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a  b  s  t  r  a  c  t

The  Crop  Wind-Energy  Experiment  (CWEX)  provides  a platform  to investigate  the  effect  of wind  turbines
and  large  wind  farms  on  surface  fluxes  of  momentum,  heat,  moisture,  and  carbon  dioxide  (CO2). In  2010
and 2011,  eddy  covariance  flux stations  were  installed  between  two  lines  of  turbines  at  the  southwest
edge  of a large  Iowa  wind  farm  from  late  June  to  early  September.  We  report  changes  in  fluxes  of momen-
tum,  sensible  heat,  latent  heat,  and  CO2 above  a corn  canopy  after surface  air had  passed  through  a  single
line  of  turbines.  In 2010,  our flux  stations  were  placed  within  a field  with homogeneous  land  management
practices  (same  tillage,  cultivar,  chemical  treatments).  We  stratify  the  data  according  to  wind  direc-
tion,  diurnal  condition,  and  turbine  operational  status.  Within  these  categories,  the  downwind–upwind
flux  differences  quantify  turbine  influences  at the  crop  surface.  Flux  differences  were  negligible  in  both
westerly  wind  conditions  and  when  the  turbines  were  non  operational.  When  the  flow  is perpendicular
(southerly)  or slightly  oblique  (southwesterly)  to the row  of  turbines  during  the  day,  fluxes  of CO2 and
water  (H2O) are enhanced  by  a factor  of  five  in  the lee  of the  turbines  (from  three  to  five  turbine  diameter
distances  downwind  from  the  tower)  as  compared  to a west  wind.  However,  we  observe  a  smaller  CO2
flux  increase  of  30–40%  for these  same  wind  directions  when  the  turbines  are  off.  In the  nighttime,  there
is  strong  statistical  significance  that  turbine  wakes  enhance  upward  CO2 fluxes  and  entrain  sensible  heat
toward  the  crop.  The  direction  of  the  scalar  flux  perturbation  seems  closely  associated  to  the differences
in  canopy  friction  velocity.  Spectra  and  co-spectra  of  momentum  components  and  co-spectra  of  heat  also
demonstrate  nighttime  influence  of  the wind  turbine  turbulence  at  the downwind  station.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Large wind farms have been constructed across the U.S. Mid-
est over the last decade, and this expansion is likely to continue

U.S. DOE, 2008; AWEA, 2012). Much of the land used for turbines in
he Midwest also is managed for agricultural purposes in ways that
nfluence roughness height and surface fluxes of heat and moisture.
t is likely that management practices such as tillage, crop-type,
ultivar, plant density, and chemical application can influence tur-
ine hub-height speed through changes in turbulent coupling.

or instance, Barthelmie (1999), Emeis (2010), and Stull (1988)
escribe how surface roughness regulates near-surface wind pro-
les. Further, Pichugina et al. (2005) and Storm and Basu (2010)

∗ Corresponding author at: Iowa State University, 3132 Agronomy Hall Ames, IA
0011, USA. Tel.: +1 515 294 9384.

E-mail address: drajewsk@iastate.edu (D.A. Rajewski).

ttp://dx.doi.org/10.1016/j.agrformet.2014.03.023
168-1923/© 2014 The Authors. Published by Elsevier B.V. This is an open access article un
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

discuss surface influences on nighttime speed and directional shear
characteristics below and within the turbine rotor layer. Weather
prediction models that have parameterizations for wind turbines
suggest that the turbines affect near-surface winds, temperature,
and moisture (Baidya Roy et al., 2004; Baidya Roy, 2011; Fitch et al.,
2012; Fitch et al., 2013a, 2013b; Wang and Prinn, 2010). A recent
paper (Armstrong et al., 2014) has identified a range of potential
microclimate and soil effects of wind farms.

Based on experience quantifying flow characteristics around
shelterbelts (Wang and Takle, 1995; Wang et al., 2001), wind
turbines are expected to modify the mean and turbulence charac-
teristics of a uniform boundary layer above a crop canopy surface.
As a bluff obstacle to the wind, the rotor blades, nacelle, and tower
create a localized perturbed pressure field that affects mean flow

from the surface to well above the blade diameter. Wind speed
reduction and small-scale turbulence created by flow past the
blades and nacelle form a wake region that can influence the sur-
face indirectly (by decoupling ambient flow aloft from near-surface

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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ow and by creating waves and pressure fluctuations that are
ediated to the surface) and directly when the wake reaches the

urface (Rajewski et al., 2013). Exchanges of heat, H2O, and CO2
ith crops are affected by these changes introduced in the lee of

he turbines. The magnitude and locations of these changes are con-
rolled by the turbine characteristics (hub height, rotor diameter,
lade style, blade pitch angle, and model-specific thrust and power
oefficients) and the ambient conditions (atmospheric stability,
ind direction, wind speed, and moisture conditions). The field
easurements reported herein quantify fluxes and offer oppor-

unities for verifying numerical and conceptual models of surface
uxes of sensible and latent heat, and gaseous constituents such as
O2.

Several numerical simulations of large wind farms demonstrate
ncreased daytime evapotranspiration up to 0.4 mm day−1 or about
0 W m−2, higher nighttime temperatures (0.5–2 ◦C), and enhanced
ownward sensible heat flux of 5 W m−2 to 10 W m−2 (Adams and
eith, 2007; Baidya Roy, 2004, 2011; Baidya Roy and Traiteur, 2010;
evarich and Baidya Roy, 2013; Fitch et al., 2013a). Large-eddy
imulation (LES) and 1D surface layer models with wind turbine
arameterizations also indicate a 10–15% increase in scalar fluxes

n the surface layer below the turbines (Calaf et al., 2011). Wind
unnel studies by Zhang et al. (2012, 2013) of wind turbine arrays
n neutral or convective boundary layers depict increased heat flux
up to 24%) immediately around the downwind side of each tower
ase. From a simulation of turbine wakes during a steady-state
tably-stratified period, Lu and Porté-Agel (2011) determine that
he downward sensible heat flux is reduced 14–27% of the ambient
ux deep within a wind farm array but there is no change in either
he surface temperature, nor in the potential temperature profile
p to the bottom tip of the turbine rotor.

