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Abstract: Environmental disturbances resulting from anthropogenic energy pollution are intensely
growing and represent a concern for the marine environment. Benthic organisms are the significant
fauna exposed to this kind of pollution; among them, foraminifera are largely used as pollution
bioindicators in marine environments, but studies on the effects induced by electrical stimulation
are not documented. In the present research, we evaluated the effects of short-term different electric
current densities on the viability of benthic foraminiferal species Amphistegina lessonii by checking the
pseudopodial activity and defined the threshold electrical density range. After 3 days of treatment,
A. lessonii stimulated with a constant current showed pseudopodial activity at a lower electric
current density (0.29, 0.86 µA/cm2) up to 24 h. With increasing stimulation time, the percentages
of pseudopodial activity decreased. The pseudopodial activity was absent at high current densities
(5.71, 8.57 µA/cm2). The viability of A. lessonii exposed to a pulsed current was higher at a low and
middle electric current density (from 0.29 to 5.71 µA/cm2) than at a high electric current density
(from 11.43 to 20 µA/cm2). Based on these preliminary results, the selected benthic foraminiferal
species seems to better stand pulsed currents than constant ones. These first experiments might
provide useful information for the definition of the appropriate electrical density threshold to avoid
side effects on a part of the benthic community.

Keywords: pollution; pseudopodial activity; impact; bioindicator

1. Introduction

The impacts of human activities on natural resources, diversity and ecosystem func-
tioning have reached a critical level in recent decades and are even expected to worsen due
to the current rate of climate change [1]. Marine pollution does not only involve chemical
substances, both organic and inorganic, released into the marine environment, but it also
embraces different forms, such as energy input. This form of pollution can directly or
indirectly affect the integrity of the marine ecosystem, its functioning and the biota living
therein. Environmental disturbances that result from anthropogenic energy pollution are
intensely growing and represent a great concern for the marine environment [2]. Indeed,
the Marine Strategy Framework Directive (MSFD 2008/56/EC) sets out 11 qualitative
descriptors for characterizing the marine environment in terms of its “Good Environmental
Status”. Among them, the aim of descriptor 11 is that the “Introduction of energy, including
underwater noise, is at levels that do not adversely affect the marine environment” [3].

Anthropogenic sources of energy in the marine environment can be commonly as-
cribed to: (a) offshore operations, wind turbines, as well as submarine power cables that
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generate both electric and electromagnetic fields and (b) the construction of infrastructure,
the use of sonars, shipping for trade or tourism, dredging and military activities that alto-
gether are responsible for generating underwater noise [3]. About 70% of submarine cables
are in European sea waters and supply electricity to islands and oil platforms, interconnect
countries or transfer electricity from marine renewable energy devices [4]. The installation,
maintenance and discharging phases of submarine cables may cause environmental effects
on marine life and the surrounding habitats [5]. The equipment used for cable preparation
may induce physical disturbances, such as the alteration of the substratum, leading to the
direct destruction of benthic habitats, flora and fauna. Consequently, substratum alteration
may cause displacement and damage to organisms, depending on the composition of the
benthic community and the sensitivity and resilience capability of the affected species or
communities [5]. Sediment resuspension is a further consequence of sediment rework-
ing, which leads to suspended particulate matter concentrations. Different studies have
highlighted how resuspended material may decrease the water transparency, with effects
on primary producers; the feeding ability of fish, which visually detect their prey [6]; the
efficiency of invertebrate filter feeding [7,8] and gill damage in young fish larvae [9]. In
addition, sediment resuspension may release pollutants buried in the sediment, particularly
those located in coastal areas that are affected by human activities [5]. Furthermore, the
electrodes can release toxic electrolysis products (chlorine and bromine), which can be
harmful to marine organisms and affect the overall quality of marine waters [10], or heavy
metals (e.g., Cu, Al, Pb, Zn) can dissolve into the sediment from damaged and abandoned
cables [5]. Heat emission may occur when electric energy is transported, leading to an
increase in the temperature at the cable surface and in the surrounding environment [11].
Temperature radiation can also cause physiological changes in benthic organisms [11].

