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ARTICLE INFO ABSTRACT

Keywords: We use contingent-behavior data from a stated-preference survey to estimate the effect of offshore wind power
Wind projects on recreational beach use on the East Coast of the United States. The data are from an internet-based
Offshor-e probabilistic sample of beachgoers (n = 1725) visiting beaches from Massachusetts to South Carolina in 2015.
Recreation . . . . . . .

Tourism The contingent-behavior data are based on responses to visual simulations of wind power projects at seven

different distances offshore (2.5-20 miles) in clear and hazy conditions and at night. We consider the effect on
beach enjoyment/experienceand trips taken to a beach. As expected the nearer the projects are to shore, the
greater their negative effect. For example, at 2.5-miles offshore, 29% of the sample state they would not visit the
beach compared to only 5% at 20-miles offshore. Offsetting the negative effects, we also find evidence of
potentially a large numbers of curiosity trips to view offshore wind power projects.

1. Introduction

The first offshore wind power project in the United States began
operation in December 2016 near Block Island, Rhode Island (Firestone
et al., 2020; Firestone et al., 2018). This five-turbine, 30 MW (MW
project, which is located about 5 km from Block Island and 26 km from
the mainland Rhode Island coast will be followed by much larger pro-
jects. There are offshore wind-specific targets in most states from Vir-
ginia to Massachusetts cumulatively totaling almost 26 000 MW as of
March 2020. There are also thirteen active commercial wind leases on
the outer continental shelf' (OCS) and the Bureau of Ocean Energy
Management (BOEM) has issued at least one wind energy lease adjacent
to every state from Massachusetts to North Carolina except Connecticut.
All of this, along with declining cost in the industry, suggests growth in
offshore wind power in the coming decades.

Along with this interest comes a concern about the potential effect
such projects may have on coastal tourism and recreational beach use.
The East Coast is a major tourist destination and altering the seascape
may be consequential. Well-known conflicts with local populations over

* Corresponding author.

proposed projects, such as Massachusetts’ Cape Wind power project,
highlight this concern. At the same time, wind power projects may
attract visitors curious to see wind turbines in operation and/or to be on
a beach with a “green” outlook. The purpose of this paper is to estimate
the effect of large offshore wind projects on recreational beach use on
the East Coast of the United States.” The primary focus is on the negative
external effects, which are the most prominent in the debate about
offshore wind power, but we also have estimates to report on wind
turbines as tourist attractions.

Since there are no large-scale offshore wind power projects on the
East Coast for which we might observe impacts, we use contingent-
behavior data wherein we ask East Coast beachgoers their reactions to
visual simulations of what the wind power projects might like look.
Specifically, they were shown simulations and asked to report if the
presence of such projects would have: (1) affected their beach experi-
ence/enjoyment, (2) caused them to change trip plans, and/or (3)
caused them to take a special trip to see the turbines. This paper presents
an analysis of the response data to these questions. It covers ocean
beaches from Massachusetts to South Carolina and respondents from the

E-mail addresses: gparsons@udel.edu (G. Parsons), jf@udel.edu (J. Firestone), Ixyan@scau.edu.cn (L. Yan), jtoussaint@udel.edu (J. Toussaint).
1 The OCS, with some exceptions (none of which apply to the Atlantic of the east coast states), begins at 3 nautical miles from shore.
2 The research was done for the Bureau of Ocean Energy Management (BOEM) under contract M12AC00017 and received additional funding from the and the
National Oceanic and Atmospheric Administration (NOAA) Sea Grant Program at the University of Delaware.
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twenty East Coast states (plus Washington, DC) shown in Fig. 1.

Understanding the effect of wind power projects at different dis-
tances offshore is an important feature of our research. While siting
turbines further from the shore is feasible and reduces the visual dis-
amenity, it comes at an increase in construction, maintenance, and
energy-delivery cost (Samoteskul et al., 2014). Understanding this
tradeoff has important policy implications for project location and size.
Another important feature of our research is having a model capable of
measuring effects on any beach on the East Coast, since where the
projects will be located is uncertain and nearly the entire coastline is in
play. We are also interested in predicting how the effects may vary be-
tween day-versus overnight trips since this has implications for local
effects. Finally, we have an interest in heterogeneity: Do effects vary by
income class? Education? Attitude toward wind power? Recreation
uses? We explore all of these questions in this paper, which includes a
non-parametric presentation of the response data and parametric
models for predicting trip loss.

Our work is preceded by at least six studies using stated-preference
data to understand the effects of offshore wind power on beach use:
Lilley et al. (2010), Landry et al. (2012), Fooks et al. (2017), Voltaire
et al. (2107), Lutzeyer et al. (2018), and Westerberg et al. (2013). We
will discuss these later and compare them to our results. There are also
stated-preference studies that consider offshore and onshore wind in a
broader context,but are not focused on beach use. These include
Ladenburg and Dubgaard (2007), Ladenberg (2009), Krueger et al.
(2011), and Boyle et al. (2019). And finally, there are hedonic price
studies aimed at understanding the effects of wind power projects on
property values. Some examples are Sunak and Madlener (2016) and
Heintzelman and Tuttle (2012).

2. Sample and study design

The survey design and sampling strategy was done at the University
of Delaware. It involve a four-way interacton with Qualtrics, Macro-
works, GfK Interantional, and the University of Delaware.’ It included
economists, statisticians, survey researchers, and programers. Qualtrics
is the web-based platform we used to create the survey. Macroworks
created the photomontages — the seascape-panning simulations of the
wind power projects. GfK International implemented the survey using
their KnowledgePanel - the largest online panel representative of the US
population. The four-way interaction was required to get the photo-
montages from Macroworks operating in a Qualtrics survey seemleesly
to respondents on the GfK platform where the survey was launched and
the privacy of its sample was protected. After several interations, code
swapping, and numerous tests, the final product satisfied our needs.

