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Abstract

Acoustic cameras, or imaging sonars, are often used to monitor marine energy sites in regions where the
water is too dark or turbid for optical sensing. To do so more effectively, scientists are investigating automated
detection methodologies to use on these data. However, prior work has found that existing automated detection
approaches struggle with the dynamic image background around marine energy devices—such as moving tur-
bine blades. While open-access datasets, methods, and standard evaluation metrics are needed to quickly
develop and compare novel automated detection methods, none yet exist for this domain. Using previously col-
lected data, in this work we created a labeled dataset of possible marine life interactions in acoustic camera video
around an operating tidal turbine. We call this dataset the Pacific Northwest National Laboratory dataset for
Tracking Underwater Nautical Activity around Marine Energy LocaTions or PNNL TUNAMELT dataset. In addi-
tion to this dataset, we developed an automated detection pipeline which filters noise from the acoustic camera
imagery and then performs object detection to identify possible targets. To analyze our automated detection
pipeline, we used a series of common detection and classification metrics. In doing so, we found that our pipe-
line detected 98% of targets and removed 70% of target-less frames in our dataset. These results illustrate our
method’s potential utility as an aid to a human analyst tasked with extracting targets of interest from the
dataset. Finally, we openly release our labeled dataset and all associated code to support and encourage future
work in this domain.

Marine energy devices, such as underwater turbines, con-
vert tidal (Staines et al. 2019) or river currents (Bevelhimer
et al. 2017) into electricity, and are currently in the research,
development, and testing phases in the United States (Kilcher
et al. 2021). Environmental concerns around marine energy
technology include the risk of collision to fish and other
marine life (Copping and Hemery 2020). At these deploy-
ments, regulators can require monitoring efforts to inform
assessments of collision risk concerns, and when doing so,
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imaging sonars (Cotter and Staines 2023) are a sensor often
used to observe interactions around turbines (Bevelhimer
et al. 2017; Staines et al. 2019; Viehman and Zydlewski 2015)
and turbine infrastructure (Williamson et al. 2021), especially
when optical cameras are rendered ineffective due to low light
or water turbidity.

Monitoring campaigns around marine energy devices with
imaging sonars can be weeks or months long during which
terabytes of data may be accrued. Presently, the processing of
these data to identify rare interaction events requires human
review and is laborious (Baumgartner et al. 2006; Eggleston
et al. 2020). During this review, capturing every possible event
is critical as a record of all interactions is needed to inform reg-
ulatory decision-making at the current stage of marine energy
device testing. To ensure all possible interactions are captured,
these large datasets cannot be subsampled for risk of missing
an event of interest (Matzner et al. 2017). For automated
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detection methods to be successful in this domain, they need
to be capable of processing long-duration datasets with high
true positive (TP) rates to robustly flag these events of interest.

The processing of data acquired from acoustic cameras has
mostly been applied for fishery resource management
decision-making and primarily performed manually by human
reviewers (Grote et al. 2014; Holmes et al. 2006). During this
process, targets are detected and identified (Egg et al. 2018;
Gurney et al. 2014; Key et al. 2016; Melvin and Cochrane
2015; Smit et al. 2016; TuSer et al. 2014), the abundance of
fish communities or other biomass metrics is documented
(Braga et al. 2022; Burwen et al. 2010; Hightower et al. 2013;
Key et al. 2016; Xie and Martens 2014), and fish behavior is
described (Rakowitz et al. 2012; van Keeken et al. 2020;
Viehman and Zydlewski 2015). Data cleaning, dataset
curation, and automated detection methods have been pri-
marily explored for these fishery applications (Fernandez Gar-
cia et al. 2023; Helminen and Linnansaari 2021; Kay
et al. 2022; McCann et al. 2018). While most of these works
did not evaluate data that contained a moving background,
those that did have found that current approaches fail in such
circumstances (Capoccioni et al. 2019; Han et al. 2009).

To automatically detect targets in imagery, object detectors
are used. Filters are also often applied to simplify the detection
problem when consistent and characterizable noise is present
in the imagery. Most object detection approaches have been
designed and studied on optical camera imagery or video due
to the prevalence of these data. While imagery generated by
imaging sonars is video-like and can be ingested by image-
based object detectors, the patterns of data described in their
images are different. The pixel values in acoustic camera imag-
ery represent intensities of acoustic reflection, and the resolution
of their video is lower and varies with both range and
beamwidth. Additionally, there is increased and more complex
noise in acoustic camera imagery due to multiple beam transmis-
sions and time-resolved signals that can overlap, creating noise
artifacts. Finally, the viewing perspective of imaging sonars is
potentially non-intuitive, where imagery rendered is often
orthogonal to the range and beamwidth of the unit's beam
array. As such, unique image processing pipelines must be devel-
oped, and existing, learned, image-based object detectors must
be retrained or fine-tuned on datasets of labeled acoustic camera
imagery in order to be performant on it.

In the marine energy domain, existing approaches that per-
form object detection fail to accurately detect and track
marine life around moving tidal turbines (Hasselman et al.
2020). When monitoring fish interactions around tidal tur-
bines, the sonar beam array ensonifies the turbine and its
blades in order to capture animal interactions (Cotter and
Staines 2023). This introduces a moving, acoustic reflector
into the field of view, including some but not all beams in the
array. Approaches reliant on subtracting static background
from target motion to perform object detection and recogni-
tion necessarily fail (Gillespie et al. 2023).