Recently, environmental concerns related to submarine cables have been raised owing
to the production of electromagnetic fields in marine environments [5]. The submarine cable
systems facilitate the transfer of electrical currents, which may be either alternating current
(AC) or direct current (DC) [4]. The current flow passing through power cables generates
electromagnetic fields that can be divided into electric and magnetic fields [4]. The strengths
of both the magnetic and electric fields rise with the current flow and decrease with the
distance from the cable [5]. The electric field can be induced by water movement [12] or by
any movement of organisms through the geomagnetic field [13]. Marine organisms are also
surrounded by alternating currents and direct electric fields called bioelectric fields [14].
An artificial electric field can be generated during the transfer of electric currents between
two electrodes placed on the seabed, which may affect the natural fields near the cables or
create an electromagnetic field that may be harmful to marine organisms living close to it [15].

All benthic and demersal species are exposed to such artificial sources, and their
sensitivity to electric fields is specific to the considered species [16]. Marine species such as
elasmobranchs, fishes, mammals, turtles, molluscs and crustaceans have highly electrosen-
sory organs devoted to predation, mate recognition, migration and orientation in the Earth’s
magnetic field [4,12]. This natural sense can be altered by the electric fields emitted by a sub-
marine transmission system [15]. Elasmobranchs, the group of marine animals most sensi-
tive to electric fields, may detect very low electric fields (from 0.005 to 0.02 µV cm−1) [17,18],
and may be repelled by high electric fields of 400 and 1000 µV m−1 [19,20]. The strong
electric field produced by a cable acts as a barrier, preventing movement between important
areas (such as feeding, mating and nursery areas) [12]. The response of elasmobranchs to
submarine cables is species-specific, and may even be individual-specific, as demonstrated
in mesocosm studies [21]. Similarly, teleost fishes are sensitive to electricity, in fact they
may be repulsed by strong electric fields of 6–15 V m−1. On the other hand, the anguillidae
are sensitive to weak electric fields ([12] and references there in). Furthermore, no changes
in physiology or survival have been observed in the teleost fish [22].

Surprisingly, the impact of artificial electric currents on invertebrates has been poorly
studied [5]. The effect of an electric field has been reported to induce freshwater crayfish
behavioral modifications [23,24] or a reduction in body motion [25]. Moreover, American
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lobsters showed a slight change in behavioral activity [26]. A complete and exhaustive
list of studies that examined the effect of electromagnetic fields on marine invertebrate
species can be found in Albert et al. [4]. However, these studies evaluated only the
effect of the anthropogenic magnetic field, while a summary of studies that evaluated
the electric field is provided in Table S1 [17–20,22–41]. The development of biological
indicators as a tool to evaluate the health of ecosystems has been devoted to assessing
the ecological quality status of aquatic environments [42]. Benthic invertebrates represent
a reliable biological indicator for the definition of the ecological quality status of marine
ecosystems [43]. Among benthic fauna, foraminifera have been widely applied in biological
monitoring [44]. Benthic foraminifera are mainly marine single-celled organisms, with their
cell body commonly enclosed in a shell (also known as test) [45]. They are the most varied
and abundant protozoa in the marine realm compared to other shelled microorganisms [46].
They inhabit all kind of environments, from marine to transitional marine ecosystems, and
play a significant role in the biogeochemical cycle of organic and inorganic compounds [45].
They are also abundant and easy to collect and analyze, making them suitable for statistical
analysis, even in the case of reduced sediment availability [47]. Due to their mostly short
life and reproductive cycles, they are highly sensitive to any environmental change and
respond rapidly to natural and anthropogenic alterations, making them an early-warning
tool for environmental monitoring assessment [48].

The genus Amphistegina, selected for this study, is a symbiont-bearing benthic foraminifera
largely used as a bioindicator of water quality because of its high sensitivity to the physical
characteristics of seawater [49]. Turbidity of water and photo-inhibitory stress related
to high water temperatures may lead to the mortality of Amphistegina’s symbionts and
consequently bleaching in Amphistegina [49]. Additionally, Amphistegina is considered as
an important element for the calculation of the biotic index (i.e., FoRAM Index [50,51])
that is used to evaluate environmental conditions in a coral reef environment. This genus
hosts diatom symbionts [52] and is common and abundant in tropical and subtropical
reefs, where it contributes to carbonate production [53] and to the stability of global reef
habitats [54]. Strongly dependent on water temperatures, they have been reported in the
Pacific and the Atlantic Ocean and in the Red and the Mediterranean Sea [55]. This genus
has rapidly expanded its biogeographic range towards higher latitudes [53,56]. Currently,
five species of Amphistegina (Amphistegina bicirculata, A. lessonii, A. lobifera, A. papillosa and
A. radiata) are present in the Red Sea [57]. The massive migration event of Amphistegina,
termed Lessepsian migration, has allowed the rapid colonization of this genus in the
Mediterranean Sea. At the present, only two species (A. lessonii and A. lobifera) have been
recorded in the Mediterranean Sea [53]. The biomarkers of A. lessonii have also been used
to evaluate the water quality in the Fernando de Noronha Archipelago in Brazil [58]. More
recently, significant changes in the cell biochemistry (e.g., increases in lipid peroxidation,
metallothionein-like protein and total SOD activity) of A. lessonii were documented in
response to Zn exposure [59]. Similarly, it was revealed that exposure to Hg leads to
marked variations in the biochemistry of A. lessonii which are mainly associated with
oxidative stress (i.e., the production of reactive oxygen species), including the depletion of
glutathione and changes in the synthesis of protein [60]. The observed biochemical changes
in this species in response to pollutants (i.e., Hg and Zn) have therefore been suggested as
a potential way to detect early evidence of environmental stress in biomonitoring.

