression.

0-1e-10 
1e-10-0.63 
0.63–9.9

SAR (ICES, 2021)

Dissolved inorganic 
nitrogen

Dissolved inorganic nitrogen between 1985 and 2012 obtained from a long-term simulation 
of the MOSSCO GETM-MAECS model for the southern North Sea. Probabilities for the 
period 2013–2020 were adjusted using linear regression.

0.1–5 
5–314.6

mmol N/ 
m^3

MOSSCO-GETM- 
MAECS (Wirtz, 2019)

Offshore wind farms Presence/absence of OWF areas obtained from the 4C Offshore Ltd (last accessed April 
2022)

0 
1

​ 4C Offshore Ltd

Trait nodes
Community mean size Interpolated community mean (1985–2020) based on (1) log-transformed species 

abundance (kg/km2) from trawl surveys and (2) the trait table (Appendix A) by multiplying 
the trait value by the relative abundance of each species and aggregating these weighted 
values across all species.

low (24–55.5) 
high 
(55.5–123)

cm Trawl surveys ICES 
DATRAS & GASEEZ

Community mean 
maturity

Interpolated community mean (1985–2020) based on (1) log-transformed species 
abundance (kg/km2) from trawl surveys and (2) the trait table (Appendix B) by multiplying 
the trait value by the relative abundance of each species and aggregating these weighted 
values across all species.

low 
(1.04–2.79) 
high 
(2.79–5.03)

yrs Trawl surveys ICES 
DATRAS & GASEEZ

Community mean 
longevity

Interpolated community mean (1985–2020) based on (1) log-transformed species 
abundance (kg/km2) from trawl surveys and (2) the trait table (Appendix B) by multiplying 
the trait value by the relative abundance of each species and aggregating these weighted 
values across all species.

low 
(2.7–16.3) 
high 
(16.3–29.4)

yrs Trawl surveys ICES 
DATRAS & GASEEZ

Community mean 
piscivory

Interpolated community mean (1985–2020) based on (1) log-transformed species 
abundance (kg/km2) from trawl surveys and (2) the trait table (Appendix B) by multiplying 
the trait value by the relative abundance of each species and aggregating these weighted 
values across all species.

low (0–0.14) 
high 
(0.14–0.71)

prop. Trawl surveys ICES 
DATRAS & GASEEZ

Community mean complex 
bottom affinity

Interpolated community mean (1985–2020) based on (1) log-transformed species 
abundance (kg/km2) from trawl surveys and (2) the trait table (Appendix B) by multiplying 
the trait value by the relative abundance of each species and aggregating these weighted 
values across all species.

low (0–0.23) 
high 
(0.23–0.83)

prop. Trawl surveys ICES 
DATRAS & GASEEZ

Indicator nodes
Conservation concern 

index
Node expressing the probabilities of a community hosting species abundances under 
conservation concern. Probabilities were based on the proportion of species in the trawl 
surveys with various combinations of longevity and piscivory states classified as under 
conservation concern versus not.

low high n.a. Calculated

Commercial interest index Node expressing the probabilities of a community hosting species abundances of 
commercial interest. Probabilities were based on the proportion of species in the trawl 
surveys with various combinations of longevity and piscivory states classified as fisheries’ 
target species or not.

low high n.a. Calculated

Vulnerability Node expressing the vulnerability of the demersal fish community to the selected pressures. 
The node was calculated by multiplying the logarithms of the size, maturity, longevity, and 
piscivore nodes, based on the assumption that communities with K-strategists (i.e., larger, 
later maturing, and longer-lived species) and a high abundance of piscivores are more 
sensitive to the pressures.

0–1.5 
1.5–5 
8–14.2

n.a. Calculated
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outside of OWF areas (Methratta and Dardick, 2019) to adjust the con
ditional probabilities of the trait nodes piscivory and complex-bottom 
affinity, respectively. The effect size was converted into an odds ratio 
and applied to the baseline probabilities estimated by the network under 
the absence of OWFs.

