
This summary reviews publicly available 
information about the interactions of land-based 
wind power with wildlife and the status of our 
knowledge regarding how to avoid or minimize 
adverse impacts, with a focus on North America.  
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QUESTIONS
WIND ENERGY IN THE CONTEXT OF OTHER HUMAN RELATED THREATS
	 •	 How does wind energy benefit wildlife?
	 •	� How do the number of bird fatalities at wind facilities compare to other human-caused sources of direct 

mortality? 
	 •	� How do the number of bat fatalities at wind energy facilities compare to other human-caused sources 

of mortality? 

ADVERSE IMPACTS TO WILDLIFE FROM WIND TURBINE COLLISIONS
	 •	 What are the main adverse impacts of wind energy on wildlife in North America?
	 •	 Birds and Bats
		  ∘ How do scientists measure the impacts to birds and bats from land-based wind energy?
		  ∘ Are there any recent innovations related to strike detection and activity monitoring?
		  ∘ Are bird and bat fatality rates at wind facilities consistent across regions? 
		  ∘ Does turbine size (height, blade length, etc.) affect collision risk for birds and bats?
	 •	 Birds
		  ∘ �How do types of birds differ in their risk from wind turbine collisions?
		  ∘ �Do collisions between birds and wind turbines lead to population declines?
		  ∘ �What behaviors are related to collision risk for birds?
	 •	 Bats
		  ∘ �How do types of bats differ in their risk of wind turbine collisions?
		  ∘ �Do collisions between bats and wind turbines lead to population declines?
		  ∘ �Are there seasonal patterns of bat fatalities in the U.S.?
		  ∘ �Are bats attracted to wind turbines?
		  ∘ �Are bats killed by barotrauma caused by wind turbine blades?
		  ∘ �How is collision risk for bats influenced by weather conditions and landscape features?
		  ∘ �Are male and female bats equally at risk of collision with wind turbines?

HABITAT-BASED AND BEHAVIORAL IMPACTS TO WILDLIFE
	 •	� Do wind facilities impact nearby bird abundance?
	 •	� Do wind facilities impact the survival and reproduction of nearby birds?
	 •	� Does wind energy impact habitat quality or movement for terrestrial vertebrates?

STRATEGIES FOR CONSERVING WILDLIFE IMPACTED BY WIND ENERGY
	 •	 Siting
		  ∘ �How can wind turbines be sited to reduce collision risk for raptors?
		  ∘ �Can acoustic detectors be used to predict or measure collision risk for bats?
		  ∘ �How do landscape variables influence bat activity and fatalities near wind facilities? 

	 •	 Collision Minimization Strategies
		  ∘ �What is currently the most reliable and effective way to reduce raptor fatalities at wind facilities?
		  ∘ �What is currently the most reliable and effective way to reduce bat fatalities at wind facilities?
		  ∘ �Can ultrasonic sound be used to minimize bat fatalities at wind facilities?
		  ∘ �How can painting turbine blades with various colors/patterns reduce collisions? 
		  ∘ �Can lighting be used to minimize collision risk for birds or bats?

	 •	 Conservation Offsets (also called Compensatory Mitigation)
		  ∘ What conservation opportunities exist to offset impacts to birds and bats from wind energy?
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INTRODUCTION

Wind energy has become a substantial component of power generation and provides over 10% of the 
electricity generated in the United States (U.S.; U.S. Energy Information Administration 2023).  Land-
based wind energy in the U.S. has been projected to increase from the current capacity of 155 gigawatts 

(GW; as of December 2024) to between 350-646 GW by 2050 (American Clean Power 2025, U.S. Energy 
Information Administration 2025). While wind energy can offset fossil fuel emissions and reduce the effects of 
climate change on wildlife, the siting and operation of wind energy facilities also pose a risk to some species of 
wildlife (Arnett et al. 2008, Strickland et al. 2011, Allison et al. 2019, Katzner et al. 2025). Negative effects may 
include fatalities resulting from collisions with turbine blades or towers and declines in the availability, quality, or 
connectivity of habitat caused by construction and operation of wind energy infrastructure. For some species, 
concern exists that the cumulative effect of impacts from wind energy may contribute to population declines, 
especially as the installed capacity of wind energy increases (Gill and Hein 2022, Vander Zanden et al. 2024). 

Understanding the extent and nature of wind energy’s environmental impacts is essential to maximizing wind 
energy’s benefits while addressing risks to wildlife. This summary seeks to do so by reviewing publicly available 
information about the interactions between land-based wind power and wildlife in North America and the status 
of our knowledge regarding how to avoid, minimize, and mitigate adverse impacts. 

LANDSCAPE WITH TURBINES, PHOTO BY PORTLAND GENERAL, FLICKR
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Supporting Information
The amount of publicly available, peer-reviewed 
research continues to grow, reflecting the ongoing 
interest in understanding wind-wildlife interactions. 
To maintain the highest level of scientific rigor for 
this summary, we have based our conclusions on 
research that has been published in peer-reviewed 
journals or that appears in reports that have 
undergone expert, technical review. 

This summary is updated and undergoes expert 
review periodically. Literature citations supporting 
the information presented are denoted in 
parentheses; full citations can be found online at 
https://rewi.org/resources/answers-to-frequently-
asked-questions-based-on-the-state-of-the-
science/.
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Installed wind energy capacity in the U.S. 
continues to grow and was estimated at 
more than 155,000 megawatts (MW) at 

the end of 2024. Wind energy accounted 
for 10.5% of electricity generated in 
the U.S. in 2024, more than any other 
renewable energy source but substantially 
less than that produced by natural gas 
(43.3%), coal (15.2%), or nuclear power 
(18.2%). The power ratings of turbines 
installed at new projects range from 2-6.1 
MW, and turbine towers range in height 
from 80-117 m (~262-384 ft). Turbine 
blades range in length from 38-79 m 
(~125-259ft) resulting in a maximum 
potential height of approximately 196 
m (~643ft) and a rotor-swept area of 
0.45-1.13 hectares. Blade tip speeds 
range from 220-290 km/hr (~134-180 
mph) under normal operating conditions. 
The perimeter of a wind facility may 
encompass thousands of acres. The most 
current wind market information can 
be found at the American Clean Power 
Association’s website.

BLUE-WINGED TEAL, PHOTO BY ANDREA WESTMORELAND, FLICKR

https://rewi.org/resources/answers-to-frequently-asked-questions-based-on-the-state-of-the-science/
https://rewi.org/resources/answers-to-frequently-asked-questions-based-on-the-state-of-the-science/
https://rewi.org/resources/answers-to-frequently-asked-questions-based-on-the-state-of-the-science/
http://www.awea.org/market-reports
https://cleanpower.org/
https://cleanpower.org/
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GLOSSARY OF COMMONLY USED TERMS

Anthropogenic
Primarily or entirely caused by human activities.

Diurnal raptor 
A bird of prey that is primarily active during 
daylight hours (e.g., eagles, hawks).

Passerines
Otherwise known as perching birds, these are 
birds from the order Passeriformes, the order of 
birds containing the most species, distinguished 
by feet adapted for perching (includes 
songbirds, ravens, and hummingbirds, among 
others). 

Nacelle
The compartment on a wind turbine that 
sits atop the tower and houses the gearbox, 
generator, brakes and other mechanical 
components that control the rotation of the 
rotor (NYSERDA 2020).

Installed capacity
Also known as nameplate generating capacity, 
this is the maximum amount of electricity that 
a wind turbine or wind energy project can 
produce under ideal conditions, as designated 
by the turbine manufacturer (NYSERDA 2020).   

Curtailment
The slowing or stopping of wind turbine rotors 
from spinning, often done by feathering the 
blades (i.e. adjusting the blade pitch so as to 
pick up less wind).

Cut-in wind speed
The wind speed at which the wind turbine 
engages with the grid (often the speed at 
which the wind turbine begins producing 
power).

Rotor swept zone
The circle of airspace covered by the wind 
turbine blades when the rotor is spinning.

Minimum rotor sweep
Also referred to as the air gap, this is the 
distance between the ground and the rotor 
swept zone at the closest point to the ground.