Interactions with marine energy devices

Efforts to produce performant object detectors suitable for
this domain are hindered by a paucity of labeled data and
common evaluation metrics with which to develop and com-
pare approaches. These labeled datasets are especially critical
to the development and evaluation of performant machine
learning approaches on these data. However, no labeled,
open-access datasets yet exist for target detection and tracking
in acoustic camera video around marine energy devices.

In this paper, we address this need by labeling and openly
releasing a primary dataset of Sound Metrics Corporation (SMC),
Dual-Frequency Identification Sonar (DIDSON) data originally
collected by Viehman and Zydlewski (2015) with bounding box
labels around targets in the acoustic camera video. In addition to
this dataset, we propose and evaluate a baseline automated
detection pipeline that was optimized on the training split of
this dataset and evaluate our approach using a series of metrics
on the test split, which we propose be used by future works in
this space. Rather than solely focusing on a detection approach
like some prior work (Kay et al. 2022), we instead split the pipe-
line into filtering and detection stages. In the filtering stage, we
seek to reduce the noise induced by the turbine motion or other
conflating effects. In the detection stage, we seek to detect targets
in the filtered video output by the filtering stage. In this way
and by seeking to never filter out targets of interest, our method
accommodates and enables future improvements to detector per-
formance as well as generalization to other application domains.

The goal of our automated pipeline was to reduce the bur-
den on a human analyst tasked with monitoring a marine
energy site. As such, we sought to classify frames of data as
either containing a target or not containing a target (rather
than performing object detection and accurately estimating tar-
get locations in the scene). Therefore, while object detection
bounding boxes are given as labels in our dataset, we evaluate
our approach as a per-frame classification task. At the outset of
this work, we defined a desired performance for our method:
greater than 90% target detection (correctly detecting each
unique target) and greater than 20% frame removal (identify-
ing frames without targets). Our approach exceeded this goal.
When evaluating our method on the unseen test data of our
dataset, we were able to achieve 98% target detection and 70%
frame removal with our most-performant model.

Contributions

e A labeled, open-access acoustic camera video dataset of tar-
gets near an active tidal turbine designed for automated
detection development and comparison.

e A novel, open-source automated detection pipeline designed
to filter out turbine motion, which achieves 98% target detec-
tion and 70% non-target frame removal on the test data.'

e An evaluation of our dataset and approach.

'Link to the PNNL TUNAMELT dataset and detection code: https://
github.com/tsnowak/pnnl-tunamelt.
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Fig. 1. lllustrations from Viehman and Zydlewski (2015) showing the DIDSON beam array fields-of-view with respect to the turbine.

e A discussion of future improvements to data collection and
analysis around tidal and riverine turbines.

Materials and procedure

Dataset acquisition

This study uses samples from a 23-h dataset that was
collected using two down-looking SMC DIDSON acoustic cam-
eras attached to a research barge that operated an experimen-
tal tidal turbine (Fig. 1) in Cobscook Bay, Maine, USA
(Viehman and Zydlewski 2015). The full dataset consists of
15-min data files in SMC DIDSON .ddf format with an approx-
imate frame rate of seven FPS. For specifics of the site, research
barge, turbine, and data collection procedures, we refer the
reader to Viehman and Zydlewski (2015).

Dataset

The original 23-h dataset was reduced and split into two sub-
sets of data. A training subset or split (training data) consisting
of 21 video snippets varying in length from 3 to 67 s, and a test-
ing subset or split (testing data) consisting of seventeen 15-min
video files (Table 1).> The training data were selected for known
target presence as determined by manual inspection, while the
larger testing data were chosen by manually inspecting each file
for turbine operation, that is, tidal currents high enough to
engage blade rotation. Both subsets sought to capture site vari-
ability that included fore and aft fields-of-view (FOVs) of the tur-
bine, current speed, tidal stage, and surface-oriented entrained

’Note that no validation split was created for this dataset. In this work,
hyperparameters were optimized on the training data. We assume that
future works perform k-fold cross-validation using the training data or cre-
ate their own validation set from the training data to evaluate perfor-
mance during training and parameter optimization.

air. All training and testing data were converted to .mp4 video
files in cartesian space using the movie export function in the
SMC ARISFish software (ARISfish 2020). Each frame of the
exported videos contains the acoustic camera image (in cartesian
coordinates) with a black background and an overlay of the
range from the acoustic camera, in meters. The following set-
tings were applied to the data in ARISFish before exporting: the
signal intensity histogram values were set to O and 35.1 dB, the
Palette color was set to “Deep Blue,” effects were set to “None,”
measure was set to “Geometry,” Frame Rate was set to 10 frames
per second, and no filters were used (ARISFish manual sec 6.4
and 6.5). Testing data videos were split into video snippets no
more than 30 s in length before processing. An example frame
from the dataset is in Fig. 2. Statistics about the dataset and splits
are in Table 1 and Fig. 3.

Data annotation

All targets identified by a human reviewer in the training and
testing data were manually annotated per frame with the closest-
fitting bounding boxes. This was done by two annotators—one
subject matter expert and an assistant—using the open-source
Computer Vision Annotation Toolkit (CVAT 2022). For each tar-
get, the annotator placed a bounding box around a target in the
first frame in which it appeared and then placed an instance of
the same bounding box around the last frame in which the tar-
get remained in the FOV. The linear interpolation function built
into the video bounding box annotation tool in CVAT generated
the bounding boxes for frames between the start and end box.
The annotator manually reviewed each frame containing the tar-
get to ensure that the bounding box was well-fitting until the
target was out of the FOV. Bounding box annotations were
exported from CVAT as .xml files in the CVAT-Video version 1.1
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Table 1. Comparative statistics of the training and testing data.