A few observational studies, primarily using remote sensing
echniques instead of in-situ measurements, show how large wind
arms can perturb crop microclimate conditions. Zhou et al. (2012a,
012b) used MODIS satellite data to determine that tempera-
ures were 0.5–0.7 ◦C warmer in the years following construction
f several west Texas wind farms. The study documented slight
ncreases in surface albedo and decreases in surface vegetative
raction for each turbine construction “footprint.” However, the
uthors did not report field-scale characteristics related to soils,
hanges in land use such as rangeland or agricultural activities.
nother satellite analysis by Walsh-Thomas et al. (2012) docu-
ented similar or more extensive warming from 1982 to 2011

ver the San Gorgonio wind farm in California, but the study area
as influenced by terrain-induced changes in temperature that
ay have obscured the specific contribution of the wind farm to

hanges in surface temperature. Air temperature, relative humid-
ty, and evaporation differences were noted among five surface
tations positioned within a 300-turbine wind farm in Western
ndiana during the 2011 post harvest period (Henschen et al., 2011).
nfortunately, no microclimate measurements were provided of
ndisturbed conditions outside the wind farm. Furthermore, the
uthors do not describe inherent field-scale variability that may
ave been caused by land management (e.g. tillage) or soil fac-
ors (e.g. temperature, moisture, texture, drainage). Another study
n a wind farm located in the U.S. Midwest (Barthelmie et al.,
013; Smith et al., 2013) depicts a weakening nocturnal inversion
trength in 80–2 m vertical temperature gradient when turbine
akes are influencing the surface. Measurements were collected

ver a smooth landscape (z0 = 0.05 m)  before the 2012 crop was
lanted.

Rajewski et al. (2013) suggested that the first step in determin-

ng whether turbines influence agricultural crop growth and yield
s to determine if influences in key fluxes and canopy flow by wind
arms and wind turbines are measureable above natural variations.
o address this question we conducted two field measurement
st Meteorology 194 (2014) 175–187

campaigns within a large utility scale wind farm in central
Iowa during the 2010 and 2011 Crop Wind-Energy Experiment
(CWEX-10/11). In this report we  specifically address how the wind
turbine flow perturbations affect fluxes of heat, moisture, and CO2.
In Section 2, we  present a brief summary of the relevant measure-
ments. In Section 3, we discuss the analyses used to determine the
flux differences for turbine-influenced and no-turbine-influenced
conditions. Section 4 highlights the results of the flux analysis
using conditional binning for several factors (e.g. day/night, wind
direction, turbine operational status). We  summarize the results
in Section 5 and offer additional objectives for future experiments
to quantify the influence of wind turbines/large wind farms on
crops.

2. Materials and methods

Flux measurements were made during summers of 2010 and
2011 in the southwest portion of an Iowa wind farm con-
sisting of 1.5-MW turbines with 37 m long blades, and hub
height of 80 m.  A detailed description of the CWEX deploy-
ments is provided in Rajewski et al. (2013). According to the
U.S. Department of Agriculture Natural Resources Conservation
Service (USDA-NRCS) soil maps (http://ortho.gis.iastate.edu), our
study area included six different loamy soils speckled through-
out the study area, each with different water retention and
drainage characteristics. Although soil conditions will influence
fluxes, crop management practices are also influential. In this
report we  seek to demonstrate flux changes over and above nat-
ural variability due to soil conditions. Because flux stations in
2011 were located in corn fields having different management
practices, the present investigation is focused on 2010 data to
eliminate influence of crop management practices on flux differ-
ences.

The National Laboratory for Agriculture and the Environment
(NLAE) provided instruments and data collection for four flux sta-
tions in 2010. The University of Colorado (CU) and the National
Renewable Energy Laboratory (NREL) provided a wind profiling
light detection and ranging (LiDAR) system downwind of the tur-
bines in 2010 (Aitken et al., 2012) but the LiDAR data was only
available for a small subset of the measurement period and there-
fore is not incorporated into the present analysis of the surface
flux data. In 2010, our stations measured fluxes upwind and down-
wind (prevailing wind being from the south) of a line of turbines
from 30 June to 7 September. The reference upwind flux station
[NLAE 1] was  positioned about 330 m (4.5 D) south of the first
line of turbines (denoted as the B turbine line), and the first
downwind station [NLAE 2] was located 175 m (2.4 D) north of
the B turbine line. Additional stations [NLAE 3] and [NLAE 4]
were located 1.3 km (17.5 D) and 2.5 km (33.8 D) north of the
B-line. NLAE 4 was  about 650 m (8.8 D) north of a second tur-
bine line, designated as the A line, which provided influences of
two lines of turbines for some southerly wind directions. How-
ever, only NLAE 1 and NLAE 2 measured concentrations of H2O
and CO2, and so we  restrict our analysis in this report to these
stations.

CSAT3 sonic anemometers (Campbell Scientific, Logan,  Utah) and
LI-7500 gas analyzers (Li-Cor,  Lincoln, Nebraska) were installed at
6.5 m above the soil surface. QREBS7.1 net radiometers (REBS,
Inc., Bellevue, WA) were additionally located at the 6.5 m height
for calculation of the surface energy balance, however there were
no sensors installed within the soil. A tipping bucket rain gage

(Texas Electronics,  Dallas,  TX)  filtered poor-quality data periods and
additional temperature and relative humidity probes (HMP-45 C,
Vaisala, Helsinki, Finland) installed at 9-m and 5-m above the surface
were used to calculate mean air density for the moisture correction

http://ortho.gis.iastate.edu/
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ig. 1. Energy budget closure trend line and correlation coefficient (R2) of (Rnet − G
s.  H + �E + Fc) among the upwind and downwind flux stations NLAE 1 and NLAE 2.

o the sensible, latent, and CO2 fluxes. At installation in late June, the
orn crop measured approximately 1.8 m,  growing to a maximum
eight of 2.8 m in the middle of July. The surface roughness varied
etween 0.1 and 0.4 m approximately estimated as one-tenth of
he canopy height (Campbell and Norman, 1998).