RED-TAILED HAWK AND TURBINES , PUGET SOUND ENERGY WILD HORSE WIND 
FACILITY
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WIND ENERGY IN THE CONTEXT OF OTHER HUMAN 
RELATED THREATS
How does wind energy benefit wildlife?
Wind energy provides benefits to wildlife and eco-
systems by reducing reliance on fossil fuels which 
contribute to climate change, pollution, and habitat 
loss. 

Wind energy can offset greenhouse gas emissions from 
fossil fuel use and thus reduce the negative impacts 
of climate change (Barthelmie and Pryor 2021) that 
have been identified as primary threats to wildlife 
(Parmesan and Yohe 2003, Bateman et al. 2020, 
Festa et al. 2023, Adams et al. 2024). By offsetting 
fossil fuel extraction and burning, wind energy also 
provides several other wildlife benefits including little 
or no water use associated with electricity production, 
decreased air and water pollution, and reduced 
habitat destruction and degradation due to mining 
and drilling (Butt et al. 2013, Siler-Evans et al. 2013, 
Allison et al. 2019, Adeyeye et al. 2020). Katzner et al. 
(2022) highlighted the importance of evaluating the 
direct effects of renewable energy against the adverse 
effects of climate change and of non-renewable 

energy production, recognizing that the balance 
between net benefits and adverse effects will differ 
among species and systems.

How do the number of bird fatalities at 
wind facilities compare to other human-
caused sources of direct mortality? 
The estimated total number of collision fatalities of 
most bird species at wind energy facilities is much 
smaller (hundreds to thousands of times lower) 
than other leading anthropogenic sources of avian 
mortality.

The number of birds killed at wind energy facilities 
is one to four orders of magnitude lower than from 
other anthropogenic sources of mortality, including 
feral and domestic cats, power transmission lines, 
fossil fuels, poisoning, and collisions with buildings 
and windows, cars, and communication towers 
(Sovacool 2009, Longcore et al. 2012, Calvert et 
al. 2013, Loss et al. 2013, 2013b, 2014a, 2014b, 
2014c, Erickson et al. 2014). Collision fatalities from 
wind turbines may be relatively more important to 

FLICKR
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populations of diurnal raptors (birds of prey active 
during the day), particularly golden eagles. However, 
collisions with wind turbines make up less than 5% of 
anthropogenic mortality for golden eagles (USFWS 
2016, Millsap et al. 2022). Despite fossil fuels being 
the predominant energy source for electricity, the 
majority of scientific research has focused on wildlife 
mortality due to wind energy, with minimal research 
on impacts from fossil fuels, hindering comparison of 
their impacts (Loss et al. 2019).

How do the number of bat fatalities at wind 
energy facilities compare to other human-
caused sources of mortality? 
White nose syndrome (WNS) has rapidly caused 
>90% mortality in populations of several cave-dwell-
ing species of bats in North America. In compari-
son, wind energy is considered by experts to be a 
leading conservation concern for several migratory 
tree-roosting bats, but fatality estimates due to 
other causes for these species are not available for 
comparison.

Experts have identified the top IUCN (International 
Union for the Conservation of Nature and Natural 

Resources)-classified threats to bats across North 
America to be climate change (drought), disease/
invasive species (WNS), agriculture (livestock farming), 
and energy production (wind energy), although wind 
energy has been identified as the leading threat to 
hoary, silver-haired, and eastern red bats (COSEWIC 
2023, Adams et al. 2024).  Wind energy and WNS have 
been the leading causes of documented mortality 
events for bats in recent decades (O’Shea et al. 
2016), but they have very different scales of impact 
and affect different species. WNS has caused rapid 
mortality exceeding 90% in populations of several 
species of cave dwelling bats, including northern 
long-eared (Endangered), Indiana (Endangered), 
tricolored (proposed Endangered), and little brown 
bats (status under review). In contrast, WNS does not 
significantly impact the relatively abundant species 
of bats recorded most frequently as fatalities at wind 
energy facilities: hoary bats, silver-haired bats, eastern 
red bats, and Mexican free-tailed bats (Alves et al. 
2014, AWWI 2020b). Other human-caused sources of 
direct mortality for bats include vehicle and building 
collisions, predation by feral and domestic cats, and 
poisoning from pesticides (Clark and Lamont 1976, 
Reidinger 1976, Pybus et al. 1986, Michalak et al. 2013, 
Hsiao et al. 2016, Wu et al. 2020, COSEWIC 2023); the 
relative impact of these mortality causes compared 
with wind turbine collisions is not well understood.

Land-use change and climate change interact to 
create additional anthropogenic stressors to bats, 
including loss of prey availability, roost sites, and 
drinking water (Adams and Hayes 2008, 2021, 
Jones and Rebelo 2013). However, the ways in which 
climate change impacts North American bats require 
further investigation and are likely species-specific. 
Rising temperatures may disrupt energy balances 
by impacting torpor and hibernation, increasing 
water needs, and causing a mismatch between 
insect emergence and bat foraging times (Jones and 
Rebelo 2013). Additionally, climate change is likely 
to increase the frequency and intensity of wildfires, 
affecting both summer habitats in boreal forests and 
winter habitats in the USA and Mexico (Abatzoglou 
and Williams 2016, Goss et al. 2020). However, 
climate change could also benefit some North 
American bat species overall by allowing for range 
expansion (Gonçalves et al. 2021) and mitigating 
some harmful effects from WNS (McClure et al. 
2022).

INDIANA BAT, PHOTO BY USFWS, MIDWEST REGION, FLICKR
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ADVERSE IMPACTS TO WILDLIFE FROM WIND 
TURBINE COLLISIONS
This section outlines what is known and where there is 
remaining uncertainty about the patterns of bird and 
bat collision fatalities, particularly in the continental 
U.S. We first examine patterns that apply to both birds 
and bats, then describe patterns specific to either birds 
or bats.

What are the main adverse impacts of wind 
energy on wildlife in North America?
For flying birds and bats, the primary impact of wind 
energy is collision mortality. For ground-dwelling 
wildlife, habitat quality, availability, and connectivity 
may be affected. 

The siting and operation of wind energy facilities pose 
a risk to some species of wildlife (Arnett et al. 2008, 
Strickland et al. 2011, Allison et al. 2019). Negative 
effects may include fatalities resulting from collisions 
with turbine blades or towers and declines in the 
availability, quality, and/or connectivity of habitat 
caused by construction and operation of wind energy 
infrastructure (Katzner et al. 2025). For some species, 
concern exists that the cumulative effect of impacts 
from wind energy may contribute to population 
declines, especially as the installed capacity of wind 
energy increases. 

Some bird and bat fatalities have been recorded at 
all wind energy facilities for which records are publicly 

available, although fatality rates vary widely and total 
fatalities are difficult to estimate. For birds, mean 
estimated fatality rates (i.e., the average estimated 
number of fatalities after correcting for variation 
in detectability and sampling intensity) from most 
studies range from 2.5 to 6 birds per MW (installed 
capacity, here and throughout) per year1 for all 
species combined (Strickland et al. 2011, Loss et al. 
2013, Erickson et al. 2014, REWI 2025). Fatality rates 
vary substantially among studies and facilities,  and 
in the data set contained within the American Wind 
Wildlife Information Center (AWWIC), 75% of studies 
reported 3.44 or fewer fatalities per MW per year, with 
a median fatality estimate of 1.94 birds per MW per 
year (REWI 2025).  Smallwood (2013) and Zimmerling 
et al. (2013) extrapolated data from available studies 
from wind energy facilities to provide rough estimates 
of nationwide totals: approximately 467,097 – 679,089 
bird deaths per year in the U.S. and 13,330 – 21,600 
bird deaths per year in Canada, though wind energy 
production has approximately tripled since those 
studies were published (American Clean Power 2025). 
Regardless, these totals were a small fraction of annual 
take when compared to bird fatalities from feral and 
domestic cat depredation (2.6 billion), and collisions 
with building windows (624 million), vehicles (213.4 
million), and power lines (48.4 million; Loss et al. 2015).   