To date, no study has documented the effects induced by electrical currents on benthic
foraminifera. Therefore, this in vivo experiment aims to evaluate the effects of short-
term different electric current densities on the viability of benthic foraminiferal species
Amphistegina lessonii, and to define the threshold electrical density range.

2. Materials and Methods
2.1. Collection of Individual Specimens

Living specimens of A. lessonii were collected from rock pebbles at Eilat in the Gulf
of Aqaba (Red Sea, Israel) from June to September 2022. The adult living individuals
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(ca. 300–600 µm) were placed in 50 mL Falcon tubes and then transferred to the Micropa-
leontological Laboratory at the University of Urbino (Italy). Once in the laboratory, the
individuals were placed in 100 mm glass Petri dishes with natural seawater with a salinity
of 40 for acclimatization at 25 ◦C with 12:12 h light and dark cycles for several days. Only
the living specimens of A. lessonii with a clear golden-brown color and exhibiting evident
pseudopodial activity were selected for the present experiment.

2.2. Development of the Electric Generator Prototype

Living foraminiferal specimens were electrically stimulated using a stimulus generator
made up of one Arduino Nano open-source electronic prototyping board (Arduino, Italy)
based on the ATmega328 microcontroller. The Arduino board has been programmed using
the Arduino open-source integrated development environment (IDE) and was used to
generate constant or pulsed low-intensity current stimulation directly from digital channels.
The intensity of current stimulation was measured using analog input channels. The board
was connected to LCD 16 × 2 to visualize the current stimulus intensity. The rectangular
flat electrodes were made up of platinum (dimensions: 4 mm in width, 0.2 mm in thickness)
and were placed in a multiwell plate (i.e., UltraCruz® Tissue Culture six wells sterile plate),
each filled with 9.6 mL of artificial seawater (prepared in accordance with the composition
indicated in ASTM D1141-98 [61]), and immersed to a depth of about 1 cm (Figure 1a).
Each Arduino board was able to control four pairs of electrodes. The chip pins D8, D9,
D10 and D11 were connected to positive platinum electrodes (anodes), each through 50K
potentiometers in a series with 47K resistors (Figure 1b). The value of the potentiometer
and the resistance have been chosen to obtain a current range from 0 to 100 µA. The chip
pins A1–A7 were connected two by two across the 47K resistors to calculate the current flow
(Figure 1b). The 50K potentiometers were used to fine-tune the current intensity. Finally,
the negative electrodes (cathodes) were connected to the Arduino ground. Before each
experiment, the stimulation current was measured with a commercial multimeter to verify
that it was equal to that calculated by the Arduino board. A comprehensive part list and
the wiring diagram are shown in Figure 1b and the Arduino code for the constant and
pulsed stimulation is provided in the Supplementary Materials S1 and S2.
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Figure 1. Electrical stimulator specifically designed for the foraminiferal (i.e., Amphistegina lessonii)
experiment. (a) Picture of stimulus device that is connected to four pairs of electrodes and a section
of the well. (b) Wiring diagram of the stimulator.