Eddy covariance fluxes are calculated for each 30-min intervals
ased on 20-Hz time series from the sonic anemometers and the
as analyzers. Corrections were applied to the sonic anemometer
ilt angle (Wilczak et al., 2001), virtual temperature (without the
ilt angle) (Schotanus et al., 1983), and to the H2O and CO2 concen-
rations from the gas analyzer according to Webb et al. (1980). Data
aken during precipitation events and data from periods having

issing values from both the upwind or downwind stations were
liminated (about 19%). We  also performed a quality control of the
emperature profile measurements at 9 m and 5 m during which
e rejected all events (an additional 2%) where TNLAE 2 − TNLAE 1 > |
◦C| since the temperature and relative humidity profile mea-

urements were used in air density calculation for the corrected
uxes.

. Calculations

.1. Surface energy budget considerations

We  define the surface energy balance equation as in Leuning
t al. (2012) but with slightly rearranged form:

net − G = H + �E + Fc + Fb (1)

here Rnet is the net radiation, G is the soil heat flux, H is the sensi-
le heat flux, �E is latent heat of evapotranspiration, Fc is the energy
bsorbed/released by CO2, and Fb is the thermal storage within
he crop canopy elements (e.g. leaves, stems, reproductive mat-
er). H, �E, Fc, and Rnet were measured, but we did not measure

 and Fb. We  therefore parameterize G as a daytime or night-
ime fraction (0.1 or 0.5, respectively)*Rnet (e.g. Stull, 1988). We
ould not determine Fb in the absence of biomass measurements.
anopy storage of heat may  be significant to energy closure dur-

ng several morning hours after sunrise (e.g. Meyers and Hollinger,
004). However, we estimated this term to be small (<2 W m−2) and
herefore neglected Fb in our energy budget. Leuning et al. (2012)
efines Fc (the energy flux of CO2) as Fc = f ∗

c − 0.489, where the
onstant is the CO2 absorption determined by Blanken et al. (1997),
nd fc is the corrected vertical flux of CO2. The scatter plot of the

nergy terms (Rnet − G vs. H + �E + Fc) in Fig. 1 for NLAE 1 and NLAE

 demonstrated about 95% energy closure. We  attribute the satis-
actory agreement in our energy budget to using the most updated
ux-correction procedures, especially accounting for greater flux
t Meteorology 194 (2014) 175–187 177

capture when using the sonic tilt corrections (Leuning et al., 2012;
Wilczak et al., 2001).

3.2. Selection of periods for creating composites

We calculate the differences of the energy flux of H, �E, and
fc between the NLAE 2 (downwind of turbine line B) and NLAE 1
(upwind of turbine line B) stations. We  analyze the aerodynamic
differences between the two stations by comparing the friction
velocity (u*). Each 30-minute time period is classified by the fol-
lowing characteristics: turbine operating status (OFF/ON), surface
wind direction, and thermal stratification. We  determine turbine
operational periods from the turbine Supervisory Control And Data
Acquisition (SCADA) data from turbines in the B line. The SCADA
nacelle wind speed and instantaneous power are reported in 10-
min  intervals which we then average to 30-min values to compare
to fluxes. We  define ON periods as periods when the average power
produced by each turbine is greater than 100kW or when the tur-
bine nacelle speed is at or greater than 5 m s−1. OFF periods are
defined as periods when the average power is at or below 0 kW.
We compare power values among the three western-most turbines
(B1, B2, and B3) in the B line to determine when all turbines were
ON or all turbines were OFF. Surface flux reports are eliminated for
periods (about 17%) when the SCADA data reveal a combination of
some turbines operating and others not. We  consider only periods
having wind directions that allow turbines B1-B3 to influence our
stations.

We find it important to consider both turbine power produc-
tion and wind speed to quantify turbine status. Turbines may
not be turning or in a low power operating state due to low
wind speeds. Turbines also may  be shut down for maintenance,
for safety concerns during a thunderstorm, or when lightning is
detected in the vicinity of the wind farm. Even when the turbine
is OFF, turbines may  influence fluxes because the blades, nacelle
and tower create an obstacle to boundary layer flow. Vortices
around the blades and towers, albeit small (e.g. Vermeer et al.,
2003), may  influence flux measurements, especially for northerly
flow conditions when several lines of turbine wakes are con-
tributing to flux perturbations at the southeast edge of the wind
farm.

Each 30-minute period is additionally classified according to
the downwind (NLAE 2) flux station wind direction. Waked or
non-waked wind directions from the flux tower are determined
by using an assumption of a 5◦ expansion of wakes from the tur-
bine rotor as observed by Barthelmie et al. (2010) and adopted
in the analysis of Rajewski et al. (2013). Fig. 2 presents a graph-
ical interpretation of these wake-direction sectors for each wind
turbine over the NLAE 2 flux station. In this study we use winds
from WSW,  SW,  SSW, and S-SSE to evaluate influence of turbines
B1-B3 on fluxes measured at NLAE 1. West winds (WEST) provide
conditions where fluxes at NLAE 1 and NLAE 2 would be identical
except for possible instrument bias or differences in fetch condi-
tions for these two locations. We  omit periods having all other wind
directions.

We further limit our analysis to daytime and nighttime sub-
periods when surface radiation conditions are not changing rapidly.
We classify a daytime period, DAY, to be when the net radiation
from NLAE 1 Rnet > 300 W m−2 and a nighttime period, NIGHT, when
Rnet < 0 W m−2. We acknowledge that boundary layer-transition
and cloudy periods contribute to crop fluxes, but our goal was to
create ensembles of clearly daytime and nighttime periods when

fluxes were not changing rapidly due to diurnal or cloudiness
effects. 2010 was a wet  year so there are fewer opportunities for
comparisons based on some specific atmospheric conditions (day-
time cloudy vs. daytime clear etc.).
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ig. 2. Graphical representation of B-line of turbine wake wind direction sectors fo
hese  directional categories are represented in the flux difference directional day a

.3. Analyses of the flux differences composites

We  first demonstrate a diurnal range of the flux differences
y comparing all wind direction and thermal stratifications when
he turbines are ON vs. OFF. Our mean differences in the flux are
isplayed in Figs. 3–7 in addition to 95% confidence intervals of the
ux difference. The confidence intervals of the mean difference are
pplied analogously to the t-test and Wilcoxon signed Rank tests
n detecting turbine impacts of air temperature within large wind
arms in Texas (Zhou et al., 2012a) and in California by Baidya Roy
nd Traituer (2010).

