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North Atlantic right whale detection range performance
quantification on a bottom-mounted linear hydrophone array
using a calibrated acoustic source

Vincent E. Premus,a) Philip A. Abbot, Eric Illich, Ted A. Abbot, John Browning, and Vitaly Kmelnitsky
Ocean Acoustical Services and Instrumentation Systems, Inc., a wholly-owned subsidiary of ThayerMahan, Inc., 175 Cabot Street,
Suite 400, Lowell, Massachusetts 01854, USA

ABSTRACT:
Experimental results are presented which quantify hydrophone array detection performance for the case of a North

Atlantic right whale upcall using a calibrated acoustic projector with GPS reconstruction in the southern New England

offshore wind construction area. Measurements of detection range and in situ transmission loss are reconciled to

produce an empirical figure of merit in the subject environment for both a 32-channel bottom-mounted hydrophone

array and single hydrophone. The results reveal a 3.6-fold detection range advantage for the array in this 17logR spread-

ing loss environment. A passive sonar equation treatment is also applied to validate the hypothesis that the detection of

a North Atlantic right whale upcall is fundamentally a narrowband detection problem, contrary to long-held convention.

This finding has important implications for the treatment of noise bandwidth in baleen whale acoustic detection perfor-

mance modeling generally, and for the extrapolation of such detection performance to new noise environments.
VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0039669
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I. INTRODUCTION

The use of coherently beamformed hydrophone arrays

for passive acoustic marine mammal monitoring (PAM) was

first introduced by Clark and Gagnon in 1993 after scientists

were given access to the U. S. Navy’s Sound Surveillance

System to investigate its application to the acoustic tracking

of low-frequency baleen whales.1 Originally deployed on

the seabed to leverage the existence of the deep sound chan-

nel to detect adversary submarines, that technology was

demonstrated to detect and track a singing blue whale at

basin scales.2 More than three decades since that break-

through, high-spatial resolution hydrophone arrays hosted

on autonomous maritime systems are on the threshold of

becoming the benchmark for long-range passive acoustic

monitoring and protection of endangered species, such as

the North Atlantic right whale (NARW).3

The frequency band below 500Hz, where many baleen

whale vocalizations occur, tends to be dominated by anthro-

pogenic noise due to commercial shipping and, more

recently, offshore wind construction activity. Such noise

sources drive an ambient noise spectrum that is strongly

anisotropic and significantly elevated relative to naturally

occurring ambient noise mechanisms, such as wind-wave

interaction and biologics. In the presence of such noise,

arrays offer two distinct advantages over the single hydro-

phone: (1) spatial noise rejection, which increases detection

sensitivity by improving signal-to-noise ratio (SNR); and (2)

spatial resolution, which delivers the capacity to resolve

bearing and track vocalizing individuals.3–5 Once a cost-

prohibitive and power-demanding solution deployable only

from crewed vessels, high-spatial resolution passive acous-

tic arrays are now routinely deployed and operated from

both mobile and fixed autonomous maritime platforms.3,6,7

The proliferation of advanced instrumentation and

methods for passive acoustic monitoring during offshore

wind construction has also prompted a reexamination of the

treatment of performance metrics and modeling in the bio-

acoustics community. Such efforts are important as they can

inform policy and permitting decisions implemented by

government regulatory bodies such as the U.S. Bureau of

Ocean Energy Management, which has administrative over-

sight responsibility for offshore wind leases in U.S. coastal

waters, and the National Oceanic and Atmospheric

Administration, which oversees compliance with the Marine

Mammal Protection Act. The traditional approach to detec-

tion performance modeling is based on the passive sonar

equation, informed by assumptions or measurements of the

important environment variables that drive performance,

e.g., source level, noise level, and transmission loss (TL), as

well as system-specific variables, such as recognition differ-

ential. All these quantities, even recognition differential,

exhibit statistical variability and as such should be treated as

random variables. The sonar equation represents these varia-

bles in the mean. Despite this limitation, the sonar equation

is an intuitive and powerful methodology that is very useful

when employed in a rigorous manner. It is thus vital that

performance metrics and models are based on accuratea)E-mail: vpremus@thayermahan.com
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assumptions and common definitions, and validated with

calibrated, ground-truthed observations of system perfor-

mance whenever possible.

Recent public forums, such as the Whale Detection

Technology Evaluation Workshop series organized by the

Regional Wildlife Science Collaborative in 2024 and

reported on by the Pacific Northwest National Laboratories

in Szesciorka et al.,8 have called attention to the need to for-

malize and standardize assumptions and metrics used to

evaluate passive acoustic monitoring technologies. The

Pacific Northwest National Laboratories report was particu-

larly helpful in summarizing the challenges involved,

although notably absent from the report was acknowledge-

ment of the potential of coherently beamformed acoustic

array technology to address the PAM problem. It is evident

from these deliberations that improved clarity and common-

ality are needed regarding a number of issues, including but

not limited to: (1) the characterization of NARW upcall root

mean square (rms) source level; (2) the treatment of in-band

noise level relevant to the detection decision; (3) the specifi-

cation of system recognition differential; (4) the clear defini-

tion of probability of detection vs range (sometimes called

detection function) and detection range, the range at which

detection probability decays to 50%; and (5) methods for

their measurement using calibrated sources with precise

positional reconstruction. Further, metrics, such as recogni-

tion differential, detection function, and detection range,

should be accompanied by a concurrent statement of false

alarm probability or false alarm rate to be unambiguously

specified. With a commitment to clearly defined metrics and

the use of calibrated, ground-truthed measurements, the per-

formance of PAM systems can be rigorously quantified.

The characterization of NARW upcall source level is

perhaps the performance modeling input with the greatest

need for clarification. Reported source level estimates in the

open literature vary widely, ranging from 152 dB re 1 l
Pa@1m (Ref. 9) to 172 dB re 1l Pa@1m (Ref. 10). The

rms designation is not always explicitly stated, but we will

assume that it is always implied due to the broadband nature

of the signal of interest. The source level estimate due to

Palmer et al.9 suffers from uncertainty associated with local-

ization error due to receiver clock synchronization, which

influences backpropagation of measured received level to

source level, as well as the use of an overly favorable

spreading loss range dependence, 14.5logR, that appears to

underestimate TL in the New England continental shelf

environment, as will be shown in Sec. III. Others, such as

Trygonis et al.,11 who found a source level estimate of

155 dB re 1 l Pa@1m, suffer from low sample size. On the

other hand, Clark et al. reported a mean root mean square

source level of 1726 6.8 dB re 1l Pa@1m in a frequency

band from 71 to 224Hz, based on a sample set of 100

upcalls.12 The following year, using a sample set that was

significantly increased to 353 upcalls, the same group

reported an average rms source level of 1656 3.5 dB re

1 l Pa@1m, but in a different (smaller) frequency band

from 142 to �179Hz.13 The main takeaway is that, across

all methods for source level inversion, attributes such as fre-

quency band, sample size, range estimation, and TL model

vary widely. Modeling convention at the present time leans

in the direction of more conservative source level estimates

for the NARW upcall. Consequently, in this study, an rms

source level of 160 dB re 1 l Pa@1m was employed, partly

due to the constraints on the calibrated acoustic projector

and partly due to restrictions on active acoustic transmis-

sions imposed by government regulatory agencies.