Estimated bat fatality rates tend to be higher and more 
variable than bird fatality rates, generally ranging 
from a mean of 4 to 7 bats per MW per year, but with 
some individual projects along forested ridgelines of 
the central Appalachians reporting rates close to 50 
bats per MW per year (Arnett et al. 2008, Strickland 
et al. 2011, Hein et al. 2013). Of the data included 
in AWWIC, 75% of post-construction mortality 
monitoring studies reported estimates of fewer than 
7.7 bat fatalities per MW per year, with a median of 3.0 
bats per MW per year (AWWI 2020a).

1 �Fatality rates are typically reported on a per turbine basis or per 
nameplate capacity (MW). We report fatality rates per nameplate 
capacity to account for differences in turbine capacity, which 
ranges from 100 kW to 3.0 MW or more. We acknowledge that 
this reporting format has difficulties, especially when it comes to 
assessing the effects of repowering and the potential differences 
in fatalities due to variations in the physical components of the 
turbines (Huso et al. 2021).GOLDEN-CROWNED KINGLET, PHOTO BY ZANATEH, FLICKR
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Some species may avoid areas near wind facilities 
during construction or operation, temporarily or 
permanently reducing the amount of available habitat 
(Allison et al. 2019).  See the section “Habitat-Based 
Impacts to Wildlife” for more details.

Birds and Bats

How do scientists measure bird and bat 
fatalities at wind energy facilities?
Many wind energy facilities hire biologists to survey 
land around a sample of turbines for carcasses of 
birds and bats, using survey data to estimate total 
fatalities at the facility.

At many wind energy facilities, standardized searches 
are conducted for the carcasses of birds and bats 
that collided with turbines. The number of carcasses 
found is adjusted based on the proportion of area 
searched and field trials that estimate the carcasses 
missed due to scavenging and imperfect searching. 
The number of studies reporting results of collision 
fatality monitoring at operating wind energy facilities 
has increased substantially over the years, and studies 
conducted at more than 100 projects are publicly 
available (Arnett and Baerwald 2013, Loss et al. 2013, 
Erickson et al. 2014, Thompson et al. 2017). Fatality 
reports for substantially more projects are stored 
within the American Wind Wildlife Information Center 
(AWWIC), a cooperative initiative of the Renewable 

Energy Wildlife Institute (REWI) and wind energy 
companies, which includes both publicly available 
and private data (AWWI 2020a, REWI 2025). AWWIC 
also includes data from projects in regions that have 
few publicly available fatality studies, which has 
improved understanding about geographic variation 
in collision fatalities of both birds and bats (e.g., 
Lloyd et al. 2023). In addition, protocols for carcass 
searches have become more standardized, and recent 
advances in estimating fatalities from carcass counts 
have facilitated comparisons of results from separate 
studies (Dalthorp et al. 2018). 

Are there any recent innovations related to 
strike detection and activity monitoring?
An emerging field of strike detection and activity 
monitoring technologies seeks to improve fatality 
monitoring, our understanding of collision risk, and 
our ability to minimize the risk of collisions.

Technologies are being developed to record turbine 
strikes or to monitor the activity of individual animals 
in the rotor-swept area through the use of thermal 
cameras, visual cameras, impact sensors, and/
or microphones (Albertani et al. 2021, Happ et al. 
2021, Clocker et al. 2022, Aghababian 2023). Such 
technologies could be useful for improving fatality 
monitoring (especially in the offshore environment 
where carcasses cannot be recovered), or for providing 
information about the exact time, environmental 
conditions, or animal behavior preceding collisions, 
which could inform the development of risk 
minimization measures. Given the high cost of fatality 
monitoring, especially when using dog teams, there 
is also increasing interest to investigate the validity 
of using real-time acoustic bat activity as a proxy 
for collision risk at operating wind turbines in some 
circumstances, but so far results are inconclusive 
(Peterson et al. 2021, 2025).

Are bird and bat fatality rates at wind 
facilities consistent across regions? 
Bat fatality rates appear to vary substantially among 
regions in the U.S. while bird fatality rates do not.

Estimated fatality rates of bats are highest at wind 
energy facilities in the upper Midwest and eastern 
forests and tend be much lower throughout the Great 
Plains and western U.S. (Arnett and Baerwald 2013, 
Hein et al. 2013). Median fatality estimates among 
studies contained in AWWIC ranged from 0.7 bats 

SILVER-HAIRED BAT, PHOTO BY LASSENNPS
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per MW per year in the Pacific Northwest to 8.4 bats 
per MW per year in the Midwest (AWWI 2020a). 
Regional variation in methodology for conducting 
fatality studies may be a confounding factor, and 
thus apparent differences in bat fatality rates among 
regions or habitats should be interpreted with caution 
(Garvin et al. 2024). Both migratory and resident 
bats are killed at wind energy facilities, though the 
proportion of migratory individuals varies by species, 
site, and season (Wieringa et al. 2024). 

In contrast with bats, there is relatively little geographic 
variation in the rate of bird fatalities per MW per year 
(Erickson et al. 2014, REWI 2025). Median fatality 
estimates among studies contained in AWWIC ranged 
from 1.67 birds per MW per year in the Northern 
Rockies to 2.78 birds per MW per year in the Southwest 
(REWI 2025). 

Does turbine size (height, blade length, 
etc.) affect collision risk for birds and bats?
The effect of turbine size on bird and bat collision 
fatalities remains uncertain and the most influential 
turbine specifications likely differ for different spe-
cies groups.

The tower height and blade length of turbines have 
been increasing in new turbine models with higher 
generation capacity. These changes allow the same 
amount of power to be generated with fewer turbines, 
but may affect risk.  For instance, taller turbines may 
elevate collision fatalities due to greater overlap with 
flight heights of nocturnal-migrating songbirds and 
bats (Johnson et al. 2002, Mabee and Cooper 2004, 
Mabee et al. 2006, Barclay et al. 2007). A larger rotor-
swept area (due to longer blades) also presumably 
expands the collision risk zone per turbine. Some 
studies show that fatalities of migratory birds and bats 
are more frequent at taller turbine towers (Barclay 
et al. 2007, Baerwald and Barclay 2009, Loss et al. 
2013). In contrast, raptor fatalities were reported to 
have declined in two studies at Altamont Pass Wind 
Resource Area (California) after smaller turbines were 
replaced by fewer, taller turbines (Smallwood and 
Karas 2009, Ventus Environmental Solutions 2016). 
The effect of turbine height is potentially confounded 
by changes in the type of turbine: typically, lattice-
tower turbines (which provided perching sites on 
the towers) have been replaced by taller monopole 
turbines. Other studies report mixed, species-specific 
effects (Anderson et al. 2022, Garvin et al. 2024) or 

found no effect of turbine size on fatalities (Barré et 
al. 2023a). Huso et al. (2021) suggested that fatality 
rates generally increase relative to the total amount of 
power generated across a wind facility, rather than to 
the size or generation capacity of the individual wind 
turbines used at a project. 

Birds

How do types of birds differ in their risk 
from wind turbine collisions?
Most bird fatalities at wind energy facilities are 
songbirds, though fatalities of diurnal (active during 
the day) raptors are observed at elevated rates 
compared to the relatively low abundance of these 
species.

At least 314 of the 719 bird species that regularly 
occur in the U.S. have been recorded as collision 
fatalities (Partners in Flight 2024, REWI 2025). 
Small passerines (songbirds; all species in the order 
Passeriformes except for the larger corvids: magpies, 
crows, and ravens) account for approximately 57 - 59% 
of fatalities reported in both publicly available and 
private studies conducted at U.S. wind energy facilities 
(Erickson et al. 2014, REWI 2025). The representation 
of small passerines in post-construction fatality studies 
is less than expected given that this group of birds 
makes up nearly 90% of all land birds (Will et al. 2019). 

BLACK THROATED BLUE WARBLER, PHOTO BY KELLY COLGAN AZAR, FLICKR
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However, searcher efficiency trials2 indicate that small 
birds have significantly lower detection rates than 
large birds (Peters et al. 2014) and are removed more 
quickly by scavengers (Barrientos et al. 2018). Thus, 
unadjusted counts of carcasses likely underestimate 
the proportion of fatalities composed of small 
passerines. Passerine fatalities occur year round, with 
modest peaks during spring and fall at most wind 
energy facilities, presumably reflecting the passage 
of migrants during these times (Strickland et al. 2011, 
Erickson et al. 2014, Conkling et al. 2023, REWI 2025). 
Seasonal peaks in fatalities are more often observed 
in woodland bird species, and less often in grassland 
species, which are more likely to be year-round 
residents (Lloyd et al. 2023).

