Estimating Inter-annual Variability in Project Take for Rare Events

Wind Wildlife Research Meeting XI | December 2, 2016

Jonathan Plissner, Tom Snetsinger, Alicia Oller, Brita Woeck & Marie VanZandt

Auwahi Wind
Overview

• Estimating Take for Incidental Take Permits

• Variation in Take
 ▪ Sources of variation
 ▪ Effects of variation

• Rare events

• Hawaiian Hoary Bats – A Case Study
Estimating Take for Incidental Take Permits

• Anticipated Impact
 ▪ Predicting future take
 ▪ Take limits

• Mitigation triggers

• Compliance
 ▪ Monitoring
 ▪ Reporting
Variation in Take

- Natural sources
 - Random
 - Environmental fluctuations
 - Cyclic
 - Population change

- Operational sources
 - Operational changes
 - Future technologies

- Directional changes in take
Variation in Take

• Assessing inter-annual variation
 ▪ Sample sizes and monitoring effort
 ▪ Effects of variation on fatality estimates
 ▪ Effectiveness of operational changes and deterrents
 – When does change occur?
 – What is the scale of change?
 – Confounding variation
Rare events

- Why rare?
 - Endangered species
 - Low detectability
- Rare vs. common events
 - Limitations of fatality estimators
 - Impacts of variability
- Approaches to estimation
 - Common surrogates
 - Evidence of Absence
Auwahi Wind

- Auwahi Wind Farm
 - East Maui, Hawaii
 - Eight Siemens 3.0 MW wind turbines
 - Commercial operation December 2012
 - Anticipated operational life – 20 years

- Incidental Take Permit
 - ITP issued February 24, 2012
 - Hawaiian petrel, Hawaiian goose, Blackburn’s sphinx moth, Hawaiian hoary bat

- HCP Amendment (in progress)
Auwahi Wind - Hawaiian Hoary Bat

• Status
 ▪ Federally endangered – listed 1970
 ▪ Limited information on population size and distribution
 ▪ Taxonomy

• Requested Take – Auwahi HCP (2012)
 ▪ Direct – 19 adults
 ▪ Indirect – 8 young
 ▪ Rationale
 – Low numbers acoustic detections
 – Lack of roosting habitat
 – Low mortality rate at other wind farms

• Tiered Approach
Auwahi - Hawaiian Hoary Bat

- Monitoring program
 - Pulsed monitoring
 - Intensive monitoring (2013-2014)
 - Systematic monitoring
 - Interim inspections
 - Bias trials
 - Fatality estimation
 - Mitigation triggers
Auwahi Wind - Hawaiian Hoary Bat

• Sources of variation
 ▪ Natural
 – Random
 – Seasonal
 – Population changes
 – Environmental fluctuations

▪ Operational changes
 – Low wind speed curtailment (February 2015)
 – Deterrents
 – Other
Auwahi - Hawaiian Hoary Bat

- Years 1-4 results

<table>
<thead>
<tr>
<th>Year</th>
<th>Observed Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>2015</td>
<td>1</td>
</tr>
<tr>
<td>2016</td>
<td>7</td>
</tr>
</tbody>
</table>

Estimated Fatality Rates (95% CI)

- Auwahi Pre-LWSC
- Auwahi Post-LWSC
Auwahi - Hawaiian Hoary Bat

- HCP amendment (in progress)
 - Take higher than anticipated
 - Considerations
 - Curtailment effect
 - Deterrent available?
 - 2016 anomalous?
Effects on predicted take
Summary

• Variation in fatality rates affects predictions of take and approaches for assessing compliance with permitted levels of take.

• When take occurs rarely, measuring effects of variation poses additional challenges for monitoring and assessment.

• Planning for alternative outcomes should be considered, as effects of variation and changes in take may not be immediately discernible.
Additional information or questions?

Jonathan Plissner
Jonathan.Plissner@tetratech.com
(503) 727-8075

Tom Snetsinger
Thomas.Snetsinger@tetratech.com
(503) 721-7219

Alicia Oller
Alicia.Oller@tetratech.com
(503) 727-8072

Brita Woeck
Brita.Woeck@tetratech.com
(425) 482-7645

Marie VanZandt
mvanzandt@AuwahiWind.com
(808) 876-4110