There have been several recent efforts aimed at the

quantification of NARW upcall detection performance using

single hydrophones14,15 or multi-hydrophone systems that

do not employ array gain.16 Estabrook et al.14 are notable

for using a 17 log10R TL model in their study of right whale

distribution using single hydrophones in the southern New

England lease area. This spreading loss coefficient is consis-

tent with that measured herein in the Revolution Wind lease

area in September 2024, as reported in Sec. III. One limita-

tion of that study and system performance assessment was

the omission of recognition differential, or minimum SNR,

from their sonar equation treatment. This leaves open the

possibility that detection range estimates may have been

overestimated by failing to account for the performance cost

of imposing a minimum SNR for reliable detection. Johnson

et al.15 have also reported on detection range estimates from

both a moored buoy and Slocum glider instrumented with

single hydrophones. In that work, range ground truth was

developed using an experimental technique that relies on

backpropagation of acoustic normal modes detected at a ver-

tical line array using modeled normal mode group veloci-

ties. Ground truth range uncertainty in that study was

estimated to be on the order of 1 km. For the work presented

herein, performance metrics emphasize reliance on a cali-

brated U.S. Navy Underwater Sound Reference Laboratory

type J-13 acoustic projector transmitting actual, pre-

recorded upcalls with GPS position reconstruction, rather

than on a natural-occurring source of unknown source level

and unknown position information. The calibrated source

also supports the direct measurement of in situ TL, thereby

minimizing the reliance on modeling of spreading loss coef-

ficient to infer a system figure of merit (FOM). The method-

ology for inferring detection range will follow that of

Premus et al.,17 which relied on the reconciliation of a mea-

sured probability of detection vs range curve and measured

TL to yield an empirically determined FOM for a desired

receiver detection sensitivity.

The structure of the paper runs as follows: Section II

begins with an overview of the system and sensor support-

ing the experiment and a description of the environment and

calibrated source operations; Sec. III outlines the measure-

ments, including (1) in-band noise level, (2) detection func-

tion, and (3) TL and FOM; Sec. IV outlines the passive

sonar equation detection performance model, with emphasis

on the impact of noise bandwidth on predicted performance,

showing the detection contours corresponding to narrow-

band (12Hz) and broadband (360Hz) in-band noise model

assumptions, respectively; finally, in Sec. V, we summarize
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the key findings and present some directions for future

work, highlighting the importance of correctly accounting

for noise bandwidth in the projection of performance to new

noise environments such as pile driving.

II. EXPERIMENT OVERVIEW

A. The sensor: Bottom-mounted horizontal line array

The passive acoustic sensing system used to support

this work was the ThayerMahan SeaPicket system,6 com-

prised of a 32-channel, bottom-mounted hydrophone array

tethered to a surface buoy instrumented with an embedded

digital signal processor (DSP), satellite communications

modem, batteries, and photovoltaic cells. Figure 1(a) shows

the SeaPicket surface expression after deployment. Figure

1(b) depicts the sensor, a 32-channel, low-power, hydro-

phone array built by Raytheon Missiles and Defense

(Portsmouth, RI). Hydrophones are uniformly spaced at one

half-wavelength for a design frequency of 625Hz, or 1.2m

spacing, and 37.2m total aperture length. The hydrophones

are piezoelectric crystals with a sensitivity of �199 dB re

1V/l Pa and pre-amp gain of 10 dB. An analog-to-digital

converter is integrated into each channel, and hydrophone

response is digitized with 24-bit precision at a sample rate

of 2.5 kHz. Hydrophone and pre-amp power draw is approx-

imately 30mW/channel. The array also includes high-

precision, non-acoustic sensor modules uniformly distrib-

uted forward, mid, and aft, that measure array heading,

pitch, and depth. An array receiver, or node card, converts

array telemetry to Ethernet User Datagram Protocol packets

for transmission to the embedded DSP. The total power

draw for the acoustic sensor (array plus receiver electronics)

is less than 2W.

The embedded DSP that forms the foundation for the

SeaPicket system is essentially the same as that of the

ThayerMahan Outpost system,3 a real-time, C-language,

passive sonar processing architecture implemented on a

Linux-based, 64-bit embedded computing platform. The

embedded platform of the SeaPicket is comprised of a

Toradex Viola carrier board, which hosts a Colibri iMX8

system on chip18 featuring a quad-core Cortex A7 processor

with 2GB of DDR3L RAM that is optimized for low power

consumption; the power draw of this embedded processor is

about 2W. Array element data are recorded on a solid-state

hard drive with at least 1 TB of storage capacity, enough to

archive nearly 100 days of continuous array element data at

the 2.5 kHz sample rate.

The real-time passive sonar processing architecture of

the SeaPicket system has been described in Premus et al.,3

and so, will only be briefly overviewed here. The processing

flow consists of data conditioning and sensor health moni-

toring followed by a fast Fourier transform (FFT), which

transforms the element time series to the frequency domain.

Spatial filtering is performed using a frequency domain con-

ventional beamformer that samples beamspace on a uni-

formly spaced cosine grid in relative bearing. Beam

response is normalized to ensure distortionless response to a

plane wave input signal model. Element data are Hanning

shaded for reduced sidelobe response. All hydrophones are

calibrated, and hydrophone sensitivity and preamp gain are

used to support real-time reporting and analysis of ambient

noise levels and received levels of signals of interest in

absolute units of received level (dB re 1l Pa2 in a specified

analysis frequency band). Following the beamformer, a

broadband integration operation is performed to produce a

detection surface that reports the distribution of acoustic

energy as a function of relative bearing and time.

Detection and classification are performed using a vari-

ant of the spectrogram correlator algorithm first introduced

for baleen whale classification by Mellinger and Clark,19

that is programmed for the North Atlantic right whale

upcall. The spectrogram correlator employed herein is a

computationally efficient implementation based on a

“binarized” spectrogram that compares a candidate spectro-

gram feature to members of a “kernel library” to produce a

confidence or similarity score. The binarized nature of the

calculation reflects the fact that both the spectrogram feature

and correlation kernel have been thresholded, or detected,

relative to a local background noise estimate to yield a

binary image; the resulting confidence score is a count of

the number of time-frequency pixels the two binary images

share. The implementation follows the earlier work of

Abbot et al.,20,21 which successfully applied this approach

FIG. 1. (a) Surface expression of the SeaPicket system comprised of a sur-

face buoy instrumented with an embedded DSP, satellite communications

modem, batteries, and photovoltaic cells; and (b) 32-channel, bottom-

mounted hydrophone array as viewed in the laboratory at Raytheon

Integrated Defense Systems, Portsmouth, RI.
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to the detection and classification of humpback whales. The

spectrogram correlator method is particularly well suited to

the detection of right whale upcalls due to their very repeat-

able nature. The correlation kernel library used herein was

developed from training data sampled from the well-known

2013 St. Andrews Detection, Classification, Localization,

and Density Estimation Workshop database,22 a compilation

of curated, ground-truthed exemplars made openly available

to the bioacoustics community for classifier development

and performance quantification and comparison. A set of

seven kernels were selected to span the modest amount of

variability observed in measured upcall characteristics, e.g.,

bandwidth, start frequency, end frequency, and frequency

rate. Confidence thresholds were programmed for a desired

false alarm rate of 1 per hour using signal present and signal

absent data segmented from the training database used to

develop the kernel library. Finally, it should be noted that

the binarized spectrogram correlator runs in real-time, proc-

essing 32 beams concurrently at a frequency resolution of

3.9 Hz and an update rate of 64ms.

The performance of the ThayerMahan NARW upcall

spectrogram correlator has been quantified using 72 h each

of signal present (2767 exemplars) and signal absent test

data from the St. Andrews database: again, test data held

apart from the training data used to select library members

and train confidence thresholds. Figure 2 shows the perfor-

mance of the spectrogram correlator in the form of a

receiver operating characteristic curve that plots false alarm

rate vs probability of correct classification (Pcc) compared

with reported results for the best-performing machine learn-

ing model described in Shiu et al.,23 recognized by many in

the bioacoustics community as state-of-the-art for upcall

classification at the present time.