Diurnal raptors (excluding vultures) account for 
approximately 6.8% of reported fatalities, which 
is more than expected given their relatively small 
population sizes (AWWI 2020b). This may reflect an 
increased vulnerability to collision among this group of 
birds or may be an artifact of the higher detectability 
of carcasses of large birds (Peters et al. 2014, Nasman 
et al. 2021). Red-tailed hawk and American kestrel are 
the most commonly reported raptor fatalities; they are 
also the two most abundant diurnal raptors in the U.S. 
and raptor carcasses tend to persist longer (increasing 
chances of detection) than those of other species 
(DeVault et al. 2017, AWWI 2020b, Hallingstad et al. 
2023). 

The vulnerability of prairie grouse to collisions with 
turbines appears low; only greater sage-grouse and 
sharp-tailed grouse have been reported as fatalities in 
AWWIC, and the totals for both species were low (four 
and two carcasses, respectively; AWWI 2020b, Lloyd 
et al. 2022). Fatalities of some upland game birds, 
especially the non-native ring-necked pheasant and 
gray partridge, are relatively common, accounting for 
approximately 4% of all bird fatalities (REWI 2025). 
Fatalities of grouse and other low-flying game birds 
are likely to be caused by collisions with the turbine 
tower, rather than the blades (Stokke et al. 2020). 

Fatalities of waterbirds, waterfowl, and other 
species characteristic of freshwater, shorelines, 

2 �Searcher efficiency trials involve placement of bird and bat carcass-
es to estimate the number of carcasses missed by field technicians 
during fatality surveys. This estimate is combined with other sources 
of detection error, such as scavenger removal of carcasses, to adjust 
the number of carcasses found during fatality surveys and provide a 
more accurate estimate of collision fatalities.

open water, and coastal areas (e.g., ducks, gulls and 
terns, shorebirds, loons and grebes) are reported 
infrequently at land-based wind facilities, making up 
6.8% of bird fatalities (Kingsley and Whittam 2007, 
Gue et al. 2013, REWI 2025). There is evidence that 
some large birds (cranes, gulls, geese, raptors, etc.) 
may actively avoid collision by flying midway between 
turbines or adjusting flight altitude to avoid the rotor-
swept area, or may avoid using habitat near turbines 
for stopover habitat during migration (Pearse et al. 
2021, Therkildsen et al. 2021). 

Do collisions between birds and wind 
turbines lead to population declines?
Fatality rates may be sufficient to affect population 
growth rates in some bird species, including several 
raptors, but wind energy has not been shown to 
cause or contribute to bird population declines.

In assessing evidence for this question, it is important 
to note that evidence for a reduced population growth 
rate (which could mean slower positive growth) is 
not the same as evidence for a negative growth rate 
(declining population). For most small passerine 
(songbird) species, current turbine-related fatalities 
constitute a very small percentage of their total 
population size (typically <0.02%), even for those 
species with the most frequently reported fatalities 
(Kingsley and Whittam 2007, Kuvlesky et al. 2007, 
Erickson et al. 2014). Conkling et al. (2022) modeled 
population growth for priority bird species occurring 
at wind energy facilities in California and concluded 
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that four of these species would be vulnerable to 
population decline in a scenario where wind turbines 
caused each species 1,000 additional fatalities per 
year. Most species have a mix of local and non-
local fatalities, with approximately half of individual 
birds killed at wind energy facilities in California 
migrating through the region at the time of collision 
(Vander Zanden et al. 2024). Peaks in non-local bird 
fatalities that coincide with spring and fall migration 
(Vander Zanden et al. 2024) indicate that wind 
energy facilities have impacts beyond the resident 
population. Demographic modeling and long-term 
monitoring indicate a potential for population-level 
impacts at current or projected levels of collision 
fatalities for some raptor species including barn owl, 
ferruginous hawk, golden eagle, American kestrel, 
red-tailed hawk, and prairie falcon (Carrete et al. 2009, 
Bellebaum et al. 2013, Hunt et al. 2017, Diffendorfer 
et al. 2021, Watson et al. 2025). A higher proportion 
of subadult breeding golden eagles observed within 
the Altamont Pass Wind Resource Area compared 
to the surrounding area suggests that wind energy 
may cause demographic shifts due to adult mortality 
or displacement (Wiens and Kolar 2021). Although 
golden eagle populations are stable in the western 
U.S., anthropogenic take from all sources (shooting, 
electrocution, poisoning, collisions with vehicles, 
powerlines, and turbines, etc.) of golden eagles has 
been estimated to exceed the allowable take level 
that can be sustained annually by the population 
and, unless mitigated for, additional fatalities could 
contribute to population decline (Millsap et al. 2022, 
Gedir et al. 2025). 

What behaviors are related to collision 
risk for birds?
The relationship between bird behavior and bird 
collision risk is complex and not well understood.

Flight characteristics including hovering, song flights, 
head position, flight tortuosity, and active flight (as 
opposed to soaring) may be collision risk factors for 
some bird species (Linder et al. 2022, Balmori-de 
la Puente and Balmori 2023). Some species, such 
as common raven and northern harrier, appear 
to fly around wind turbines and actively avoid 
collisions (Kingsley and Whittam 2007, Kuvlesky 
et al. 2007, Smallwood et al. 2009, Pearse et al. 
2021, Therkildsen et al. 2021, Farfán et al. 2023). 
Foraging behavior (e.g. hovering, contouring, kiting, 

diving) within the height of the rotor-swept zone may 
contribute to the relatively high fatality rates of some 
raptor species, such as red-tailed hawk, golden eagle, 
American kestrel, and prairie falcon (Smallwood et 
al. 2009). Golden eagles may be less wary of wind 
turbines in preferred habitat and in high wind speeds 
(Fielding et al. 2021). Wind facilities located on 
ridgetops pose elevated collision risk to raptor species 
that soar using orographic lift (Estellés-Domingo and 
López-López 2024). 

Bats

How do types of bats differ in their risk of 
wind turbine collisions?
Migratory tree-roosting bat species make up the 
majority of collision fatalities in North America, 
though Mexican free-tailed bat fatalities are com-
mon across their range in the southern U.S.

At least 25 species of bats have been recorded as 
collision fatalities in North America, but most (70%) 
of fatalities reported to date are from three migratory 
tree-roosting species (hoary bat, eastern red bat, 
and silver-haired bat; Kunz et al. 2007, Arnett et al. 
2008, Arnett and Baerwald 2013, Hein et al. 2013, 
AWWI 2020a). It remains uncertain why these three 
species appear more vulnerable to collision fatalities 
than other bat species, though a “pell-mell” migration 
strategy, in which hoary bats and eastern red bats 
often initially move northward before migrating south 
during the fall, could elevate fatality risk for these 
species by increasing their migration route length and 
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exposure to wind turbines (Campbell et al. 2025).

Mexican free-tailed bat, one of the most abundant 
bat species in the U.S. (Harvey et al. 2011), constitutes 
a substantial proportion of the estimated number 
of bats killed at wind energy facilities; percentages 
vary from 41 to 86% of bat fatalities reported across 
regions that encompass the species’ range over most 
of the southern half of the U.S. (Arnett et al. 2008, 
Miller 2008, Piorkowski and O’Connell 2010). As with 
the migratory tree-roosting bats, it is unclear what 
factors aside from abundance might explain why the 
Mexican free-tailed bat accounts for a relatively high 
percentage of fatalities. 

White-nose syndrome (WNS) is considered the leading 
cause of population declines among cave dwelling 
species of bats (Cheng et al. 2021), several of which 
are protected in the U.S. by the Endangered Species 
Act. Although these species make up a small fraction 
of carcasses found at wind turbines, their populations 
are so depressed by WNS that additional take by 
wind turbines may limit the viability of these species 
(Erickson et al. 2016, Cheng et al. 2021).  

