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Abstract—Remote locations in developing regions are expe-
riencing one-fifth energy per capita and heavily depend on
fossil fuels. To enhance energy security, all possible renewable
energy resources should be exploited. The present state of the
art technology demands deployment of wind mast and lidar
based infrastructure which is laborious and costly and hence
demands preliminary data for justification. This paper discusses
a roughness estimation from a geospatial model from which the
wind profile and the wind energy density can be estimated.
Further spatial and temporal variation help perform macro
level techno-economic estimates to identify best wind turbine
placement sites and/or wind farm design sites which can be
further confirmed by micro-level wind energy site assessment
such as wind mast or lidar deployment complimented with
computational fluid dynamics model of the terrain.

Index Terms—wind energy, roughness, geospatial, renewable

I. INTRODUCTION

According to the World Energy Forum, fossil-based oil,
coal and gas reserves account for 80% of the primary energy
supplied in the world [1]. The growing concerns related to the
use of conventional forms of energy, primarily fossil-based,
has shifted the focus towards renewables. Hence decision
makers are keen to understand the renewable resource avail-
ability in their region to make fact based decisions. Concerns
about energy security and resilience, economic growth in the
face of rising energy prices, competitiveness, health costs
and environmental degradation can be addressed by exploiting
this renewable energy resources through appropriate resource
assessment and adoption of renewable energy systems for the
regional energy needs [2], [3].

Today, India ranks third in terms of energy consumption,
followed by the People’s Republic of China and the United
States of America [1]. To be able to meet the energy require-
ments of such a fast-growing economy, a guaranteed supply
of 3-4 times more than the energy consumed at present has to
be met [2]. Wind energy plays a significant role in the Indian
energy sector with a total installed capacity of 25.1 GW and
accounts for 5.1% of the world’s total wind energy production
with a staggering 43 TWh of electricity produced [1]. Based
on a prediction by using a logistic function, 99% of India’s
technical wind energy potential is expected to be achieved by
the year 2030 [3].
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Wind power is a widely used renewable energy resource.
Winds can be generated through complex mechanisms involv-
ing Coriolis forces, differential heating of the earth’s surface,
cooling effects of the oceans and polar ice caps, and physical
effects of mountains and other obstacles. The kinetic energy
of the wind has immense potential as a source of renewable
energy in different parts of the world. About 3x10'° kWh
or 0.2% of the solar energy reaching the earth is accounted
for by the total annual kinetic energy of the atmosphere.
However, only 30x10'? kWh/year or 35% of the current world
total energy consumption can be used, according to theoretical
estimates [4]. Wind turbines are used to harness wind energy.
The power of wind blowing at 25.6 km/h is approximately
200 W/m? times the area swept by the wind turbine. About
36% of this power can be tapped as electricity [5].

Conventional methods to measure wind speed advocate
setting up of cup or ultrasonic anemometers to measure
wind speed. Anemometers set at different heights at different
meteorological stations, must be adjusted to the same height
before analysis. The standard height according to the World
Meteorological Organization is 10 m above the ground level
[6]. A point measurement is provided by the cup anemome-
ter within a few centimeters [7]. Traditional meteorological
towers are being replaced by more advantageous remote wind
measurement devices such as sodar’s and lidar’s [8], [9]. These
methods consume considerable time. Moreover, measurement
of offshore wind speed is difficult to obtain through in-situ
methods [10].

Technological advancements are accelerating at a fast pace.
We are in an era where we can search the entire internet in
less than a second. Thus, expectations of speed and retrieval
of information have risen considerably. Efforts to reduce the
time taken to solve complex problems has led to the evolution
of many activity areas. Although in-situ observations play a
critical role in calibrating and validating satellite observations
in this satellite era, dense satellite sampling may reduce the
role played by the in-situ observations in lowering random and
sampling errors in blended analyses using in-situ and satellite
observations [11].
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II. LITERATURE REVIEW
A. Wind analysis

Wind Turbines capture the kinetic energy from wind and
convert it into useful mechanical power. The useful power
generated at the turbine is given by:

1
P= QpAv?’Cp (1)

where P is power produced in Watts, A is the area swept by
the rotor in m?, p is the density of air in kg/m?, v is the velocity
of incoming wind in m/s, and C), is the power coefficient
which is the ratio of power extracted by the turbine to that
contained in the wind source. The density of air varies with
temperature and elevation. Hence a correction factor must be
accounted for while dealing with high altitudes. Since power
produced depends on the cube of wind velocity, even a small
change in velocity brings about significant changes in the
power. Therefore, a clear understanding of wind velocity is
of primary importance for initial site selection [12].