It is clear from Fig. 2 that the spectrogram correlator

performance compares favorably with that of the machine

learning model, yielding an instantaneous Pcc of 0.64 at a

programmed false alarm rate of 1/h. It is worthwhile noting

that if a whale is assumed to call multiple times in an inter-

val of several (e.g., 3–15) minutes, the probability of a

detection event is much higher than the instantaneous Pcc

would suggest. For example, if the instantaneous probability

of missing a single upcall is 1 – Pcc, or 0.36, and each occur-

rence may be viewed as an independent event, the probabil-

ity of missing three upcalls in succession is reduced to

0.046 (e.g., 0.363). The probability of detection of a

vocalizing individual is then 1 minus the probability of a

miss, 1 – 0.046, or 0.954. This observation has been noted

by others,15 and should be considered when evaluating the

efficacy of an algorithm where it is reasonable to assume

that multiple calls can be expected to occur within a given

interval.

B. Environment description and source operations

The acoustic measurements that are the subject of this

analysis were conducted at a shallow water site off the

southern coast of Massachusetts on September 4, 2024. The

support vessel was the R/V Blackhawk, a 54-foot twin

engine coastal vessel operated by ThayerMahan. Figure 3(a)

shows a bathymetric map delineating the boundary (black)

of the Revolution Wind lease area, approximately 30 km

southwest of Martha’s Vineyard.24 Bathymetry in the op

area is shallow and gently sloping from north to south, with

water depths ranging from 30m at the northern boundary to

roughly 50m at the south. The SeaPicket system, known

internally as Goshen, was one of four bottom-mounted

arrays deployed in the May-June timeframe in support of a

passive acoustic monitoring program during wind farm con-

struction. The network of four arrays performed very well

during the 3-month construction period. A preliminary

report of real-time results showed thousands of baleen whale

detections and localizations during the 3-month deployment

period.25 In one notable example, a humpback whale was

detected during active pile driving on two arrays concur-

rently, at ranges of 2.7 and 21 km, respectively, yielding a

localization solution more than 14 km outside of the pile

driving exclusion zone with sufficient precision to avoid an

unnecessary shutdown of construction activity.25,26

The location of Goshen at the western boundary of the

lease area at 41N 7.5020, 71W 15.1560, is denoted with a

red solid circle in Fig. 3(b). The array was deployed with a

NE/SW orientation of 75�/255�. Source operations were

conducted on a northwest radial relative to the array phase

center to preserve an approximate broadside aspect to the

array, while remaining outside the designated lease area

boundary. The support vessel conducted active source trans-

missions at range standoffs of 1, 2, 4, 6, 7, and 8NM (or,

equivalently, 1.9, 3.7, 7.4, 11.1, 13.0, and 14.8 km) using a

U.S. Navy Underwater Sound Reference Laboratory cali-

brated projector, type J-13.27

The J-13, shown in Fig. 4(a), is an electro-acoustic pis-

ton source. It weighs about 150 lbs in-air and thus requires

the use of a hydraulic winch, and a davit or A-frame, for

FIG. 2. Performance of the NARW upcall spectrogram correlator in the

form of a receiver operating characteristic curve compared with that of the

machine learning model of Shiu et al. (Ref. 23).
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deployment. A bottle of compressed air is required for pres-

sure compensation of the diaphragm at deep deployment

depths. The J-13 was selected as the primary acoustic projector

as it has omni-directional spatial response and excellent fre-

quency response at low frequency. The transmit voltage

response curve of the J-13, depicted in Fig. 4(b), shows flat

response down to 50Hz, which is well suited to the support

band of the NARW upcall, generally understood to be approxi-

mately 40–400Hz.28 At each range offset, the J-13 transmitted

a wave file comprised of a single representative upcall

excerpted from the 2013St. Andrews Detection, Classification,

Localization, and Density Estimation database looped at a con-

stant rep rate of 12 per minute. At each location, it was

deployed mid-water column at a depth of 16m for a period of

approximately 30min, resulting in roughly 300–400 detection

opportunities per range offset. Acoustic transmissions were

continuously monitored with a calibrated reference hydro-

phone positioned 1m away from the sound source center of

pressure, and a MATLAB script was employed to record the

hydrophone telemetry and compute time domain rms source

level in real time. This is essential to verify source level in sup-

port of in situ TL measurement and quantification of detection

performance, as well as to ensure compliance with government

regulations concerning active acoustics. The upcall was trans-

mitted at a source level of 160dBrms re 1l Pa@1m.

Figure 5(a) depicts an excerpt of a subband peak energy

detection surface, or bearing-time record (BTR), showing

broadband acoustic energy measured at the array as a func-

tion of relative bearing and time for the 30-s interval starting

at 133 910 GMT on September 4, 2024. Acoustic energy

associated with the upcalls transmitted by the J-13 are evi-

dent from the sequence of dark spots observed at the

expected 5-s repetition rate at a cosine relative bearing of

approximately 0.6, which is consistent with the array orien-

tation and GPS ground truth reconstruction of the support

vessel. The green squares overlaid on the detection surface

denote real-time detection decisions of the autonomous

NARW upcall auto-detector running on the embedded pro-

cessor and reported via Immarsat Broadband Global Area

Network satellite during the deployment. The convention

for time registration is such that the timestamp reported by

the auto-detector is aligned with the onset of energy from

FIG. 3. (a) Revolution Wind lease area in southern New England, the site

of the bottom-mounted array experiment, overlaid on bathymetric map. (b)

Location of source operation range offsets. The 32-channel hydrophone

array located at 41N 7.0 71W 15.5 is denoted by the red solid circle.

Coordinates of the support vessel deploying the J-13 source at range offsets

of 1.9, 3.7, 7.4, 11.1, 13.0, and 14.8 km are indicated by the green, blue,

magenta, cyan, red, and yellow open circles, respectively.