Do collisions between bats and wind 
turbines lead to population declines?
For populations of migratory tree-roosting bats, 
both baseline status and the impacts of wind energy 
are poorly understood but current science suggests 
that fatalities at wind facilities may contribute to 
declines. In cave-dwelling bat species, wind fatalities 
may amplify population declines due to white-nose 
syndrome (WNS). 

Bats are long-lived, and many species have relatively 
low reproductive rates, making populations susceptible 
to localized extinction (Barclay and Harder 2003, Jones 
et al. 2003). Bat populations of several North American 
cave-dwelling species have experienced significant 
declines — up to 90% in some cases — following the 
emergence of white-nose syndrome (WNS), a fungus-
caused disease that is estimated to have killed millions 
of bats in North America since it was first discovered 
in a cave in New York in 2007 (Frick et al. 2010, Turner 
et al. 2011, Hayes 2012, Cheng et al. 2021, Udell et al. 
2022). Added mortality from wind turbine collisions 
may exacerbate declines among WNS-vulnerable bat 
species (Erickson et al. 2016). 

Population sizes for migratory tree-roosting bat 
species, which are the most frequently observed 

species in wind turbine fatality surveys, are unknown 
and challenging to estimate; as such we don’t know 
whether current or future collision fatality levels 
represent a significant threat to these species (Kunz et 
al. 2007, Arnett et al. 2008, Arnett and Baerwald 2013, 
Reichert et al. 2021). Demographic modeling indicates 
a potential for population-level impacts at current or 
projected levels of collision fatalities for hoary bats 
(Frick et al. 2017, Friedenberg and Frick 2021), which 
has sparked widespread concern and research on 
the impacts of wind energy on bats, and the status 
and trends of migratory tree bats. Recent evidence is 
mixed regarding population trends in migratory tree-
roosting bat populations. While Green et al. (2021) 
found no evidence of decline at a local site and others 
(i.e. Cornman et al. 2021, Udell et al. 2022) reported 
inconclusive results, multiple studies have reported 
likely declines (Rodhouse et al. 2019, Davy et al. 2021, 
COSEWIC 2023, Adams et al. 2024). Studies have 
estimated effective population sizes or trends of tree 
bats from genetic and acoustic data, respectively, 
and these estimates might be useful as baselines for 
evaluating future impacts of collision mortality and 
other threats to bats (Korstian et al. 2013, Vonhof and 
Russell 2015, Sovic et al. 2016, Cornman et al. 2021, 
Reichert et al. 2021, Hale et al. 2022, Udell et al. 2022). 

Are there seasonal patterns of bat 
fatalities in the U.S.?
Bat fatalities at wind facilities in the northern U.S. 
peak during the late summer and early fall. 

There is a broad consensus in studies from the northern 
U.S. that have shown a peak in the incidence of bat 
fatalities in late summer and early fall, coinciding with 
both migration and the mating seasons of migratory 
tree-roosting bats (Kunz et al. 2007, Arnett et al. 
2008, Baerwald and Barclay 2011, Jain et al. 2011, 
Arnett and Baerwald 2013). Hoary bat, eastern red 
bat, and big brown bat fatalities peak in August, while 
silver-haired bat and Mexican free-tailed bat fatalities 
peak in September and October (Lloyd et al. 2023). A 
smaller peak in fatalities during spring migration has 
been observed for some bat species at some facilities, 
most consistently for silver-haired bats (Arnett et 
al. 2008, Lloyd et al. 2023). In the larger sample of 
projects contained in AWWIC, the incidence of total 
bat fatalities peaks in August in northern areas and 
September in areas farther south (AWWI 2020a). 
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Are bats attracted to wind turbines?
Some bat species may be attracted to wind turbines, 
but mechanisms for attraction remain uncertain. 

It has been hypothesized that the relatively high 
number of bat fatalities that have been observed for 
some species and some locations may be explained 
by attraction to wind turbines or wind energy facilities 
(Horn et al. 2008, Cryan and Barclay 2009, Solick et al. 
2020, Richardson et al. 2021). There could be multiple 
factors attracting bats to wind turbines depending on 
the species (Goldenberg et al. 2021, Guest et al. 2022). 
Several potential attractants have been proposed, 
including the sounds produced by turbines, opportunities 
for foraging and water, potential roost sites, and 
opportunities for mating or other social behavior (Kunz 
et al. 2007, Cryan and Barclay 2009, Cryan et al. 2012, 
2014, Bennett et al. 2017, Foo et al. 2017). Ultrasonic 
noise generated by turbines is unlikely to attract bats 
to turbines because ultrasound attenuates too quickly 
to be detected over large distances (Guest et al. 2022, 
Jonasson et al. 2024). Vision is likely the most important 
sense used by bats to perceive wind turbines from afar, 
and attraction to wind turbines may be stronger when 
bats are farther from forested habitat (Leroux et al. 2022, 
Jonasson et al. 2024). Further, bats have been observed 
engaging in investigatory behavior at turbine towers, 
and guano has been found on turbines, supporting 
the hypothesis that bats may roost on wind turbines 
(Bennett et al. 2017, Guest et al. 2022). Insect swarming 
has been documented at turbine nacelles (the shell for 
the gearbox and generator at the top of the tower), 
and there is some evidence for a positive correlation 
between insect abundance and bat activity at wind 
turbines at nacelle height (de Jong et al. 2021, Voigt 
2021). There is also evidence of bats foraging at wind 
turbines and consuming a variety of insects including 
crop pests, though the extent to which foraging activity 
is a collision risk factor is unknown (Foo et al. 2017, Guest 
et al. 2022, Hale et al. 2025). A hypothesis that bats may 
mistake the echolocation signal of a turbine tower as 
a water resource remains unproven (Bennett and Hale 
2018). Bats have been observed engaging in behaviors 
associated with scent-marking at meteorological towers 
(Tyler 2023). If scent marking does occur at wind turbines, 
it is unlikely to attract bats to a turbine from a distance 
greater than a few meters (Guest et al. 2022, Tyler 2023, 
Clerc et al. 2025b). Mating season coincides with the fall 
migration and peak bat fatality season for many species 
of bats, and while there are potential lines of evidence 

related to the hypothesis that bats are attracted to wind 
turbines for mating opportunities (Cryan 2008, Cryan et 
al. 2012), there is not yet substantial research on this topic 
(Guest et al. 2022). 

Are bats killed by barotrauma caused by 
wind turbine blades?
The likely cause of death for most bats at wind 
facilities is blunt force trauma from collisions with 
turbine blades. Barotrauma does not appear to be 
an important source of bat mortality at wind energy 
facilities. 

Forensic examination of bat carcasses found at wind 
energy facilities suggests that the importance of 
barotrauma, i.e., injury resulting from rapidly altered 
air pressure caused by fast-moving wind turbine blades 
(Baerwald et al. 2008, Brownlee and Whidden 2011), is 
substantially less than originally suggested (Grodsky et 
al. 2011, Rollins et al. 2012). Theoretical assessments 
also cast doubt on the importance of barotrauma: fluid 
dynamics models indicate that there is a low likelihood 
of bats encountering sufficiently large pressure 
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changes around blades to produce barotrauma, 
particularly without also experiencing blunt force 
trauma from collision (Lawson et al. 2020). 

How is collision risk for bats influenced 
by weather conditions and landscape 
features?
Collision risk for bats increases in low wind speeds, 
high temperatures, and near forested habitats and 
open water.

Within a season, bat activity and collision risk are 
influenced by nightly wind speed and temperature, with 
increasing evidence that bat fatalities occur primarily 
on nights with low wind speed (Weller and Baldwin 
2012, Barré et al. 2023a, Whitby et al. 2024). Other 
variables such as wind direction, changing barometric 
pressure, precipitation, date, or time relative to 
sunset and sunrise may also be important risk factors 
(Baerwald and Barclay 2011, Farnsworth et al. 2021, 
Gorman et al. 2021, Gottlieb et al. 2024). Migratory 
tree-roosting bats migrating along a ridgeline in the 
Appalachian Mountains were more active at low wind 
speeds, high temperatures, and following significant 
drops in temperature (Muthersbaugh et al. 2019). 
Activity also varied across the course of a night, albeit 
in a species-specific fashion (Muthersbaugh et al. 
2019). Additional research on weather as a predictor 
of bat activity and fatalities could support mitigation 
efforts to reduce bat fatalities (Arnett et al. 2008, 
Baerwald and Barclay 2011, Weller and Baldwin 2012, 
Arnett and Baerwald 2013, Good et al. 2020). The 
amount of grassland surrounding wind energy facilities 
is inversely related to bat fatalities (Thompson et al. 