We used Qualtrics, because it to allowed us to use complex skip
patterns and to reference the “external” photomontages in a simple way.
We pretested the survey with faculty, staff, and graduate students. Later
it was pretested with a GfK sample. The photomontages were created by
Nik Hennessy in Ireland at Macroworks. Macroworks specializes in the
creation of images of wind power (and other) large energy projects. The
simulation we use was created on a beach at Assateague Island, VA. We
choose Assateague Island because of the natural setting and its physical
representativeness of East Coast beaches. Also, we wanted simulations
to exclude people to avoid bias and unwanted anchoring effects. The
natural setting at Assateague made this easy. We chose GfK International
because it is one of a few survey research firms that provide probabilistic
samples — samples from the population that mimic random draws. We
drew samples of beachgoers and non-beachgoers from the 20 states
shown in Fig. 1. We sampled from each state in proportion to its

3 The relevant links are: GfK (http://www.gfk.com), Macroworks (http:
//www.macroworks.ie), and Qualtrics (https://www.qualtrics.com/).
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Fig. 1. Ocean beaches covered in the survey and states sampled.

population (respondents over 18 years old) and oversampled beach-
goers.” A beachgoer is anyone who had visited a beach in 2015. GfK was
responsible for contacting the respondents and directing them to our
survey using their protocol, which includes incentives, follow ups, etc.
See GfK International (2017) for details on their methodology. We focus
on the beachgoer sample (n = 1725) in this article. The core of the
survey asks respondents about their trips to ocean beaches from Mas-
sachusetts (as far north as Cape Cod) to South Carolina. Hereafter, an
“East Coast Beach” is any ocean beach from Massachusetts (as far north
as Cape Cod) to South Carolina, and a “beachgoer” is a respondent who
visited at least one of these beaches in 2015.

Part 1 of the survey asked respondents to report the frequency with
which they typically visit East Coast ocean beaches, the type of activities
they participate in while there (e.g., swimming, sunbathing, shopping,
and so forth), and whether they or anyone they know owns property
near the beach. Part 2 asked respondents to report all the East Coast
ocean beaches they visited at least once in 2015. Then, one beach was
randomly drawn from the set of chosen beaches for detailed questioning.
The details included type of trip (day, short-overnight, long-overnight,
extended stay, or side trip), length of stay, activities while there, and
expenditures.

Part 3 focused on contingent-behavior questions. Using the beach
randomly drawn in Part 2, respondents were asked to imagine that a
wind power project was present offshore and that they were aware of its
presence before making the trip. Respondents were then shown the
panning photomontages that included views in clear weather, hazy
weather, and at nighttime. A visual with no wind power project was also
shown as a point of comparison. The hypothetical project depicted in all
photomontages included 100 turbines: each turbine was 6 MW and was
175 m high (blade at apex) with a rotor diameter of 150 m. They were
spaced eight rotor diameters from one another, or 1.2 km apart, in a 10
by 10 grid format. Respondents were also provided instructions on the

4 GfK provided relevant sampling weights, which we used throughout this
paper.
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distance to the screen from which they should view the images—a dis-
tance which is dependent on the size of the screen. Respondents guided
their way through a series of portals in which the different views were
possible. Each respondent was asked to view the project at three dis-
tances offshore — near, medium and far. The viewing order was
randomly chosen with distances ranging from 2.5 to 20 miles.”

After each distance was viewed, respondents were asked whether the
presence of the wind power project would have affected their beach
experience/enjoyment — making it worse, somewhat worse, neither
worse nor better, somewhat better, or better. If they responded worse or
somewhat worse, they were then asked if it would have affected their
trip—that is, would they have made the same trip, visited another beach
instead (and if so which beach) or done something else. If they reported
better or somewhat better, they were asked if they would have visited
another beach if the wind power project had been there instead. Finally,
if they responded neither worse nor better to the enjoyment/experience
question, they moved on in the survey. Respondents were also asked
whether they would make a special trip just to see an offshore wind
power project. This question was intended to get at the idea that the
projects themselves may generate curiosity trips. Finally, in Parts 4 and
5 of the survey we gathered more data on beach trips and demographic
data not available through GfK.

3. Background data

Table 1 shows the sample demographics for age, income, education,
and gender over the beachgoer samples. The U.S. Census Bureau data
are included in the table for comparison. Of course, the beachgoing
population is not distributed the same as the general population.

By state, New Jersey had the highest visitation rate, followed by

Table 1
Sample demographics.

Demographic Category Beachgoers (n = 1725) Census Data 2015

Percent Percent
Age
18-24 years 11.9 12.6
25-34 years 19.7 17.1
35-44 years 19.6 16.4
45-54 years 15.6 18.1
55-64 years 18.6 16.7
65-74 years 11.3 11.0
75 + years 3.3 8.2
Education
Less than High School or 6.9 12.3
GED
High School or GED 25.8 29.5
Some College or Assoc. 26.9 26.4
Degree
College or Higher 40.4 31.8
Household Income (thousands)
Less than $10 per year 4.5 7.4
$10 — 14.9 per year 1.9 5.3
$15 - 24.9 per year 3.7 10.4
$25 - 34.9 per year 7.2 9.8
$35 — 49.9 per year 10.5 13.0
$50 - 74.9 per year 15.0 17.4
$75 — 99.9 per year 20.0 12.1
$100 - 149.9 per year 24.8 13.4
$150 + per year 12.3 11.1
Male 51.6 48.8

5 The simulations may be viewed at www.macroworks.ie/boem/. An active
version of the survey may be viewed at https://delaware.cal.qualtrics.
com/SE/?SID=SV_3TKJE5B2QKR6B1z.
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South Carolina and North Carolina. Delaware had the lowest rate and
Rhode Island was second from the bottom. The most visited beach was
Myrtle Beach (SC), followed by Ocean City (MD), Virginia Beach (VA),
Atlantic City (NJ), Rehoboth Beach (DE), and Jones Beach (NY). The
top-ten beaches accounted for 36% of all trips. Table 2 shows the fre-
quency of beach visitation by the beachgoer sample. As shown, 21% go
more than five times per year, 57% go between 1 and 5 times per year,
and 22% go less than once per year.

The most important activities when visiting the beach were sand
activities (sunbathing, beachcombing, etc.) at 37%, water activities
(swimming, surfing, etc.) at 28%, and boardwalk/community activities
(shopping, sightseeing, etc.) at 25%. The summer months (June, July,
and August) dominated the time periods for trip taking at nearly two-
thirds of all trips. The distribution of respondents by types of trips
taken is: 42% daytrips, 26% short-overnight trips (three or fewer
nights), and 28% long-overnight trips (four to 29 days). The remaining
4% are side trips (trips made to a beach while visiting the area for other
purposes), extended stays (over 30 days away from home), or excursions
(trips to the beach that are part of a longer multiple-purpose trip).