FIG. 4. (a) J-13 acoustic projector with pressure compensation. (b) J-13

transmit voltage response curve (Ref. 27). The nearly flat frequency

response from 40Hz to 2 kHz attests to the suitability of the J-13 for the

transmission of North Atlantic right whale upcalls.
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the detected upcall. Notice that there is a small amount of

bearing fluctuation, or bearing error, observed in the over-

lay of the real-time auto-detector output on the energy

detection surface. This may be attributed to multiple fac-

tors, including miscalibration of array orientation, coherent

multipath interaction with the beamformer beam response,

and the impact of ambient noise on “best beam” selection

by the auto-detector. For the array employed herein, the

3 dB down beam width at the cut frequency of 625Hz is

3.5�.3 Theoretically, beam resolution decreases by a factor

of 2� for every octave down in frequency, so the 3 dB

beam width at the mid-point of the NARW upcall support

band, 150 Hz, is about 14�. However, when the array orien-

tation has been properly calibrated, the mean beam point-

ing error typically measures less than 4� with a standard

deviation of 2�–3�.
Radiated noise from R/V Black Hawk, with its engines

idling at low RPM to avoid contamination of the source

transmissions, is faintly detectable above the ambient back-

ground in the intervals between the transmitted upcalls. At

least five dark gray/black traces are visible in the BTR cor-

responding to nearby surface vessels transiting the op area

during this time interval. This illustrates the capacity of the

array to spatially resolve transmissions from the J-13 on the

support vessel from other nearby vessels in the area. This

interferer density was characteristic of the noise environ-

ment encountered throughout the experiment. Last, Fig. 5(b)

shows the spectrogram of the beam response at cosine

relative bearing of 0.6 illustrating the evidence for the cor-

rect classifier decisions, or NARW upcalls detected at the

expected 5-s repetition rate.

Meteorological conditions during the data collection

were calm, with winds 0–5 knots and an estimated sea state

of SS0: visual observations of the sea surface reported glass

calm conditions. A conductivity-temperature vs depth cast

performed during the deployment is shown in Fig. 6. The

resulting sound speed stratification was typical of late sum-

mer New England: shallow 10m isovelocity mixed-layer

overlaying a strongly downward refracting thermocline

from 10 to 30m with a sound speed gradient of about

2.0 s�1. With the J-13 fixed at 16m, both the source and

array were deployed within or below the thermocline.

Source depth dependence was not studied during this

test due to limitations on ship time and resources. While

source depth can play a role in TL in certain environments,

it is unlikely to be a significant factor in the frequency band

of interest to NARW upcall detection for the sound speed

stratification shown in Fig. 6. If the mixed layer in Fig. 6

was sufficiently upward refracting to support a true surface

duct, the duct thickness of approximately 10m would not be

enough to cause trapping of the low frequencies associated

with NARW upcall. Following Urick,29 the relationship

between cutoff frequency and surface duct thickness is

given by the following:

H ¼ 36k1=2; (1)

FIG. 5. (a) Subband peak energy detection surface, or BTR, depicting broadband acoustic energy measured at the array as a function of relative bearing and

time for the 30-s interval starting at 133 910 GMT on September 4, 2024. The dark spots appearing at 5-s intervals at a cosine relative bearing of approxi-

mately 0.6 correspond to the energy detection of transmissions from the J-13. The green squares overlaid on the detection surface reflect the positive identifi-

cation of these transmissions as NARW upcalls as reported by the real-time auto-detector running on the embedded DSP. During this period, the range to

the J-13 is approximately 2 km, so detection coverage is 100% (as expected). The support vessel, R/V Black Hawk, has its engines idling at low RPM to

minimize radiated noise contamination of the J-13 transmissions: steady state energy from the support vessel is faintly visible in the intervals between the

upcall detections. At least five dark gray/black traces are also visible in the BTR corresponding to nearby surface vessels transiting the op area. These appear

as vertical lines on the detection surface with little or no bearing rate due to the short observation interval. (b) Spectrogram of the beam response at cosine

relative bearing of 0.6 illustrating the evidence for the correct classifier decisions, or NARW upcalls detected at the expected 5-s repetition rate.
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where H is the surface duct thickness in feet and k is the

maximum wavelength trapped by the duct in feet. For the

duct thickness of approximately 40 feet shown in Fig. 6, this

corresponds to a cutoff frequency of about 4.2 kHz. Thus,

frequencies below the cutoff will not be trapped by such a

duct overlaying downward refracting conditions. Other

experimental studies of TL measured in continental shelf

environments have also observed the limited depth depen-

dence in mean TL (<2 dB) during similar sound speed strat-

ification conditions.30

III. PERFORMANCE MEASUREMENT

A. Noise bandwidth and in-band noise level

Measurements of ocean acoustic ambient noise are typi-

cally reported as broadband levels, most often in octave or

third octave bands.31–33 For example, Van Parijs et al.33

recently published a thorough and comprehensive summary

of 2 years of noise measurements to baseline the acoustic

environment of the southern New England offshore wind

lease area. Median seasonal third octave band sound pressure

levels were reported at a number of sites, including two

denoted COX01 and COX02 that were very close to the loca-

tion of the September 2024 source op, that showed third

octave band levels in the middle of the NARW upcall support

band (e.g., 150Hz) of 90–95 dB re 1 l Pa. Broadband noise

descriptions are important to the quantification of exposure

levels and studies of the behavioral impact of noise from

shipping and construction activity on marine mammals.

Alternatively, in the classic 1962 benchmark paper, Wenz34

summarized decades of acoustic ambient noise observations

into regimens of seismic, shipping, sea state, bubbles, and

molecular agitation corrected to spectrum level, or noise

spectrum density, in units of dB re 1 l Pa//Hz, a narrowband

description that enables the aggregation of the many different

ocean noise mechanisms into a common unified framework.

As an example, Wenz34 associates moderate-to-heavy ship-

ping noise at a frequency of 150Hz with a spectrum level of

80 dB re 1 l Pa//Hz, which is consistent with the third octave

band observations of Van Parijs et al.,33 once the correction
has been made for measurement bandwidth (i.e., 95 dB –

10 log10). It is well known that, for detection functions that

involve the incoherent broadband integration of acoustic

energy over some finite bandwidth, BW, narrowband noise

spectrum level requires a correction of 10 log10BW to obtain

the equivalent in-band noise level (assuming the noise level

is relatively constant across the integration band).

A key premise underlying the experimental investigation

of NARW upcall detection performance presented herein is the

hypothesis that, contrary to convention, upcall detection is fun-

damentally a narrowband, rather than broadband, detection

problem. That is, the noise bandwidth employed in the passive

sonar equation model should be linked to the instantaneous

bandwidth of the upcall, not the full support bandwidth of the

upcall, which can cover a frequency range of up to 40–

400Hz.28 Figure 7 depicts a spectrogram of a representative

upcall from the St. Andrews database. The frequency support

for this upcall exemplar spans approximately 100–180Hz, or

80Hz in total bandwidth. The upcall duration is roughly 0.75 s.

The digital signal processing supporting the right whale

detector-classifier string employs a 640-sample (i.e., 250ms)

FFT, which yields a frequency bin spacing of 3.9Hz, or win-

dow corrected bin resolution [e.g., effective noise bandwidth

(ENBW)] of 5.9Hz. At an overlap percentage of 75%, the cor-

responding FFT frame rate, dT, is 0.0634 s. Depending on the

SNR, there are typically 12–16FFT frames per upcall.

Given the bandwidth of the upcall depicted in Fig. 7, it

is tempting to characterize this detection problem as one of

a broadband nature. However, such an interpretation fails to

differentiate the full upcall support band from the noise

bandwidth that directly impacts the detection decision. In

FIG. 7. Spectrogram of a North Atlantic right whale upcall exemplar from

St. Andrews 2013 database processed with 0.25 s FFT, 75% overlap, and

Hanning window. While the support band for this representative upcall is

roughly 100–180Hz, the instantaneous bandwidth of the upcall as a func-

tion of time is observed to vary from approximately 5Hz (at start and finish)

to almost 30Hz (in the middle), depending on which FFT frame (vertical

slice) is sampled.

