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A B S T R A C T   

We use contingent-behavior data from a stated-preference survey to estimate the effect of offshore wind power 
projects on recreational beach use on the East Coast of the United States. The data are from an internet-based 
probabilistic sample of beachgoers (n ¼ 1725) visiting beaches from Massachusetts to South Carolina in 2015. 
The contingent-behavior data are based on responses to visual simulations of wind power projects at seven 
different distances offshore (2.5–20 miles) in clear and hazy conditions and at night. We consider the effect on 
beach enjoyment/experienceand trips taken to a beach. As expected the nearer the projects are to shore, the 
greater their negative effect. For example, at 2.5-miles offshore, 29% of the sample state they would not visit the 
beach compared to only 5% at 20-miles offshore. Offsetting the negative effects, we also find evidence of 
potentially a large numbers of curiosity trips to view offshore wind power projects.   

1. Introduction 

The first offshore wind power project in the United States began 
operation in December 2016 near Block Island, Rhode Island (Firestone 
et al., 2020; Firestone et al., 2018). This five-turbine, 30 MW (MW 
project, which is located about 5 km from Block Island and 26 km from 
the mainland Rhode Island coast will be followed by much larger pro
jects. There are offshore wind-specific targets in most states from Vir
ginia to Massachusetts cumulatively totaling almost 26 000 MW as of 
March 2020. There are also thirteen active commercial wind leases on 
the outer continental shelf1 (OCS) and the Bureau of Ocean Energy 
Management (BOEM) has issued at least one wind energy lease adjacent 
to every state from Massachusetts to North Carolina except Connecticut. 
All of this, along with declining cost in the industry, suggests growth in 
offshore wind power in the coming decades. 

Along with this interest comes a concern about the potential effect 
such projects may have on coastal tourism and recreational beach use. 
The East Coast is a major tourist destination and altering the seascape 
may be consequential. Well-known conflicts with local populations over 

proposed projects, such as Massachusetts’ Cape Wind power project, 
highlight this concern. At the same time, wind power projects may 
attract visitors curious to see wind turbines in operation and/or to be on 
a beach with a “green” outlook. The purpose of this paper is to estimate 
the effect of large offshore wind projects on recreational beach use on 
the East Coast of the United States.2 The primary focus is on the negative 
external effects, which are the most prominent in the debate about 
offshore wind power, but we also have estimates to report on wind 
turbines as tourist attractions. 

Since there are no large-scale offshore wind power projects on the 
East Coast for which we might observe impacts, we use contingent- 
behavior data wherein we ask East Coast beachgoers their reactions to 
visual simulations of what the wind power projects might like look. 
Specifically, they were shown simulations and asked to report if the 
presence of such projects would have: (1) affected their beach experi
ence/enjoyment, (2) caused them to change trip plans, and/or (3) 
caused them to take a special trip to see the turbines. This paper presents 
an analysis of the response data to these questions. It covers ocean 
beaches from Massachusetts to South Carolina and respondents from the 
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twenty East Coast states (plus Washington, DC) shown in Fig. 1. 
Understanding the effect of wind power projects at different dis

tances offshore is an important feature of our research. While siting 
turbines further from the shore is feasible and reduces the visual dis
amenity, it comes at an increase in construction, maintenance, and 
energy-delivery cost (Samoteskul et al., 2014). Understanding this 
tradeoff has important policy implications for project location and size. 
Another important feature of our research is having a model capable of 
measuring effects on any beach on the East Coast, since where the 
projects will be located is uncertain and nearly the entire coastline is in 
play. We are also interested in predicting how the effects may vary be
tween day-versus overnight trips since this has implications for local 
effects. Finally, we have an interest in heterogeneity: Do effects vary by 
income class? Education? Attitude toward wind power? Recreation 
uses? We explore all of these questions in this paper, which includes a 
non-parametric presentation of the response data and parametric 
models for predicting trip loss. 

Our work is preceded by at least six studies using stated-preference 
data to understand the effects of offshore wind power on beach use: 
Lilley et al. (2010), Landry et al. (2012), Fooks et al. (2017), Voltaire 
et al. (2107), Lutzeyer et al. (2018), and Westerberg et al. (2013). We 
will discuss these later and compare them to our results. There are also 
stated-preference studies that consider offshore and onshore wind in a 
broader context,but are not focused on beach use. These include 
Ladenburg and Dubgaard (2007), Ladenberg (2009), Krueger et al. 
(2011), and Boyle et al. (2019). And finally, there are hedonic price 
studies aimed at understanding the effects of wind power projects on 
property values. Some examples are Sunak and Madlener (2016) and 
Heintzelman and Tuttle (2012). 

2. Sample and study design 

The survey design and sampling strategy was done at the University 
of Delaware. It involve a four-way interacton with Qualtrics, Macro
works, GfK Interantional, and the University of Delaware.3 It included 
economists, statisticians, survey researchers, and programers. Qualtrics 
is the web-based platform we used to create the survey. Macroworks 
created the photomontages – the seascape-panning simulations of the 
wind power projects. GfK International implemented the survey using 
their KnowledgePanel – the largest online panel representative of the US 
population. The four-way interaction was required to get the photo
montages from Macroworks operating in a Qualtrics survey seemleesly 
to respondents on the GfK platform where the survey was launched and 
the privacy of its sample was protected. After several interations, code 
swapping, and numerous tests, the final product satisfied our needs. 

We used Qualtrics, because it to allowed us to use complex skip 
patterns and to reference the “external” photomontages in a simple way. 
We pretested the survey with faculty, staff, and graduate students. Later 
it was pretested with a GfK sample. The photomontages were created by 
Nik Hennessy in Ireland at Macroworks. Macroworks specializes in the 
creation of images of wind power (and other) large energy projects. The 
simulation we use was created on a beach at Assateague Island, VA. We 
choose Assateague Island because of the natural setting and its physical 
representativeness of East Coast beaches. Also, we wanted simulations 
to exclude people to avoid bias and unwanted anchoring effects. The 
natural setting at Assateague made this easy. We chose GfK International 
because it is one of a few survey research firms that provide probabilistic 
samples – samples from the population that mimic random draws. We 
drew samples of beachgoers and non-beachgoers from the 20 states 
shown in Fig. 1. We sampled from each state in proportion to its 

population (respondents over 18 years old) and oversampled beach
goers.4 A beachgoer is anyone who had visited a beach in 2015. GfK was 
responsible for contacting the respondents and directing them to our 
survey using their protocol, which includes incentives, follow ups, etc. 
See GfK International (2017) for details on their methodology. We focus 
on the beachgoer sample (n ¼ 1725) in this article. The core of the 
survey asks respondents about their trips to ocean beaches from Mas
sachusetts (as far north as Cape Cod) to South Carolina. Hereafter, an 
“East Coast Beach” is any ocean beach from Massachusetts (as far north 
as Cape Cod) to South Carolina, and a “beachgoer” is a respondent who 
visited at least one of these beaches in 2015. 