Finally, respondents were asked if they favor the idea of expanded
use of wind power in the United States — 42% favor, 26% somewhat
favor, and 27% neither favor nor oppose while only 3% somewhat
oppose and 2% oppose. About 58% reported that they were aware that
offshore wind power on the East Coast was being considered as an en-
ergy source; 61% reported having seen a land-based or ocean-based
wind power project.

4. Beach experience/enjoyment

Fig. 2 shows the response data for the first contingent-behavior
question: the reported effect of offshore wind power projects on expe-
rience/enjoyment while visiting the beach. The figure separates the
responses according to whether the wind power project would have
made the experience worse, better, or neither worse nor better. The line
labeled “worse” combines the responses somewhat worse and worse and
the line labeled “better” combines somewhat better and better.

The figure shows that the closer the turbines are to shore, the more
likely a respondent is to report a worse beach experience. At 2.5 miles
offshore, 53% of our respondents reported that turbines would have
made their experience/enjoyment somewhat worse or worse. The per-
centage drops monotonically till we reach 10% at 20 miles. Conversely,
the percent reporting that turbines would have made their experience
somewhat better or better increases as the turbines are placed further
offshore. At 2.5 and 5 miles offshore, 10% and 4% report somewhat
better or better. At 20 miles, 17% report somewhat better or better.
Similarly, those reporting no effect (neither worse nor better) increases
as the wind turbines are placed further from the coast, at 2.5 miles 37%
percent report neither worse nor better, and at 20 miles 73% report
neither worse nor better. At distances of 5 miles and greater, neither
worse nor better is the largest response category. The effect of distance is
less pronounced (in absolute terms) on those respondents reporting
somewhat better or better than it is on those reporting somewhat worse

Table 2

Frequency of beach visitation by respondents.
Frequency of Beach Visits Beachgoers

Number of Respondents Percent

More than 5 times per year 366 21.3
Between 1 and 5 times per year 988 57.4
Once every 2 years 206 12.0
Once every 3 to 5 years 73 4.3
Less than once every 5 years 57 3.3
Almost never 28 1.6
Never 5 0.3
Total 1723 100
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Fig. 2. The Effect of Offshore Wind Power Projects on Experience/Enjoyment on RecreationalBeach

Trips: Making Experience

Worse, Better, or Having No Effect (Neither) — Somewhat Worse is Included with Worse and Somewhat Better Included with Better.

or worse. Consider the difference between the percentage of respondents
reporting worse and better—the net-worse effect—as a function of dis-
tance. It is 43% at 2.5 miles, 19% at 10 miles, 0% at 15 miles, and —7%
at 20 miles (i.e., more respondents reported better off than worse off).
The break-even point is at 15 miles, where an equal number reporting
worse as better.

Table 3 disaggregates the worse responses by somewhat worse and
worse and does the same for the better responses. This gives us a sense of
the intensity of the effects on experience. First, we see that the somewhat
responses are larger than their non-somewhat counterparts in all cases
but for worse at 2.5 miles. This is where the turbines are the most
intrusive and where a more intense response might be expected.
Otherwise, the results indicate a more muted response than Fig. 2. The
better and worse responses (without the somewhats) are in single digits
at every distance but for worse at 2.5, 5, and 7.5 miles. And the better
responses are not significantly different from zero at any distance. This
all suggests that but for the worse impacts at the nearest distances, the
effects are not large. Fig. 3 reimagines the table by combining the
somewhat responses with neither — treating them as “soft” responses.
Again, with the expectation of worse responses at near distances the
impacts are not large using this interpretation.

If respondents reported that their experience would be made worse
or better due to the presence of offshore wind turbines, they were asked
why? As shown in Table 4, the list of responses provided to respondents
differed between those answering worse and those answering better.
The most common reason given for worse was “the impact of wind
turbines on the natural view of the seascape.” About 61% of the re-
spondents reported this response followed by 29% reporting harm to
marine life. The most common response given for better is “knowing
something positive is being done for the environment (examples: climate
change, air pollution)” at 52% followed by “knowing something positive
is being done for energy security” at 24%, “knowing something positive
is being done for the economy” at 11%, and “the visual appeal of wind
turbines on the seascape” also at 11%. Negative effects appeared to be
precipitated by aesthetics and to a lesser extent concerns over harm to
the marine environment, while positive effects were precipitated by

feelings of doing good for society. These responses are consistent with
Figs. 2 and 3. The worse lines increase with proximity (sensitive to
view), while the better lines are rather flat (not sensitive to view).

5. Trip loss
5.1. Trip-loss rates

If respondents reported that the presence of a wind power project
would make their experience somewhat worse or worse, they were asked
if the presence of the turbines would have caused them to visit another
beach or do something else. If the respondent reported that the wind
turbines would have made their experience/enjoyment neither worse
nor better, somewhat better, or better, it is assumed that they would
have continued to visit the same beach and were not asked the follow-up
question. These response data are used to define trip loss. It is important
to keep in mind that “trip loss” pertains to the beach where a wind power
project was to be located. It goes without saying that a lost trip at one
beach may be a gained trip at another, which we will discuss shortly.

The trip loss contingent-behavior question was followed by a
certainty-response question. Specifically, we asked “How certain are you
that this is what you would have actually done?” The response format
ranges from 0 to 10, where O = extremely uncertain, and 10 = extremely
certain. We used the response to this question to construct a certainty-
adjusted trip loss (cj) that ranged between 0.5 and 1 for changing trip
plans and between 0 and 0.5 for not changing trip plans. So, for example,
a person who reports not taking a trip with a certainty level of 10 has a
cix = 1. A person who reports not taking a trip with certainty 0, has a
cjx = .5. That is, a person with extreme uncertainty about changing trip
plans is treated as a tossup — .5 chance of trip loss and .5 chance of no trip
loss. Similarly, a person who reports no trip change (no trip loss) with a
certainty level of 10 has a c = 0. If a person reports no trip loss with a
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Distance Turbines are Miles from shore

Percent of Respondents Reporting that Experience Would Be ...