We used Netica’s equation mode to calculate an index representing 
the vulnerability of the demersal fish community to the selected 
pressures: 

Vulnerability= log(1+ size) × log(1+maturity) × log(1+ longevity)

× log(1+piscivorous feeding)

The underlying assumption is that communities dominated by spe
cies that are larger, mature later, and live longer—along with a high 
abundance of piscivores, are more susceptible to the selected pressures. 
The multiplicative approach assumes that these traits interact to shape 
vulnerability, meaning that communities scoring high across all four 
traits will have the highest vulnerability scores, while those with lower 
values will be less affected. We further defined two indices, one 
expressing the probability of a community to host traditional species of 
commercial interest (commercial interest index) and one expressing the 
probability of a community to host species of conservation concern 
(conservation concern index). Both indices were defined as child nodes 
of the nodes longevity and feeding strategy. To parameterize the con
ditional probability tables of the two indicator nodes, we analyzed the 
survey data to calculate, for each combination of predictor states (low 
and high longevity, piscivores and non-piscivores), the proportion of 
species that are of conservation concern (or commercial interest) versus 
those that are not (Table 1, Appendix B for conditional probability 
tables).

We tested the network performance by letting the model predict each 
of the trait nodes separately and comparing the predictions with the 
observed data using the node-specific error rate and spherical pay-off. 
The latter measures the overall performance of the network by assess
ing the balance between correct and incorrect predictions across all 
nodes (Marcot, 2012). The metric rewards models that maintain high 
accuracy and minimise the influence of isolated errors. To identify 
influential variables, areas of uncertainty, and assess the model 
robustness, we performed a sensitivity analysis for the trait and the in
dicator nodes. Finally, we compared the spatial predictions of the most 
probable state of the trait nodes from the model for 1985–2020 with the 
classified observed data averaged over the same period. To assess the 
agreement between these two spatial maps of categorical variables, we 

calculated Cohen’s Kappa using the caret package (Kuhn, 2023), which 
is a statistical measure of inter-rater reliability (Marcot, 2012).

2.4. Future scenarios of cumulative pressures

We used the network to investigate how future changes in imple
mented OWFs, benthic trawling, and temperature propagate through the 
network and affect the demersal fish community indicators. In the first 
scenario (2040OWF), we assumed that the existing development plans 
for the implementation of OWFs will remain unchanged in the future. All 
OWF areas were modelled as fisheries exclusion zones. In a second 
scenario (2040OWF-Redistribution), we assumed that the fisheries 
would redistribute within a 15 km radius outside of the new OWFs. A 
third scenario accounted for potential long-term changes in temperature 
in 2060 (2060-Temperature). While we retained the OWF developments 
until 2040 and the redistribution approach from the second scenario, we 
additionally assumed that the long-term fishing effort would decrease by 
30 %. This assumption is based on an expert elicitation on the future 
development of the German North Sea fisheries (Stelzenmüller et al., 
2024b). While the development of the German fishery is not represen
tative of the general North Sea fisheries, the scenario can be seen as a 
worst case in which the future competition for space due to the expan
sion of OWFs and marine protected areas together with increasing 
fishing costs and decreasing stocks may result in the loss of fishing op
portunities and a general reduction of fishing capacities.

We used all OWF polygons with a full commission date prior to 2041 
as provided by the 4C Offshore Ltd data to represent the developments of 
the sector. Subsurface swept-area-ratio was proportionally redistributed 
to cells in a 15 km radius of OWFs following the approach from Kruse 
et al. (2024), assuming that fishers would search for alternative fishing 
grounds nearby. To forecast the impacts of changes in maximum sea 
bottom temperature, we adjusted it using sea temperature anomalies 
between 2004-2012 and 2060–2069 derived from the ensemble mean of 
statistically downscaled Northwest European Shelf projection under an 
RCP 8.5 scenario (Mathis et al., 2019).

Predicted values of the indicator nodes for each cell of the regular 
grid, as provided by the Bayesian Network, were visualized using ggplot2 
(Wickham, 2016).