Part 1 of the survey asked respondents to report the frequency with 
which they typically visit East Coast ocean beaches, the type of activities 
they participate in while there (e.g., swimming, sunbathing, shopping, 
and so forth), and whether they or anyone they know owns property 
near the beach. Part 2 asked respondents to report all the East Coast 
ocean beaches they visited at least once in 2015. Then, one beach was 
randomly drawn from the set of chosen beaches for detailed questioning. 
The details included type of trip (day, short-overnight, long-overnight, 
extended stay, or side trip), length of stay, activities while there, and 
expenditures. 

Part 3 focused on contingent-behavior questions. Using the beach 
randomly drawn in Part 2, respondents were asked to imagine that a 
wind power project was present offshore and that they were aware of its 
presence before making the trip. Respondents were then shown the 
panning photomontages that included views in clear weather, hazy 
weather, and at nighttime. A visual with no wind power project was also 
shown as a point of comparison. The hypothetical project depicted in all 
photomontages included 100 turbines: each turbine was 6 MW and was 
175 m high (blade at apex) with a rotor diameter of 150 m. They were 
spaced eight rotor diameters from one another, or 1.2 km apart, in a 10 
by 10 grid format. Respondents were also provided instructions on the 

Fig. 1. Ocean beaches covered in the survey and states sampled.  

3 The relevant links are: GfK (http://www.gfk.com), Macroworks (http: 
//www.macroworks.ie), and Qualtrics (https://www.qualtrics.com/). 

4 GfK provided relevant sampling weights, which we used throughout this 
paper. 
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distance to the screen from which they should view the images—a dis
tance which is dependent on the size of the screen. Respondents guided 
their way through a series of portals in which the different views were 
possible. Each respondent was asked to view the project at three dis
tances offshore – near, medium and far. The viewing order was 
randomly chosen with distances ranging from 2.5 to 20 miles.5 

After each distance was viewed, respondents were asked whether the 
presence of the wind power project would have affected their beach 
experience/enjoyment – making it worse, somewhat worse, neither 
worse nor better, somewhat better, or better. If they responded worse or 
somewhat worse, they were then asked if it would have affected their 
trip—that is, would they have made the same trip, visited another beach 
instead (and if so which beach) or done something else. If they reported 
better or somewhat better, they were asked if they would have visited 
another beach if the wind power project had been there instead. Finally, 
if they responded neither worse nor better to the enjoyment/experience 
question, they moved on in the survey. Respondents were also asked 
whether they would make a special trip just to see an offshore wind 
power project. This question was intended to get at the idea that the 
projects themselves may generate curiosity trips. Finally, in Parts 4 and 
5 of the survey we gathered more data on beach trips and demographic 
data not available through GfK. 

3. Background data 

Table 1 shows the sample demographics for age, income, education, 
and gender over the beachgoer samples. The U.S. Census Bureau data 
are included in the table for comparison. Of course, the beachgoing 
population is not distributed the same as the general population. 

By state, New Jersey had the highest visitation rate, followed by 

South Carolina and North Carolina. Delaware had the lowest rate and 
Rhode Island was second from the bottom. The most visited beach was 
Myrtle Beach (SC), followed by Ocean City (MD), Virginia Beach (VA), 
Atlantic City (NJ), Rehoboth Beach (DE), and Jones Beach (NY). The 
top-ten beaches accounted for 36% of all trips. Table 2 shows the fre
quency of beach visitation by the beachgoer sample. As shown, 21% go 
more than five times per year, 57% go between 1 and 5 times per year, 
and 22% go less than once per year. 

The most important activities when visiting the beach were sand 
activities (sunbathing, beachcombing, etc.) at 37%, water activities 
(swimming, surfing, etc.) at 28%, and boardwalk/community activities 
(shopping, sightseeing, etc.) at 25%. The summer months (June, July, 
and August) dominated the time periods for trip taking at nearly two- 
thirds of all trips. The distribution of respondents by types of trips 
taken is: 42% daytrips, 26% short-overnight trips (three or fewer 
nights), and 28% long-overnight trips (four to 29 days). The remaining 
4% are side trips (trips made to a beach while visiting the area for other 
purposes), extended stays (over 30 days away from home), or excursions 
(trips to the beach that are part of a longer multiple-purpose trip). 

Finally, respondents were asked if they favor the idea of expanded 
use of wind power in the United States – 42% favor, 26% somewhat 
favor, and 27% neither favor nor oppose while only 3% somewhat 
oppose and 2% oppose. About 58% reported that they were aware that 
offshore wind power on the East Coast was being considered as an en
ergy source; 61% reported having seen a land-based or ocean-based 
wind power project. 

4. Beach experience/enjoyment 

Fig. 2 shows the response data for the first contingent-behavior 
question: the reported effect of offshore wind power projects on expe
rience/enjoyment while visiting the beach. The figure separates the 
responses according to whether the wind power project would have 
made the experience worse, better, or neither worse nor better. The line 
labeled “worse” combines the responses somewhat worse and worse and 
the line labeled “better” combines somewhat better and better. 

The figure shows that the closer the turbines are to shore, the more 
likely a respondent is to report a worse beach experience. At 2.5 miles 
offshore, 53% of our respondents reported that turbines would have 
made their experience/enjoyment somewhat worse or worse. The per
centage drops monotonically till we reach 10% at 20 miles. Conversely, 
the percent reporting that turbines would have made their experience 
somewhat better or better increases as the turbines are placed further 
offshore. At 2.5 and 5 miles offshore, 10% and 4% report somewhat 
better or better. At 20 miles, 17% report somewhat better or better. 
Similarly, those reporting no effect (neither worse nor better) increases 
as the wind turbines are placed further from the coast, at 2.5 miles 37% 
percent report neither worse nor better, and at 20 miles 73% report 
neither worse nor better. At distances of 5 miles and greater, neither 
worse nor better is the largest response category. The effect of distance is 
less pronounced (in absolute terms) on those respondents reporting 
somewhat better or better than it is on those reporting somewhat worse 

Table 1 
Sample demographics.  