Sample Size

Worse Somewhat Worse Neither Worse nor Better Somewhat Better Better
2.5 28.2 24.8 36.6 6.3 4.1 708
5 22.9 25.0 47.8 2.1 2.1 725
7.5 14.2 24.1 54.3 5.3 2.1 767
10 8.6 20.2 61.4 6.1 3.7 717
12.5 7.0 13.3 66.7 7.7 5.2 767
15 4.9 11.1 68.2 9.6 6.3 710
20 3.7 6.3 73.3 9.4 7.3 759
Total 12.7 17.8 58.5 6.7 4.4 5153
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Fig. 3. The Effect of Offshore Wind Power Projects on Experience/Enjoyment on Recreational.
Beach Trips: Making Experience Worse, Better, or Having No Effect (Neither) — Somewhat Worse and Somewhat Better included with Neither.

certainly level of 0, the trip loss is cx = .5. Again, extreme uncertainty
implies a tossup for trip loss. For no trip change, the probabilities range
from 0 to 0.5. Certainty levels between 0 and 10 produce intermediate
cj’s — giving a continuous variable ranging from 0 to 10.°

Fig. 4 shows the average certainty-adjusted trip-loss rate for wind
power projects located at different distances offshore. The solid line is
the base trip-loss rate — the percentage of respondents who reported that
they would not have visited the beach if a wind power project were
present. This includes those who replace the trip with a trip to another
beach and those who would do something else instead. The dashed line
depicts only those who reported that they would do something else
instead (other activities such as going to a park, movie or simply staying
home). We call this full trip loss, since the person would not have
replaced the current beach trip with a trip to another beach. Base and

6 For those changing trip plans, 60% report a certainty level of 8 or higher
and 84% report 6 or higher. For reporting no change, 57% report 8 or higher
and 84% report 6 or higher.

full trip loss increase with wind-project proximity — the closer to shore,
the higher the trip loss. Base trip-loss is 29% at 2.5 miles from shore,
14% at 10 miles, and 5% at 20 miles — all are statistically significantly
different than 0%. Also, as shown by the Full Trip Loss line, most lost
trips would have resulted in individuals switching to other beaches as
opposed to staying home. So, in terms of community impacts, they
appear to be mostly transfers from one beach to another.

5.2. Predicting trip loss by beach

This section presents an approach for predicting trip loss at indi-
vidual beaches. Because it is unknown where offshore wind power
projects will be located, having the flexibility to predict trip loss by
beach is useful. It also provides a model wherein the correlation of beach
characteristics with trip loss can be analyzed (e.g., is trip loss more likely
on developed or undeveloped beaches?). We purposely exclude de-
mographic data on our respondents as regressors because most of the
beaches have few, even single digit or zero visits. In this case, incorpo-
rating individual characteristic in the model and simulating it could easily
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Table 4
Reasons Respondents Gave for Why Offshore Wind power projects Would Make
Their Experience/Enjoyment Worse or Better.

Number of Percent
Respondents
Reasons for Better or Somewhat Better
Knowing something positive is being done for the 175 52.3
environment
Knowing something positive is being done for energy 80 23.7
security
Knowing something positive is being done for the 38 11.2
economy
The visual appeal of wind turbines on the seascape 37 11.2
Other 5 1.5
Reasons for Worse or Somewhat Worse
The impact of wind turbines on the natural view of ~ 545 61.5
the seascape
Harm to marine environment 256 28.9
Waste of taxpayer’s dollars 35 3.9
Interference with navigation 23 2.6
Other 28 3.1

result in misleading prediction. So, we opted for a model with beach
characteristics believing beaches of similar type in similar areas would
have similar visitation rates. The next section introduces demographic
and attitudinal variables into the model.

The Trip-Loss Prediction Model has the form:

cjx = bqdistancey. + bystatey. + S,triptypey. + Spbeachchy + € 1)

cjx = probability of visiting another beach or doing something else
(ranges from O to las described above),distancej = vector of stepwise
dummies for distance wind farm is offshore (2.5 to 20 miles),statey, =
vector of dummies for state where wind farm is located off-
shore, triptypejx = vector of dummies for trip type (day, short overnight,
etc.),beahchy, = vector of beach characteristics (width, boardwalk, etc.),
and, gy = error term.

—=— Trip Loss

w
w

29

w
(=]
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that can be predicted using equation (2). The model was estimated by
ordinary least squares.”

The behavior underlying the Trip-Loss Prediction Model follows
discrete choice theory. On each choice occasion, a respondent faces the
choice of going to one of M beaches or staying home. Define that choice
set as B = {bo,b1, b2, bs, ..., by} where by is the stay-at-home option and
the other elements in the set are the beaches. We assume each beach and
the stay-at-home option gives the respondent some utility and that the
respondent chooses the beach that maximizes utility. That choice is
defined as Max{Uy,U1,Us,Us, ...,Uy}, where Uy, is the utility of visiting
beach m (or staying at home). For simplicity, assume a respondent
chooses beach by, so Uy = Max{Uy, U1,Us, Us, ...,Uy}.

Our contingent behavior question asks respondents to reimagine
their beach choice where the set of beaches is the same but the beach
with the maximum utility is now assumed to have a wind power project
located offshore. The reimagined choice set is B*? = {bo,b}?,bs,bs, ...,
bum}. Now, define an indicator function I [U‘l”p > Max{Uyp, Uz, Us, ...,Un}]
that takes the value of 1 if the statement in brackets is true and 0 if false.
That is, is the utility at the chosen beach still the highest even though a
wind power project is now located there offshore? If yes, thenI =1, if no
I = 0. So, I =0 if the respondent reports that he or she would have
changed trip plans if a wind power project had been located offshore —
either going to another beach or staying home (or doing something else).
The Trip-Loss Model models this choice.

Using random utility theory, we rewrite our indicator function
including a random component. This recognizes that there are aspects of
the choice made in the contingent behavior question unknown to us as
researchers so the choice is not deterministic. Now we define I[U}? —
Max{Uy,Us,Us,...,Uy} + €> 0], where ¢ is the random component and
againI = 1 if true and I = 0 if not. Now the problem is set in a probalistic
form, where the probability that the person changes a trip is
pr(Change Trip) = pr(I[U}¥ — Max{Uy, Uz, Us, ..., Uy} + £> 0] = 0).
Since the only thing that changes in a person’s choice set when the wind
project is introduced is the presence of the project (at different

- =+ - Full Trip Loss (not go to
another beach)

Distance in miles

Fig. 4. Trip loss due the presence of an offshore wind power project.