The influence of ground effects on wind speed is negligible
at high altitudes, whereas, in the lowest atmospheric layers,
the wind speeds are affected by ground friction factors. Wind
shear in the first 400 feet is strictly site-dependent as it is
a function of surface roughness, atmospheric stability, wind
speed, height interval and varies with season and time of the
day [13]-[16]. The regional wind speeds are also affected by
topography and weather patterns. When the wind blows from
flat terrain to a hill, the streamlines are compressed thereby
causing it to speed up.

A wind profile is the representation of the variation of wind
speed with height. The commonly used method is to estimate
wind speeds at certain altitudes of a site using wind measuring
techniques and extrapolate the readings to form a wind speed
profile. The widely used laws are the Hellman’s exponential
law and the logarithmic profile law.

The Hellman’s exponential law can be represented by:

) @

here v is the wind velocity at height H, vg is that velocity
at height Hy and « is the Hellman’s exponent also known as
friction coefficient. It varies with the topography of the site,
atmospheric stability, time of the day and the height interval
[17], [18]. Its a highly variable quantity, varying from 1/7
at the day to 1/2 during the night [19], [20]. The friction
coefficient was also measured to range from 0.1 over smooth
ground, water bodies to 0.4 in urban areas [15]. This profile
is consistent with Weibull wind speed distribution which is
very useful in Wind energy studies [21] though its validity is
limited to 150-200m above ground level [17], [22].

The logarithmic profile law can be represented by:

= (i) g

in which v and vg are the wind speeds at heights H and
Hy respectively, and 2y is aerodynamic roughness length in

meters. This factor is characteristic to the type of land, shape,
size and spacing of the roughness elements. z( typically varies
from 0.0002 over water bodies to 1.5 in dense canopies and
urban areas [23]. The roughness length for a homogenous
terrain can be estimated by measurements at two different
heights. Once we have obtained z; for a piece of land, the
logarithmic formula can be used to calculate the speed at other
heights [24].

It is common to extract predefined roughness values for
different landscape types from tables, however, these val-
ues aren’t accomplished and suitable for calculations. Given
the velocities at specific heights, the aerodynamic roughness
length can be estimated by the method mentioned below.
Hence, a relation is devised between Hellman’s exponent law
and Logarithmic Law to calculate the roughness coefficient
from at least two different heights over a reasonable period.
The Hellman’s exponent is first calculated for the two heights
by using (2) and then equalizing (2) and (3), zo can be obtained
from alpha by [22] :

Hy*InH — H%ln Hy
Hy* — H~

Zo = €xp (4)

The Weibull distribution function is used to study the
distribution of wind velocities over a specified period. These
family of curves provide an excellent fit to measured wind
speed data. There are various methods to estimate the Weibull
parameters. In this paper, the two parameter Maximum Like-
lihood Method has been chosen due to its flexibility and
simplicity of estimation of parameters. This method provides a
consistent approach for parameter estimation and has desirable
mathematical and optimality properties [25]. It has also been
demonstrated to be a more suitable computer-based method
[26]. The shape parameter (k) and the scale parameter (c in
m/s) can be calculated as follows:

n k n —1
b Yo viny YO0 Inw;
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In which, v; is the wind speed in time stage ¢ and n is the
number of non-zero wind speed data points. An initial value
of 2 has been assumed for the shape parameter (k).

The relation between the Weibull parameters and the mean
and most probable wind speed can be represented as follows:

U—JQ+;> (7)

k—1\*
‘/'mp = C(k) (8)

Where v is the average speed, V,,, is the most probable
wind speed, and I is the gamma function which is a contin-
uous function defined for positive real numbers.
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B. NDVI

Normalized Difference Vegetation Index is given by:
NIR — Red )
NIR + Red

where NIR and Red are radiances in Near Infra-Red and
Red/Visible bands respectively.
The aerodynamic roughness length given by:

2o = exp(cl + czNDVI)

NDVI = {

(10)

which is meant to describe the effects of roughness on
surface drag as a function of NDVI for a particular crop.
The coefficients depend on the vegetation type and phenology.
However, the effect of a landscape structure on z, is not
described by this equation [27]. Accordingly, the present
study focused to develop a general relationship between z,
and NDVI for any landscape structure under similar wind
conditions.