2.3. Experimental Setup

The experimental procedure consisted of a measurement of the viability of A. lessonii
specimens after exposure to both constant and pulsed direct current stimulation. The
foraminiferal specimens were stimulated with the following constant current values
0 (control), 1, 3, 5, 10, 20 and 30 µA, that are equivalent to 0, 0.29, 0.86, 1.43, 2.86, 5.71
and 8.57 µA/cm2, respectively, (0.7–1.12 V); and the following pulsed current values
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0 (control), 1, 3, 5, 10, 20, 30, 40, 50, 60 and 70 µA, that are equivalent to 0, 0.29, 0.86, 1.43,
2.86, 5.71, 8.57, 11.43, 14.29, 17.14 and 20 µA/cm2, respectively, (0.08–1.32 V). The electrical
current density (µA/cm2) was used to quantify the effects of the electric current, as it de-
scribes the amount of electric current flowing per unit of the cross-section area of the plate.
A total of 850 living individuals of A. lessonii were selected under the optical microscope
and 10 of them were randomly placed in a six-well plate and exposed to each value of the
electric current intensity. The experiments were carried out over a period of 3 days and
each treatment consisted of five replicates. After the exposure, the viability was evaluated
after 24, 48 and 72 h by checking the pseudopodial activity. The individuals that clearly
exhibited a stream of pseudopodia were counted as living, all the others were counted as
non-living individuals. The absence of evidence of pseudopodial activity cannot, however,
be directly related to the mortality of the foraminiferal specimens; in fact, the cytoplasm
can be retracted within the test, even under adverse conditions (i.e., stress) [62,63].

2.4. Statistical Analysis

The Kruskal–Wallis H’ test is a non-parametric test and was used to check if there
were significant differences among the samples (i.e., control and treatment samples). This
test was then followed by a post-hoc Dunn’s test for the specific sample pair comparison.
The confidence levels were reported at 99.9%, 99% and 95% (that is α = 0.001, 0.01, 0.05).
The half maximal effective concentration (i.e., EC50) parameter was then calculated for
both the constant and pulsed current and at time exposures, namely 24, 48 and 72 h. The
EC50 is here used to define the maximum electrical current density (µA/cm2) to exert half
of its maximal response.

3. Results

After 3 days of stimulation, the percentage of individuals that clearly exhibited
a stream of pseudopodia were counted as living, all the others were counted as non-
living individuals. With the increasing electric current density of both the constant and
pulsed current, the percentage of individuals showing pseudopodial activity decreased
(Figure 2 and Table S2).
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Figure 2. Percentages of living individuals showing pseudopodial activity in the symbiont-bearing
foraminiferal species Amphistegina lessonii in samples treated with constant (a–c) and pulsed
(d–f) current for 24 h (a,d), 48 h (b,e) and 72 h (c,f) and in control samples (no current). Data are
reported as mean ± standard deviation (n = 5). Letters denote significant differences (bold p < 0.01,
italic p < 0.01 and p < 0.05) between the different conditions as revealed by the post-hoc Dunn’s test
for the specific sample pair comparison.

3.1. Constant Current

In the control treatments of the constant current, all the individuals of A. lessonii
showed pseudopodial activity. At low electric current densities, 84% of foraminifera
exhibited pseudopodial activity at 0.29 µA/cm2 and 52% of specimens were still active at
0.86 µA/cm2 after 24 h of exposure (Figure 2a). However, with increasing stimulation time
(i.e., 48 h and 72 h), the percentages of pseudopodial activity decreased (Figure 2b,c). For
electric current densities of 1.43 µA/cm2 and 2.86 µA/cm2 the percentage of individuals
with pseudopods decreased to ca. 22% and 6% after 24 h, respectively, (Figure 2a) and no
specimens showed pseudopodial activity after 72 h. The pseudopodial activity was even
absent at quite high currents densities, namely 5.71 and 8.57 µA/cm2 just after 24 h.

The EC50 at 24, 48 and 72 h were calculated and corresponded to 0.87, 0.37 and
0.18 µA/cm2, respectively. On the basis of these data, the Kruskal–Wallis H’ test indicated
that there were significant differences among the groups χ2(6) = 30.33, p < 0.001 at 24 h;
χ2(6) = 31.96, p < 0.001 at 48 h and χ2(6) = 28.2, p < 0.001 at 72 h. The post-hoc Dunn’s
test indicated that the mean ranks of several pairs were significantly different (Table S3).
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Specifically, the control, 0.29 and 0.86 µA/cm2 groups showed significantly different results
to the 1.43, 2.86, 5.71 and 8.57 µA/cm2 groups at 24 and 48 h (Table S3). No significant
differences were found between the control, 0.29 and 0.86 µA/cm2 groups at 24 and 48 h,
but the 0.86 µA/cm2 condition was different from the control and 0.29 µA/cm2 groups
after 72 h of exposure (Table S3).