All variables are subscripted by jk since the unit of observation is
person k’s response to one of three contingent-behavior trip-loss ques-
tions at distances indexed by j. The idea is that like beaches in similar
areas and with similar characteristics should have similar trip loss rates

7 A random effects fractional binary logit model and a random effects OLS
model were also estimated. The random effects were included to account for
correlation among an individual respondent’s three responses. Neither model
predicted as well as the simple linear OLS model.
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distances), we can write this probability for person k for contingent
behavior question j as

pri(Change Trip) = §,distancej. + €, 2

which is equation (1) without the covariates other than distancej.. The
other covariates are included in equation (1) to account for a difference
in preferences at different beaches and to facilitate prediction. Later we
add individual characteristics as covariates.

The OLS Trip-Loss Prediction Model is shown in Table 5. The co-
efficients on the distance dummies show an increase in the probability of
trip loss as turbines are located closer to shore — consistent with Fig. 3.
The distance coefficients are relative to 20 miles offshore and are sta-
tistically significant at 10 miles and closer. These coefficients are
interpreted as an increase in the probability of trip loss for an increment
in a specific variable. For example, moving from 20 to 10 miles offshore,
all else constant, added 8.9 percentage points to the probability of trip
loss. A large amount of variation is explained by unobserved regional
(state) effects in the model. For example, Virginia and New Jersey have
cancellation rates that are 8.5 and 6.2 percentage points higher than
North Carolina, all else constant. The northern states tend to have
somewhat higher unobserved regional effects (more trip loss).

With respect to trip length, the probability of trip loss for long-
overnight trips (away four nights or more) is 3.7 percentage points
higher than on day trips. The probability for short-overnight trips (away
three nights or less) is 3.6 percentage points higher than day trips. In-
dividuals may be more sensitive to the character of the beach given the
larger investments in money and time made in an overnight trip.

Three variables are used to distinguish the degree of development on
a beach - presence of boardwalk, high density housing, and designation
as a local, state, or national park. The presence of a boardwalk decreases
the probability of trip loss by 7.4 percentage points. This is the single
most important attribute in the beach characteristics. Beaches with
boardwalks are the most developed on the East Coast and have the most

Table 5
OLS trip-loss prediction model.

Variables Coefficient T-Statistic
Constant 0.047 0.83
Distance Offshore (20 Offshore Miles Excluded):
Distance Offshore 2.5 miles 0.240%** 11.1
Distance Offshore 5 miles 0.187%** 8.7
Distance Offshore 7.5 miles 0.117%** 5.2
Distance Offshore 10 miles 0.089%** 4.1
Distance Offshore 12.5 miles 0.021 0.99
Distance Offshore 15 miles 0.011 0.49
States (North Carolina Excluded):
Massachusetts 0.034 0.96
Rhode Island 0.045 1.6
New York 0.054 1.6
New Jersey 0.062* 2.2
Delaware 0.043 1.2
Maryland 0.009 0.27
Virginia 0.085* 2.6
South Carolina 0.019 0.83
Trip Type (Day Trip Excluded):
Short Overnight Trip 0.036%* 2.3
Long Overnight Trip 0.037%* 2.4
Any Other Trip 0.005 0.18
Other Variables (all are dummies except In(beach width)):
Ln(Beach Width) —0.007 —0.54
Local, National, or State Park —0.033* —1.68
Summer 0.008 0.61
High Density Housing 0.006 0.65
Boardwalk —0.074%** —3.29
Fish Pier 0.018 1.02
Vehicle Access 0.012 0.53
Seawall —0.038 —0.73

Note: The dependent variable is certainty-adjusted trip-loss for each respondent,
ranging from 0 to 1. Sample size = 5168. Adjusted R* = 0.43. *** indicates
statistical significance at a 99% level, ** at 95% level and * at 90% level.
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non-beach related activities for beachgoers (amusements, shopping,
restaurants, etc.). Perhaps beachgoers at these beaches are less con-
cerned about the natural features of the beach. At the same time, bea-
ches designated as parks have 3.3 percentage point lower trip loss, all
else constant. Beachgoers at park beaches tend to be more favorable
toward wind power and correspondingly appear less inclined to report
trip loss. Housing density has little predictive power. In sum, trip loss is
lowest on both the more developed and the more natural beaches and
highest on the beaches of intermediate development. The remaining
variables in the model mostly have small and insignificant effects. The
presence of a seawall has a relatively large effect, reducing trip loss by
3.8 percentage points, but is insignificant. It may be another factor
acting as a proxy for developed beaches.

Table 6 shows predicted trip loss using the model at nine selected
beaches, one in each coastal state in our study. This gives a good sense of
the variability the model generates and the reasons for that variability.
The table also shows our estimate for aggregate number of trips to each
beach, to get a sense of the extent of the effect on a given beach. Trip loss
here is a weighted average of day, short-overnight, and long-overnight
trips. Jones Beach (NY) has the lowest trip loss rate and Hyannis Port
(MA) the highest. The four Mid-Atlantic beaches—Jones Beach (NY),
Ocean City (NJ), Rehoboth (DE), and Ocean City (MD)—are all devel-
oped beaches with boardwalks and in some cases seawalls and this ap-
pears to be driving down trip loss on those beaches relative to the others.
Myrtle Beach (SC) and Wrightsville Beach (NC) have somewhat higher
trip loss; these are developed beaches but do not have boardwalks, so
any development effect they may have is not picked up in the prediction
model.

These results assume a single wind power project is constructed and
no others exist. Assuming stable preferences, as wind power projects are
added, our expectation is that similar trip loss would occur as new wind
projects are added. To the extent that fewer wind-project-free beaches
would be available, trip losses may decrease as wind power projects are
built, since the available substitutes without turbines would be shrink-
ing, but eventually saturation would set in (few or no wind-project-free
beaches) and trip loss may actually stabilize (see Landry et al. (2012) for
stated-preference evidence of this effect). Welfare losses would pre-
sumably increase due the lack of good substitutes, even though trip loss
declines.

5.3. Heterogeneity of preferences

The Trip-Loss Prediction Model in the previous section works well for
the purpose of predicting trips across different beaches. But we also have
an interest in the heterogeneity of preferences toward offshore wind
projects. That is, how do preferences vary by income, education, age,
recreation type, etc. To this end we also estimated a Trip-Loss Hetero-
geneity Model that includes demographics and attitudes.