FIG. 6. Measured sound speed profile calculated from conductivity-

temperature vs depth cast performed on September 4, 2024, showing down-

ward refracting propagation environment with sound speed gradient of

approximately 2 s�1.
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the case of the spectrogram correlator, the detection of the

candidate spectrum feature, and the computation of the ker-

nel library correlation score, is performed at the beamformer

output in a sliding window of duration long enough to cap-

ture the longest kernel in the library; this is done concur-

rently for all beams. This analysis window advances through

the beamformed data one FFT frame at a time. The presence

of the upcall in any given analysis window is not determined

from the entire upcall support bandwidth at once, as in the

case of a matched filter detecting the presence of a known a
priori waveform replica,35 but rather for the spectrogram

pixels that support the detection event. To support a detec-

tion event, a spectrogram pixel must (1) exceed the binariza-

tion threshold of 5.5 dB and (2) fall within the boundary of

one of the correlation kernels comprising the upcall library.

The example in Fig. 7 shows that, for a vertical spectrum

slice at time, tk, the minimum (lower) frequency of the

upcall is denoted by flk and the maximum (upper) frequency

is denoted by fuk . The difference fuk � flk defines the instan-

taneous bandwidth of the feature at time tk. In this example,

the number of frequency bins spanning any given spectrum

slice varies from as little as 2 to as many as 8, corresponding

to a range of instantaneous bandwidth of 8–32Hz at the

given FFT frequency resolution.

The signal power in each FFT frame is computed by

integrating the power over all pixels that exceed the mini-

mum SNR threshold (5.5 dB) in that frame. The average

received level, LR (and in-band noise level as discussed

below) for the upcall detection event is then computed by

averaging the instantaneous power over the number of FFT

frames, K, spanning the upcall, as follows:

LR ¼ 10 log10
1

K

XK
1

Xfuk
flk

Sk fð Þ�� ��2
2
4

3
5; (2)

where S fð Þ is the frequency domain representation of the

signal, sðtÞ. It follows that the mean instantaneous upcall

bandwidth (MIBW) is given by the following:

MIBW ¼ 1

K

XK
k¼1

fuk � flk : (3)

The MIBW may also be determined by dividing the total

number of signal pixels in the upcall by the number of FFT

frames spanning the upcall. It will be shown in Sec. IV that it

is theMIWB that most closely defines the in-band noise band-

width that drives the detection decision. For the example of

Fig. 7, there are 60 total pixels (yellow) that exceed the SNR

threshold of 5.5 dB and 14FFT frames, resulting in a mean

instantaneous bandwidth of 4.2 bins, or 16.4Hz.

For any physical interpretation of detection performance

to be accurate, it must follow that the associated in-band noise

level be defined in the same exact manner as that of the

detected signal. Thus, for each upcall detection, in-band noise

level is computed in the same manner as received level using

Eq. (2), with the difference being that the supporting time-

frequency cells, or pixels, over which the calculation is

performed are taken from FFT frames of spectrogram data

immediately preceding and succeeding the upcall detection

by6 3 s, respectively. The actual noise level used is the mini-

mum of the two noise values reported in order to minimize

bias due to noise outliers or transients. This assertion is a

departure from sonar equation performance modeling pre-

sented in the past, wherein the noise bandwidth is taken to be

the full support band of the NARW upcall, e.g., 71–224Hz in

the case of Estabrook et al.14 and 50–225Hz in the case of

Palmer et al.16 Even the present authors themselves employed

a noise bandwidth of 50–250Hz in Premus et al.3 It will be

demonstrated in Sec. IV that this broadband convention for

defining in-band noise level underpredicts detection perfor-

mance. Only the “narrowband” detection model tied to the

MIBW correctly explains the measured detection performance

obtained using calibrated, GPS ground-truthed source opera-

tions performed on September 4, 2024.

B. Validation of frequency-domain measured received
level

The capacity of the frequency domain representation of

the detected upcall to accurately represent the true received

level of the signal of interest was calibrated through compari-

son with measurements of rms source level made at a 1-m

FIG. 8. Histograms of (a) rms source level measured in the time domain as

defined in Eq. (3) and (b) rms received level measured in the frequency

domain as defined in Eq. (2), for a sample size of 59 transmitted upcalls as

measured on the J-9 1-m reference hydrophone in Gloucester Harbor, MA

in June 2024.
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reference hydrophone using a Underwater Sound Reference

Laboratory J-9 acoustic projector in Gloucester Harbor in

June 2024. In that experiment, the J-9 transmitted the same

representative upcall at a source level of 150 dBrms re 1 l
Pa@1m. The ground truth reference for rms source level, LS,
is computed from the 1-m reference hydrophone using the

following time domain definition:

Ls ¼ 10 log10
1

T

XK
1

s2 kð Þ
" #

; (4)

where sðkÞ is the discretized signal of interest and T is the sig-

nal duration.34 Figure 8 depicts two histograms compiled for

(1) rms source level measured in the time domain as defined in

Eq. (3) and (2) rms received level measured in the frequency

domain as defined in Eq. (2), for a sample size of 59 transmit-

ted upcalls. The time domain calculation of source level mea-

sured at the 1-m reference hydrophone is very precise,

reporting a mean source level of 151.1 dBrms re 1l Pa@1m

and a standard deviation, r, equal to 0.1 dB. The frequency

domain calculation compared well although with somewhat

more spread, reporting a mean source level of 149.9 dBrms re

1l Pa@1m at a r equal to 1.4 dB. The greater spread is attrib-

uted to the fact that the transmitted upcall does not agree pre-

cisely with any of the individual kernel library members (this

is by design as it will almost certainly be the case in practice

for naturally occurring upcalls), resulting in a minor degree of

signal model mismatch at the output of the spectrogram corre-

lator operation. The key takeaway, however, is that the rms

received level measured in the frequency domain can be said

to be calibrated against the rms received level calculated in the

time domain at the output of the 1-m reference hydrophone. It

follows that the pixels in the spectrogram determined to sup-

port the upcall detection event, i.e., those exceeding the binar-

ization threshold and matching at least one kernel library

member, characterize the MIBW of the detected upcall, and by

extension the noise bandwidth driving the detection decision.

C. Mean instantaneous upcall bandwidth

Analysis of the J-13 measurements of September 4, 2024,

as a function of range reveals that, consistent with

expectations, the MIBW observed at the receiver is strongly

dependent on SNR. Table I summarizes the statistics of upcall

bandwidth measured at the output of the beamformer as a func-

tion of range over the sample size of 1500 upcall exemplars.

With two minor exceptions, the average number of spectro-

gram pixels and average number of FFT frames per detection

event decreases monotonically with range, and thus SNR. At a

bin resolution of 3.9Hz, the MIBW is observed to decrease

from 6.8 bins (26.5Hz) at 1.9 km to 1.9 bins (7.4Hz) at 13 km.