Google earth Engine [28] is a cloud-based platform
for planetary-scale-geospatial analysis. Earth Engine finds
widespread use, covering topics like global forest change
[29], global surface water change [30], crop yield estimation
[31], rice paddy mapping [27], urban mapping [32], ood
mapping [33], fire recovery [34] and malaria risk mapping
[35]. Applications for analyzing species habitat ranges (Map
of Life, 2016) [36], monitoring climate (Climate Engine, 2016)
[37], and assessing land use change (Collect Earth, 2016) [38]
have integrated Google Earth Engine into their applications.

Computation of z, can be feasibly done only with the use
of satellite data [39]. Traditionally, z, can be calculated from
measurements of wind profiles at different levels over the
ground considering neutral atmospheric conditions [40]-[42].
According to long-term observations, for locations that have
a similar type of coverage, modelers have assumed that mo-
mentum roughness is identical [43]. Aerodynamic roughness
mainly depends on the geometric features and distributions
of the roughness elements [44]. Estimation of z, using an
optical parameter called Normalized Difference Vegetation
Index (NDVI) is a method that has been widely used [39],
[45]-[47]. But all the efforts to establish a relationship between
2, and NDVI have been focused towards specific crop types.

For Wind Resource assessment and further siting, there is no
established method for a quick estimation of (z,) and further
prediction of wind conditions [48] used a semi-empirical
approach to determine z, from satellite images. This paper
aims to develop an empirical approach to draw a correlation
between z, derived from wind data and satellite data based
NDVI for any terrain under consideration given similar wind
conditions/climate type. Once a proper correlation has been
established, then the satellite-based methodology could be
effectively used to predict Roughness length without the
necessity for in-situ wind data.

III. STUDY AREA

The present study focused its efforts for different locations
in Tamil Nadu, India. Located in the extreme south of the

subcontinent it is bound by the Indian Ocean to the east and
south and by the states of Karnataka to the northwest, Kerala
to the west and Andhra Pradesh to the north. With a total area
of 130,058 km?2, Tamil Nadu is the 11th largest state in the
country. The land is hilly and vegetation rich in the southern,
western and north-western parts. It is the only state with the
Western Ghats and Eastern Ghats meeting at the Nilgiri Hills.
Much of the rain bearing clouds from the south-west monsoon
is blocked from entering the state by the Western Ghats. While
the eastern parts are fertile coastal plains, the northern parts
are a mix of hill and plains. The south-central and central
regions are arid plains.

Tamil Nadu, essentially tropical in climate, is heavily depen-
dent on monsoon rains, thus prone to droughts in the absence
of monsoons. The climate ranges from dry sub-humid to semi-
arid [49]. The state has two distinct periods of rainfall:

o South-west monsoon with strong southwest winds - June

to September

o North-east monsoon with dominant northeast winds -

October to December
48% of the rainfall is through the North East monsoon while
32% is through the south-west monsoon. January to May is
usually dry. The above factors play a crucial role in influencing
the wind conditions of a location.

IV. METHODOLOGY
A. Calculation of roughness length

Acquiring long-term records of wind speed from a large
number of well-exposed stations all over the region is an ideal
method to predict the wind potential of an area [50]. Wind
data was used to calculate the roughness length for various
locations in Tamil Nadu. Wind Resource Assessment Data was
collected from the Indian Meteorological Department, Pune for
13 locations. The TABLE T lists the coordinates of the data
available, location wise. The mean and most probable wind
speed was calculated for each location. The roughness length
was for each of these wind speeds and have been tabulated as
shown in TABLE II.

B. Determination of NDVI

Google Earth Engine was used for image acquisition, pro-
cessing and analysis. A collection of images was acquired from
the Landsat 8, an American earth observation satellite. The
dataset available for analysis was calibrated for TOA (top of
atmosphere) reflectance with orthorectified scenes only. The
Red Band B4 (0.64 - 0.67 m) and the NIR Band B5 (0.85
- 0.88 m) have a high resolution of 30m. All the images
available in the range Apr 11,2013 - Apr 30, 2017, were stored
in an image collection. The landsat 8 layers and NDVI layers
have been shown for Dhanushkodi and Nallur in Figl, Fig2,
Fig3 and Fig 4. The image collection was composited using
three different reducers. The image collection was composited
using three different reducers:

e Mean reducer for compositing all the images in the

collection to a single image representing the mean of the
images.
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o The greenest pixel composite was built using the quality
mosaic method which uses a quality band as a per pixel
ordering function.

o Median reducer was used for compositing all the images
in the collection to a single image representing the median
of the images.