We use the same OLS form with the same dependent variable but
drop the beach characteristic variables and now include individual
characteristics such as income, age, education, beach attachment, rec-
reation type, general attitude toward wind power, residency, and a few
other related variables. The results are in Table 7.°

With respective to the demographic variables, we see trip loss rising
with income and education and declining with age. This is controlling
for other factors, most notably general attitude toward wind power, so it
implies offshore wind is more disruptive to higher income and better
educated groups and perhaps surprisingly to younger people. The edu-
cation impact is largest — with college graduates being 11% more likely
to change trip plans due the presence of a wind power project than those

8 We have not included interactive models here (age with distance offshore,
income with distance offshore, etc.). There is little or no added insight beyond
the non-interactive models and the number of coefficients becomes rather
unwieldy.
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Table 6
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Weighted Average Predicted Trip-Loss Rates (%) at Nine Selected Ocean Beaches Trip losses are weighted averages of day, short-overnight, and long-overnight trips.

Beach Distance in miles Number of Trips (Millions)

2.5 5 7.5 10 12.5 15 20 Day Short Long
Hyannis Port, MA 35.5 30.1 22.5 20.3 13.5 12.5 11.4 0.28 0.11 0.03
Sachuset, RI 30.2 24.8 17.2 15.1 8.2 7.3 6.2 1.09 N/A N/A
Jones Beach, NY 21.3 16.0 8.3 6.2 0.2 0.1 0.0 3.12 0.18 0.06
Ocean City, NJ 36.0 27.5 18.7 16.3 8.4 7.3 6.0 1.01 0.31 0.20
Rehoboth, DE 27.0 21.7 14.0 11.9 5.1 4.1 3.0 0.74 0.86 0.28
Ocean City, MD 26.0 20.6 13.0 10.8 4.0 3.0 1.9 2.58 1.05 1.01
Chincoteague, VA 34.4 29.1 21.4 19.3 12.5 11.5 10.4 0.32 0.14 0.07
Wrightsville, NC 30.8 25.5 17.8 15.7 8.9 7.9 6.8 0.85 0.12 0.16
Myrtle Beach, SC 34.6 29.2 21.6 19.4 12.6 11.6 10.5 1.89 2.33 3.17

with less than a high school education. The age effect, on the other hand,
is not large and is just below significance at 90%. For example, lowering
age from 50 to 30 years of age increases the chances of changing trip
plans by about 1%. The income effect, while significant, is also not large.
Increasing annual income from $50 to $100 thousand increases the
chances of changing plans by 1.25%.

Attitudes toward wind power as an alternative source of energy are
highly correlated with trip loss. Approximately 2% of the sample re-
ported that they oppose wind power and another 3% reported that they
somewhat oppose wind power. (Note: this is oppostion to the idea of
wind power generally in the US as a source of alternative energy.) These
respondents are 51% and 22% more likely to change trip plans if a wind
power project was present than individuals who are indifferent to wind
power. On the other hand, the 42% who favor and 26% who somewhat
favor wind power are 10% and 1% (without significance) more likely to
not change trip plans than those who are indifferent. There is an
asymmetry in intensity here where the negative attitudes are a larger
driving force than positive attitudes. It is important to note that many
people in the sample who favor wind power contribute to our trip loss
result. They like the idea wind power but really don’t want the inter-
ference on a beach trip. A sort of NIMBY for recreation trips. This creates
the asymmetry in intensity.

Type of recreation is also correlated with trip loss. The activities on
or near the water show greater loss than those less involved with the
beach. So, for example, those whose most important activity while at the
beach is boating are 10% more likely to change trip plans versus those
who report boardwalk and other community activities as most impor-
tant. Those reporting activities on the water (swimming, surfing, etc.) as
most important are 8% more likely. And, those reporting sand activities
(sunbathing, reading, etc.) as most important are 5% more likely.
Shorefishing and four-wheel driving on the beach also have effects near
5% (without statistical significance) and visiting nearby waterways near
10% (without significance). Since all of these are relative to boardwalk/
local community, this group is by implication the least affected by the
wind power projects.

A difficulty with stated preference surveys is that they are not based
on actual experiences by respondents. In our study, the beach trips are
actual experiences but the beach with a wind power project present is
hypothetical. To account, at least in part, for experience with wind
turbines, we asked respondents if they had seen turbines in the past and
how frequently. The idea here is that individuals with past experience
may have a more realistic perception of what offshore wind power
projects may look like and hence have more fixed and reliable revelation
of preferences. Our results show that the more visual experience re-
spondents have with wind power projects, the more likely they are to
change trip plans if an offshore project were present. These effects range
from an approximate 3% increase in trip loss for those seeing turbines
between 1 and 25 days annually to a 6% increase in trip loss for those
seeing turbines more that 25 days. These results run counter to Boyle
etal. (2019) and Ladenberg (2009), who find past experience correlated
with higher acceptance.

We hypothesized that owning property near to a beach or

“attachment” to a beach, which may come from a long history or family
experience of visiting a beach, might be correlated with trip loss.” For
both, the cost of changing trip plans is a larger proposition than for an
occasional visitor. We find for respondents with residences within five
miles of the shore that the likelihood of trip loss is 2% less all else

Table 7
OLS trip-loss heterogeneity model.