Demographic Category Beachgoers (n ¼ 1725) 
Percent 

Census Data 2015 
Percent 

Age 
18-24 years 11.9 12.6 
25-34 years 19.7 17.1 
35-44 years 19.6 16.4 
45-54 years 15.6 18.1 
55-64 years 18.6 16.7 
65-74 years 11.3 11.0 
75 þ years 3.3 8.2 

Education 
Less than High School or 

GED 
6.9 12.3 

High School or GED 25.8 29.5 
Some College or Assoc. 

Degree 
26.9 26.4 

College or Higher 40.4 31.8 

Household Income (thousands) 
Less than $10 per year 4.5 7.4 
$10 – 14.9 per year 1.9 5.3 
$15 – 24.9 per year 3.7 10.4 
$25 – 34.9 per year 7.2 9.8 
$35 – 49.9 per year 10.5 13.0 
$50 – 74.9 per year 15.0 17.4 
$75 – 99.9 per year 20.0 12.1 
$100 – 149.9 per year 24.8 13.4 
$150 þ per year 12.3 11.1 

Male 51.6 48.8  

Table 2 
Frequency of beach visitation by respondents.  

Frequency of Beach Visits Beachgoers 

Number of Respondents Percent 

More than 5 times per year 366 21.3 
Between 1 and 5 times per year 988 57.4 
Once every 2 years 206 12.0 
Once every 3 to 5 years 73 4.3 
Less than once every 5 years 57 3.3 
Almost never 28 1.6 
Never 5 0.3 

Total 1723 100  

5 The simulations may be viewed at www.macroworks.ie/boem/. An active 
version of the survey may be viewed at https://delaware.ca1.qualtrics. 
com/SE/?SID¼SV_3TKJE5B2QKR6B1z. 
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or worse. Consider the difference between the percentage of respondents 
reporting worse and better—the net-worse effect—as a function of dis
tance. It is 43% at 2.5 miles, 19% at 10 miles, 0% at 15 miles, and � 7% 
at 20 miles (i.e., more respondents reported better off than worse off). 
The break-even point is at 15 miles, where an equal number reporting 
worse as better. 

Table 3 disaggregates the worse responses by somewhat worse and 
worse and does the same for the better responses. This gives us a sense of 
the intensity of the effects on experience. First, we see that the somewhat 
responses are larger than their non-somewhat counterparts in all cases 
but for worse at 2.5 miles. This is where the turbines are the most 
intrusive and where a more intense response might be expected. 
Otherwise, the results indicate a more muted response than Fig. 2. The 
better and worse responses (without the somewhats) are in single digits 
at every distance but for worse at 2.5, 5, and 7.5 miles. And the better 
responses are not significantly different from zero at any distance. This 
all suggests that but for the worse impacts at the nearest distances, the 
effects are not large. Fig. 3 reimagines the table by combining the 
somewhat responses with neither – treating them as “soft” responses. 
Again, with the expectation of worse responses at near distances the 
impacts are not large using this interpretation. 

If respondents reported that their experience would be made worse 
or better due to the presence of offshore wind turbines, they were asked 
why? As shown in Table 4, the list of responses provided to respondents 
differed between those answering worse and those answering better. 
The most common reason given for worse was “the impact of wind 
turbines on the natural view of the seascape.” About 61% of the re
spondents reported this response followed by 29% reporting harm to 
marine life. The most common response given for better is “knowing 
something positive is being done for the environment (examples: climate 
change, air pollution)” at 52% followed by “knowing something positive 
is being done for energy security” at 24%, “knowing something positive 
is being done for the economy” at 11%, and “the visual appeal of wind 
turbines on the seascape” also at 11%. Negative effects appeared to be 
precipitated by aesthetics and to a lesser extent concerns over harm to 
the marine environment, while positive effects were precipitated by 

feelings of doing good for society. These responses are consistent with 
Figs. 2 and 3. The worse lines increase with proximity (sensitive to 
view), while the better lines are rather flat (not sensitive to view). 

5. Trip loss 

5.1. Trip-loss rates 

If respondents reported that the presence of a wind power project 
would make their experience somewhat worse or worse, they were asked 
if the presence of the turbines would have caused them to visit another 
beach or do something else. If the respondent reported that the wind 
turbines would have made their experience/enjoyment neither worse 
nor better, somewhat better, or better, it is assumed that they would 
have continued to visit the same beach and were not asked the follow-up 
question. These response data are used to define trip loss. It is important 
to keep in mind that “trip loss” pertains to the beach where a wind power 
project was to be located. It goes without saying that a lost trip at one 
beach may be a gained trip at another, which we will discuss shortly. 

The trip loss contingent-behavior question was followed by a 
certainty-response question. Specifically, we asked “How certain are you 
that this is what you would have actually done?” The response format 
ranges from 0 to 10, where 0 ¼ extremely uncertain, and 10 ¼ extremely 
certain. We used the response to this question to construct a certainty- 
adjusted trip loss (cjk) that ranged between 0.5 and 1 for changing trip 
plans and between 0 and 0.5 for not changing trip plans. So, for example, 
a person who reports not taking a trip with a certainty level of 10 has a 
cjk ¼ 1. A person who reports not taking a trip with certainty 0, has a 
cjk ¼ :5. That is, a person with extreme uncertainty about changing trip 
plans is treated as a tossup – .5 chance of trip loss and .5 chance of no trip 
loss. Similarly, a person who reports no trip change (no trip loss) with a 
certainty level of 10 has a cjk ¼ 0. If a person reports no trip loss with a 

Fig. 2. The Effect of Offshore Wind Power Projects on Experience/Enjoyment on RecreationalBeach 
Trips: Making Experience 
Worse, Better, or Having No Effect (Neither) – Somewhat Worse is Included with Worse and Somewhat Better Included with Better. 
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certainly level of 0, the trip loss is cjk ¼ :5. Again, extreme uncertainty 
implies a tossup for trip loss. For no trip change, the probabilities range 
from 0 to 0.5. Certainty levels between 0 and 10 produce intermediate 
cjk’s – giving a continuous variable ranging from 0 to 10.6 

Fig. 4 shows the average certainty-adjusted trip-loss rate for wind 
power projects located at different distances offshore. The solid line is 
the base trip-loss rate – the percentage of respondents who reported that 
they would not have visited the beach if a wind power project were 
present. This includes those who replace the trip with a trip to another 
beach and those who would do something else instead. The dashed line 
depicts only those who reported that they would do something else 
instead (other activities such as going to a park, movie or simply staying 
home). We call this full trip loss, since the person would not have 
replaced the current beach trip with a trip to another beach. Base and 

full trip loss increase with wind-project proximity – the closer to shore, 
the higher the trip loss. Base trip-loss is 29% at 2.5 miles from shore, 
14% at 10 miles, and 5% at 20 miles – all are statistically significantly 
different than 0%. Also, as shown by the Full Trip Loss line, most lost 
trips would have resulted in individuals switching to other beaches as 
opposed to staying home. So, in terms of community impacts, they 
appear to be mostly transfers from one beach to another. 