Interactions with marine energy devices

# .mp4 Average # of Total # of Percent frames with Median target size
Subset video files frames targets targets (%) (pixels)
Training 21 192 145 17 221
Testing 17 6084 121 1 320

Fig. 2. Left—Example frame of .mp4 video converted from the original SMC DIDSON .ddf with the target labeled (bounding box) in red. Right—the
value channel of this frame after it was converted to hue, saturation, and value (HSV) space. Note these frames are the same as those displayed in Fig. 4.
Numbers on the sides of the field of view are range values in meters from the SMC DIDSON.

format. These label files, in addition to the .mp4 video files, were
used for all pipeline development, refinement, and testing, and
are available for public download and use.'

Notation

We first define our data and filters in the abstract and
describe the notation used in the equations in subsequent sec-
tions which comprise our automated detection pipeline.

Consider the set P={xc W|x<255} where P is the set of
possible whole number, pixel values between 0 and 255. All
our videos, their frames, as well as the outputs of our filter
functions reside in this greyscale image space. We define the
videos in our dataset as X ¢ PN*"*H*C and the set of frames
within said videos X as X, c P"**C_ Here, N is the number of
frames in the video, W and H are the width and height of a
video frame respectively, and C is the number of channels in
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Fig. 3. Box and whisker plots showing the bounding box size distribu-
tion of targets in both the train and test set. The y-axis is log scaled. The
mean is indicated by a dot while the median is indicated by the middle
bar of the box. The upper and lower bars of the box represent the third
and first quartiles, respectively, while the upper and lower extrema bars
(whiskers) are drawn at the 95 and 5 percentile values.

the frame.® Filtering methods are applied either to an entire
video, F: X — Y, or per frame, Fy: X,,— Y}, where video or per-

YCPNXWXHXC and

frame filter outputs are defined as
Y, c PWV*H*C respectively. Methods that are unique to each
frame are written as F,: X,,— Y,,. Individual pixels in a frame
of the video are referenced with lowercase indices
corresponding to their parent dimension: x,,,,.. Many of our
methods generate binary masks that are used to zero pixels
from frames in the video. These can be thought of as applying
the indicator function 1r, at each pixel wh using a given
Boolean function F,;, which then returns 1 when F is true
and 0 otherwise. We denote the logical negation of this func-
tion as 1y, which returns O when F is satisfied and 1 otherwise.
The binary masks we generate are either unique to each frame,
or consistent across all frames in the video. These masks are
written © c ZY*">*# for video-wide masks, or ©,c Z})* for
per-frame masks. Some methods generate per-pixel vectors of
values anhCPK. We index these vectors with superscripts
Y& Vk€K. Finally, targets of interest exist in these videos,
and we refer to an individual target in video m as t € T,,.

Methodology overview

This work takes the approach of first filtering the video
input to remove non-target background objects and noise,
then subsequently performing detection and tracking. During
filtering, a series of steps—mostly composed of binary mask
filters—are calculated to remove features in the scene that con-
found target detection. These can also be thought of as

3Typically, C=1 in this work since we convert our image to HSV space
and only operate on the Value channel.

Interactions with marine energy devices

components of noise that obfuscate the signal of targets in the
video. We sought to remove all sources of noise during filter-
ing, but certain filter stages were designed to target specific
noise sources or effects. These noise sources were static back-
ground, turbine motion, and random speckle. While not
explicitly written in each step below, the generated binary
mask is multiplied by the output of the previous filtering step
to yield the input used in the next step of the pipeline. This
filtering simplifies the detection task by zeroing non-target
pixels in the video. After such filtering, we applied a relatively
simple detection regime to detect and bound targets.
OpenCV’s implementation of Suzuki (1985) was used to detect
clusters of high-intensity pixels and generate per-target
bounding box predictions. Cross-frame detection association
was then performed to pair similar detections across frames
into tracklets (frame-to-frame bounding box pairings that
comprise object tracks) to filter out detections that were incon-
sistent across frames. The sequence of filters, detectors, and
intermediate inputs and outputs is visualized via the pipeline
in Fig. 4. In the following section, each algorithm that
together constitutes our filtering and detection pipeline is
described in the order that it is applied in our proposed
model.

Filtering methods

Background-removal filter

We first applied a windowed-average, background-removal
filter to remove static objects from the original video. As
shown in Eq. (1), this approach uses the per-pixel mean uX,
and standard deviation ¢X, to remove pixels per frame that lie
outside s standard deviations of their mean as calculated
across a window of length K. Intuitively, this only preserves
pixels in the current frame that are of significantly larger
intensity than their average value in the window. The results
of this filter applied to raw video can be seen in the Back-
ground-Removal stage of Fig. 4.

K K
Onwh = Xuwh > My T SOwn

vneN,we W,he H (1)

Discrete Fourier Transform-based turbine filter

Subsequently, we sought to remove pixels containing the
motion of the turbine. To do so—and noting the unique, peri-
odic nature of the turbine—we designed a per-pixel, Discrete
Fourier Transform (DFT)-based filter that removes pixels
which exhibit significant periodicity within a certain fre-
quency range proportional to the rate of the rotation of the
turbine. We define this frequency range proportional to rota-
tion rate as U « R.