Variables Coefficient T-Statistic
Constant —0.159 -1.6
Distance Offshore (20 Offshore Miles Excluded):
Distance Offshore 2.5 miles 0.247%%* 12.3
Distance Offshore 5 miles 0.193%*** 9.7
Distance Offshore 7.5 miles 0.113%** 5.7
Distance Offshore 10 miles 0.083*** 4.1
Distance Offshore 12.5 miles 0.025 1.3
Distance Offshore 15 miles 0.015 0.8
Trip Type (Day Trip Excluded):
Short Overnight Trip 3.0
Long Overnight Trip 2.5
Any Other Trip 0.021 0.8
Level of Attachment Self-Reported (No Attachment Excluded):
Modest Attachment -0.017 -1.4
Strong Attachment 0.023 1.5
Wind Preference (Neither Favor nor Oppose Excluded):
Favor Wind Power —0.096%** -6.9
Somewhat Favor Wind Power —-0.013 -0.9
Somewhat Against Wind Power 0.224%** 6.7
Against Wind Power 0.512%** 12.9
Most Preferred Activity (Boardwalk Activities Excluded):
Water Activities (Swim, Surf, etc.) 0.077%** 5.2
Sand Activities (Sunbath, read, etc.) 0.053*** 3.8
Boating 3.1
Nearby Waterbodies (Clamming etc.) 2.8
Shore Fishing & 4-Wheel Drive 0.047 1.6
Frequency of Beach Visits Per Year (Never or Almost Never Excluded):
More than 5 times per year —0.058 -1.3
Between 1 to 5 times per year —0.055 -1.3
Once every 2 years to less than once every 5
Years —0.047 -1.1
Education (Less than High School Excluded):
High School 0.060%* 2.5
Some College 0.102%** 4.2
Bachelor’s Degree or Higher 0.112%** 4.6
Days Wind Turbine Seen (Never Seen Excluded):
1-10 days 0.038*** 3.1
10-25 days 0.029 1.2
More Than 25 days 0.056%** 2.7
Residence less than 5 miles from ocean beach —0.039%* -2.3
Summer —0.001 —0.1
Log Age —0.021 -15
Log Income 0.018%*** 2.6

Note: The dependent variable is certainty-adjusted trip-loss for each respondent,
ranging from 0 to 1. Sample size = 5168. Adjusted R? = 0.43. *** indicates
statistical significance at a 99% level, ** at 95% level and * at 90% level.

2 See Devine-Wright and Batel (2017) and Lewicka (2010) for more on place
attachment.



G. Parsons et al.

constant. We also see some effect for those reporting “strong attach-
ment” — again about 2% trip loss (just below statistical significance), but
none for those reporting “modest attachment.” A major reason these
effect may not be large is the large number of substitutes beaches nearby
— similar in location and physical character.

Finally, we explored the effects of trip type (day versus overnight)
and trip frequency. We have already reported on the effect of trip type in
our Trip-Loss Prediction Model. These are stable across the model with
overnight trips showing roughly 4% higher trip loss. Trip frequency is
weakly correlated with a decrease in trip loss but potentially large —
about 5% higher trip loss for frequent versus infrequent visitors (but
without statistical significance).

5.4. Trip-loss findings in other studies & a robustness check

Here we compare our trip-loss results with four other contingent-
behavior studies (Lilley et al., 2010, Landry et al. (2012), Voltaire
et al. (2017), and Fooks et al. (2017)) and with a robustness check we
conducted with in-person data using the same visuals used in our
internet-based survey. The comparison is shown in Fig. 5.

Lilley et al. (2010) conduct on-site surveys at several beaches in
Delaware of out-of-state beachgoers. Their visual simulation has 130
430-foot turbines. As shown, their trip-loss rate tracks reasonably well
with ours. Landry et al. (2012) gather phone-survey data in North Car-
olina (Outer Banks) over a sample of coastal-county residents. They ask
people if they would change their next trip to the beach if there were
100 400-foot high turbines located one-mile offshore at their preferred
beach. Later they ask respondents how many fewer (or more) trips they
would take to all beaches in the region if there were similar wind power
projects along the entire coastline (31 beaches in North Carolina). Re-
spondents are not shown a visual; they are simply told to imagine a wind
power project is present. Their trip-loss at for wind turbines at one-mile
offshore is 11% for their single-beach case and about 1% for the
many-beaches case. These are the lowest trip-loss rates of all five studies.
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Fig. 5. Comparison of trip-loss in recent studies.

Their results are shown as points, since they do not consider different
distances. Fooks et al. (2017) analyze on-site data from two Delaware
beaches. Respondents are asked to participate in a laptop exercise where
they can move a photo-simulated offshore wind power project to a point
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where it would cause them to no longer visit the beach. Their
photo-simulations show 100 90-m tall turbines. Voltaire et al. (2017)
setting is the Catalan coastline in Spain along the Mediterranean Sea.
Individuals are intercepted at eight different beaches and given a
contingent-behavior survey. The analysis has two distinct density sce-
narios for respondents to consider: 2 large wind power projects or 8
small wind power projects. Both projects are shown at 1.8 miles and 12.5
miles offshore. Their results are close to Fooks et al. (2017) and Lilley
et al. (2010) at near distances and are much larger than all studies at far
distances. Fig. 5 also includes the results for an in-person validity check
we conducted using the same visuals as in our internet survey. We
incepted people at a large all-day university event highlighting research
and enhancing understanding of the coastal and ocean environment and
showed them a four-foot poster board of the visuals similar to the ones
used in our internet survey. Individuals (n = 392) viewed wind turbines
at the same seven distances and answered similar contingent behavior
questions. The results show mostly a lower trip-loss in response to wind
power projects but are not dramatically different than the internet sur-
vey. There are innumerable reasons why differences might show up
across these studies including context/setting, affected populations,
methodology, time periods, sample sizes, statistics, and so forth. With so
few studies to date, we do not (in effect) have the degrees of freedom
needed to understand why these differences emerge. It is interesting to
note that there is some convergence among Mid-Atlantic studies and the
outliers (Landry et al. (2012) and Voltaire et al. (2017)) maybe
explained by respondents seeing no visuals (in the case of Landry et al.
(2012)) and by the setting being in the Mediterranean (Voltaire et al.
(2017)), which is different dramatically in context/setting than the
Mid-Atlantic. Nevertheless, transferring these result wholesale is risky
business and should be done only with caution.

Finally, there are three choice experiments where trip loss can be
inferred for large-scale offshore wind power projects: Landry et al.
(2012), Westerberg et al. (2013), and Lutzeyer et al. (2018). These
studies are less amenable to predicting trip loss from current levels given
how their experiments are constructed but all show potential for a loss.
Landry et al. (2012) finds a potential for losses at one mile offshore on
ocean beaches in North Carolina and no loss at one and four miles
offshore on the neighboring estuary. This analysis is done alongside the
contingent behavior analysis described above. Westerberg et al. (2013)
results on the French Mediterranean show large effects at 3.1 and 5 miles
offshore but taper at 7.5 miles and Lutzeyer et al. (2018) report that “[w]
e find that 55 percent of existing customers would not re-rent their most
recent vacation property if wind turbines were placed offshore.” The
latter is for beach rentals in North Carolina and is probably an over-
statement but it unquestionably the study finding the largest potential
impact. Counterbalancing this is a revealed preference study by Car-
r-Harris and Lang (2019) using a difference-in-difference hedonic-like
analysis of rental properties before and after the construction of the
Block Island project. They find positive effects on visitation from the
new project.