TABLE 1
LOCATION COORDINATES OF THE REGIONS OF INTEREST

LOCATION LATITUDE | LONGITUDE
Subramaniyapuram 11.0639 78.6513
Ittarai 11.5952 77.0809
Kali 10.5758 77.6892
Karungal 10.7435 78.1380
Keeranipatti 10.0560 78.7127
Mellamandai 9.0798 78.2956
Nallur 11.38 77.1807
Udayalipatti 10.5837 78.8826
Viralimalai 10.6382 78.5283
Srivilliputhur 9.4730 77.7381
Sankarankovil 9.1592 77.5295
Dhanushkodi 9.1679 79.4289
Palaya Kundu 10.1411 77.7346

The region of interest was a 1km x lkm (approx.) square
around the latitude and longitude coordinates under consid-
eration. NDVI value was calculated for each pixel in the
region of interest. Then, a mean reducer was used to return
the arithmetic mean of all the individual pixel NDVI values.
This procedure was repeated for all the latitudes and longitude
coordinates under consideration, and the results have been
indicated in TABLE III.

V. RESULTS AND DISCUSSION

The roughness lengths calculated using the values of mean
velocity and most probable velocities at two different heights
have been tabulated in TABLE II. The values have been
calculated for two different pairs of heights. One set of
roughness length values have been calculated with values from
10 m and 50 m and other set has been calculated with values
from 10 m and 80 m.

It can be observed that the roughness length values calcu-
lated from Mean velocities at 10m and 50m are within the
acceptable range of values for roughness lengths as shown
in TABLE V. All the calculations are based on experimental
findings. Any error in the calculated value could be due to
external influence or failure in the sensor. One obvious outlier
in the z, calculated from the mean velocities at 10 m and
50 m is for the area of Keeranipatti. The value of 1.5409 is
higher than usual standards. An interesting observation is an
extremely low value for Dhanushkodi. This is mainly due to
an influence of the surrounding sea and its effects. The value

TABLE I
ROUGHNESS LENGTH VALUES FOR THE DIFFERENT
LOCATIONS OBTAINED FROM THE DIFFERENT MEAN AND
MOST PROBABLE WIND SPEED FOR TWO DIFFERENT PAIRS OF
HEIGHTS - 10M & 50M; 10M & 80M

LOCATION MEAN MPW MEAN MPW
20[10-50] 20[10-50] z0[10-80] 20[10-80]
Subramaniyapuram | 0.106 0.3843 0.1096 0.2975
Ittarai 0.5912 1.8533 0.3956 1.2676
Kali 0.3150 1.4668 0.3823 1.7247
Karungal 0.2432 0.5914 0.2834 0.5335
Keeranipatti 1.5409 2.4336 1.6147 2.4691
Mellamandai 0.4274 1.1912 0.2831 0.9496
Nallur 0.4748 0.8204 0.5113 0.7898
Udayalipatti 0.5533 1.1246 0.5195 0.6999
Viralimalai 0.1564 0.2120 0.2488 0.5963
Srivilliputhur 0.0800 0.2262 0.1630 0.3540
Sankarankovil 0.4651 0.8349 0.4343 0.7824
Dhanushkodi 1.27e-9 1.18e-14 4.96e-22 5.29e-12
Palaya Kundu 0.0221 0.0007 0.282 0.0843
TABLE III
NDVI VALUES OBTAINED USING THE THREE DIFFERENT
REDUCERS
LOCATION NDVI NDVI NDVI
[Median [Mean [Greenest
Filter] Filter] Pixel
Composite]

Subramaniyapuram | 0.2989 0.1878 0.4989

Ittarai 0.5295 0.2444 0.7437

Kali 0.2603 0.2080 0.5759

Karungal 0.2448 0.1997 0.6161

Keeranipatti 0.3078 0.2300 0.4778

Mellamandai 0.2779 0.1999 0.6221

Nallur 0.3037 0.2267 0.6036

Udayalipatti 0.3040 0.2170 0.5343

Viralimalai 0.2665 0.2262 0.5033

Srivilliputhur 0.2754 0.2159 0.5305

Sankarankovil 0.2363 0.1812 0.5094

Dhanushkodi -0.0609 -0.0153 0.1035

Palaya Kundu 0.2677 0.2384 0.5677

of z, calculated from the mean velocities at 10 m and 80
m is also within the acceptable range except for the area of
Keeranipatti. It has an extremely high value of 1.6147.
Roughness length values evaluated from the most probable
velocities for the heights 10 m and 50 m as well as for the
heights 10m and 80 m show observable deviations from the
accepted range of values. Based on the values in TABLE II it
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Fig. 2. Landsat 8 - Dhanushkodi

Fig. 3. NDVI Layer- Nallur

Fig. 4. Landsat 8- Nallur

can be inferred that roughness length must not be calculated
from the most probable velocities. Only the mean velocities
provide an acceptable value of roughness length.