5.2. Predicting trip loss by beach 

This section presents an approach for predicting trip loss at indi
vidual beaches. Because it is unknown where offshore wind power 
projects will be located, having the flexibility to predict trip loss by 
beach is useful. It also provides a model wherein the correlation of beach 
characteristics with trip loss can be analyzed (e.g., is trip loss more likely 
on developed or undeveloped beaches?). We purposely exclude de
mographic data on our respondents as regressors because most of the 
beaches have few, even single digit or zero visits. In this case, incorpo
rating individual characteristic in the model and simulating it could easily 

Table 3 
The effect of offshore wind power projects on experience/enjoyment on recreational beach trips.  

Distance Turbines are Miles from shore Percent of Respondents Reporting that Experience Would Be … Sample Size 

Worse Somewhat Worse Neither Worse nor Better Somewhat Better Better 

2.5 28.2 24.8 36.6 6.3 4.1 708 
5 22.9 25.0 47.8 2.1 2.1 725 
7.5 14.2 24.1 54.3 5.3 2.1 767 
10 8.6 20.2 61.4 6.1 3.7 717 
12.5 7.0 13.3 66.7 7.7 5.2 767 
15 4.9 11.1 68.2 9.6 6.3 710 
20 3.7 6.3 73.3 9.4 7.3 759 
Total 12.7 17.8 58.5 6.7 4.4 5153  

Fig. 3. The Effect of Offshore Wind Power Projects on Experience/Enjoyment on Recreational. 
Beach Trips: Making Experience Worse, Better, or Having No Effect (Neither) – Somewhat Worse and Somewhat Better included with Neither. 

6 For those changing trip plans, 60% report a certainty level of 8 or higher 
and 84% report 6 or higher. For reporting no change, 57% report 8 or higher 
and 84% report 6 or higher. 
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result in misleading prediction. So, we opted for a model with beach 
characteristics believing beaches of similar type in similar areas would 
have similar visitation rates. The next section introduces demographic 
and attitudinal variables into the model. 

The Trip-Loss Prediction Model has the form: 

cjk ¼ δddistancejk þ δsstatejk þ δttriptypejk þ δbbeachchjk þ εjk (1)  

cjk ¼ probability of visiting another beach or doing something else 
(ranges from 0 to 1as described above),distancejk ¼ vector of stepwise 
dummies for distance wind farm is offshore (2.5 to 20 miles),statejk ¼

vector of dummies for state where wind farm is located off
shore,triptypejk ¼ vector of dummies for trip type (day, short overnight, 
etc.),beahchjk ¼ vector of beach characteristics (width, boardwalk, etc.), 
and, εjk ¼ error term. 

All variables are subscripted by jk since the unit of observation is 
person k’s response to one of three contingent-behavior trip-loss ques
tions at distances indexed by j. The idea is that like beaches in similar 
areas and with similar characteristics should have similar trip loss rates 

that can be predicted using equation (2). The model was estimated by 
ordinary least squares.7 

The behavior underlying the Trip-Loss Prediction Model follows 
discrete choice theory. On each choice occasion, a respondent faces the 
choice of going to one of M beaches or staying home. Define that choice 
set as B ¼ fb0; b1; b2; b3;…; bMg where b0 is the stay-at-home option and 
the other elements in the set are the beaches. We assume each beach and 
the stay-at-home option gives the respondent some utility and that the 
respondent chooses the beach that maximizes utility. That choice is 
defined as MaxfU0;U1;U2;U3; …;UMg, where Um is the utility of visiting 
beach m (or staying at home). For simplicity, assume a respondent 
chooses beach b1, so U1 ¼ MaxfU0;U1;U2;U3; …;UMg. 

Our contingent behavior question asks respondents to reimagine 
their beach choice where the set of beaches is the same but the beach 
with the maximum utility is now assumed to have a wind power project 
located offshore. The reimagined choice set is Bwp ¼ fb0; bwp

1 ; b2; b3;…;

bMg. Now, define an indicator function I½Uwp
1 > MaxfU0;U2;U3; …;UMg�

that takes the value of 1 if the statement in brackets is true and 0 if false. 
That is, is the utility at the chosen beach still the highest even though a 
wind power project is now located there offshore? If yes, then I ¼ 1, if no 
I ¼ 0. So, I ¼ 0 if the respondent reports that he or she would have 
changed trip plans if a wind power project had been located offshore – 
either going to another beach or staying home (or doing something else). 
The Trip-Loss Model models this choice. 

Using random utility theory, we rewrite our indicator function 
including a random component. This recognizes that there are aspects of 
the choice made in the contingent behavior question unknown to us as 
researchers so the choice is not deterministic. Now we define I½Uwp

1 �

MaxfU0;U2;U3;…;UMg þ ε> 0�, where ε is the random component and 
again I ¼ 1 if true and I ¼ 0 if not. Now the problem is set in a probalistic 
form, where the probability that the person changes a trip is 
prðChange TripÞ ¼ prðI½Uwp

1 � MaxfU0; U2; U3; …; UMg þ ε> 0� ¼ 0Þ. 
Since the only thing that changes in a person’s choice set when the wind 
project is introduced is the presence of the project (at different 

Table 4 
Reasons Respondents Gave for Why Offshore Wind power projects Would Make 
Their Experience/Enjoyment Worse or Better.   

Number of 
Respondents 

Percent 

Reasons for Better or Somewhat Better 
Knowing something positive is being done for the 

environment 
175 52.3 

Knowing something positive is being done for energy 
security 

80 23.7 

Knowing something positive is being done for the 
economy 

38 11.2 

The visual appeal of wind turbines on the seascape 37 11.2 
Other 5 1.5 
Reasons for Worse or Somewhat Worse 
The impact of wind turbines on the natural view of 

the seascape 
545 61.5 

Harm to marine environment 256 28.9 
Waste of taxpayer’s dollars 35 3.9 
Interference with navigation 23 2.6 
Other 28 3.1  

Fig. 4. Trip loss due the presence of an offshore wind power project.  