6. Trip gain

Our survey was designed primarily to understand the potential
negative effects, if any, of offshore wind power projects on beach use
and tourism since this is the issue mostly discussed in policy formation.
However, policy makers also have an interest in understanding the
likelihood that offshore wind power projects may (at least in the short
run) be viewed as tourist attractions and generate additional curiosity
trips.

With this in mind, we asked beachgoers if they would take a curiosity
trip to see a wind power project if one was constructed offshore, and if
so, how many trips they expect to take. For each respondent, the wind
power project was randomly placed on one of eighteen East Coast bea-
ches (two for each coastal state) and placed at one of our seven distances
offshore. For the most part, curiosity trips are insensitive to offshore
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distance, though there is a significant drop off at 20 miles where visi-
bility is limited. The share of respondents reporting that they would take
a curiosity trip ranges from a low of 3.6% at 20 miles offshore to a high
of 11.4% at 12.5 miles offshore. A few points to keep in mind with this
response data. First, respondents taking curiosity trips could be traveling
from home, could be on a visit to another beach, or could be visiting the
area for another reason. Second, the question did not specify when in the
future the trip(s) might be taken. Of the respondents reporting that they
would take a special trip, 75% report that they expected to take only one
trip, 24% reported 2 to 5 trips, and 1% more than five trips. Most are
one-time trips.

This response data imples that a wind power project may generate on
the order of 10-12 million trips just for curiosity. If this is spread over 10
years, that is 1 million special/curiosity trips per year — a large number
for most East Coast beaches. As a point of reference, the most popular
beaches have 7.4 million (Mrytle Beach, SC) to 4.6 million (Ocean City,
MD) trips per year, while the least visited have under 100 thousand per
year. This implies the potential for a large offsetting impact on the local
beach community installing a wind power project. We expect these ef-
fects to dissipate for successively added wind power projects as their
novelty wears off. But, keep in mind that our research does not speak
directly to this effect. Still, this result along with the findings by Car-
r-Harris and Lang (2019) imply early trip gain would not be a surprise.'°

We also asked respondents who reported somewhat better or better
in response to the effect of wind turbines on their beach experience (our
first contingent behavior question) if they would have visited another
nearby beach if the wind power project had been located there instead of
at the beach they visited. About 2% report that they would seek out the
such beaches for recreation. While this number is small relative to the
percent who report leaving a beach if a wind power project was present,
the number of other beaches with possible switches is large so the total
effect may be larger than expected. Based on several of the open-ended
responses we received in the survey, we believe many of these trips are
like curiosity trips and may double count the special trips reported
above. Still, some fraction may be new recreation trips to wind-project-
based beaches and this reinforces our preliminary finding that there may
be large offsetting effects to the losses reported in the previous section at
least in the early years.

7. Conclusion and policy implications

Our results imply that large-scale offshore wind power projects (100
turbines) will affect recreational beach use on the East Coast of the
United States in negative and positive ways. The nearer a wind power
project is located to shore, the larger the negative effect. At 2.5-miles
offshore, 53% of the respondents report that their beach experience
would be made somewhat worse or worse and 29% report that they
would seek out another beach or do something else (most seeking out
another ocean beach). At 20-miles offshore only 10% of the respondents
report that their experience would be made somewhat worse or worse
and only 5% report changing trip plans. Of respondents who reported
that wind power projects would make them worse off, 62% said the
effect on the visual seascape was the most important reason.

A smaller, but significant share of the sample report that wind tur-
bines would make their experience somewhat better or better — 10% if a
wind power project is 2.5-miles offshore and 17% if a wind power
project is 20-miles offshore. At 15-miles and further offshore, more re-
spondents report being made better than worse off. Of those made better
off, 52% report the most reason is knowing something positive is being
done for the environment.

We also find that offshore projects are likely to generate a significant
number of curiosity trips (at the first generation of projects) and serve as

10 See also https://www.boston.com/travel/travel /2017/12/15/block-island-
sees-benefits-of-offshore-wind-farm-1-year-out.
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tourist attractions. This could be on the order of one million trips
annually, which is a large upswing for smaller beaches on the East Coast.

When we compare our trip-loss estimates to other studies in the
literature, we find reasonable correspondence with some but they vary
considerably from others. Landry et al. (2012) find very low trip loss for
wind power projects even as close at one-mile offshore (11%) and Car-
r-Harris and Lang (2019) find positive effects on rentals on Block Island,
while Lutzeyer et al. (2018) and Voltaire et al. (2017) find losses
exceeding 50% even at distances of over 15-miles offshore. We are some
ways from a consensus on what the effects from offshore wind power
projects will be on recreational beach use. And, clearly there is no single
answer — it will be context depend.

Moreover, the landscape of US offshore wind power has changed
somewhat since our study: States have ramped up demand for offshore
wind power with both policies and commitments; developers, as the part
of contracts for sale of offshore wind-derived electricity projects, have
commitment to economic development in those states; the states in turn
have made bets on infrastructure (e.g., ports), supply chain develop-
ment, and worker training; projects have grown in size from a mere 30
MW to over 1000 MW; costs have come down dramatically and concerns
over coastal hazards, including storm surge, sea level rise, and precipi-
tation events and the need for mitigation, resiliency and adaptation have
only become more acute, which themselves greatly threaten coastal
tourism economies. These changes suggest that the states and coastal
tourists may be more likely to accept some degree of visual intrustion. At
the same time, the visual effects are likely to be different (maybe larger)
than the ones we modeled here. The wind turbines to be installed will be
between 9 and 12 MW rather than 6 MW. The 12 MW wind turbine is
49% higher, but society will require roughly half as many wind turbines
(the precise ratio will depend on the relative capacity factors of the
turbines) to generate the same amount of electricity, and the space be-
tween wind turbines will be 47% greater, assuming similar spacing,
which is based on rotor diameter. With the present study providing an
appropriate baseline, these changes suggest additional research into the
question of tourism effects is warranted.
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