2017). Conversely, landscape characteristics such as 
the proportion of nearby forested habitat or surface 
water, distance to a lake, and patch diversity may also 
increase bat activity and collision risk at wind facilities, 
though the importance of specific landscape variables 
and the spatial scale at which they influence bat 
activity varies between species (Farnsworth et al. 2021, 
Barré et al. 2023b).

Are male and female bats equally at risk of 
collision with wind turbines?
Collision risk for male vs. female bats is unclear, but 
may vary by species, location, or over time.

The ratio of male-to-female fatalities can vary by 
species, region, site, and over time (Arnett et al. 
2008, Baerwald and Barclay 2011, LiCari et al. 2023, 
Weaver et al. 2025). Determining age and sex from 
a bat’s external characteristics can be challenging, 
especially when carcasses have decomposed or have 
been partially scavenged (Korstian et al. 2013, Nelson 
et al. 2018). Studies using molecular methods to 
determine sex of bat carcasses show no evidence of 
a consistent sex bias in bat fatalities across species, 
locations, and times (Korstian et al. 2013, Nelson et 
al. 2018, LiCari et al. 2023). Male bias in fatalities may 
exist in some species such as evening bats (Korstian 
et al. 2013), while female bias in fatalities may exist 
in others such as silver-haired and southern yellow 
bats (Weaver et al. 2025). One genetic study of 
Brazilian free-tailed bats found that a 50:50 sex ratio 
of carcasses at wind energy facilities in California 
remained stable over several years, but that sex ratios 
varied between sites and over time at wind energy 
facilities in Texas (LiCari et al. 2023).
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HABITAT-BASED AND BEHAVIORAL IMPACTS TO 
WILDLIFE
Species’ use of habitat can be affected by the 
construction and operation of  wind energy facilities. 
Impacts can include disturbance, displacement from 
suitable habitat, or demographic effects due to 
fragmentation of habitat or changes in populations 
of predators, competitors, or prey. The section below 
outlines what is known and where there is remaining 
uncertainty about habitat-based impacts on birds 
and other terrestrial species. 

Do wind energy facilities impact nearby 
bird abundance?
Construction and operation of wind energy facilities 
can reduce abundance of some bird species nearby.

Displacement from otherwise suitable habitat in 
response to wind energy development has been 
observed in some species groups including prairie 
grouse, songbirds, ducks, and raptors (Loesch et al. 
2013, Stevens et al. 2013, Virginia L. Winder et al. 2014, 
V. L. Winder et al. 2014, Winder et al. 2015, Shaffer 
and Buhl 2016, LeBeau et al. 2017, Lebeau et al. 2017, 
Fernández-Bellon et al. 2019, Marques et al. 2019, 
Coppes et al. 2020, Kirol et al. 2020, Fielding et al. 2021, 
Maynard et al. 2025) though the majority (59.4%) of 
71 studies in a meta-analysis found no evidence of 
displacement from wind energy on birds (Marques et al. 
2021). Marques (2021) also found that approximately 

half of studies on grouse and other upland ground 
birds showed displacement from wind facilities, while 
the other half found no effect, or even attraction. 
Displacement may be temporary or permanent, with 
some species appearing to habituate to the disturbance 
associated with wind facilities (Pearce‐Higgins et 
al. 2012, Shaffer and Buhl 2016, Dohm et al. 2019, 
Lemaître and Lamarre 2020, Watson et al. 2025). 
The reported extent and magnitude of displacement 
varies substantially among species and sites and the 
causes of this variation remain poorly understood. The 
population-level consequences of displacement due to 
wind energy development are unknown. 

Do wind facilities impact the survival and 
reproduction of nearby birds?
Several studies report negative effects on survival or 
reproduction of some birds at wind energy facilities, 
though many other studies found no effect of wind 
energy on bird survival and reproduction.

Some demographic studies have reported negative 
effects of wind energy development on the survival 
or reproduction of some species of prairie grouse, 
raptors, and grassland passerines (Winder et al. 2015, 
Kolar and Bechard 2016, Mahoney and Chalfoun 
2016, Proett et al. 2022, LeBeau et al. 2025). However, 
the majority of studies did not detect lower levels 
of survival or reproduction among prairie grouse, 
passerines, or ducks that lived in the vicinity of wind 
facilities (Gue et al. 2013, Hatchett et al. 2013, Bennett 
2014, Gillespie and Dinsmore 2014, McNew et al. 
2014, Harrison et al. 2017, LeBeau et al. 2017, Smith 
et al. 2017, 2024, Proett et al. 2019, Lloyd et al. 2022, 
Shaffer et al. 2023, Kelly et al. 2025).

Does wind energy impact habitat quality or 
movement for terrestrial vertebrates?
It is unknown whether wind energy facilities 
decrease habitat quality or act as barriers to land-
scape-level movements by big game and other 
terrestrial vertebrates.

A small number of studies have evaluated the 
hypothesis that land-based wind energy facilities 
negatively affect non-flying wildlife. Proximity to a 
wind facility did not affect winter survival of pronghorn DESERT TORTOISE, RENEE GRAYSON, FLICKR
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in Wyoming or show any consistent negative effects 
across multiple years (Taylor et al. 2016, Milligan et 
al. 2021), but it did change patterns of space use 
by females (Smith et al. 2020, Milligan et al. 2023). 
Female pronghorn were not displaced by construction 
of the wind energy facility but, following construction, 
there is some evidence they avoid going close to, 
or adjust their speed near wind turbines (Smith et 
al. 2020, Milligan et al. 2021, 2023). Development 
and operation of a wind facility in Oklahoma had no 
measurable impact on home range or diet of radio-
collared Rocky Mountain elk (Walter et al. 2006). 
Long-term studies of desert tortoise at a California 
wind facility found survival of adult female tortoises 
was higher within the area of the facility than in an 
adjacent undisturbed area (Agha et al. 2015). The 
number of tortoises using the area encompassed 
by the facility declined over almost 20 years of 
monitoring, but it is unclear whether that trend 
exceeded the general population decline (Lovich et al. 
2011, Ennen et al. 2012, Lovich and Ennen 2017).

STRATEGIES FOR CONSERVING WILDLIFE IMPACTED 
BY WIND ENERGY

Siting
Substantial effort is made to estimate collision risk of 
birds and bats prior to the siting, construction, and 
operation of wind energy facilities under the premise 
that high-activity sites will pose an unacceptable 
risk to these species and should be avoided. Many 
wind energy companies choose to apply a tiered 
decision-making process as outlined in the Land-
Based Wind Energy Guidelines published by the 
USFWS (2012). This approach, developed with 
input from multiple stakeholders, outlines a series 
of steps companies can take to identify potential 
threats to species thought to be at risk from wind 
energy development. Siting tools can incorporate 
wind and biological models, and other spatial data 
to identify suitable areas to site wind facilities to 
minimize impacts to wildlife (Hise et al. 2022, Boggie 
et al. 2023). Evidence suggests that siting turbines 
in agricultural landscapes, away from preferred 
habitat of the species of concern, such as forested 
areas, shorelines, topographic features, or known 

hibernacula may help to minimize impacts to birds 
and bats (Fielding et al. 2021, Cohen et al. 2022, 
Starbuck et al. 2022,  2022).

How can wind turbines be sited to reduce 
collision risk for raptors?
Siting individual turbines away from topographic 
features that attract concentrations of large raptors, 
nest sites, and quality habitat may reduce raptor 
collision fatalities at wind energy facilities. 