The DFT decomposes a time-varying signal into
B frequency bins (z) of varying magnitudes (||z”||) that
describe the original time-series signal in terms of frequency.
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Transform Removal Filtering Thresholding Detection
ation

Fig. 4. lllustration of our filtering and detection pipeline. After the original frame, an exploded crop is shown of proceeding filtering steps. Ground-truth
bounding boxes are red, while predicted bounding boxes are green. Yellow arrows are used for filtering steps, while purple arrows are used for detection

steps. Note that this figure is best viewed in color and at high resolution.

After applying the DFT, we can more easily distinguish signals
that exhibit certain frequency patterns. In addition, we can
also readily quantify the contribution of each of these fre-
quencies to the overall signal. As such and concretely, we cal-
culated the DFT of each pixel over all time in the video
snippet. Having pixels’ frequency components and magni-
tudes, we then removed the pixels whose highest magnitude

frequency (rgmax||=°]] component contains the rotation rate
(U) of the turbine: those that exhibit the periodicity of a rotat-
ing turbine more than any other frequency. The results of our
turbine filter applied to a background-subtracted video frame
can be seen in Turbine Filtering stage of Fig. 4.

YV weW,heH

Oun=Tr,,, Fw,h)=Ucx > (2)

w,h?

Gaussian Blur image denoising

The resulting video after applying the turbine filter is
mostly free of pixels containing background and turbine infor-
mation. However, given the low resolution and high noise of
acoustic cameras, in addition to some errant acoustic reflec-
tions from the turbine, there is still information contained in
the video other than our targets of interest. Therefore, we
applied a 2D Gaussian Blur across each frame to remove spuri-
ous, noise-induced signals—the results of which can be seen
in the Denoising stage of Fig. 4.

Pixel-intensity thresholding

Given that targets are acoustically reflective, we sought to
zero any remaining low-intensity background pixels such that
only clusters of high-intensity plausible targets and zeros
remained. We thus zeroed remaining pixels whose intensities
were below a threshold value {: ® = X >¢.

Detection methods

Contour detection

After the previous filtering steps, clusters of remaining
high-intensity pixels were automatically bounded with boxes
to indicate plausible target detections. To do so, we used the
contour-based detection method proposed by Suzuki (1985)
and now built into OpenCV’s computer vision library
(Bradski 2000). To refine these detections, we filtered them by
size to include only those that are greater than a minimum
bounding box area amn, and less than a maximum box area
Amax- Such bounding boxes can be seen in green in the first
segment of the Contour Detection stage of Fig. 4.

Detection association

After detecting high-intensity contours in each frame of
the video, we sought to refine our detections by filtering out
those lacking spatiotemporal consistency. We noted that
noise, unlike targets, appears spuriously in a single frame and
without consistency in location or size. To filter out this noise,
we defined a detection association algorithm to pair detections
across frames and identify sequences of detections (tracklets)
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to keep only those that are plausible. We calculated this asso-
ciation plausibility score using a set of cost functions that
score each bounding box association according to the distance
between pairs of box centroids C, and the difference in their
shapes S. We performed this association calculation between
every box in a window of ® frames around the box’s frame to
ensure that we associated detections of targets that were
detected inconsistently. We did so using a greedy approach—
associating the minimum-valued subsequent box with
replacement—unlike the typical optimal bipartite graph asso-
ciation as calculated via Kuhn-Munkres to reduce complexity
(Kuhn 1955).

Given detection d; in a given video frame i, let there exist a
detection window W of proceeding frames in which we may
pair detections to form a tracklet. If detection dy exists in
frames i+w Yoe{l,..., W} that satisfies Threshold>
S (d,-, dk) +C (d,-, dk), then let the detection with minimum cost
form the detection-associated tracklet pair (dj,dy,,, ). If no
such tracklet exists, then the detection d; is considered invalid
and ignored. The effects of this approach can be seen in the
Detection Association stage of Fig. 4.

Evaluation metrics

We assessed our method as a binary classifier per frame and
evaluated positive or negative predictions based on the detec-
tion of at least one target in the frame. Because we consider
this a binary-classification problem, we calculated the Average
Recall (AR), Average Precision (AP), Fl-score (F1), Percentage
of Frames Removed (FR), Target Detection Rate (TDR), and
mean of the FR and TDR (MFRTDR) when evaluating the effi-
cacy of our approach. These metrics are described in detail
below.

Average recall

Recall (R) is the ratio of correct detections—TPs—to total
targets in the video—TPs plus false negatives (FNs). Recall thus
captures the percentage of targets that were detected in each
video. Average Recall captures the average of this percentage
over all M videos in the dataset, and is calculated as follows:

AR TP AR—liAR (3)
" TPy +FN, T M

Average precision

Alternatively, AP is calculated as the TPs over the TPs plus
false positives (FPs) averaged over all videos, as shown in
Eq. 4. It therefore captures the precision of the model’s guesses
when detecting targets.

AP, = TP AP—liAP (4)
TP, +FP, T M4

Interactions with marine energy devices

F1-score

The F1-score (F1) is the harmonic mean of recall and preci-
sion and thus captures the best mixture of the two. We calcu-
late F1 per video and average over all, as shown in Eq. 5.