The aim was to compare the calculated roughness length
values with the NDVI values obtained from the different
methods of image processing and investigate the existence of a
correlation. Scatter plots were drawn to visualize the strength
of the relationship between the mean z, for the two different
pairs of heights and the NDVI from the three methods of

processing. The results have been tabulated in TABLE IV. The
observable outliers were removed before plotting the graph. A
simple linear fit regression line was drawn after eliminating
the outliers. The coefficient of determination, a good measure
to compare the strength of a correlation was also found.

From TABLE IV it can be observed that the highest coef-
ficient of determination is for the plot between z, calculated
from the mean values of velocity for the heights 10 m and
80 m and the NDVI determined by using the greenest pixel
composite. The value is found to be 0.4098. The coefficient
of determination was least for the plot between the roughness
length values calculated from the pair of 10 m and 50 m
pair and the NDVI determined from applying the mean Filter.
This value is 0.1736. The coefficient of determination can be
improved if more values are closer to the linear fit line. The
sample space of this data has only 13 points. It is not feasible
to draw any inferences from such a small dataset. Valid
inferences can be made only if the dataset is more populated.
Such comparison would be more feasible if more data from
other locations with a similar wind climate is obtained. There
is an emphasis on similar wind climate since wind conditions
are majorly influenced by the climate of the area.

The proposed methodology is capable of assisting studies
that have been conducted in the past. The effects of ocean
surface waves and atmospheric boundary layer on the storm
track and intensity of the cyclones [51] were investigated using
numerical simulations. The roughness length obtained from
the present method facilitates the study of the atmospheric
boundary layer, thereby simplifying ocean surface studies.
Also, variance characteristics of upper-air winds obtained
using radiosonde observations [52] can be studied in more
detail with a better understanding of the atmospheric boundary
layer.

Power generation is an avenue that requires a lot of at-
tention, especially in energy intensive countries [53]. Energy
production capacity of wind turbines can be derived from
wind profile extrapolations. This can be used to perform wind
turbine sizing according to the regional wind climate, leading
to site-turbine matching. The results of the study can also be
used to optimize the wind farm layout.

VI. CONCLUSION

The present study has provided a cost effective Geospatial
based data analysis to estimate the wind roughness prediction
of a remote site. This helps to estimate a wind velocity
distribution of a broad region and thereby the wind energy
density maps can be generated. Such data helps identify the
best windy locations to further perform micro-sitting to choose
the wind turbine placement and/or design a suitable wind farm
in the given terrain. Further using the wind roughness z, value,
the wind shear phenomena with altitude can be estimated and
the appropriate minimal height with stable wind condition can
be estimated.
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TABLE IV
RESULTS OBTAINED FROM THE SCATTER PLOTS

PLOT EQUATION R-
SQUARED

Mean Z0[10-50] vs NDVI | y=0.985x+0.022 0.3575
[Median Filter]

Mean Z0[10-50] vs NDVI | y=1.2906x+0.0356| 0.1736
[Mean Filter]

Mean Z0[10-50] vs NDVI | y=0.8187x-0.151 | 0.3423
[Greenest Pixel Compos-
ite]

Mean Z0[10-80] vs NDVI | y=0.702x+0.1136 | 0.3255
[Median Filter]

Mean Z0[10-80] vs NDVI | y=1.4362x+0.0222| 0.3888
[Mean Filter]

Mean Z0[10-80] vs NDVI | y=0.666x-0.0546 0.4098
[Greenest Pixel Compos-
ite]

TABLE V
ROUGHNESS LENGTH CLASSIFICATION ACCORDING TO
TERRAIN SURFACE CHARACTERISTICS[17]

zo[m] Terrain Surface Characteristics (land use)

1.5 Sparse forest
1 City

0.8 Dense forest
0.5 Suburbs
0.4 Shelter belts
0.2 Many trees and/or bushes
0.1 Farmland with closed appearance
0.05 Farmland with open appearance
0.03 Farmland with very few buildings/trees
0.02 Airport areas with some buildings and trees
0.01 Airport runway areas

0.008 Mown grass

0.005 Bare soil (smooth)

0.001 Snow surface (smooth)

0.0003 Sand surface (smooth)

0.0002 Water areas (lakes, fjords, open sea)
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