Secondly we present differences in the fluxes according to typi-
al DAY and NIGHT periods for the aforementioned wake direction
ndicators from the NLAE 2 station. Table 1 indicates the number
f observations collected for each 30 min  period with the turbines
n the ON and OFF state, (�ON, �OFF) the individual turbine direc-
ion indicator categories in the on and off state (e.g. B2 ON (SSW),
2 OFF (SSW)), and the no-wake westerly categories for the indi-
idual events with the turbines operational (WEST ON) and offline
WEST OFF).

Thirdly we examine the differences in the NLAE 1 and NLAE
 turbulence transfer efficiencies for each of the fluxes for the
N/OFF comparisons according to the reference thermal stabil-

ty category at NLAE 1 and the waked wind direction category at
LAE 2. We  determine the stability category at the reference NLAE

 station by adopting the classification in Rajewski et al. (2013):
EUTRAL for −0.05 ≤ z/L ≤ 0.05, UNSTABLE as z/L < −0.05, and STA-
LE as z/L > 0.05. The turbulence transfer efficiency is a measure
f the intensity of the turbulence exchange with the surface. We
enote for the composite of the u and v vertical momentum flux in

he momentum turbulence transfer efficiency as:

u2
∗ = u2∗√

(�2
u + �2

v ) × �w

(2)
downwind flux tower (NLAE 2) overlain on the CWEX-10 measurement locations.
httime composites.

and similar formulation is derived for the turbulence efficiency
for the heat, moisture, and CO2 fluxes (e.g. Roth and Oke, 1995;
Moriwaki et al., 2002):

�wT = w′T ′

�w × �T
, (3)

�wq = w′q′

�w × �q
, (4)

�fc = w′c′

�w × �c
, (5)

3.4. Spectral analysis detection of turbine perturbation of crop
fluxes

One specific time period enables exploration of the spectral
response of surface momentum and heat to the turbine impact.
During the overnight hours of 27–28 August 2010, hub height winds
(as reported by the turbine) were southerly while the reference
NLAE 1 station reported south-south-easterly winds, while the tur-
bines were ON from 21:00 to 22:00 LST and OFF for 50-min between
23:00 and 00:00 LST. We compare the power spectra and co-spectra
in the ON vs. OFF events for the v-component of variance (v′v′), the
vertical velocity variance (w′w′), the vertical turbulent momentum
flux (v′w′) and vertical turbulent heat flux (w′T ′). Power spectra fSv,
fSw and the co-spectra fCOvw intensities are normalized by the ref-
erence u2∗ . Similarly for the co-spectra of heat (fCOwT) we  normalize
by the reference T2∗ where (T∗ = − H/u∗). For a like manner on the
horizontal axis we normalize the frequency by the wind speed (near
2.0 m/s) at the measurement height (6.5 m)  to visualize the relative

energy scale responsible for each portion of the spectra/co-spectra.
The peak spectral intensity and the related normalized frequency
are identified at NLAE 1 and NLAE 2 for ease in depicting the turbine
impact on the fluxes for the ON and OFF cases.
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Table  1
Wind direction sectors corresponding to the turbine wake or gap (between turbine) flow for the B1 to B3 turbines on the leading line of turbines at the wind farm. Composites
of  these direction sectors are included for when the turbines were operational or offline. The number of observations in the DAY and NIGHT cases is included.

Case dir ection Tu rbine wake Sample size (N) Sample size (N)
category Indicator and wake wind directions DAY NIGHT

B1_ON (WSW) B1 (5.5D to turbine, 229°-251°) 17 38
B12G_ON (SW) gap between B1 and B2 (3.3D to line, 221°-229°) 26 16
B2_ON (SSW) B2 (2.8D to turbine, 189°-221°) 67 54
B23G_ON (S-SSE) gap between B2 and B3 (2.6D to line, 151°-189°) 160 406
∑ON (combination turbines operating) 270 514
WEST_ON (Westerly no-wake, 251°-285°) 38 78
B1_OFF (WSW) B1 (5.5D to turbine, 229°-251°) 6 11
B12G_OFF (SW) gap between B1 and B2 (3.3D to line, 221°-229°) 4 3
B2_OFF (SS W) B2  (2.8D to  turbine, 189°-221 °) 23 19
B23G_OFF (S-SSE) gap between B2 and B3 (2.6D to line, 151°-229°) 57 47

4

4

4

t

F
f
d
d

∑OF F (combination turbines offline)
WEST_OFF (Westerly no-wake, 251°-285°)

. Results
.1. Mean flux difference composites

.1.1. Friction velocity
The downwind–upwind difference in friction velocity as a func-

ion of time of day depicts a significant impact of turbine operation

ig. 3. (a) Downwind–upwind mean differences and 95% confidence intervals in
riction velocity (u*) for turbines ON and turbines OFF in a diurnal period. (b) Wind
irection-turbine wake sector downwind–upwind mean differences and 95% confi-
ence intervals in u* for the DAY and the NIGHT case.
90 80
38 30

(Fig. 3a), especially at night. We  observe nearly a 25–50% increase
in u* at NLAE 2 during nighttime hours while turbines are ON as
apposed to OFF. In the daytime, however more ambiguity exists,
likely due to strong daytime mixing.

When the turbines are OFF, the daytime difference in u*
at the downwind station is negligible or at most a few
percent decrease (u*NLAE 1 = 0.3 m s−1), with a slight increase
(u*NLAE 1 = 0.5 m s−1) when the turbines are ON. The turbines
have a much stronger effect at night than during the day,
and when they are ON as opposed to OFF (Fig. 3b). During
westerly cases, when flow is parallel to the row of turbines
and the turbines affect neither flux station, no differences in fric-
tion velocity are apparent. These ranges of daytime differences (less
than 10%) for westerly winds may  be negligible for comparison to
numerical or wind tunnel simulations but the flux perturbation
is 40 times the measurement resolution of the sonic anemome-
ter (e.g. Campbell Scientific, 2014). In the OFF condition the slight
decrease of canopy mixing in southwesterly flow may indicate the
impact of the perturbation pressure field around the B1 and B2
turbines although the turbine blades remain stationary (Rajewski
et al., 2013).