1{ AP,, x AR,,
F1 ‘Mzm: (2 AP, +AR,,,) (5)

Percentage of frames removed

In addition to the standard metrics above, we consider the
percentage of frames removed from a video in accordance
with our previously stated goal of aiding human reviewers.
This is calculated as the number of frames predicted to be
without targets over the total number of frames, averaged over
all videos. Here, TN,, is the true negative rate in video m.

1 L (TN, +FN,,)
FR=—Y ~—m 6
A4Z; N (6)

Target detection rate

To capture our method’s ability to notify an analyst of
every target in the video—rather than whether we detect a tar-
get in every frame in which it exists (as recall describes)—we
calculate the TDR. To do so, we measure the percentage of tar-
gets where we have at least one detection in at least one of its
frames. We then average this value across all videos to deter-
mine the TDR.

F:=3TP; for te Ty,

TDR—lXM:i (7)
M 4 | T

Mean of the frame removal and target detection rates
Finally, and to consider both FR and TDR, we calculate the
mean of these two metrics. We refer to this as MFRTDR:

(FR+TDR)

MFRTDR = >

(8)

Hyperparameter search

Each of the aforementioned filters contains free parameters
whose values must be selected. To do so, we performed a sea-
rch over a subspace of plausible values which we identified
qualitatively. Following the approach and terminology often
used in machine learning literature, we refer to this search as a
hyperparameter search. To identify the most performant values
for these hyperparameters, we uniformly sampled 108 distinct
parameter sets from this subspace. We then set the hyper-
parameters for each layer in our pipeline to those of each
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Table 2. Hyperparameter search.

Interactions with marine energy devices

Parameter value

Filter Parameter Search range Set 20 max AR Set 75 best mix FR and TDR Set 88 max AP
Mean Standard deviation (2.5, 3.0, 3.5) 2.5 3.5 3.5
Turbine Frequency range (Hz) (1.5, 3.5) (1.5, 3.5) (1.5, 3.5) (1.5, 3.5)
Blur 11,13) 13 11 11
Denoise Blur 5,7) 5 5 7
Intensity Threshold (100) 100 100 100
Detection Minimum box (pixels) 15) 15 15 15
Maximum box (pixels) (14335) 14,335 14,335 14,335
Association Window length (frames) 3,4,5) 3 4 5
Threshold (0.06, 0.08, 0.10) 0.10 0.06 0.08

parameter set and evaluated each of the 108 models on the
training data to determine those that were most performant.
We used the evaluation metrics above to measure each
model’s performance. From the results of this search on the
training set, we chose the three strongest parameter sets to
then test on the testing data: that which maximized AP (set
88), that which maximized AR (set 20), and that which satis-
fied our goal criterion (>20% FR and > 90% TDR) and maxi-
mized MFTDR (set 75). The ranges of this search and the final,
most performant values are found in Table 2.

Data split analysis

After applying our model to the training and testing data,
we noticed shifts in the performance of our models across
each. To compare these two splits and associate these perfor-
mance discrepancies with other corresponding dataset statis-
tics, we calculated the empirical cumulative distribution
function (CDF) of targets by bounding box area (a proxy for
target size) for our data. The CDF for a given random variable
illustrates the relative probability contribution of each value
to the total distribution. We used it to compare the distribu-
tion of target size for all targets to that of targets correctly
identified by our method, as shown in Fig. 5. To verify that
the deviation between these two distributions was significant,
we calculated both the Kolmogorov-Smirnov (KS) and the
Anderson-Darling test statistics (Anderson and Darling 1954;
Smirnov 1939). These provide significance values that quan-
tify the probability of the null hypothesis that one distribu-
tion was sampled from the other, that is, that the two come
from the same distribution. Kolmogorov-Smirnov does so by
comparing the point of greatest difference between the distri-
butions, while Anderson-Darling considers differences across
the entire distributions.

Ablation study

To assess the individual contribution of each filtering stage
to the final performance of our pipeline, we performed an
ablation study. We evaluated our method once with each stage

of the automated detection pipeline removed. By doing so, we
were able to estimate the performance contribution of each
stage. This was performed for the three chosen parameter sets
(20, 75, and 88) on the testing data.

Assessment

The training and testing performance results on the evalua-
tion metrics for the most-performant hyperparameter sets
(20, 75, 88) on the training data can be found in Table 3.
While the performance varied somewhat between the training
and testing data, the performance of our model exceeded our
stated goals: > 90% target detection and > 20% frame removal.

Between the training and testing data precision dropped
and recall increased across all hyperparameter sets. In turn,
TDR increased while frame removal rates decreased slightly.
Putting these factors together, while sets 20 and 75 achieved
more desirable performance on the train set, sets 75 and
88 achieved more desirable performance on the test set.