In addition, we visualized the current network of Natura 2000 areas 
obtained from EMODnet (https://emodnet.ec.europa.eu/en/map-week- 
marine-natura-2000-sites, last accessed January 2025) to show the 
overlap between conservation areas and the network indices for the 
different future scenarios.

Fig. 2. The Bayesian Belief Network showing the causal structure (arrows) between the selected pressures (orange), traits (blue), and indicators (red). The bars in 
each node show the probability distribution for the different states, reflecting the likelihood of each state occurring given the network’s current conditions 
and evidence.
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3. Results

3.1. Model and model performance

The final network consisted of 13 nodes, with four nodes repre
senting pressures, five trait nodes, and three indicator nodes (Fig. 2). 
The learned conditional probabilities of the trait nodes reflected the 
assumed cause-effect relationships well for most pressure-trait re
lationships. The exception was the effect of benthic trawling on the 
mean size of the fish community. While benthic trawling was associated 
with a decrease in the life history strategies, the effect on size was 
inverted under high temperatures (see Appendix B for the CPTs). 
Overall, only maximum bottom temperature had a strong effect on the 
trait nodes due to the correlative strength in the data. The other pressure 
nodes had only marginal effects on the traits. For piscivory, nitrogen had 
the strongest impact, followed by benthic trawling and OWF.

The integrated quasi cross-validation of the trait nodes provided 
relatively good metric values, with an error rate ranging between 29 % 
and 35 % and a spherical pay-off ranging from 0.74 to 0.77. For size, 
longevity, and maturity the model predicted the high state (66–74 % 
true high) and low state (62–70 % true low) equally well. While the 
model accurately predicted the high state of piscivory and complex 
bottom affinity with high precision (92–100 % true high), it performed 
poorly in predicting low states: only 16 % true low for piscivory and 0 % 
true for complex-habitat affinity.

The predicted maps of the most probable state of longevity and 
maturity compared with maps of the classified observed data, showed a 

moderate agreement (0.47–0.55, Kappa, Appendix C). There was still 
fair agreement with the model predictions for size and piscivory 
(0.37–0.38, Kappa), but poor agreement for complex bottom affinity (0, 
Kappa).

3.2. Impact of future changes in the pressure landscape

The demersal fish community averaged over the training period 
(Baseline) showed a relatively high vulnerability to the here considered 
pressures in the northern part of the study area (Fig. 3). This is partic
ularly due to the influence of temperature on late-maturing, large, and 
long-lived species. The relatively higher mean longevity of the com
munity also predicted a higher probability for species of commercial 
interest and conservation concern in this area (Figs. 4 and 5). Less than 
10 % of Natura 2000 sites overlap with areas of high vulnerability (>5) 
and high conservation concern (>0.25).

Under the expansion of OWFs (2040OWF), the vulnerability 
increased inside the OWF areas alongside a community shift towards 
more piscivory (Fig. 3). Mean longevity increases only inside OWFs in 
the southern part of the study area, as it is strongly influenced by tem
perature, accompanied by similar changes in the value of commercial 
interest inside OWFs. In contrast, the probability of species of conser
vation concern showed a considerable increase in OWF areas. The 
fisheries redistribution (2040OWF-Redistribution) had only highly 
localized effects on maturity and thus almost no effect on any of the 
indicator nodes (Figs. 3–5).

The predicted temperature increase by 2060, in contrast, had a 

Fig. 3. Spatial distribution of the community vulnerability, based on the combination of vulnerable trait states. The vulnerability of the community to the selected 
pressures increases from blue to red. This reflects regions most at risk according to the network. Implemented and planned OWF areas are indicated by black lines, 
and Natura 2000 areas (https://emodnet.ec.europa.eu/en/map-week-marine-natura-2000-sites) are shown with grey lines.
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strong impact on the life-history traits and reduced the vulnerability 
area-wide (Fig. 3). Alongside this change in vulnerability was the 
decrease of the probability for species of conservation concern and 
commercial interest (Figs. 4 and 5). But the community vulnerability to 
cumulative pressures and the conservation concern index remained 
relatively stable inside OWF areas despite the strong temperature 
change, given the exclusion of the fisheries.