7 A random effects fractional binary logit model and a random effects OLS 
model were also estimated. The random effects were included to account for 
correlation among an individual respondent’s three responses. Neither model 
predicted as well as the simple linear OLS model. 
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distances), we can write this probability for person k for contingent 
behavior question j as 

prjkðChange TripÞ¼ δddistancejk þ εjk; (2)  

which is equation (1) without the covariates other than distancejk. The 
other covariates are included in equation (1) to account for a difference 
in preferences at different beaches and to facilitate prediction. Later we 
add individual characteristics as covariates. 

The OLS Trip-Loss Prediction Model is shown in Table 5. The co
efficients on the distance dummies show an increase in the probability of 
trip loss as turbines are located closer to shore – consistent with Fig. 3. 
The distance coefficients are relative to 20 miles offshore and are sta
tistically significant at 10 miles and closer. These coefficients are 
interpreted as an increase in the probability of trip loss for an increment 
in a specific variable. For example, moving from 20 to 10 miles offshore, 
all else constant, added 8.9 percentage points to the probability of trip 
loss. A large amount of variation is explained by unobserved regional 
(state) effects in the model. For example, Virginia and New Jersey have 
cancellation rates that are 8.5 and 6.2 percentage points higher than 
North Carolina, all else constant. The northern states tend to have 
somewhat higher unobserved regional effects (more trip loss). 

With respect to trip length, the probability of trip loss for long- 
overnight trips (away four nights or more) is 3.7 percentage points 
higher than on day trips. The probability for short-overnight trips (away 
three nights or less) is 3.6 percentage points higher than day trips. In
dividuals may be more sensitive to the character of the beach given the 
larger investments in money and time made in an overnight trip. 

Three variables are used to distinguish the degree of development on 
a beach – presence of boardwalk, high density housing, and designation 
as a local, state, or national park. The presence of a boardwalk decreases 
the probability of trip loss by 7.4 percentage points. This is the single 
most important attribute in the beach characteristics. Beaches with 
boardwalks are the most developed on the East Coast and have the most 

non-beach related activities for beachgoers (amusements, shopping, 
restaurants, etc.). Perhaps beachgoers at these beaches are less con
cerned about the natural features of the beach. At the same time, bea
ches designated as parks have 3.3 percentage point lower trip loss, all 
else constant. Beachgoers at park beaches tend to be more favorable 
toward wind power and correspondingly appear less inclined to report 
trip loss. Housing density has little predictive power. In sum, trip loss is 
lowest on both the more developed and the more natural beaches and 
highest on the beaches of intermediate development. The remaining 
variables in the model mostly have small and insignificant effects. The 
presence of a seawall has a relatively large effect, reducing trip loss by 
3.8 percentage points, but is insignificant. It may be another factor 
acting as a proxy for developed beaches. 

Table 6 shows predicted trip loss using the model at nine selected 
beaches, one in each coastal state in our study. This gives a good sense of 
the variability the model generates and the reasons for that variability. 
The table also shows our estimate for aggregate number of trips to each 
beach, to get a sense of the extent of the effect on a given beach. Trip loss 
here is a weighted average of day, short-overnight, and long-overnight 
trips. Jones Beach (NY) has the lowest trip loss rate and Hyannis Port 
(MA) the highest. The four Mid-Atlantic beaches—Jones Beach (NY), 
Ocean City (NJ), Rehoboth (DE), and Ocean City (MD)—are all devel
oped beaches with boardwalks and in some cases seawalls and this ap
pears to be driving down trip loss on those beaches relative to the others. 
Myrtle Beach (SC) and Wrightsville Beach (NC) have somewhat higher 
trip loss; these are developed beaches but do not have boardwalks, so 
any development effect they may have is not picked up in the prediction 
model. 

These results assume a single wind power project is constructed and 
no others exist. Assuming stable preferences, as wind power projects are 
added, our expectation is that similar trip loss would occur as new wind 
projects are added. To the extent that fewer wind-project-free beaches 
would be available, trip losses may decrease as wind power projects are 
built, since the available substitutes without turbines would be shrink
ing, but eventually saturation would set in (few or no wind-project-free 
beaches) and trip loss may actually stabilize (see Landry et al. (2012) for 
stated-preference evidence of this effect). Welfare losses would pre
sumably increase due the lack of good substitutes, even though trip loss 
declines. 

5.3. Heterogeneity of preferences 

The Trip-Loss Prediction Model in the previous section works well for 
the purpose of predicting trips across different beaches. But we also have 
an interest in the heterogeneity of preferences toward offshore wind 
projects. That is, how do preferences vary by income, education, age, 
recreation type, etc. To this end we also estimated a Trip-Loss Hetero
geneity Model that includes demographics and attitudes. 

We use the same OLS form with the same dependent variable but 
drop the beach characteristic variables and now include individual 
characteristics such as income, age, education, beach attachment, rec
reation type, general attitude toward wind power, residency, and a few 
other related variables. The results are in Table 7.8 

With respective to the demographic variables, we see trip loss rising 
with income and education and declining with age. This is controlling 
for other factors, most notably general attitude toward wind power, so it 
implies offshore wind is more disruptive to higher income and better 
educated groups and perhaps surprisingly to younger people. The edu
cation impact is largest – with college graduates being 11% more likely 
to change trip plans due the presence of a wind power project than those 

Table 5 
OLS trip-loss prediction model.  

Variables Coefficient T-Statistic 

Constant 0.047 0.83 
Distance Offshore (20 Offshore Miles Excluded): 

Distance Offshore 2.5 miles 0.240*** 11.1 
Distance Offshore 5 miles 0.187*** 8.7 
Distance Offshore 7.5 miles 0.111*** 5.2 
Distance Offshore 10 miles 0.089*** 4.1 
Distance Offshore 12.5 miles 0.021 0.99 
Distance Offshore 15 miles 0.011 0.49 

States (North Carolina Excluded): 
Massachusetts 0.034 0.96 
Rhode Island 0.045 1.6 
New York 0.054 1.6 
New Jersey 0.062* 2.2 
Delaware 0.043 1.2 
Maryland 0.009 0.27 
Virginia 0.085* 2.6 
South Carolina 0.019 0.83 

Trip Type (Day Trip Excluded): 
Short Overnight Trip 0.036** 2.3 
Long Overnight Trip 0.037** 2.4 
Any Other Trip 0.005 0.18 

Other Variables (all are dummies except ln(beach width)): 
Ln(Beach Width) � 0.007 � 0.54 
Local, National, or State Park � 0.033* � 1.68 
Summer 0.008 0.61 
High Density Housing 0.006 0.65 
Boardwalk � 0.074*** � 3.29 
Fish Pier 0.018 1.02 
Vehicle Access 0.012 0.53 
Seawall � 0.038 � 0.73 

Note: The dependent variable is certainty-adjusted trip-loss for each respondent, 
ranging from 0 to 1. Sample size ¼ 5168. Adjusted R2 ¼ 0.43. *** indicates 
statistical significance at a 99% level, ** at 95% level and * at 90% level. 