Measurement of instantaneous bandwidth taken from

4090 exemplars of the 2013 St. Andrews database shows a

similar SNR dependence. Figure 9 depicts MIBW vs SNR

(blue) with 61r confidence intervals for a sample of 4090

upcalls ranging in SNR from 3 to 35 dB. Sample size at each

SNR is denoted in red. MIBW was observed to vary from

2.5 bins (9.75Hz) at 3 dB SNR to 6.5 bins (25.35Hz) at

30 dB SNR. At the recognition differential of the spectro-

gram correlator algorithm, 5.5 dB, the MIBW is 3 bins

(11.7 Hz). Based on this finding, the noise bandwidth driv-

ing the detection decision, and thus adopted in the sonar

equation model projections that follow, is 12Hz.

D. Observations of in-band noise level and upcall
received level

Figure 10 shows histograms of in-band noise level (red)

and upcall received level (blue) compiled over all 1500 J-13

detection events broken down by range offset. The spread

between the red and blue histograms is indicative of the

SNR at each range. Note that in-band noise level for each

detection event is reported in units of dB re 1 l Pa but is not

associated with a fixed noise bandwidth; as explained above,

this is because the exact noise bandwidth associated with

each detection event is data-dependent. The in-band noise

level was observed to change throughout the 7-h experi-

ment, from a low of 79.2 dB re 1 l Pa at 1432 GMT to a

high of 89.1 dB re 1 l Pa at 1940 GMT. This variability is

not surprising as there was a high degree of shipping activity

in the lease area on that day; in addition to normal vessel

TABLE I. Measured NARW upcall MIBW vs range measured from J-13

(1500 transmissions) on September 4, 2024.a

1.9 km 3.7 km 7.4 km 11.1 km 13 km

Average signal pixels per detection 92.0 85.1 48.7 51.5 15.6

Average FFT frames per upcall 13.6 14.5 13.1 12.2 7.2

MIBW (bins) 6.8 5.9 4.2 4.2 1.9

SD instantaneous bandwidth (bins) 0.5 0.6 0.6 0.6 0.8

aMIBW is determined by dividing the average total pixels by the average

number of FFT frames taken over all detection events at each range offset.

As expected, the MIBW is observed to decrease with range consistent with

the reduction in SNR with range. For the ranges bracketing the measured

R50 for the array (11 and 13 km, highlighted in green), the MIBW is

observed to decrease from 4.2 to 1.9 bins, further reinforcing the finding

that an MIBW of 3 bins or 12Hz corresponds to an NRD of 5.5 dB.

FIG. 9. North Atlantic right whale upcall MIBW vs SNR (blue) with 61r
confidence intervals for a sample of 4090 upcalls ranging in SNR from 3 to

35 dB. Sample size at each SNR is denoted in red. Bandwidth is reported in

bins of 3.9Hz width. Observe that the MIBW corresponding to a SNR of

5.5 dB, the NRD of the spectrogram correlator, is 3 bins or 12Hz. This is

the noise bandwidth used in sonar equation detection performance modeling

for the NARW upcall in Sec. IV.
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traffic, there was construction activity to support the installa-

tion of nacelles on piles that had been driven during the previ-

ous 4months. The mean in-band noise level during the 7-h

period from 1300 to 2000 GMT was 83 dB re 1 l Pa.

Converting to noise spectrum level at an omni-directional

hydrophone, by adding back the mean array gain (�10 dB)

and correcting for a noise bandwidth of 12Hz (i.e., subtract-

ing 10 log1012), yields a noise spectrum level of 82 dB re

1 l Pa//Hz. The noise levels observed herein agree reason-

ably well with third octave band ambient noise measurements

(95 dB re 1 l Pa, or spectrum level 80 dB re 1 l Pa@150Hz)

reported by Van Parijs et al. in 2022 for the Cox’s Ledge site
(measurement units COX01 and COX02) in closest proxim-

ity to the RevolutionWind lease area.33

E. Probability of detection vs range (detection
function)

The metric that most completely summarizes the detec-

tion performance of a passive acoustic monitoring system in

a particular TL and noise environment is the detection

FIG. 10. Histograms of rms received signal level (blue) and in-band beam noise level (red), broken out by range, for all 1500 upcall transmissions from the

J-13 measured at the output of the beamformer during the 7-h deployment. Received level and in-band beam noise level are computed in the same manner,

integrated over frequency and averaged over time, for those spectrogram pixels exceeding the binarization threshold of 5.5 dB and falling within the upcall

kernel contour. In-band noise level reported for each detection event reflects the average instantaneous bandwidth of each detected upcall. In-band beam

noise level varied by as much as 10 dB, from 79 to 89 dB re 1 l Pa during the test due to the large number of surface vessels operating in the lease area. Note

also that the sample sizes were smaller at the longer ranges due to the smaller number of detections at those ranges.
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function, or probability of detection and classification vs

range curve. Probability of detection, Pd, in this instance

implies correct classification as we are concerned not just

with the detection of acoustic energy, but the detection of a

particular signal of interest. It is defined as that fraction of

the time that the target is positively identified, when avail-

able to the sensor, at a given range.

Figure 11 depicts the measured probability of upcall

detection and classification, for a source level of 160 dBrms

re 1 l Pa@1m, as a function of range for the 32-channel

hydrophone array (blue) under test and single hydrophone

(orange); channel 16 of the array is used as the representa-

tive data point for the single hydrophone. There were

approximately 1500 detection opportunities over the 7-h

event of September 4, with sample size numbering about

300 at each of the range offsets from 1.9 to 11.1 km, and

somewhat fewer at the higher range offsets of 13 and

14.8 km. As stated above, the receiver sensitivity was tuned

for a false alarm rate of 1 per hour; to be complete, any

statement of detection sensitivity or detection range must be

accompanied by an associated false alarm rate; otherwise,

the receiver operating point is ambiguous. It should be noted

that, due to time constraints on this 1-d deployment (each

range offset required a roughly 1-h evolution to reposition

the vessel, deploy and recover the J-13 projector), only

range dependence was considered in this experiment. Future

experiments will examine both range and azimuthal depen-

dence. Detection probability for the array was consistently

between 90% and 100% for ranges of 1.9–11.1 km—unsur-

prising given that SNR varied from 22 to 12 dB in this range

interval—before dropping off rapidly at 13 km. The single

hydrophone response peaked at probability of detection of

90% at a range of 1.9 km and decayed rapidly thereafter.

If it is desirable to reduce the detection function to a

single scalar value, then the metric detection range, R50, is

often used. Detection range is defined as the range at which

the probability of detection in a given environment has

decayed to 50%. Linear interpolation of the array detection

function between 11.1 and 13 km shows that the 50% cross-

ing occurs at a range of 12.2 km for the 32-channel array and

3.4 km for the single hydrophone, yielding a 3.6-fold detec-

tion range advantage for the array over the hydrophone. This

is consistent with theoretical expectations for a sensor exhib-

iting on the order of 10 dB of array gain in a 17 log10R conti-

nental shelf TL environment (e.g., 1010=17 ¼ 3.8).

While the measured detection range for the array in this

experiment exhibited the expected range multiplier advan-

tage over the single hydrophone, the absolute detection

range for the array was somewhat less than expected.