4. Discussion

We investigated the current and future vulnerabilities of demersal 
fish communities to key human pressures in the southern North Sea and 
increasing bottom temperature by combining a trait-based approach 
with a spatially explicit Bayesian Belief Network. The results of our in
tegrated modelling framework show that the currently designated 
Natura 2000 areas have limited overlap with the fish communities most 
vulnerable to the here defined pressures. Furthermore, our findings 
indicate that the effects of OWF expansion and a potential spatial 
redistribution of fisheries appear to be limited at local scale and result in 
low to moderate changes in the spatial distribution of traits. In contrast, 
predicted temperature increases by 2060 lead to area-wide and sub
stantial distribution shifts.

Our model was based on the effects of benthic trawling and tem
perature increases on species traits of demersal fish described in Rehren 
et al. (submitted). The North Sea has been fished intensively for more 

than a century (Kerby et al., 2012), leading to a drastic decline of species 
which are vulnerable to fishing (e.g., elasmobranchs, Bennema and 
Rijnsdorp, 2015; Fock et al., 2014a; Fock et al., 2014b; Sguotti et al., 
2016). Several studies on the changes in mean body size have demon
strated a clear correlation between fishing pressure and the shift towards 
smaller sizes both in terms of intraspecific and interspecific selection 
(Dulvy et al., 2003; Jennings et al., 2001; Law, 2000; Monk et al., 2021; 
Reynolds et al., 2005). Furthermore, empirical evidence indicates a 
decrease in body size with warming (Baudron et al., 2014; Daufresne 
et al., 2009; Lavin et al., 2022) and metabolic theory predicts that higher 
temperatures accelerate metabolic rates, growth, maturation, and 
mortality (Brown et al., 2004; Portner and Peck, 2010). These expected 
effects were also reflected in the correlation structure of the data, albeit 
to a much lesser extent for fishing compared to the increase in temper
ature. Overall, our modelling results indicated a very low impact of 
benthic trawling on the here defined traits. In areas with high temper
atures (>16.2 ◦C), high fishing intensities were even associated with an 
increase in mean size. However, this is likely a mere association, indi
cating that coastal fisheries target larger fish. One of the reasons for the 
low impact of benthic trawling may relate to the fact that fishing and 
climate change already caused a shift of the trait composition of the 
demersal fish community (Beukhof et al., 2019; Hofstede et al., 2010; 
Jennings et al., 1999; Piet and Jennings, 2005). This past shift towards 
smaller, shorter-lived, faster-growing, and earlier maturing species may 
not be fully captured by our study period. While we anticipated direct 

Fig. 4. Spatial distribution of the commercial interest index. The index represents the likelihood of a community hosting species of commercial interest, based on 
trait state combinations of longevity and piscivory. The node was parameterized by comparing the probabilities of species of commercial interest versus those without 
commercial interest within each trait combination. Lighter colours indicate areas of potential importance for fisheries as identified by the network. Implemented and 
planned OWF areas are indicated by black lines, and Natura 2000 areas (https://emodnet.ec.europa.eu/en/map-week-marine-natura-2000-sites) are shown with 
grey lines.
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effects of benthic trawling and temperature on the mean size of the fish 
community — since fisheries often disproportionately harvest large fish 
and large fish are less able to manage oxygen demands under warming 
— the strongest correlation with these pressures was observed for 
longevity. Longevity has been identified as a key trait to respond to 
trawling impacts on benthic invertebrates (Tillin et al., 2006) and is used 
in frameworks to assess the good environmental status of seabed com
munities (Rijnsdorp et al., 2020). In addition, our model predicted that 
nutrient enrichment had a higher impact on piscivory compared to 
benthic trawling and OWFs.