The highest increase in canopy mixing (25-70%) occurs at night,
between the wakes of turbines B1 and B2 and within the B2 wake.
In contrast, westerly flow cases and the turbines OFF condition
demonstrate <5% higher friction velocity at NLAE 2. For the ON
condition, u* increases slightly (<10%) for southerly flow between
turbines B2 and B3. Slightly larger u* is also occurs when the B1
turbine wake is overhead of the downwind station. The larger
variability markers at these waked or between wake flow cate-
gories than for the southerly flow case between the B2 and B3
turbines is related to a smaller sample of observations. We  note
small to negligible decreases in canopy mixing at NLAE 2 in noctur-
nal periods with the turbines OFF for flow between the B1 and B2
turbines. These observations, marked with substantial variability,
we attribute to a smaller sample size, the intermittency of turbu-
lence, and episodic Kelvin Helmholtz instability.

4.1.2. Sensible heat flux
In the heat flux differences (Fig. 4a), we  observe a uniform but

weak downward transport of heat at NLAE 2 for the late evening and

first few hours after sunset when the turbines are operational. The
5–10 W m−2 departure of flux likely corresponds to the growth of
the stable boundary layer into the layer of air between the top and
bottom of the turbine blades. We  indicate the strongest influence
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In our refined wake window direction analysis, (Fig. 5b) we
Fig. 4. As in Fig. 3 but for sensible heat flux (H).

f the turbine when the ambient scales of turbulence are on the
rder of the size of the turbine blades (0.5–1.0D). In the last half of
he night there is weaker flux difference and we refer to our previ-
us investigation of low level jets as a possible mechanism to dilute
he turbine transport of downward heat flux (e.g. Rajewski et al.,
013; Rhodes and Lundquist, 2013). In the daytime we observe a
imilar amount of surface cooling of less than 10 W m−2 during the
reakup of the temperature inversion when the ambient scales of
ixing are the size of the turbine rotor. Flux differences are more

ariable in the other afternoon periods and for the majority of the
ay and night hours when the turbines are OFF. Nighttime intermit-
ency in scalar flux is expected whereas in the daytime, moderately
nstable conditions contribute to this high variation in the
ux.

There is negligible difference in the daytime heat flux for most
f the cases for flow in the turbine wake or between two turbines
Fig. 5b). The daytime reference flux at NLAE 1 is between 50 and
25 W m−2 for most clear-sky conditions. For the southwesterly
ind between the B1 and B2 turbine wakes at a distance of about

.3D the flux difference indicates a small (5–10 W m−2) but statis-
ically significant counter gradient downward heat transport when
he turbines are in operation. However, when the station is in the
ake of turbine B1 there is a similar magnitude but positive upward

ransport of heat. We  believe this result points to the 3-D asym-
etry of the turbine wake swirl generated behind the blades: the
omentum and heat fluxes also respond to this rotational vortex
bove the surface. The daytime mean differences in the sensi-
le heat are highly variable among all periods with the turbines
FF and we attribute this behavior in the heat flux to boundary
Fig. 5. As in Fig. 3 but for latent heat flux (�E).

layer-scale mixing (scales of a few hundred to a few thousand
meters) as the primary forcing instead of the smaller turbine-scale
turbulence.

At night, however, the turbine-scale turbulence (scales on the
order of the rotor disk, approximately 80 meters) dominates the
ambient boundary layer turbulence having scales of only a few
meters. Therefore at night, the turbine influence is distinct, pro-
moting larger downward transport of heat at NLAE 2 (reference
flux of −40 W m−2). We  note weaker downward heat transport
(5–10 W m−2) within the center of the wakes from turbines B1 and
B2 for SSW or the WSW  flow condition. Rather, turbine turbulence
enhances mixing of heat (by 15–20 W m−2) at the edges of the two
wakes for the SW direction. All other ON/OFF comparisons outside
of this SW window depict flux differences near zero.

4.1.3. Latent heat flux
In contrast to sensible heat flux and momentum flux, the

downwind-upwind differences for latent heat flux are ambiguous
(Fig. 5a). At night for both the turbines ON and OFF condition, we
observe negligible mean change in the transpiration or conden-
sation between NLAE 1 and NLAE 2. However, there is slightly
higher variability when the turbines are operational. In the day-
time periods, transpiration increases regardless of turbine status.
However, like the sensible heat flux, we  expect the larger scales of
boundary layer mixing to dilute or mask the turbine influence of
the fluxes for the bulk of the afternoon hours plotted.
clearly see that latent heat flux increases at NLAE 2 by as much as
60 W m−2 when it is influenced by the B1 turbine during the DAY
condition. We  believe that at this distance of 5.5D downstream of
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he B1 turbine, the wake is interacting with the surface to increase
he canopy flux by about 10–15% or up to 1.0–2.0 mm day−1 over
he reference flux (350 W m−2). A similar examination of the surface

ean wind speed difference between the downwind and upwind
tation reveals over a 0.5 m s−1 speed enhancement when the B1
nd B2 turbine wakes are influencing the downwind station (figure
ot shown). We  also indicate at NLAE 2 a 5–10% increase in flux in
etween the B1 and B2 turbine wakes at a distance of about 3.3D for
he daytime condition. Latent heat differences are highly variable
n the daytime OFF cases and we relate our lack of observations to
orm a statistical interpretation of the data for these large pertur-
ations. For flow between the B2 and B3 turbines however, there is

 peculiar result. We  detect <10 W m−2 reduction of flux in the both
he ON and OFF conditions and unfortunately we  are unable to link
his pattern to any individual factor. We  believe there is a com-
ination of three primary atmospheric factors (thermal stability,
ub height wind speed, and wind direction) leading to a 0.4 m s−1

peed decrease and (6%) reduction in atmospheric conductance at
he downwind station. We  offer an explanation for one factor in
ecreasing the latent heat flux, however there may  be other physio-

ogical factors within the canopy and the soil, which have unknown
ffects until additional measurements are made within the
rop.

At night, there is not a consistent directional factor on the
atent heat flux difference. Mean differences are near zero for flow
etween the B2 and B3 turbine and for the B1 turbine wake in west-
outh-westerly wind. We  are less confident in the southwesterly
ow comparisons for the B2 wake and between the B1 and B2 tur-
ines when the turbines are online. However, the sign difference

n the flux (12 to −12 W m−2) across the B2 wake may  indicate
ux perturbation by the rotating wake vortex. The OFF condition

s near zero for most of the wake sectors except for the B12G case
nd we refer to our low number of data points as the cause of the
igh variability. Westerly winds generate larger flux differences
han for other directions that indicate the influence of a tur-
ine. Therefore, we suspect that the turbine perturbation of latent
eat during the nighttime is secondary to other physiological fac-
ors, which were not measured. These physiological factors likely
ominate the transpiration or condensation conditions above the
rop.