Some analyses have indicated a relationship between 
raptor fatalities and raptor abundance (Strickland 
et al. 2011, Carrete et al. 2012, Dahl et al. 2012), 
although studies also suggest that raptor activity 
as measured by standard activity surveys may not 
correlate with the number of raptor fatalities resulting 
from collisions with turbines (de Lucas et al. 2012). 
Habitat quality may also be a useful predictor of 
collision risk in some cases (Heuck et al. 2019). 
Large raptors are known to take advantage of wind 
currents created by ridge tops, upwind sides of 
slopes, and canyons that are favorable for local and 
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migratory movements (Bednarz et al. 1990, Barrios 
and Rodríguez 2004, Hoover and Morrison 2005, 
de Lucas et al. 2012, Katzner et al. 2012, Poessel et 
al. 2018, Marques et al. 2019, Sandhu et al. 2022), 
so avoiding siting wind turbines near these features 
could reduce collision risk. The U.S. Fish and Wildlife 
Service (USFWS) recommends that turbines should 
not be constructed within 2 miles of golden eagle 
nests or within 660 feet of bald eagle nests (50 C.F.R. 
§§ 13, 22). The USFWS’s land-based wind energy 
guidelines (2012) outline a tiered framework for siting 
and designing wind facilities to avoid and minimize 
impacts to raptors and other wildlife. 

Can acoustic detectors be used to predict 
or measure collision risk for bats?
The ability to predict collision risk for bats from 
pre-construction activity recorded by acoustic detec-
tors, remains elusive; however, increasing evidence 
supports the use of acoustic monitoring at operating 
wind energy facilities to estimate collision risk.

The use of bat acoustic detectors is a common 
feature of pre-construction risk assessments for siting 
wind energy facilities (Strickland et al. 2011). To 
date, however, studies have not found a predictive 
relationship between pre-construction activity surveys 
and post-construction collision risk (Hein et al. 2013, 
Solick et al. 2020). Predicting bat collision risk using 
pre-construction activity measures would be further 
complicated if bats are attracted to wind turbines (see 
“Are bats attracted to wind turbines?”). Nonetheless, 
there is increasing evidence that bat acoustic data 
collected at operating wind turbines can be used 
to predict collision risk and estimate fatality rates 
(Peterson et al. 2021, 2025, Behr et al. 2023), though 
this method has limitations (Voigt et al. 2021, 2022).

How do landscape variables influence bat 
activity and fatalities near wind energy 
facilities? 
Variation in bat fatality rates may be influenced by 
landscape features affecting activity and migration 
routes, such as nearby forest or water bodies.

Activity of migratory bats may be influenced by 
landscape features such as land cover, topography, 
and presence of water bodies. Variation in bat activity 
due to these features may be related to the observed 
variation in fatality rates among projects (Baerwald 
and Barclay 2009, Santos et al. 2013, Thompson et al. 

2017, Peters et al. 2020, Farnsworth et al. 2021, Barré 
et al. 2023a), although other studies have found no 
relationship between bat fatality rates and landscape 
or habitat features (Horn et al. 2008, Arnett and 
Baerwald 2013, Bennett and Hale 2018). Relating 
fatality rates to landscape features around a wind 
energy facility could be useful in siting wind farms to 
avoid higher-risk areas (Kunz et al. 2007, Kuvlesky et al. 
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2007, National Academy of Sciences 2007, Arnett et 
al. 2008, Santos et al. 2013, Davy et al. 2021) though 
in some areas, there is substantial overlap between 
bat habitat and wind resources, so curtailment or 
other minimization strategies may be more successful 
(Huang et al. 2024). Increasingly, wind energy siting 
recommendations for bats include building in open, 
flat, agricultural landscapes, and away from forests 
and topographic features (Starbuck et al. 2022,  2022).

Collision Minimization Strategies
Wind energy companies also employ a variety of 
technologies and operational techniques to minimize 
fatalities of vulnerable species at operating wind 
energy facilities.

What is currently the most reliable and 
effective way to reduce raptor fatalities at 
wind energy facilities?
Selective shutdown (curtailment) of turbines can be 
an effective strategy for reducing fatalities of some 
raptor species. 

Some of the highest raptor fatality rates have 
been observed in southern Spain where raptors 
congregate to cross the Strait of Gibraltar to Africa 
during migration (Ferrer et al. 2012). Over 13 years of 
implementation ofselective shutdown of turbines with 
the greatest number of fatalities across 20 wind farms 
in Spain resulted in a substantial reduction in fatalities 
of griffon vultures (92.8%) and other soaring birds 
(e.g., raptors, storks; 61.7%; Ferrer et al. 2022). Some 
wind facilities in the U.S. employ people to monitor 
and curtail turbines for eagles, but there is increasing 
interest in using automated systems to reduce collision 
risk for eagles (McClure et al. 2022, Smith et al. 2025).

Camera-based systems coupled with machine vision 
algorithms can detect and classify eagles in real time 
(McClure et al. 2018, Gradolewski et al. 2021, Duerr 
et al. 2023, Gémard et al. 2025, Smith et al. 2025) in 
the vicinity of a wind project and have demonstrated 
the ability to substantially reduce eagle fatalities 
(estimates from different analyses range from 50 to 
85%) via automated curtailment at a wind energy 
facility in Wyoming (McClure et al. 2022, Huso 
and Dalthorp 2023). Other systems seek to reduce 
collisions through the use of audio or visual deterrents 
(Albertani et al. 2021, Boycott et al. 2021, Felton et 
al. 2024). Additional research is needed to reduce 

curtailment orders triggered by non-target species, 
such as vultures (Duerr et al. 2023), and to determine 
whether these systems are effective in different 
locales and for different species. Radar-based 
systems have yet to demonstrate efficacy at detection 
and identification of target species (Washburn et al. 
2022). Painting turbine blades with contrasting colors 
and patterns as a risk minimization strategy is also an 
active area of research (see below “How can painting 
turbine blades with various colors/patterns reduce 
collisions?”).

What is currently the most reliable and 
effective way to reduce bat fatalities at 
wind energy facilities?
Curtailing turbine blade rotation  when bats are at 
highest risk substantially reduces bat fatalities. 

Meta-analyses have clearly demonstrated the 
effectiveness of curtailment (greatly reducing or 
stopping turbine blade rotation) at low wind speeds 
at reducing bat fatalities at wind energy facilities, and 
that the efficacy of curtailment increases with higher 
cut-in wind speeds (i.e. the minimum wind speed/
threshold at a which turbine is programed to begin 
spinning and generating power; Adams et al. 2021, 
Whitby et al. 2024). Compared to normally operating 
turbines (typical cut-in speeds 3-4 m/s), Whitby et al. 
(2024) estimated a 33% reduction in bat fatalities for 
every 1.0 m/s increase in cut-in speed, with an average 
of a 62% reduction in bat fatalities at wind facilities 
operating with a 5.0 m/s cut-in speed. In an effort to 

JUVENILE BALD EAGLE, PHOTO BY ELSIE.HUI, FLICKR
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improve the efficacy of curtailment and limit losses 
in electricity production, there is a developing field 
of “smart” curtailment strategies, which incorporate 
additional inputs such as real-time bat activity (Rabie 
et al. 2022, Vallejo et al. 2023, Newman et al. 2024) 
or environmental variables such as wind direction, 
temperature, precipitation, or time of night and season 
(Martin et al. 2017, Farnsworth et al. 2021, Squires et 
al. 2021, Barré et al. 2023b, Gottlieb et al. 2024) into 
the curtailment prescription. One smart curtailment 
approach that combined real-time wind speed and 
bat activity data reduced estimated bat fatalities at 
a facility by nearly 75% relative to control turbines, 
but also increased electricity generation losses from 
curtailment in comparison to traditional curtailment 
with a cut-in speed of 4.5 m/s (Rabie et al. 2022). 
Losses in electricity generation are highly dependent 
on the curtailment parameters and site-specific 
variables, and can range from 1-10% reduction in 
Annual Energy Production (Maclaurin et al. 2022). 
Further study to better predict periods of high collision 
risk for bats could optimize timing of curtailment and 
minimize power loss. 

Additionally, raising the minimum rotor sweep (ground 
clearance of the rotor sweep) may help reduce risks, 
though not in place of curtailment (Garvin et al. 
2024). Ultrasonic deterrents are not yet considered a 
reliable source of reducing collision risk for bats (see 
below: “Can ultrasonic sound be used to minimize bat 
fatalities at wind facilities?”).