Size vs. performance distributions and statistical tests

In seeking to explain the performance differences between
the train and test sets, we identified the sensitivity of our
method to target size (Table 1 and Fig. 3). Between the train-
ing and testing data, while the mean target size is similar, the
median and middle two quartiles of the test set are larger than
those of the train set—indicating that there were more, larger
targets in the test set. To assess the performance of our
methods across target sizes, we compared the CDF of all target
sizes to the target sizes of TP detections for both the train and
test datasets (Fig. 5). Note that the CDF of TP detections is
shifted toward larger targets than the CDF of all targets,
indicating that TP detection is skewed toward larger targets.
We assessed this shift using the Anderson-Darling and
Kolmogorov-Smirnov statistical tests (Fig. 5) and showed that
the significance statistics reject the null hypothesis of the two
datasets being sampled from the same distribution; that is,
that the CDF of all target sizes and those that were correctly
detected are significantly divergent. These results indicate two
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Fig. 5. The figures contain the CDF of targets, the CDF of TP detections, the error between these two CDFs, and the significance in the deviation
between these two distributions as measured by the Anderson-Darling and Kolmogorov-Smirnov statistical tests for parameter set 88 on both the train-
ing (left) and testing (right) data. Because the CDF of TP predictions is shifted right of the CDF of all targets, we know that correct target prediction is
biased toward larger targets. The Anderson-Darling and Kolmogorov-Smirnov tests show that for these models that had large error, the shifts in the dis-
tribution because of this size-based detection bias were statistically significant.

Table 3. Evaluation metrics for the three chosen parameter sets from hyperparameter search for the training and testing data. Bold
indicates the highest scoring result.

Evaluation metrics AR AP F1 FR TDR MFRTDR

Parameter set Train Test Train Test Train Test Train Test Train Test Train Test
Set 20 0.94 1.00 0.19 0.01 0.32 0.02 0.22 0.05 0.99 1.00 0.61 0.53
Set 75 0.78 0.82 0.28 0.02 0.41 0.03 0.56 0.45 0.92 1.00 0.74 0.73
Set 88 0.63 0.62 0.34 0.02 0.44 0.04 0.70 0.70 0.74 0.98 0.72 0.84

things. Firstly, that our method is more performant at
detecting larger targets and that this bias in performance is sig-
nificant. Secondly, that this behavior is at least in part respon-
sible for the divergent performance between the train and
test sets.

Ablation study

The results of the ablation study are in Table 4. While
frame removal and AP plummeted after removing the den-
oising filter, background filter, or intensity filter, little change
in performance occurred when removing the detection associ-
ation or turbine filter stages, indicating that they are some-
what redundant steps on this data.

Discussion

In this work, we developed a novel, open-access dataset' of
labeled targets around a tidal turbine in video rendered from
the acoustic camera data captured by a SMC DIDSON. To
automatically detect targets around moving turbines and
evaluate the efficacy of our method, we introduced an

open-source, automated detection pipeline’ for detecting tar-
gets in video and analyzed the results of our method using
the aforementioned metrics. By splitting our pipeline into fil-
tering and detection stages, we separate and distinguish
between noise filtering (such as turbine backscatter removal)
and target detection (applicable to any acoustic camera target
detection pipeline). We analyzed the performance of our
detection pipeline and the adequacy of our dataset, and in
doing so have identified opportunities for improvements and
future work. In addition, and through the execution of this
work, we have encountered areas of improvement relevant to
the collection, labeling, sharing, and processing of data in
this domain, which we will discuss in the remainder of this

paper.

The PNNL TUNAMELT dataset

A contribution of this work was to develop and openly
release a labeled acoustic camera video dataset for target detec-
tion. To the best of our knowledge, this is the first around
underwater marine energy turbines (Fernandez Garcia et al.
2023; Kay et al. 2022; McCann et al. 2018). Given the novelty
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Table 4. Results of the ablation study. Detection association and turbine filtering had little effect on the evaluation results on the test
set, indicating that they could readily be removed while maintaining model performance.

Evaluation metrics AR AP F1 FR TDR MFRTDR
All stages
Set 20 1.00 0.01 0.02 0.05 1.00 0.53
Set 75 0.82 0.02 0.03 0.45 1.00 0.73
Set 88 0.62 0.02 0.04 0.70 0.98 0.84
No detection association
Set 20 1.00 0.01 0.02 0.05 1.00 0.53
Set 75 0.82 0.02 0.03 0.45 1.00 0.73
Set 88 0.62 0.02 0.04 0.70 0.98 0.84
No intensity filter
Set 20 1.00 0.01 0.02 0.00 (-0.05) 1.00 0.50 (-0.03)
Set 75 1.00 (+0.18) 0.01 (-0.01) 0.02 (-0.01) 0.01 (-0.44) 1.00 0.51(-0.22)
Set 88 0.98 (+0.36) 0.01 (—0.01) 0.02 (—0.02) 0.03 (—0.67) 1.00 (-0.02) 0.52 (-0.32)
No denoising filter
Set 20 1.00 0.01 0.02 0.00 (—0.05) 1.00 0.50 (-0.03)
Set 75 0.99 (+0.17) 0.01 (—0.01) 0.02 (—0.01) 0.05 (—0.40) 1.00 0.53 (-0.20)
Set 88 0.99 (+0.37) 0.01 (—0.01) 0.02 (—0.02) 0.05 (—0.65) 1.00 (-0.02) 0.53 (-0.31)
No turbine filter
Set 20 1.00 0.01 0.02 0.04 (-0.01) 1.00 0.52 (-0.01)
Set 75 0.82 0.02 0.03 0.45 1.00 0.73
Set 88 0.62 0.02 0.04 0.70 0.98 0.84
No background filter
Set 20 1.00 0.01 0.02 0.00 1.00 0.50 (-0.03)
Set 75 1.00 (+0.18) 0.01 (-0.01) 0.02 (-0.01) 0.00 (—0.45) 1.00 0.50 (-0.23)
Set 88 1.00 (+0.38) 0.01 (-0.01) 0.02 (-0.02) 0.09 (-0.69) 1.00 (-0.02) 0.55 (—0.29)

Bold indicates the highest scoring result. Values in parenthesis signify the difference in result between the ablated pipeline and the pipeline with all

stages.

and nascency of this dataset, there is room for refinement in
future work. The dataset statistics in Table 1 and Fig. 3 along-
side the target size performance analysis in Fig. 5 highlight
some of these possible improvements.