3.2. Pulsed Current

In the control treatments of pulsed current, all the individuals showed pseudopodial
activity throughout the experiment (i.e., up to 72 h). The percentages of specimens with
pseudopodial activity were high at low and middle (i.e., up to 5.71 µA/cm2) current
densities at least up to 24 h of exposure (Figure 2d). After 72 h at 0.29 µA/cm2, about 95%
of the foraminifera still exhibited pseudopodial activity. With increasing current densities
at 72 h, 85% of the individuals were active at 0.86 µA/cm2, 60% at 1.43 µA/cm2, 53% at
2.86 µA/cm2 and 37% at 5.71 µA/cm2. For the electric current density of 8.57 µA/cm2,
the percentage of individuals emitting pseudopods decreased from 74% at 24 h to 4% after
72 h of exposure (Figure 2f). The pseudopodial activity was absent at very high currents
densities (11.43, 14.29, 17.14 and 20 µA/cm2), even after 24 h of exposure.

On the basis of these endpoints, the EC50 was set at 8.96, 7.06 and 0.42 µA/cm2 at
24, 48 and 72 h, respectively. The Kruskal–Wallis H’ test suggested significant differences
among the groups χ2(10) = 49.3, p < 0.001 at 24 h; χ2(10) = 49.94, p < 0.001 at 48 h and
χ2(10) = 51.83, p < 0.001 at 72 h. Indeed, significant differences were recognized among the
pair groups (Table S3). On the basis of the post-hoc Dunn’s test for the specific sample pair
comparison, significant differences were observed for the control, 0.29, 0.86, 1.43, 2.86 and
5.71 µA/cm2 conditions and for current densities higher than 8.57 µA/cm2 after 24 h of
exposure (Table S3). After 72 h of exposure, no significant differences were found between
the control, 0.29, 0.86 and 1.43 µA/cm2 conditions (Table S3)

4. Discussion

In the present research, the short-term (up to 72 h of exposure) effects of different
direct electric current densities on the viability of A. lessonii were evaluated by observing
the pseudopodial activity. Currently, the absence of an accurate method to assess the
vitality of foraminifera makes it difficult to distinguish between living and dead specimens.
Different methods to check the viability of foraminifera have been proposed and applied,
such as the use of terminal dyes (e.g., rose Bengal or Sudan Black B) that are, however,
unsuitable for a reliable evaluation of the short-term effect [64,65]. Rose Bengal, for example,
has been widely applied as a stain to distinguish living from dead benthic foraminiferal
specimens and has been extensively used in field studies [64,65]. According to Bernhard
et al. (2006) and Frontalini et al. (2018) [64,65], this non-vital stain might result in a marked
overestimation of the abundance of living specimens by including false positive results
(i.e., stained remaining proteins but not living specimens). To overcome this problem,
several fluorescent probes (e.g., CellTrackerTM Green CMFDA, CellHunt Blue CMHC)
have been proposed to check the viability of foraminiferal cells [66,67] and are considered a
more accurate viability method [63]. Despite the recent development of these fluorescent
probe-based methods, which have been shown to be suitable for determining responses to
short-term disturbances (e.g., [63,65,68]), pseudopodial activity has been suggested as the
most practical and the more reliable method for assessing the viability of foraminifera [62].

This study has been undertaken to test the effect of both constant and pulsed direct
currents on the viability of foraminifera after 24 h, 48 h and 72 h of exposure. After 3
days of stimulation, the pseudopodial activity in A. lessonii seems to be negatively af-
fected by both constant and pulsed direct currents at different electrical current densities.
Although A. lessonii specimens seem to stand only the lowest constant current densities
(i.e., 0.29 and 0.86 µA/cm2), the specimens with pseudopodial streaming are rather low
at 24 h. Increasing the constant current densities further negatively affects the specimens
of A. lessonii by altering their pseudopodial activity over time (i.e., 48 and 72 h). The
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test for foraminiferal specimens appears somewhat empty (i.e., devoid of cytoplasm)
and with a whitish coloration. On the other hand, at all low and medium current densi-
ties (i.e., 0.29, 0.86, 1.43, 2.86, 5.71 and 8.57 µA/cm2) of pulsed current, foraminiferal speci-
mens show pseudopodial activity. This suggests that pulsed current had a less negative
impact on A. lessonii. No evidence of pseudopodial activity was, however, found at the
highest current densities (i.e., 11.43, 14.29, 17.14 and 20 µA/cm2).