The predictions of the network showed a local increase in K-strate
gists, piscivory, and complex-bottom affinity by 2040 due to the po
tential reef effects of OWFs and the exclusion of benthic trawling 
activities inside the parks. It should be noted, however, that the model 
tends to overestimate the probability of high levels of piscivory and 
complex bottom-affinity within the fish community. We found fishing 
effort redistribution to have only low and highly localised effects on the 
life-history traits of the demersal fish community, which is partly due to 
the assumption that fishers tend to stay in the vicinity of their fishing 
grounds. The effects from benthic trawling and OWFs are strongly 
overshadowed by the modelled temperature increase, which caused a 
considerable and area-wide decrease in mean size, longevity, and 
maturity by 2060 in our network. These findings agree well with pre
vious studies which demonstrated a strong impact of temperature on the 
mean size of fish communities in the North Sea (Beukhof et al., 2019; 

Dulvy et al., 2008; Hofstede et al., 2010). The expansion of OWFs in our 
network alleviated some of the fishing pressure on the demersal fish 
community, resulting in areas in the south that still supported a rela
tively high mean longevity and piscivory in 2060. This resulted in a 
partial increase in the indices of species of conservation concern and 
vulnerability, confirming other findings on the role OWFs may play as 
potential refuge (Probst et al., 2021). Among those species of conser
vation concern in our data set are the sharks Galeorhinus galeus and 
Squalus acanthias, as well as the rays Amblyraja radiata and Raja mon
tagui. Whether or not these species accumulate around OWFs is unclear, 
as a general lack of information on OWF impacts on elasmobranchs 
remains (Gill et al., 2024). In contrast, large piscivores that are associ
ated with complex habitats, such as Gadus morhua have been shown to 
aggregate around OWFs (Bergström et al., 2013; Hal et al., 2017; Lin
deboom et al., 2011; Werner et al., 2024; Wilber et al., 2022). While it is 
still debated whether this aggregation represents a true increase in 
production or merely a redistribution of biomass, there is growing evi
dence suggesting new production associated with OWFs (Gimpel et al., 
2023; Reubens et al., 2013, 2014).

The fish communities with the highest vulnerability and abundance 
of species of conservation concern are predicted to be predominantly 
located in the northern part of the study area. This pattern arises from a 
community dominated by K-strategists and piscivory, which are gener
ally more susceptible to disturbances (Winemiller and Rose, 1992). 
Given the model’s tendency to overestimate high levels of piscivory, it 

Fig. 5. Spatial distribution of the community conservation index. The index represents the likelihood of a community hosting species of conservation concern, based 
on trait state combinations of longevity and piscivory. The node was parameterized by comparing the probabilities of species of conservation concern versus those 
without conservation concern within each trait combination. Lighter colours indicate areas with a higher proportion of species of conservation concern, highlighting 
regions of potential ecological importance as identified by the network. Implemented and planned OWF areas are indicated by black lines, and Natura 2000 areas 
(https://emodnet.ec.europa.eu/en/map-week-marine-natura-2000-sites) are shown with grey lines.
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may slightly overestimate the spatial extent of areas characterised by 
high vulnerability. However, since vulnerability is an index derived 
from multiple traits, this effect may be less pronounced. In contrast, the 
indices for species of conservation concern and commercial interest only 
depend on piscivory and longevity. As a result, the model is likely to 
overestimate the areas with high values for these indices, and they 
should be interpreted with caution. In addition, large gadoids are found 
mostly in the northern North Sea, with higher mean sizes and age at first 
maturity. These areas experience less nutrient discharges, lower fishing 
pressure and cooler temperatures, and in some of these areas, highly 
vulnerable communities remain even after strong temperature increases 
in 2060. At the same time, these areas are central to the ambitious 
expansion of OWFs and notably, most Natura 2000 areas do not overlap 
with these vulnerable areas, a finding consistent with previous research 
examining the mismatch between core areas of demersal species and 
existing marine protected areas (Probst et al., 2021).