The training and testing data subsets were created to cap-
ture many target interactions around turbines (a typically rare
occurrence). However, in doing so, the distribution of
performance-affecting video characteristics—such as target
size—became biased between the two datasets, making the
training data less representative of the testing data, and thus a
weaker surrogate for model development. A means of improv-
ing this would be to redefine the training and testing data of
the dataset to ensure that the two are drawn from similar dis-
tributions of performance-affecting characteristics (such as tar-
get size, target presence, turbine presence, or others).

Evaluation metrics

In this work, we wused both standard and atypical
metrics for evaluating our approaches. Precision, recall, and
Fl-score are standard metrics for evaluating classification
tasks. Frame removal percentage, TDR, and the mean of these
two are not standard. We chose to use, and often focused our

analysis on, these atypical metrics because of our focus on pro-
viding information for a human reviewer, that is, a reduced
dataset for review. Precision, recall, and F1-score each assess a
model’s ability to detect a target in every frame, while TDR
assesses whether the model would notify an analyst to at least
one frame in which each target appeared (after which the ana-
lyst could observe the target across neighboring frames). For
our targeted application, we felt that these atypical metrics
better assessed our progress toward that goal.

While we performed object detection, we did not use
common-object detection metrics in the evaluation of our
methods, but rather binary classification metrics. Our focus on
informing an analyst is again responsible for this choice.
Rather than seeking to accurately track a target’s location in a
frame, the goal of our work was to alert an analyst to when-
ever a target was present. As such, we sought to predict in
which frames a target was present, but we did so by detecting
the box around plausible targets, then converting the boxes to
per-frame binary classification predictions. As progress is made
in this space, the precision of predictions or their locations
may become the focus of future work. Hence, as this space
evolves, a greater focus on precision and recall, or the
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inclusion of common detection metrics such as inter-
section over union or multiple object tracking accuracy, may
be necessitated (Bernardin and Stiefelhagen 2008; Leal-Taixé
et al. 2017).

Choosing between deep learning and classical computer
vision-based approaches

Although we developed a dataset suitable for machine
learning development, in this work we chose to use classical
computer vision approaches to first filter frames before per-
forming target detection with a non-deep-learning-based
approach. Across other problem spaces of computer vision,
deep learning has demonstrated state-of-the-art performance.
Therefore, the critical reader may question why we did not do
so in this work. Our rationale is as follows. Given the size of
our dataset, a deep learning model first pretrained on a larger,
more ubiquitous dataset would likely have been necessary.
However, the transfer of a pretrained model from one dataset
to another assumes the existence of common features between
the two. At the time of writing, no such large-scale datasets
exist for acoustic camera video. Given the low resolution,
noise, absence of color features, dissimilarity between our tar-
gets and typical target classes, general dissimilarity between
underwater acoustic camera video and red, green, blue (RGB)
video of common objects, and the results of prior works using
transfer learning in this domain, the authors suspected that
any transfer learning between a large-scale RGB dataset would
not meet our performance requirements (> 90% target detec-
tion and > 20% frame removal). As previously discussed, we
also saw value in distinguishing and developing the filtering
and detection steps separately. Provided our filtering methods
do not remove information useful to the detector, they nei-
ther preclude nor diminish the use of deep learning-based
detectors in future work. Rather, filtering methods make the
task of detecting objects in any manner easier, and in this
way, we sought to maximize performance with a simple, out-
of-the-box detector (Bradski 2000; Suzuki 1985) as a baseline
approach with the expectation that future work would readily
substitute it for a more powerful detection approach.

The performance of our approach

Using our automated detection pipeline, we sought to
detect 90% of targets while removing 20% of empty frames in
an effort to assist an analyst. On the test set, our best model
detected 98% of targets while removing 70% of the video
frames (Table 2). However, in designing a method that was
sensitive enough to detect nearly all targets, our method had
low precision. On the test set, only 2% of detections would be
TPs, while on the train set, 34% were TPs (this was due to the
difference in target sparsity between the two sets). While
reviewing this subset of detected frames is likely faster than
reviewing entire videos, the cognitive load of jumping
between frames using nonsequential detections may make
doing so more burdensome to the reviewer. Hence, despite the

Interactions with marine energy devices

TDR and frame removal rate, future work will be needed to
improve the precision of these methods to provide a stronger
aid for human review.

The utility of the turbine filter stage

While the turbine filter sought to remove oscillatory, high-
intensity pixels from the video, through the ablation study it
became clear that the background removal filter had already
done so. Upon visual inspection of the binary masks and the
intermediate video outputs of our pipeline in Fig. 4, it is clear
that while the turbine filter removes some remaining oscilla-
tory segments of the image, the motion of the turbine is slow
and repetitive enough that it is regarded as sufficiently persis-
tent to be considered static by our background filter. This is
likely due to the long time window on which the background-
removal filter is being calculated in its current, offline imple-
mentation. In this work, we are using the entire length of the
video snippet as the window for this background removal. As
such, relative to the length of these videos, the roughly 1 Hz
oscillation of the turbine causes the turbine blade to reappear
often enough in the same location as to be characterized as
background. Because this will not be the case in real-time
implementations that seek to filter static background using a
moving, windowed-average filter, we hypothesize that such
future work will need to implement a separate sliding DFT or
other periodic filter to remove the oscillation of the turbine
(Bradford et al. 2005).