Can ultrasonic sound be used to minimize 
bat fatalities at wind facilities?
Ultrasonic emitters may deter bats away from rotor-
swept areas and reduce bat fatalities for some spe-
cies, but they may increase fatalities for others.

Experimental trials have shown that ultrasonic 
devices can modify flight behavior (speed, tortuosity), 
and reduce bat activity and foraging success, and 
evaluation of similar devices installed on wind turbines 
has shown that they can reduce overall bat fatalities 
(Arnett et al. 2013, Romano et al. 2019, Gilmour et al. 
2020, 2021, Weaver et al. 2020, Good et al. 2022). 
However, there is evidence that fatality rates of eastern 
red bats may increase when ultrasonic acoustic 
deterrents are active (Romano et al. 2019, Clerc et 
al. 2025a). Results are mixed as to whether (Good 
et al. 2022) or not (Clerc et al. 2025a) deployment 
of an ultrasonic acoustic deterrent along with 

curtailment can result in greater fatality reductions 
than curtailment alone. Ultrasound attenuates quickly, 
so getting effective coverage of the rotor-swept zone 
is a major challenge, particularly as larger turbines are 
built (Gilmour et al. 2021, Good et al. 2022). 

How can painting turbine blades with 
various colors/patterns reduce collisions? 
Preliminary studies aiming to increase turbine visi-
bility and reduce collision fatalities through various 
blade painting strategies have shown mixed results. 

Since the 1990’s bird vision has been of leading 
interest to scientists interested in mitigating wind-
wildlife challenges. A small behavioral study 
documented that trained red-tailed hawks and 
American kestrels have lower visual acuity than 
expected, which could impact their ability to perceive 
the blades of operating wind turbines (PNAWPPM-IV 
2001). A laboratory study investigating the retinal 
activity of anesthetized American kestrels further 
supported this theory and found that painting turbine 
blades with various contrasting colors and patterns 
could reduce the “motion smear” that raptors may 
experience when approaching spinning turbines 
blades, allowing flying raptors to better see and thus 
avoid operating wind turbines (Hodos 2003). Building 
on this, a pilot field experiment in Norway testing 
the efficacy of painting a single blade black, found a 
70% reduction in overall bird fatality rates for turbines 
with black-painted blades (when ptarmigans were 
excluded; May et al. 2020). However promising, the 
results were preliminary, as the study size was small 
(with only four painted turbines paired with all white 
control turbines) and showed high variation in fatality 
rates among years. Furthermore, results for eagles 
were inconclusive, as no eagles were found at either 
control or painted turbines after painting. Regardless 
the study in Norway has inspired additional 
investigations into the method across the globe (e.g., 
Blary et al. 2023, Hancock et al. 2025), with mixed 
results. A U.S. study currently underway should have 
results available within a few years. Additionally, 
ultraviolet (UV) paint, hypothesized to be more 
visible to birds, did not reduce collisions in one study 
(Young et al. 2003) and controlled behavioral trials 
have indicated that some raptor species show little 
response to UV light (Hunt et al. 2015).

Blade painting strategies have also been proposed 
to reduce collision risk for bats. In a field experiment, 
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Jonasson et al. (2025) found that bats appeared to be 
less likely to approach black painted surfaces than white 
surfaces when both were dimly lit by artificial moonlight, 
suggesting that blade painting strategies to reduce the 
reflectivity of turbine blades to moonlight could help 
reduce bat fatalities at wind energy facilities.  

Can lighting be used to minimize collision 
risk for birds or bats?
There is little evidence that lighting on wind turbines 
decreases or increases collision risk to birds or bats. 

The FAA regulates the lighting required on structures 
(including wind turbines) taller than 199 feet to ensure 
air traffic safety. For wind turbines, the FAA currently 
recommends strobe or strobe-like lights that produce 
momentary flashes interspersed with dark periods 
up to three seconds in duration, and they allow wind 
energy facilities to light a proportion of the turbines 
in a facility (e.g., one in five), triggering all lights 
synchronously (FAA 2007). Light pollution is known 
to contribute to fatal bird collisions with buildings 
and other infrastructure, and to alter migratory 
movements (Burt et al. 2023). However, the number 
of bat and songbird fatalities at turbines using FAA-
approved lighting is not greater than that recorded 
at unlit turbines (Kerlinger et al. 2010, Bennett and 
Hale 2014). One study (Bennett and Hale 2014) 
recorded higher eastern red bat fatalities at unlit 

turbines compared to those using red aviation lights; 
no differences were observed for other bat species 
between lit and unlit turbines. Similarly, there is no 
evidence to support the use of UV light as a deterrent 
for eagles, nocturnally migrating birds, or bats (Hunt et 
al. 2015, Cryan et al. 2022). While lights have not been 
shown to increase fatalities at the individual turbine 
scale, a hypothesis that lighting may attract bats to 
wind energy facilities from a distance has not been 
tested (Jonasson et al. 2024). 

Conservation Offsets (also called 
Compensatory Mitigation)

What conservation opportunities exist to 
offset impacts to birds and bats from wind 
energy?
Wind energy companies can fund efforts to reduce 
other sources of eagle and bat mortality through 
“compensatory mitigation” programs administered 
by the U.S. Fish and Wildlife Service (USFWS) as well 
as voluntary initiatives.

 Wind companies are required to offset incidental 
eagle take (fatalities) incurred at their facilities in 
accordance with the Bald and Golden Eagle Protection 
Act (BGEPA; 16 U.S.C. §§ 668–668d, as amended), 
by preventing other sources of eagle fatalities. Under 

MEXICAN FREE-TAILED BATS EXITING BRACKEN BAT CAVE, PHOTO BY USFWS HEADQUARTERS, FLICKR
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the new General Permit option, wind companies 
offset projected incidental eagle take before any 
take actually occurs. Historically, the primary means 
by which wind companies could offset eagle take 
was through retrofitting power poles to prevent 
electrocution (USFWS 2013). With the publication 
of the revised “Eagle Rule” (50 C.F.R. §§ 13, 22), the 
USFWS is working to adopt additional methods of 
compensatory mitigation including lead abatement 
via incentivizing the use of copper bullets over lead for 
hunting (Cochrane et al. 2015, Slabe et al. 2024) and 
vehicle collision prevention via the relocation of roadkill 
away from roadsides (Lonsdorf et al. 2018, 2023, 
Slater et al. 2022). Another compensatory mitigation 
strategy based on treating golden eagle nestlings for 
parasites and disease is in development (Heath et al. 
2024, 2025).

Wind companies are also required to offset incidental 
take of bats and other species listed under the 
Endangered Species Act (16 U.S.C. §§ 1531-1544) 
such as the Indiana bat and northern long-eared bat, 
by preventing other sources of bat fatalities. If a wind 
facility is predicted to incur take of a threatened or 
endangered species, they can submit an Incidental 
Take Permit (ITP) and Habitat Conservation Plan 
(HCP) to the U.S. Fish and Wildlife Service, which 
outline measures to minimize and then compensate 

for unavoidable take. Common measures to offset 
take of endangered bats include erecting gates 
preventing human entry into known bat hibernacula, 
and land acquisition (Newman and Surrey 2025). The 
U.S. Fish and Wildlife Service has also indicated that 
funding research on white nose syndrome (WNS) and 
wind energy collision minimization is an acceptable 
mitigation option (U.S. Department of Interior 2023). 
Additional compensatory mitigation measures have 
been proposed such as improving forested habitat, 
improving or providing roost sites, or creating foraging 
habitat, but these measures have not yet been 
validated (Voigt et al. 2024).

While companies are required to offset impacts 
beyond what can be avoided and minimized, some 
companies also take voluntary actions to offset 
potential risks. One  example of this is the Wind Energy 
Condor Action Team (WECAT) agreement with USFWS, 
which developed a conservation plan that, among 
other actions, funds a full time employee for the 
California condor captive breeding program (USFWS 
2023). No there are no records to date of California 
condors colliding with wind turbines, so this incidental 
take permit provides an example of a proactive 
measure by wind energy companies and USFWS to 
conserve the California condor population.
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