As with most ecological models, a limitation of our network is that it 
does not represent the full pressure landscape of the southern North Sea. 
However, the selected human pressures are expected to undergo sub
stantial changes in the future, making them among the most critical 
factors to examine. While our model focuses on demersal fish, which are 
not the primary target of Natura 2000protections, validating the need 
for additional protection in the identified areas could help strengthen 
conservation efforts of seafloor functioning. Predicting changes in the 
North Sea pressure landscape is inherently challenging, as it emerges 
from a complex social-ecological system and uncertain future de
velopments. To address this issue, our analysis is based on plausible 
climate scenarios and established political targets. Given the limited 
understanding of how fisheries respond to spatial restrictions 
(Stelzenmüller et al., 2024b), we assume that fishers often act based on 
habit or tradition (Letschert et al., 2025) and that fishing effort will 
continue to decrease due to increasing spatial competition from other 
sectors (Stelzenmüller et al., 2024b). Even though the fishing effort 
scenarios used in our model may be considered conservative, the weak 
correlation structure between fishing and traits suggests that effort 
redistribution has only limited effects. Consequently, alternative sce
narios within realistic boundaries are unlikely to produce substantially 
different outcomes in our model. In contrast to those localised effects, 
the strong area-wide effect of temperature highlights the need to ac
count for climate change when assessing cumulative effects of human 
pressures (Stelzenmüller et al., 2020) and its relevance for effective 
climate-smart conservation planning.

The current model focuses on the operational phase of OWFs and 
incorporates species traits previously linked to positive responses (Hal 
et al., 2017; Krone et al., 2013; Methratta and Dardick, 2019; Stenberg 
et al., 2015), allowing us to explore the widely discussed potential 
benefits under specific conditions. As a result, our network predicts an 
increase in K-strategists and piscivores – a pattern that persists even 
under high temperature scenarios and highlights the need to understand 
whether OWFs can contribute to needed future ecosystem enhancement. 
However, across their lifecycle OWFs are also associated with negative 
impacts, including noise effects from pile driving activities (Mooney 
et al., 2020) or hydrological changes in the vicinity of the parks (Daewel 
et al., 2022). Quantifying these negative effects, particularly their in
fluence on the trait distribution of demersal fish, remains challenging 
(Gill et al., 2024). In particular, a more comprehensive understanding of 
the net effects of OWFs requires the future adaptation of our model to 
also reflect negative impacts. In turn, such a comprehensive knowledge 
of the magnitude of OWF impacts requires improved data availability 
and continued research, including the use of new sampling methods 
(eDNA, optical, acoustic) to provide a representative overview of the 
demersal fish community and detect changes in trait composition over 
time. An orchestrated and harmonised sampling across European OWFs 
will be key to supporting such advances (ICES, 2025).

5. Conclusions

Recent plans to expand OWFs as part of achieving greenhouse gas 
neutrality by 2050 (Green Deal, European Commission, 2019), along 
with major shifts in key sectors such as fisheries and rising sea tem
peratures due to climate change, are expected to significantly alter the 
pressure landscape in the southern North Sea. Our trait-based modelling 
framework incorporates multiple human-induced pressures alongside 
climate change, enabling the assessment of their combined effects on 
fish traits. This approach allowed us to examine how spatial patterns of 
fish community vulnerability may shift under future pressure scenarios 
in the region. Our findings indicate that rising bottom temperatures will 
lead to a widespread reduction in K-strategists, whereas the habitat 
changes caused by OWF developments have more localised effects on 
the trait distribution. While our model is constrained by the current 
availability of empirical data on ecological impacts, its integrated and 
flexible design provides a means to explicitly assess the net effects of 
OWFs on marine functional diversity. These results support the 
continued use of trait-based approaches to mechanistically evaluate the 
cumulative effects of pressures on fish communities. Such integrated 
methods are particularly valuable in data-limited contexts, where un
derstanding the direction and magnitude of combined human impacts 
on individual species remains a major challenge. These approaches are 
needed to anticipate ecological trade-offs and can inform more adaptive 
conservation and marine spatial planning at appropriate scales by 
identifying both pressure hotspots and sensitive communities amidst 
competing demands from biodiversity, energy, and fisheries.
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