The utility of the detection association stage

Our detection association algorithm had little effect on the
performance of our method (Table 4). This is likely due in part
to the relative simplicity of our approach. Our algorithm for
detection association only included two similarity metrics—a
size metric and a distance metric. Furthermore, the threshold
that prevents the association of dissimilar detections is applied
against the summation of these two costs—resulting in poten-
tial mis-associations of detections (e.g., a detection whose cen-
troid is in roughly the same location, but changes shape
unrealistically might still be associated). Future work may con-
sider including a velocity metric (such as the Kalman Filter),
path constraints, or an association algorithm (such as Kuhn-
Munkres) that finds the global optimum association to
improve performance (Aharon et al. 2022). These may help
improve the precision of the detection association, and in
doing so, the precision of the entire pipeline.

Labeled, open-access datasets

Acoustic cameras are important tools for monitoring fish
interactions with turbines where water turbidity precludes the
use of optical sensors. However, as with most environmental
monitoring, the large amount of accumulated data without
targets present is time-consuming and expensive to review
and process. Common, open-access, labeled datasets would
allow developers to:
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e Reduce costs by sharing field-collected data in a common,
readily usable format.

e Prototype and test approaches rapidly and in a standardized
fashion.

e Evaluate the performance of a method against ground-truth
labels.

e Compare
shared data.

e Make available the development of detection approaches to
more researchers.

approaches using common metrics on

Like datasets in the computer vision community for
common-object classification, detection, semantic-
segmentation, and other classes of problems, we hope that by
cultivating an ecosystem of open-source data and code that
further progress can be made in automating acoustic data
processing (Deng et al. 2009; Lin et al. 2014).

Future data collections and dataset creation efforts

The advances made by deep learning in other domains
come from the prevalence of data-capturing technologies:
social media, internet of things, and enhanced internet con-
nectivity. To translate such advancements to the marine
energy domain, similar volumes and diversities of data need
to be generated.

Labeling is often the most burdensome step in the creation
of such large computer vision datasets suitable for machine
learning. In this work, we used the open-source, semi-
automated labeling tool—CVAT—to expedite this process.
Doing so allowed us to linearly interpolate target bounding
boxes between start and end positions without manually
labeling every video frame. Automations such as this, auto-
matic object segmentation, or even automated labeling with
other detection models can greatly increase the quality and
speed of creating labeled datasets. In this vein, our automated
detection pipeline could also aid in the creation of future
datasets. By removing frames without objects of interest and
providing bounding box detections in a context-agnostic
manner, it could be used to reduce the burden associated with
acoustic camera dataset annotation, as it might for acoustic
camera video review.

Future work seeking to make additional, labeled datasets
should consider collecting and labeling data from other sites,
using modern, higher-resolution sensors (e.g., SMC ARIS), and
including as metadata or corresponding data multiple views of
acoustic camera video and the environmental and sensing
conditions of the collection site. Such augmentations could
also include sensor pose in global coordinates, 3D meshes for
static objects in each scene (Cordts et al. 2016; Liao
et al. 2023; Reizenstein et al. 2021), locations of the ground
plane and water surface relative to the sensor, time-aligned
water turbidity measurements, and calibrated multi-viewpoint
data from either additional acoustic cameras or additional
sensing modalities (Macenski et al. 2022; MRD 2022;

Interactions with marine energy devices

Oettershagen et al. 2015). By including such augmentations,
high-resolution semantic maps can begin to be created and
used to supervise more modern and complex approaches for
target detection, site characterization, and site modeling, and
thus better inform regulator understanding of sites and the
associated collision risks (Cheng et al. 2022; Liang et al. 2019;
Maturana et al. 2018). These methods would furthermore con-
tribute to improved turbine maintenance through digital
twinning. Simultaneously, community standards for data for-
mats and sharing need to be established to enable data sharing
and rapid algorithm development. Finally, these datasets
should be collocated, made open-access, and popularized via
workshops, competitions, and benchmarks publicized at top-
tier conferences (Kristan et al. 2016; Leal-Taixé et al. 2015).

Comments and recommendations

e Future data collections should be labeled and evaluated
using standardized formats, shared openly alongside detec-
tion approaches, collected, and evaluated via benchmarks,
and publicized at conferences to promote development in
this space. Our work presents a possible approach for doing
so that may serve as a model for the collision risk
community.

e This work developed a novel, labeled, open-access dataset
and a performant, open-access automated target detection
approach that can be used to reduce the costs of marine
energy site characterization and monitoring.

e Data quality, sensor fidelity, filtering, and the detection
approach all equally contribute to final target detection suc-
cess. By splitting our approach into stages and openly shar-
ing our approach and metadata, we provide an extensible
and transparent baseline approach for developing successful
pipelines for this domain.

e Detecting small targets with single-view acoustic camera
imagery is challenging due to difficult backscatter character-
istics at high incident angles on small target areas and due
to low frame rates. Persistent, multi-sensor, multi-viewpoint
deployments with corresponding environmental data bun-
dled into common, open data formats can be used to effec-
tively monitor and characterize marine energy sites and
reduce project costs and timelines.
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