These different trends for constant and pulsed currents are well supported by the
half maximal effective concentration (EC50) that defines higher density values for pulsed
(i.e., 8.96, 7.06 and 0.42 µA/cm2 at 24, 48 and 72 h, respectively,) than constant current
(i.e., 0.87, 0.37 and 0.18 µA/cm2, at 24, 48 and 72 h, respectively). This research presents
the first direct evaluation of the effects of electric current densities on a foraminiferal species;
therefore, there are no available data for a direct comparison. Indeed, these results are
among the few available on benthic organisms (e.g., invertebrates such as molluscs, worms,
crustaceans and echinoderms), which have been basically neglected so far [4]. Moreover, it
is difficult to compare our results with other studies that were based on different experi-
mental parameters (e.g., electrical field strength, frequency and exposure duration) and
physiological alterations. Different studies have examined the effects of submarine power
cable installation and operation on benthic communities. A slightly lower megafaunal
density and a 100% glass sponge mortality were reported along cable transects [27]. Electric
field exposures of 14 kV/m have been reported to negatively affect the viability of resting
eggs and the juvenile survival of a freshwater ostracod Heterocypris incongruens [28]. On the
other hand, no significant effects of electric field exposure have been found in zoobenthos
species’ composition, abundance or biomass [10,29]. Similarly to our study, low current
density values (0.4 and 0.8 µA/cm2) have been used to assess the response of crayfish
(Cherax destructor) to an electric field. The results showed that crayfish alter their behavior
in the presence of electrical fields in the surrounding water [23]. The effect of electrical
fields on the viability of benthic fauna has also been evaluated in commercial electrofishing,
again considering different experimental parameters (electric field strength, pulse current,
frequency and exposure duration). Although electrical stimulation did not compromise the
survival of the investigated species, several effects have been observed which are mainly
associated with a change in locomotive behavior and development. Shelter behavior in-
creased in flying crabs and hermit crabs after stimulation with a pulsed bipolar current of
200 V m−1 for 3 s [69]. An electric pulse led to a squirming reaction in ragworms and a
tail flip response in shrimp, but also a virus infection when shrimp were stimulated at a
higher current of 200 V m−1 [70]. A delayed hatching rate and decreased survival were
observed for larvae of the Atlantic cod when exposed to a pulsed direct current of 150 V/m
for 5 s [71]. Again, a negative effect on survival was found in ragworms, green crabs and
common crabs [30]. The strongest negative behavioral reaction was observed in prawns
and common crabs, and a weaker reaction in ragworms and razor clams [30].

5. Conclusions

The short-term exposure of the symbiont-bearing foraminiferal species Amphistegina
lessonii to electrical current densities of both constant and pulsed current has deleterious
effects on their pseudopodial activity. Pseudopodial activity was absent at high current
densities (5.71 and 8.57 µA/cm2). The viability of A. lessonii exposed to a pulsed current
was higher at low and middle electric current densities (from 0.29 to 5.71 µA/cm2) than at
a high electric current density (from 11.43 to 20 µA/cm2). Our findings, therefore, suggest
that A. lessonii specimens seem to better stand pulsed currents than constant ones. Indeed,
it appears that a constant current has a more acute effect on viability than a pulsed current,
even at low current densities and for shorter time exposures. These first experiments might
provide useful information for the definition of an appropriate electrical density threshold
to avoid side effects on a part of the benthic community and fill the knowledge gap of
descriptor 11, “Introduction of energy, including underwater noise, is at levels that do not
adversely affect the marine environment” of the Marine Strategy Framework Directive. Our



Life 2023, 13, 862 9 of 12

results indicate the potential use of benthic foraminifera in environmental biomonitoring
to evaluate the potential stress caused by artificial electric fields. Additional experiments,
coupled with the detection of ultrastructural variations, enzymatic and protein pathway
changes, are needed to better understand the physiological response of foraminiferal species
to this poorly known form of anthropogenic impact.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life13040862/s1, Supplementary Material S1. Arduino Nano Code
for pulsed stimulation. Supplementary Material S2. Arduino Nano Code for constant stimulation.
Table S1: Summary of studies investigating the effects of artificial electric fields. Table S2: Raw data
and percentages of individuals with pseudopodial activity in the symbiont-bearing foraminiferal species
Amphistegina lessonii in samples treated with constant and pulsed current for 24 h, 48 h and 72 h and in
control samples (no current). Table S3: Dunn’s test results showing the specific sample pair comparison.
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