Previous model predictions by the authors for detection

performance of a 32-channel array in the Revolution Wind

lease area against a 160 dBrms re 1l Pa@1m source level,

assuming an isotropic noise distribution characterized by a

noise spectrum level for Wenz moderate to heavy

shipping of 78 dB re 1l Pa//Hz, projected 20 km.3 As

mentioned above, the mean noise spectrum level on

September 4 was measured to be 82 dB re 1 l Pa//Hz, or

about 4 dB re 1 l Pa//Hz higher than the modeled noise

assumption. In this 17 log10R spreading loss environment, a

difference of 4 dB translates to a factor of 1.7� in range

(i.e., 104=17 ¼ 1.7), which maps the 12.2 km detection range

measured on September 4 to a predicted detection range of

20.7 km. If the in-band beam noise levels had been 4–5 dB

lower on September 4, the 32-channel array would have

likely demonstrated a detection range in excess of 20 km.

F. TL and FOM

Figure 12 shows measured and modeled TL results for

the Revolution Wind lease area along the radial to the sup-

port vessel R/V Black Hawk and J-13 source depicted in Fig.

3(b). In situ TL measurement was accomplished by simply

comparing the measured frequency domain rms received

level (from Fig. 10) to the ground-truth time domain rms

FIG. 11. Measured real-time probability of detection vs range for 32-channel hydrophone array (blue) and single hydrophone (orange) over 1500 NARW

upcall transmissions from the J-13 on September 4, 2024. Auto-detector operating point was programmed for a false alarm rate of 1 per hour. Source level

as measured by 1-m reference hydrophone was 160 dBrms re 1 l Pa@1m. Detection range, R50, is defined as the range at which detection probability

decays below 50%. The detection range for the single hydrophone (channel 16 of the array) was measured to be 3.4 km, while that of the 32-channel array

was 12.2 km, which constitutes a 3.6-fold detection range advantage in this 17logR TL environment.
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source level at the 1-m reference hydrophone. The black

circles in Fig. 12 denote in situ TL observations correspond-

ing to upcall detection events at each of the range offsets.

Clearly, there is variability in the measured TL at each range

offset, on the order of 1.5-3.5 dB from the standard deviation

of RL reported in Fig. 10. The variability is higher at the

longer ranges, but not unexpectedly high.36 The solid red

line connects the mean TL values at each range. A least

squares fit of a scalar spreading coefficient to the measured

TL observations is denoted by the dashed red line, indicat-

ing a 17 log10R spreading loss environment (for ran-

ges>3 km). It should be noted that the measured spreading

coefficient of 17 is generally much higher than that assumed

in recent studies of upcall source level estimation from mea-

sured observations9 and the evaluation of a passive acoustic

coastal buoy for cetacean detection.16 The validation of TL

models using measured data is vital for the accurate physical

interpretation of in situ system detection performance.

Overly favorable TL models can have undesirable conse-

quences, including the underestimation of source level in

the inversion of upcall source level from data and the over-

statement of detection range performance projections to new

environments.

The TL model results of Fig. 12 denoted by the solid

blue curve were computed using U.S. Navy Standard

Parabolic Equation (NSPE)37 based on the sound speed pro-

file of Fig. 6 and geoacoustic description of the seabed sum-

marized in Table II, which is in reasonably good agreement

with that employed by Lin et al. in their propagation model

of offshore wind noise at the nearby Block Island wind farm

off the southern coast of Rhode Island.38 The 61r

confidence intervals capture the degree of TL spread due to

binning TL in third octave range bins. Bathymetric data in

the lease area were extracted from the GEBCO 2023 data-

base, a bathymetry data set developed through the Nippon

Foundation-GEBCO Seabed 2030 Project.39 The GEBCO

database provides bathymetric data, in meters, on a 15-arc-

second interval grid. Note that range dependence in the

NSPE TL model is only represented via the bathymetric

data. The sound speed profile and seabed geoacoustic model

parameters are assumed to be range independent. While the

NSPE model appears to underpredict TL between 3.7 and

7.4 km, it appears to converge to the measured data at ranges

of 11 km or more. While this observation suggests that the

geoacoustic model inputs leave room for improvement,

detection performance projections based on the NSPE TL

model at ranges of 11 km or more are likely to be represen-

tative of the actual environment.

The greatest utility of the in situ measured TL from Fig.

12 lies in its reconciliation with the measured detection

ranges, R50, in Fig. 11 for the array and single hydrophone,

respectively. Through this process, one can determine a

measured FOM for array and single hydrophone in the sub-

ject environment that is strictly informed by empirical

observation without having to invoke any simplifying

assumptions about nature of the data or the environment,

e.g., Gaussianity, stationarity, etc., that may or may not be

true.17 The FOM constitutes the maximum TL that the sys-

tem can tolerate for a given source level and noise level and

still meet the desired receiver operating point. As such, it is

the only absolute measure of system efficacy that supports

the fair and objective comparison of acoustic detection per-

formance between competing systems (notwithstanding fac-

tors such as endurance, latency, and cost). The measured

figures of merit for the 32-channel array and omni-

directional hydrophone in the Revolution Wind environment

are delineated by the y-intercepts of the two dashed black

lines in Fig. 12 labeled FOMA and FOMO, respectively. In

this 17 log10R spreading loss environment, the array detec-

tion range, R50A , of 12.2 km maps to an array FOM of 70 dB,

while the omni-hydrophone detection range, R50O , of 3.4 km

maps to a hydrophone FOM of 60 dB. The difference

between the two FOMs may be attributed to the mean array

gain for the 32-channel array, which was measured to be

TABLE II. Seabed geoacoustic parameter model for the Revolution Wind

lease area.

Parameter Depth (m) Value

Compressional wave

speed, cp

0.0 1719.0m/s

3.0 1800.0m/s

Density 0.0 1.946 g/cm3

3.0 2.03 g/cms3

Compressional wave

attenuation, ap

0.0 0.708 dB/km

3.0 0.057 dB/km

FIG. 12. Measured and modeled TL in the Revolution Wind lease area on

September 4, 2024: Measured TL at J-13 range offsets of 1.9, 3.7, 7.4, 11.1,

and 14.8 km (black circles) computed from the difference between mea-

sured rms received level and measured rms source level for every NARW

upcall detection event; 17 log10R spreading loss (red dashed); NSPE mod-

eled TL at 150Hz in third octave range bins with 61r error bars (blue).

Array FOM corresponding to measured R50 of 12.2 km is 70 dB. Single

hydrophone FOM corresponding to measured R50 of 3.4 km is 60 dB.
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roughly 10 dB during the September 4 experiment. This is

consistent with theoretical expectations for an array operat-

ing against a signal of interest that is 1–2 octaves below its

cut frequency of 625Hz (i.e., array gain decreases by 3 dB/

octave below the array cut frequency).29

IV. MODELING OF DETECTION PERFORMANCE:
PASSIVE SONAR EQUATION

In this section, we return to the link between noise

bandwidth and instantaneous right whale upcall bandwidth

and the associated implications for performance prediction

based on the passive sonar equation. The passive sonar

equation is usually written in terms of the FOM, introduced

above, as follows:40

FOM � TL ¼ SL� NL� AGð Þ � NRD: (5)

where TL represents the transmission loss, SL is the source

level (in the case of the NARW upcall, rms source level),

NL denotes the in-band ambient noise level measured at the

hydrophone, AG is array gain such that (NL–AG) is the in-

band noise level at the beamformer output, and NRD is the

system recognition differential, or SNR at the beamformer

output required for the real-time spectrogram correlator

algorithm to yield a desired receiver operating point.