.1.4. Carbon dioxide flux
We  indicated negligible latent heat flux differences between the

ownwind and upwind station in the previous section and similarly
e cannot clearly define CO2 flux differences over the diurnal cycle

Fig. 6a). The CO2 flux differences are less than 0.3 mg  m−2 s−1 (posi-
ive at night, negative in the day) both in the ON and OFF conditions.
owever, there is less variation in the differences particularly for

everal hours during the nighttime before local midnight and again
n the mid  morning to early afternoon. The highest variation in the
uxes occurs at the transition stages of the boundary layer a few
ours before sunrise and again in the mid  afternoon with the max-

mum wind speed above the boundary layer moving to the surface.
ixing is most vigorous at these times and leads to higher variation

han in other day or night periods.
In the daytime and nighttime composites, turbines increase

ighttime CO2 respiration by 0.40–0.60 mg  m−2 s−1 at the NLAE 2
tation for the south-southwesterly and southwesterly wind direc-
ion (Fig. 7b). This category corresponds to a closer downwind
istance of turbine B2 (2.8D downwind) and for the flow in between
he B1 and B2 turbines at 3.3D downwind of the turbine line. CO2
ux differences in the OFF cases are near zero except for wind direc-

ions between the B1 and B2 turbines, which can be attributed to
ewer data points in this directional and turbine status category.

In the day time the edges of the B1 and B2 turbine wakes pro-
ote higher CO2 canopy assimilation (0.3–0.4 mg  m−2 s−1) and we
Fig. 6. As in Fig. 3 but for CO2 flux (fc).

indicate a slightly larger canopy drawdown (0.5 mg m−2 s−1) when
the B1 turbine wake is over NLAE 2. We  believe there is consis-
tent daytime coupling of turbine-enhanced downward turbulent
flux of CO2 and upward flux of H2O for this range of wind direc-
tions at approximately 3.0 to 5.5D downstream of the turbines. It is
important to note that our turbine cases of wake influence demon-
strate 50% or greater downward flux than for the southerly flow
case between the B2 and B3 turbines and for westerly, non-wake
flow. The daytime CO2 fluxes in the ON and OFF states are similar
for wind directions between southerly and south-south westerly
winds and this may  indicate that our flux differences are caused
by pressure flow perturbations around the turbine line rather than
from the turbine-generated turbulence. Further investigation will
help isolate the mechanisms responsible for the flux modification.
We recognize that CO2 respiration is both a thermodynamic and
dynamic process and so both canopy temperature and soil respi-
ration are important in describing the turbine impact on the CO2
flux. Unfortunately, we did not measure either of these variables
and therefore, this partition of the respiration is omitted from the
analyses.

4.2. Turbulence transfer efficiency difference composites

4.2.1. Friction velocity
We  present the turbulence transfer efficiency difference at NLAE
2 according to the same directional sorting metrics for the flux dif-
ferences as in Figs. 3b, 4b, 5b, and 6b. Only a small range of wind
directions indicates that there is a 5–10% increase in turbulence
transfer at the downwind tower for the nighttime stable period
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ig. 7. Downwind–upwind mean difference and 95% confidence intervals in turbule
nd  the turbine wake categories for (a) momentum flux [u2

∗ ], (b) heat flux [w′T ′], (c

Fig. 7a). Otherwise, the transfer efficiency is identical upwind and
ownwind of the tower when the turbines are operational. The
ighest variability occurs when the turbines are offline and we
ote a 10% decrease in the turbulence efficiency at NLAE 2 when
inds are out of the southwest. This result is surprising but it may

ndicate that there is a deceleration of the flow from the pres-
ure field perturbation downstream from the turbine. The turbine
lades create an obstacle to the flow even when the rotor is not
urning. Additional analysis is needed to confirm this conceptual
dea.

.2.2. Sensible heat flux
The turbulence transfer efficiency of heat in Fig. 7b demon-

trates alternating increases or decreases at the NLAE 2 station
specially in the OFF turbine condition. The only meaning-
ul difference of the flux efficiency in the ON condition is
een in STABLE conditions for southwesterly wind direction
ndicating a 10–15% increase in turbulence on the edges of
he B1 and B2 turbine wakes. Heat is most easily trans-
orted in the wake for this condition whereas for southerly
o south-south-easterly flow between the B2 and B3 turbine
akes and for wake transport from the B1 turbine, there is

ittle efficiency difference between the two flux stations. As
e expect, heat transfer efficiency differences are low in the
aytime condition as the scales of turbulence (several hundred
eters to a few kilometers) are dominated by buoyant eddies. The

urbine scale of mixing is therefore unable to perturb ambient heat
ux in this strongly mixed condition.

.2.3. Latent heat flux
Turbulence transfer efficiencies of moisture are similar at the

pwind and downwind station for most directional and stability

ategories with the turbines ON and OFF. We  observe a 10–20%
ncrease in the transfer at NLAE 2 for southwesterly wind for night-
ime stable conditions and this is the location on the turbine wake
dges from the B1 and B2 turbines (Fig. 7c). A 10% increase in the
ansfer efficiency according to classification by stability categories, turbines ON/OFF,
ture flux [w′q′], and (d) CO2 flux [w′c′].

transfer efficiency is also indicated when the B1 turbine wake influ-
ences the downwind station at a distance of 5.5D. This pattern is
contradictory to the latent heat flux difference as the mean dif-
ference is maybe <10 W m−2. Through our determination of the
turbulence transfer efficiency, we  posit that the turbine has the
ability to modify nighttime transport of vapor. However, the flux of
latent heat is dependent on other factors besides the vertical mois-
ture gradient between the canopy and the atmosphere. Therefore,
other studies are warranted to determine the other physiological
processes in the crop that are influencing the differences in the
latent heat flux.