8 We have not included interactive models here (age with distance offshore, 
income with distance offshore, etc.). There is little or no added insight beyond 
the non-interactive models and the number of coefficients becomes rather 
unwieldy. 
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with less than a high school education. The age effect, on the other hand, 
is not large and is just below significance at 90%. For example, lowering 
age from 50 to 30 years of age increases the chances of changing trip 
plans by about 1%. The income effect, while significant, is also not large. 
Increasing annual income from $50 to $100 thousand increases the 
chances of changing plans by 1.25%. 

Attitudes toward wind power as an alternative source of energy are 
highly correlated with trip loss. Approximately 2% of the sample re
ported that they oppose wind power and another 3% reported that they 
somewhat oppose wind power. (Note: this is oppostion to the idea of 
wind power generally in the US as a source of alternative energy.) These 
respondents are 51% and 22% more likely to change trip plans if a wind 
power project was present than individuals who are indifferent to wind 
power. On the other hand, the 42% who favor and 26% who somewhat 
favor wind power are 10% and 1% (without significance) more likely to 
not change trip plans than those who are indifferent. There is an 
asymmetry in intensity here where the negative attitudes are a larger 
driving force than positive attitudes. It is important to note that many 
people in the sample who favor wind power contribute to our trip loss 
result. They like the idea wind power but really don’t want the inter
ference on a beach trip. A sort of NIMBY for recreation trips. This creates 
the asymmetry in intensity. 

Type of recreation is also correlated with trip loss. The activities on 
or near the water show greater loss than those less involved with the 
beach. So, for example, those whose most important activity while at the 
beach is boating are 10% more likely to change trip plans versus those 
who report boardwalk and other community activities as most impor
tant. Those reporting activities on the water (swimming, surfing, etc.) as 
most important are 8% more likely. And, those reporting sand activities 
(sunbathing, reading, etc.) as most important are 5% more likely. 
Shorefishing and four-wheel driving on the beach also have effects near 
5% (without statistical significance) and visiting nearby waterways near 
10% (without significance). Since all of these are relative to boardwalk/ 
local community, this group is by implication the least affected by the 
wind power projects. 

A difficulty with stated preference surveys is that they are not based 
on actual experiences by respondents. In our study, the beach trips are 
actual experiences but the beach with a wind power project present is 
hypothetical. To account, at least in part, for experience with wind 
turbines, we asked respondents if they had seen turbines in the past and 
how frequently. The idea here is that individuals with past experience 
may have a more realistic perception of what offshore wind power 
projects may look like and hence have more fixed and reliable revelation 
of preferences. Our results show that the more visual experience re
spondents have with wind power projects, the more likely they are to 
change trip plans if an offshore project were present. These effects range 
from an approximate 3% increase in trip loss for those seeing turbines 
between 1 and 25 days annually to a 6% increase in trip loss for those 
seeing turbines more that 25 days. These results run counter to Boyle 
et al. (2019) and Ladenberg (2009), who find past experience correlated 
with higher acceptance. 

We hypothesized that owning property near to a beach or 

“attachment” to a beach, which may come from a long history or family 
experience of visiting a beach, might be correlated with trip loss.9 For 
both, the cost of changing trip plans is a larger proposition than for an 
occasional visitor. We find for respondents with residences within five 
miles of the shore that the likelihood of trip loss is 2% less all else 

Table 7 
OLS trip-loss heterogeneity model.  

Variables Coefficient T-Statistic 

Constant � 0.159 � 1.6 
Distance Offshore (20 Offshore Miles Excluded): 

Distance Offshore 2.5 miles 0.247*** 12.3 
Distance Offshore 5 miles 0.193*** 9.7 
Distance Offshore 7.5 miles 0.113*** 5.7 
Distance Offshore 10 miles 0.083*** 4.1 
Distance Offshore 12.5 miles 0.025 1.3 
Distance Offshore 15 miles 0.015 0.8 

Trip Type (Day Trip Excluded): 
Short Overnight Trip 0.042*** 3.0 
Long Overnight Trip 0.035** 2.5 
Any Other Trip 0.021 0.8 

Level of Attachment Self-Reported (No Attachment Excluded): 
Modest Attachment � 0.017 � 1.4 
Strong Attachment 0.023 1.5 
Wind Preference (Neither Favor nor Oppose Excluded): 

Favor Wind Power � 0.096*** � 6.9 
Somewhat Favor Wind Power � 0.013 � 0.9 
Somewhat Against Wind Power 0.224*** 6.7 
Against Wind Power 0.512*** 12.9 

Most Preferred Activity (Boardwalk Activities Excluded): 
Water Activities (Swim, Surf, etc.) 0.077*** 5.2 
Sand Activities (Sunbath, read, etc.) 0.053*** 3.8 
Boating 0.105*** 3.1 
Nearby Waterbodies (Clamming etc.) 0.102*** 2.8 
Shore Fishing & 4-Wheel Drive 0.047 1.6 

Frequency of Beach Visits Per Year (Never or Almost Never Excluded): 
More than 5 times per year � 0.058 � 1.3 
Between 1 to 5 times per year � 0.055 � 1.3 
Once every 2 years to less than once every 5   

Years � 0.047 � 1.1 
Education (Less than High School Excluded): 

High School 0.060** 2.5 
Some College 0.102*** 4.2 
Bachelor’s Degree or Higher 0.112*** 4.6 

Days Wind Turbine Seen (Never Seen Excluded): 
1–10 days 0.038*** 3.1 
10–25 days 0.029 1.2 
More Than 25 days 0.056*** 2.7 

Residence less than 5 miles from ocean beach � 0.039** � 2.3 
Summer � 0.001 � 0.1 
Log Age � 0.021 � 1.5 
Log Income 0.018*** 2.6 

Note: The dependent variable is certainty-adjusted trip-loss for each respondent, 
ranging from 0 to 1. Sample size ¼ 5168. Adjusted R2 ¼ 0.43. *** indicates 
statistical significance at a 99% level, ** at 95% level and * at 90% level. 