Analysis of the 2013 St. Andrews test data has shown that,

for an operating point of Pd ¼ 0.5 at a false alarm rate of 1

per hour, NRD for the current ThayerMahan system is equal

to 5.5 dB. As mentioned earlier, the FOM constitutes the TL

that the system can tolerate for a given SL and NL and still

meet the level of performance represented by the system

NRD.
To test the hypothesis of a narrowband noise model for

the upcall detection problem, two sonar equation models

are compared to the measured array detection range, R50A ,

of 12.2 km. The first employs the mean, narrowband (e.g.,

12 Hz), in-band noise level of 83 dB re 1 l Pa measured at

the beamformer output in Sec. III. Recall that this noise def-

inition inherently accounts for the exact noise bandwidth

that influences the instantaneous spectrogram correlator

algorithm detection decision. The second is based on the

long-held convention of a broadband noise bandwidth, in

this case tied to a worst case NARW upcall support band of

40–400Hz, or a noise bandwidth of 360Hz. The in-band

noise level for that model uses the same mean in-band noise

measured at the beamformer output, corrected for the differ-

ence in bandwidth, i.e., 10 log10360=12, or 14.8 dB, result-
ing in an in-band noise level of 97.8 dB re 1 l Pa.

Remaining consistent with the J-13 experiment, an upcall

source level of 160 dBrms re 1 l Pa@1m was assumed,

along with an NRD of 5.5 dB. TL was computed using the

NSPE TL model for a frequency of 150Hz at the center of

the NARW support band: in this shallow, downward-

refracting environment, TL is only weakly dependent on

frequency. As in Fig. 12, the model employed range depen-

dent bathymetry from the GEBCO database, the

geoacoustic model of Table II, and the September 4 mea-

sured sound speed profile of Fig. 6.

Figure 13 depicts detection contours corresponding to

probability of detection of 50% for the narrowband (green)

and broadband (yellow) noise models, respectively, over-

laid on the outline of the Revolution Wind lease area

(black dotted). The solid black concentric circles denote

radii of constant detection range relative to the array phase

center in 5 km increments. The measured array detection

range, R50A , of 12.2 km, along the radial to the support ves-

sel R/V Black Hawk is indicated by the blue star to the

northwest of the array (red circle). The measured data point

is observed to be in good agreement with the narrowband

detection contour, falling short of the green contour by a

couple kilometers, or about 20% of range. This modest off-

set could be attributed to the small amount of signal model

mismatch in the spectrogram correlator due to the imper-

fect alignment of the transmitted upcall with the members

of the kernel library; it could also be attributable to a

slightly optimistic TL calculation from NSPE. In this

17 log10R spreading loss environment, 1.5 dB of signal

model mismatch translates to a factor of 1.2� in range,

e.g., 10
1:5
17 . However, the broadband detection contour (yel-

low) underpredicts the measured detection performance,

by a factor of roughly 7�. This model error is attributed to

the fact that in this spreading loss environment, a 15 dB

error in assumed in-band noise level costs roughly 7.4� in

detection range, e.g., 10
14:8
17 . The takeaway from the results

of this sonar equation model comparison is that of the two

noise models, only the narrowband model is capable of

explaining the measured detection performance of

September 4, 2024, obtained using the calibrated, ground-

truthed source.

FIG. 13. Modeled detection contours for NARW upcall source level of

160 dBrms re 1 l Pa@1m corresponding to ENBW¼ 12Hz (green) and

ENBW¼ 360Hz (yellow). SeaPicket array Goshen denoted by red circle.

Boundary of Revolution Wind lease area is identified by the dotted black

line. The sonar equation model that uses a narrowband ENBW of 12Hz

yields a predicted detection contour that agrees well with at-sea observa-

tions, while the model that employs a broadband ENBW of 360Hz to repre-

sent the in-band ambient noise level significantly underpredicts detection

performance measured during the J-13 experiment.
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V. CONCLUSION

For the first time, the detection performance of a 32-

channel hydrophone array, and that of a single hydrophone,

has been experimentally quantified for the case of a North

Atlantic right whale upcall using a calibrated acoustic pro-

jector in the southern New England offshore wind construc-

tion area. Measurements of detection range and in situ TL

were reconciled to yield a measured FOM against a source

level of 160 dBrms re 1 l Pa@1m in the subject environ-

ment of 70 dB for the 32-channel hydrophone array, versus

60 dB for the single hydrophone. These results corroborated

earlier findings of a 3.6-fold detection range advantage, for

the array relative to the single hydrophone in this 17logR
spreading loss environment.3 As such, autonomous, array-

based PAM systems have redefined the state-of-the-art in

passive acoustic marine mammal monitoring.

Physical interpretation of the measured detection results

using a passive sonar equation treatment was then used to

validate the hypothesis that the detection of a North Atlantic

right whale upcall is fundamentally a narrowband detection

problem. This is a significant departure from long-held con-

vention wherein the noise bandwidth is taken to be the full

support band of the NARW upcall for which reports in the

open literature vary from 50–225,9 to 71–224,14 to 50–

400Hz.28 The results demonstrate that the broadband noise

definition significantly underpredicts measured detection

range, while the narrowband noise model accurately

explains the observed detection performance. Analysis of

upcall transmissions from the J-13, as well as data from the

St. Andrews 2013 database, shows that the MIBW of the

NARW upcall is estimated to be approximately 12Hz at a

SNR of 5.5 dB, which corresponds to the auto-detector NRD

for a receiver operating point of Pd ¼ 0.5 and false alarm

rate¼ 1/h associated with the spectrogram correlator classi-

fier referenced herein. Note that the MIBW is likely to be

classifier and operating point-dependent, so in general it

could range from 10–20Hz for similar classifiers. This find-

ing has important implications for the treatment of noise

bandwidth in baleen whale acoustic detection performance

modeling generally, and for the extrapolation of right whale

detection performance to new noise environments domi-

nated by offshore wind construction activity and pile driv-

ing. The experimental results, metrics, and methodology

presented herein provide a framework for rigorous and

objective PAM detection performance quantification based

on calibrated acoustic source transmissions accompanied by

precise positional ground truth reconstruction. The process

addresses many of the limitations that have hampered efforts

on the part of offshore wind construction contractors, gov-

ernment regulatory agencies, academia, and other interested

parties to evaluate competing PAM technologies on an

objective and consistent basis through the incorporation of

the following elements: (1) the clear definition of detection

range, R50, and its direct link to a specified false alarm rate

operating point; (2) the explicit accounting for recognition

differential in the sonar equation reconciliation; (3) the use

of in situ measured TL to interpret detection performance;

and most importantly, and (4) the employment of calibrated

source ops with ground truth reconstruction to enable accu-

rate quantification of detection performance. Finally, this

experiment was conducted in the presence of vessels sup-

porting construction activity, namely, the installation of

nacelles post monopile installation. In the future, experi-

ments like the one outlined herein must be expanded to vali-

date detection performance projections in noise conditions

with more complicated spatial and temporal dependencies,

such as those encountered during pile driving operations.41
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