4.2.4. CO2 flux
In the transfer efficiency of CO2 our results indicate that the

turbine-turbulence is only responsible for the perturbation dur-
ing the nighttime stable conditions and for the southwesterly wind
direction (Fig. 7d). We  again interpret this difference as the edges of
the B1 and B2 turbine wakes facilitate this mixing of carbon dioxide.
Similarly as for the transfer of momentum and heat, we  relate the
blade-sized scales of the turbine-turbulence to be more efficient
in modifying the near surface exchanges of CO2 when the ambient
turbulence scales are a few to tens of meters.

4.3. Spectral analysis of turbine impact on fluxes

4.3.1. Comparison of power spectra
The nighttime spectral analysis of momentum components and

vertical heat transport provide clear evidence of the turbine influ-
ence at the downwind station. In the power spectra of v (fSv/u−2∗ )
(Fig. 8a and b) a 50% increase in the peak intensity at the downwind
station occurs when the turbines are in operation. The frequency of
peak intensity also shifts to smaller-sized eddies at the downwind

station, from 0.025 fz/u to near 0.05 fz/u. Similar features occur
in the power spectra of u (figure not shown). The spectral differ-
ences are negligible when the turbines were off (Fig. 8c and d),
although at that time, two hours later, the influence of a nighttime
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ow-level jet has increased surface wind speed and therefore the
elocity variance. While the turbines are OFF, differences between
he peak intensity are within 10% and no discernable shifts in the
ength scale for this peak spectral band emerge.

Our measurements indicate up to an 80% increase in the w-
ower spectra (fSw/u−2∗ ) when the turbines are ON. However, there

s no clear shift in the turbulent scale of the peak energy portion of
he spectrum (figure not shown). For the offline case we  observe a
egligible station difference in the peak spectral intensity (<10%)
nd a very small change in the frequency band pertaining to the
eak at NLAE 2. The combination of turbine influences in both the
orizontal and vertical scales of the energy spectra suggests an

nfluence on the co-spectra of momentum and heat.

.3.2. Comparison of co-spectra
The vw-co-spectra in Fig. 9a and b also depict higher spectral

ntensity (by as much as 80%) at the downwind station when the
urbines are operational than for when the wind farm is offline
Fig. 9c and d). Enhanced intensity and shifting of the peak energy
and to smaller scales from 0.06 fz/u to 0.09 fz/u at the downwind
tation agree with the higher fluxes reported in Fig. 3 and Fig. 8.
n the OFF condition the peak intensity at NLAE 2 is within 5%
f NLAE 1, but there may  also be a weak shift to larger scales of
otion.
The turbine effect is also evident in the turbulent heat flux

Fig. 10a and b). The downwind station has 25% higher spectral
eak intensity than the reference station and the energy scale of
his peak is also shifted considerably to the right of the ambient
tation position. However, when the turbines are offline the peak
pectral difference between the two stations is within 5% and there
s no shift in the energy scale for this band.

. Discussion

Canopy fluxes of momentum, heat, moisture, and carbon dioxide
an be modified directly by the enhanced turbulence in the wake,
y the reduction of vertical mixing underneath the turbine wake,
r by influences of the static pressure field between each line of
urbines. Previous analyses (Zhou et al., 2012a and 2012b; Baidya
oy et al., 2004; Baidya Roy, 2011; Baidya Roy and Traiteur, 2010)
uggest that wind farm impacts on surface temperatures are most
iscernible at night. Our results show some evidence in the daytime
hat a turbine wake can perturb H2O and CO2 fluxes at a distance of
.5D downstream. This 5.5D location indicates some expansion of
he wake, although it is unlikely that the wake has reached the
anopy surface. We report about an 8–12% increase in daytime
O2 penetration from the influence of the B1 or B2 turbines, but
his is smaller than the difference of CO2 flux (12–20%) between
wo corn fields, one irrigated and one dry-land farmed each with

 different corn hybrid as reported in Suyker et al. (2004). How-
ver, individual events occur when flux perturbations attributed
o turbines may  match or exceed those related to other field-scale
eterogeneities.

Among the CO2 flux differences in the ON and OFF cases,
e notice similar magnitudes of the flux difference. One
ossible explanation of the conflicting results is the flow per-
urbations around obstacles (e.g. Wang et al., 2001). That is,
ven motionless turbines in a relatively homogeneous bound-
ry layer likely have some influence on all the energy and
O2 surface fluxes. Our results demonstrate that this per-
urbation is strongest behind an individual turbine and not

cross the whole line of turbines. This may  indicate that the
tatic pressure field behind each turbine measurably perturbs
he flow, regardless of whether the turbines are operational
r offline (Rajewski et al., 2013; Smith et al., 2009). Turbine
t Meteorology 194 (2014) 175–187 183

tower shadow effects of over-speeding flow below and between
turbine rotors have been previously reported among smaller-
scale turbines (e.g. Ainslie, 1988; Whale et al., 1996) and
detected recently in Hirth and Schoeder Ka-band radar imagery
(2013).

At night, CO2 respiration and sensible heating are enhanced
by the turbines when the wake is both directly overhead the flux
station at a distance of 5.5D downstream from the turbine or when
the outside edge of the wake is above the station at a distance of
2.8–3.3D downstream from the turbine. Our estimates of the night-
time turbine-perturbed heat flux are in reasonable agreement with
numerical studies that parameterize the momentum sink and tur-
bulence sources of the turbines (Baidya Roy et al., 2004; Baidya Roy,
2011; Fitch et al., 2012; Fitch et al., 2013a). The representation of
the flux differences also is comparable to the scaled wind tunnel
experimental results (Chamorro and Porté-Agel, 2010; Zhang et al.,
2012, 2013). We observe an increased (more negative) heat flux
at NLAE 2 unlike the decreased (less negative) flux demonstrated
in the nocturnal LES simulation of Lu and Porté-Agel (2011), not-
ing that the simulation used an infinite turbine array for deep wind
farm impacts while we studied the effect of the first row of turbines.
It is plausible that for the more oblique wind directions from the
southeast or east-southeast our measurements would be respon-
ding to a reduction in the scalar flux from the influence of multiple
lines of turbines southeast and east-southeast of the CWEX study
area.