Table 6 
Weighted Average Predicted Trip-Loss Rates (%) at Nine Selected Ocean Beaches Trip losses are weighted averages of day, short-overnight, and long-overnight trips.  

Beach Distance in miles Number of Trips (Millions) 

2.5 5 7.5 10 12.5 15 20 Day Short Long 

Hyannis Port, MA 35.5 30.1 22.5 20.3 13.5 12.5 11.4 0.28 0.11 0.03 
Sachuset, RI 30.2 24.8 17.2 15.1 8.2 7.3 6.2 1.09 N/A N/A 
Jones Beach, NY 21.3 16.0 8.3 6.2 0.2 0.1 0.0 3.12 0.18 0.06 
Ocean City, NJ 36.0 27.5 18.7 16.3 8.4 7.3 6.0 1.01 0.31 0.20 
Rehoboth, DE 27.0 21.7 14.0 11.9 5.1 4.1 3.0 0.74 0.86 0.28 
Ocean City, MD 26.0 20.6 13.0 10.8 4.0 3.0 1.9 2.58 1.05 1.01 
Chincoteague, VA 34.4 29.1 21.4 19.3 12.5 11.5 10.4 0.32 0.14 0.07 
Wrightsville, NC 30.8 25.5 17.8 15.7 8.9 7.9 6.8 0.85 0.12 0.16 
Myrtle Beach, SC 34.6 29.2 21.6 19.4 12.6 11.6 10.5 1.89 2.33 3.17  

9 See Devine-Wright and Batel (2017) and Lewicka (2010) for more on place 
attachment. 
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constant. We also see some effect for those reporting “strong attach
ment” – again about 2% trip loss (just below statistical significance), but 
none for those reporting “modest attachment.” A major reason these 
effect may not be large is the large number of substitutes beaches nearby 
– similar in location and physical character. 

Finally, we explored the effects of trip type (day versus overnight) 
and trip frequency. We have already reported on the effect of trip type in 
our Trip-Loss Prediction Model. These are stable across the model with 
overnight trips showing roughly 4% higher trip loss. Trip frequency is 
weakly correlated with a decrease in trip loss but potentially large – 
about 5% higher trip loss for frequent versus infrequent visitors (but 
without statistical significance). 

5.4. Trip-loss findings in other studies & a robustness check 

Here we compare our trip-loss results with four other contingent- 
behavior studies (Lilley et al., 2010, Landry et al. (2012), Voltaire 
et al. (2017), and Fooks et al. (2017)) and with a robustness check we 
conducted with in-person data using the same visuals used in our 
internet-based survey. The comparison is shown in Fig. 5. 

Lilley et al. (2010) conduct on-site surveys at several beaches in 
Delaware of out-of-state beachgoers. Their visual simulation has 130 
430-foot turbines. As shown, their trip-loss rate tracks reasonably well 
with ours. Landry et al. (2012) gather phone-survey data in North Car
olina (Outer Banks) over a sample of coastal-county residents. They ask 
people if they would change their next trip to the beach if there were 
100 400-foot high turbines located one-mile offshore at their preferred 
beach. Later they ask respondents how many fewer (or more) trips they 
would take to all beaches in the region if there were similar wind power 
projects along the entire coastline (31 beaches in North Carolina). Re
spondents are not shown a visual; they are simply told to imagine a wind 
power project is present. Their trip-loss at for wind turbines at one-mile 
offshore is 11% for their single-beach case and about 1% for the 
many-beaches case. These are the lowest trip-loss rates of all five studies. 

Their results are shown as points, since they do not consider different 
distances. Fooks et al. (2017) analyze on-site data from two Delaware 
beaches. Respondents are asked to participate in a laptop exercise where 
they can move a photo-simulated offshore wind power project to a point 

where it would cause them to no longer visit the beach. Their 
photo-simulations show 100 90-m tall turbines. Voltaire et al. (2017) 
setting is the Catalan coastline in Spain along the Mediterranean Sea. 
Individuals are intercepted at eight different beaches and given a 
contingent-behavior survey. The analysis has two distinct density sce
narios for respondents to consider: 2 large wind power projects or 8 
small wind power projects. Both projects are shown at 1.8 miles and 12.5 
miles offshore. Their results are close to Fooks et al. (2017) and Lilley 
et al. (2010) at near distances and are much larger than all studies at far 
distances. Fig. 5 also includes the results for an in-person validity check 
we conducted using the same visuals as in our internet survey. We 
incepted people at a large all-day university event highlighting research 
and enhancing understanding of the coastal and ocean environment and 
showed them a four-foot poster board of the visuals similar to the ones 
used in our internet survey. Individuals (n ¼ 392) viewed wind turbines 
at the same seven distances and answered similar contingent behavior 
questions. The results show mostly a lower trip-loss in response to wind 
power projects but are not dramatically different than the internet sur
vey. There are innumerable reasons why differences might show up 
across these studies including context/setting, affected populations, 
methodology, time periods, sample sizes, statistics, and so forth. With so 
few studies to date, we do not (in effect) have the degrees of freedom 
needed to understand why these differences emerge. It is interesting to 
note that there is some convergence among Mid-Atlantic studies and the 
outliers (Landry et al. (2012) and Voltaire et al. (2017)) maybe 
explained by respondents seeing no visuals (in the case of Landry et al. 
(2012)) and by the setting being in the Mediterranean (Voltaire et al. 
(2017)), which is different dramatically in context/setting than the 
Mid-Atlantic. Nevertheless, transferring these result wholesale is risky 
business and should be done only with caution. 

Finally, there are three choice experiments where trip loss can be 
inferred for large-scale offshore wind power projects: Landry et al. 
(2012), Westerberg et al. (2013), and Lutzeyer et al. (2018). These 
studies are less amenable to predicting trip loss from current levels given 
how their experiments are constructed but all show potential for a loss. 
Landry et al. (2012) finds a potential for losses at one mile offshore on 
ocean beaches in North Carolina and no loss at one and four miles 
offshore on the neighboring estuary. This analysis is done alongside the 
contingent behavior analysis described above. Westerberg et al. (2013) 
results on the French Mediterranean show large effects at 3.1 and 5 miles 
offshore but taper at 7.5 miles and Lutzeyer et al. (2018) report that “[w] 
e find that 55 percent of existing customers would not re-rent their most 
recent vacation property if wind turbines were placed offshore.” The 
latter is for beach rentals in North Carolina and is probably an over
statement but it unquestionably the study finding the largest potential 
impact. Counterbalancing this is a revealed preference study by Car
r-Harris and Lang (2019) using a difference-in-difference hedonic-like 
analysis of rental properties before and after the construction of the 
Block Island project. They find positive effects on visitation from the 
new project. 

6. Trip gain 

Our survey was designed primarily to understand the potential 
negative effects, if any, of offshore wind power projects on beach use 
and tourism since this is the issue mostly discussed in policy formation. 
However, policy makers also have an interest in understanding the 
likelihood that offshore wind power projects may (at least in the short 
run) be viewed as tourist attractions and generate additional curiosity 
trips. 

With this in mind, we asked beachgoers if they would take a curiosity 
trip to see a wind power project if one was constructed offshore, and if 
so, how many trips they expect to take. For each respondent, the wind 
power project was randomly placed on one of eighteen East Coast bea
ches (two for each coastal state) and placed at one of our seven distances 
offshore. For the most part, curiosity trips are insensitive to offshore 

Fig. 5. Comparison of trip-loss in recent studies.  
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distance, though there is a significant drop off at 20 miles where visi
bility is limited. The share of respondents reporting that they would take 
a curiosity trip ranges from a low of 3.6% at 20 miles offshore to a high 
of 11.4% at 12.5 miles offshore. A few points to keep in mind with this 
response data. First, respondents taking curiosity trips could be traveling 
from home, could be on a visit to another beach, or could be visiting the 
area for another reason. Second, the question did not specify when in the 
future the trip(s) might be taken. Of the respondents reporting that they 
would take a special trip, 75% report that they expected to take only one 
trip, 24% reported 2 to 5 trips, and 1% more than five trips. Most are 
one-time trips. 

This response data imples that a wind power project may generate on 
the order of 10–12 million trips just for curiosity. If this is spread over 10 
years, that is 1 million special/curiosity trips per year – a large number 
for most East Coast beaches. As a point of reference, the most popular 
beaches have 7.4 million (Mrytle Beach, SC) to 4.6 million (Ocean City, 
MD) trips per year, while the least visited have under 100 thousand per 
year. This implies the potential for a large offsetting impact on the local 
beach community installing a wind power project. We expect these ef
fects to dissipate for successively added wind power projects as their 
novelty wears off. But, keep in mind that our research does not speak 
directly to this effect. Still, this result along with the findings by Car
r-Harris and Lang (2019) imply early trip gain would not be a surprise.10 

We also asked respondents who reported somewhat better or better 
in response to the effect of wind turbines on their beach experience (our 
first contingent behavior question) if they would have visited another 
nearby beach if the wind power project had been located there instead of 
at the beach they visited. About 2% report that they would seek out the 
such beaches for recreation. While this number is small relative to the 
percent who report leaving a beach if a wind power project was present, 
the number of other beaches with possible switches is large so the total 
effect may be larger than expected. Based on several of the open-ended 
responses we received in the survey, we believe many of these trips are 
like curiosity trips and may double count the special trips reported 
above. Still, some fraction may be new recreation trips to wind-project- 
based beaches and this reinforces our preliminary finding that there may 
be large offsetting effects to the losses reported in the previous section at 
least in the early years. 

7. Conclusion and policy implications 

Our results imply that large-scale offshore wind power projects (100 
turbines) will affect recreational beach use on the East Coast of the 
United States in negative and positive ways. The nearer a wind power 
project is located to shore, the larger the negative effect. At 2.5-miles 
offshore, 53% of the respondents report that their beach experience 
would be made somewhat worse or worse and 29% report that they 
would seek out another beach or do something else (most seeking out 
another ocean beach). At 20-miles offshore only 10% of the respondents 
report that their experience would be made somewhat worse or worse 
and only 5% report changing trip plans. Of respondents who reported 
that wind power projects would make them worse off, 62% said the 
effect on the visual seascape was the most important reason. 

A smaller, but significant share of the sample report that wind tur
bines would make their experience somewhat better or better – 10% if a 
wind power project is 2.5-miles offshore and 17% if a wind power 
project is 20-miles offshore. At 15-miles and further offshore, more re
spondents report being made better than worse off. Of those made better 
off, 52% report the most reason is knowing something positive is being 
done for the environment. 

We also find that offshore projects are likely to generate a significant 
number of curiosity trips (at the first generation of projects) and serve as 

tourist attractions. This could be on the order of one million trips 
annually, which is a large upswing for smaller beaches on the East Coast. 

When we compare our trip-loss estimates to other studies in the 
literature, we find reasonable correspondence with some but they vary 
considerably from others. Landry et al. (2012) find very low trip loss for 
wind power projects even as close at one-mile offshore (11%) and Car
r-Harris and Lang (2019) find positive effects on rentals on Block Island, 
while Lutzeyer et al. (2018) and Voltaire et al. (2017) find losses 
exceeding 50% even at distances of over 15-miles offshore. We are some 
ways from a consensus on what the effects from offshore wind power 
projects will be on recreational beach use. And, clearly there is no single 
answer – it will be context depend. 

Moreover, the landscape of US offshore wind power has changed 
somewhat since our study: States have ramped up demand for offshore 
wind power with both policies and commitments; developers, as the part 
of contracts for sale of offshore wind-derived electricity projects, have 
commitment to economic development in those states; the states in turn 
have made bets on infrastructure (e.g., ports), supply chain develop
ment, and worker training; projects have grown in size from a mere 30 
MW to over 1000 MW; costs have come down dramatically and concerns 
over coastal hazards, including storm surge, sea level rise, and precipi
tation events and the need for mitigation, resiliency and adaptation have 
only become more acute, which themselves greatly threaten coastal 
tourism economies. These changes suggest that the states and coastal 
tourists may be more likely to accept some degree of visual intrustion. At 
the same time, the visual effects are likely to be different (maybe larger) 
than the ones we modeled here. The wind turbines to be installed will be 
between 9 and 12 MW rather than 6 MW. The 12 MW wind turbine is 
49% higher, but society will require roughly half as many wind turbines 
(the precise ratio will depend on the relative capacity factors of the 
turbines) to generate the same amount of electricity, and the space be
tween wind turbines will be 47% greater, assuming similar spacing, 
which is based on rotor diameter. With the present study providing an 
appropriate baseline, these changes suggest additional research into the 
question of tourism effects is warranted. 
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