The spectral analyses substantiate our nighttime flux differ-
ence composites presented in the previous two sections. This case
study provides a sample of power spectra and co-spectral dif-
ferences between the upwind and downwind towers whereas
other aspects of this data are reserved for future reports. These
spectra are difficult to compare with wind tunnel or simulation-
generated spectra because those results are focused on the rotor
depth above the surface. An increase in the power spectra by up
to 6× the ambient are possible within 5.0–10.0D downstream of
a turbine (Chamorro and Porté-Agel, 2009; Markfort et al., 2012;
Zhang et al., 2012). Conversely, our surface measurements taken
at NLAE 2 are only about 2.8D downstream from the B3 turbine
and show similarities to the 2–5× increase of the ambient spec-
tra at hub height within a distance of 1D downstream (Crespo and
Hernández, 1996). Further spectral analyses (multiple cases for sev-
eral wind directions and or speeds of the turbine) are needed to
better understand the three dimensional asymmetries of the inter-
action of the turbine-generated turbulence and ambient scales of
turbulence.

We find agreement in our results and in our conceptual model
of turbine-turbulence more efficiently perturbing the nighttime
scales of above-canopy mixing. We provide some insights from pre-
viously reported work on the connection to u* and scalar flux. The
wind tunnel studies of Zhang et al. (2012, 2013) report how the
aligned turbine arrays give alternating patches of higher (lower)
scalar flux on the left (right) cross-wind side of the turbine wakes
for daytime boundary layer situations. This may correspond to the
downward sweep induced by the blades on the left side of a turbine
rotating clockwise and a corresponding upward sweep on the right
side of the rotor (e.g. Yang et al., 2012). These upward and down-
ward sweeps would mark the edge of the blade-tip vortices, which
undergo expansion and a helical rotation around the downwind
side of the turbines to create the turbulence in the wake (Connell
and George, 1982). The vortex rotation is opposite of the rotation of
the turbine blades to conserve angular momentum. Field detection
of these wake vortices from operational turbines is very limited,

so our understanding of the structure and evolution of the wake is
developed from wind tunnel or numerical simulations.

Zhang et al. (2012) reported that for neutral or convective
boundary layer conditions, the tip vortices are present at a distance
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ig. 8. Upwind vs. downwind flux station v-power spectra of momentum for turb
urbines OFF period of 23:00–00:00 LST August 27–28, 2010 at (c) NLAE 1 and (d) N

f 3D downwind of the turbine, whereas by 5D there is complete
issipation of these motions. Our field measurements demon-
trated some agreement to those daytime findings, yet we  believe
hat some coherent structure of the wake influences the sur-
ace fluxes at a distance of greater than 5D downwind, at least

t night. Under a south-westerly wind direction, NLAE 2 may  be
nfluenced by the left side of the B2 turbine wake, and there-
ore, the sign in the flux difference is not consistent with what
e expect inside the wake. Calaf et al., (2011) in their numerical

ig. 9. Upwind vs. downwind flux station vw-co-spectra of momentum for turbines ON
urbines OFF period of 23:00–00:00 LST August 27–28, 2010 at (c) NLAE 1 and (d) NLAE 2
N period of 21:00–22:00 LST Aug 27, 2010 at (a) NLAE 1 and (b) NLAE 2 and for
.

simulations commented on two opposing forces on the sensible
heat flux perturbation. In a fully developed turbine-wake bound-
ary layer, the turbine wakes increase u* beyond the top of the
blades (u*hi) whereas below the turbines, the speed reduction in
the wake leads to a decrease in the friction velocity (u*low). This

ratio of u*hi/u*low will control how the scalar flux will change near
the surface. We  did not observe this effect in our data as we only
compared effects on the upwind and downwind side of one line of
turbines.

 period of 21:00–22:00 LST August 27, 2010 at (a) NLAE 1 and (b) NLAE 2 and for
.
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. Conclusion

Surface fluxes measured upwind and downwind of a line of tur-
ines give evidence of conditional crop microclimate modification
y individual wind turbines. Our results show that the turbines did
ot contribute to sensible heat flux during the day at levels mea-
urably above ambient. Concurrent differences in daytime latent
uxes are significant at a distance of 3–5D downstream of a tur-
ine and we have evidence that transpiration may  be enhanced
t most around 1 mm day−1. Daytime CO2 fluxes exhibit a small
ut not statistically significant enhancement with turbine activ-

ty when the turbines are ON as compared to when the turbines
re OFF. However, our flux difference comparisons of the ON
ases to westerly winds indicate a potentially five-fold increase
n CO2 flux at a distance of 5.5D downstream of the turbine. Con-
ersely, at night the ambient turbulence is enhanced by the mixing
enerated from the turbines. Both sensible heat flux and CO2 res-
iration are increased 1.5–2 times the reference magnitude. We
ould not discern any major differences in the latent heat flux at
ight.

Although we observe changes in the CO2 and H2O fluxes above
he canopy, we did not measure biophysical changes within the
rop. Therefore we could not determine the overall impact of wind
urbines and wind farms on yield. There is weak evidence that the
aytime CO2 uptake can be increased for fields that are within a

ocation of 5.5D from a turbine, but we have higher confidence that
ighttime respiration is enhanced in the lee of the turbine line.
espiration may  also be increased by turbines causing a larger pres-
ure pumping of the soil surface and release of CO2 out of the crop
anopy (e.g. Takle et al., 2004).

Extrapolating these flux differences after one row of turbines
o a large wind farm of several rows is difficult. We  expect
hanges in the turbine mixing as the wind moves through addi-

ional turbines within the wind farm. The nonlinear turbulence
nteractions between multiple wakes could either enhance the
ffects described here, or the multiple-wake interactions could sat-
rate the effects on fluxes. Future studies would require several
 of 21:00–22:00 LST August 27, 2010 at (a) NLAE 1 and (b) NLAE 2 and for turbines

measurement systems within and above the crop canopy at mul-
tiple locations upwind and downwind of multiple turbine lines
to ascertain what physiological and yield impacts are possible
from large wind farms. The data presented here suggest two
competing effects: an enhanced downward flux of CO2 into the
canopy during the daytime and a comparable or higher noctur-
nal venting of CO2 (via increased mixing and a warmer nighttime
temperature) oppose each other and limit the aggregate bene-
fit to corn yield. Although we investigated the grain yield both
north and south of the turbine line, the spatial field-scale vari-
ability was within ±5 bushels/acre. Quantifying the perceived
impact of wind farms on crop yield remains a topic for future field
experimentation.
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