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New York Offshore Atlantic Ocean Study 
 

I. Introduction 

A. Background 

New York State’s Department of State (DOS) has completed a two-year study to generate and 
assemble the most comprehensive dataset of physical, biological, geographic, and socioeconomic 
information available for the Atlantic Ocean waters offshore New York State.   

New Yorkers rely on the ocean for a wide range of economic activities.  Over two-thirds  of all 
New Yorkers live in counties that are located within the State’s ocean and estuarine regions, 
accounting for over 275,000 ocean and coastal-related jobs and nearly $7.5 billion in wages in 
2009.1  The Port of New York and New Jersey is North America’s largest container port and the 
third biggest port in the United States, handling over $175 billion in cargo.2  The overall 
economic contributions of the sport fishing, commercial fishing, and seafood industries to New 
York State total $11.5 billion annually.3  Long Island’s tourism industry accounts for over $4 
billion annually and includes a robust community of recreational divers, boaters, fishers, and 
others who enjoy using the water.  In fact, New York has the largest concentration of registered 
recreational boats in the Northeast, with Suffolk and Nassau Counties accounting for almost two-
thirds of the 15,502 total vessels in New York. 

In addition to these important economic activities, New York’s coastal communities are deeply 
connected to the ocean by physical and ecological ties.  In the past, severe coastal storms have 
caused significant damage to New York’s coastal communities because of this connectivity.  
Most recently, in October of 2012, Hurricane Sandy’s high winds and related storm surge 
devastated portions of New York City and Long Island, causing fatalities, injuries, property 
damage and extended power outages, and disrupting life for millions of New Yorkers.  Taking a 
longer view, the ocean-related impacts of climate change will pose additional strains on coastal 
communities.  Warming ocean temperatures and rising sea levels will affect coastal 
infrastructure,4 and the distributions of fish stocks and other wildlife may shift farther north.5,6  
While the focus of this study is on offshore areas, understanding the relationship between New 
Yorkers and the ocean will provide insight into opportunities to strengthen and improve 
connections to the ocean, leading to more economically-vibrant communities that are also more 
resilient.  

In acknowledgement of the breadth of connections between New York’s coastal area and the 
offshore environment, DOS studied an expansive area.  In its entirety, the offshore planning area 
constitutes approximately 12,650 square nautical miles (16,740 square miles7) off the south shore 
of New York City and Long Island.  These waters are under the jurisdiction of either the state (0-
3 nautical miles from shore) or federal (3-200 nautical miles) governments, and are managed by 
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numerous government agencies.  Through the New York State Coastal Management Program, 
authorized by the federal Coastal Zone Management Act (CZMA) and administered by DOS, 
New York has an important role in federal decisions made in waters beyond the State’s territorial 
boundary through its Federal Consistency authority.8   

This study provides information for state and federal decision-making, supplementing available 
use and resource data.  When future decisions are to be made regarding offshore activities, state 
and federal agencies will rely upon  all data and information available at the time of the decision-
making.  This study illustrates the abundance and diversity of the uses and resources that can be 
found off New York’s offshore Atlantic environment.  The information that follows supplements 
existing datasets and highlights a broader body of ongoing work.  It is not intended to be an 
exhaustive accounting of New York’s ocean interests.   

This study contains physical, biological, geographic, and socioeconomic information including: 

 the locations and characteristics of existing uses, such as commercial vessel traffic, 
recreational boating, commercial fishing, recreational fishing, diving, surfing, nature 
viewing, and research and exploration; 

 predicted locations of existing natural resources, such as fish, whales, seabirds, and sea 
turtles, and observed locations of corals and sponges;   

 a range of modeled physiographic information, such as ocean floor features, sediment 
characterization, depth, current, temperature, wind speeds, and bathymetry (bottom 
contours); and  

 the locations of infrastructure and regulated areas, such as dump sites, unexploded ordnance, 
navigation lanes, turning basins, fiber-optic cables, electric transmission cables, pipelines, 
and aviation-restricted areas.  

B. Purpose  

The purpose of this study is to improve the understanding of habitats that New York’s existing 
ocean-based industries depend upon based on the actual or predicted locations of existing uses 
and resources.  This study is the first of many steps to guide and inform the future siting of 
offshore activities.  The methodologies and data represented here can be found in their entirety in 
a series of separate scientific reports developed for DOS by federal partner agencies and 
oceanographic organizations.  These reports contain more detail on the methodologies used and 
include additional data and analyses.  The reports can be accessed online at 
http://www.dos.ny.gov/communitieswaterfronts/offshoreResources/index.html.   Readers that 
may be interested in learning more about any of the natural resources presented here, such as 
marine mammals or sea turtles, can refer to the supporting documents.      

  

http://www.dos.ny.gov/communitieswaterfronts/offshoreResources/index.html
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The continued growth and vitality of New York’s Atlantic coastal communities are closely 
linked to a healthy and productive ocean ecosystem that remains accessible to New Yorkers for 
their commercial and recreational activities.  As the understanding of ocean resources increases 
and as ocean-based technologies mature, new opportunities are becoming available for 
commercial development.  These opportunities include an increased technical ability to harness 
offshore wind energy resources, and new research and exploration into biological resources that 
have the potential for biomedical and other technical applications.9   

In particular, one of the main drivers for this study is to aid the siting and associated state and 
federal regulatory review of future offshore wind energy projects in the study area.  The wind 
resources offshore of New York State in the Atlantic Ocean are relatively strong,10 close to load 
centers, and commercially-available technology currently exists to generate and transmit 
electricity from offshore wind resources to New York’s electric grid.  The taking advantage of 
this renewable resource could help New York State reduce its dependency on fossil fuels while 
meeting a growing energy demand.  In addition, offshore wind could bring new economic 
development opportunities to New York industries involved in the siting, permitting, 
manufacturing, construction, operations, or decommissioning activities necessary to build, 
maintain and retire an offshore wind energy facility.  As with any new form of energy 
development, decision-making requires a robust analysis of the potential costs, including impacts 
on electric rates, as well as the benefits of future projects.  

The public interest in offshore wind is complicated by a current relative lack of data on the 
locations of important offshore habitats and uses.  The offshore environment is relatively vast 
and unknown, particularly when compared to information available for coastal and nearshore 
areas.  The geographic focus of this study therefore emphasizes the offshore aspects of ocean 
uses and resources to help address this knowledge gap.  The data and information contained in 
this document show, for the first time,11 the State’s perspective on the complexity of the natural 
and human environment offshore New York.   

In developing the scope and methodologies for this study, DOS relied on modeling approaches  
rather than invest substantial resources to collect and process new natural resource observational 
data.  These models utilized datasets that provided the best available information for the offshore 
environment and are a cost-effective means to inform and guide future research, fulfill regulatory 
requirements, and aid in project review analyses.   

While some nearshore and coastal information is included, this study is not designed to highlight 
or draw attention to nearshore and coastal areas.  Instead, the study complements existing data 
and information that show the value of nearshore areas (e.g., bycatch data that show important 
coastal foraging areas used by sea turtles and also acoustic survey data showing patterns of 
nearshore foraging activity by Atlantic sturgeon) and is intended to be used in conjunction with 
these other datasets for decision-making.   While the State’s interest in coastal uses and resources 
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is relatively well-understood, the information in this study confirms that the geographic breadth 
of State interests extends well beyond the State’s territorial boundary, requiring collaboration 
and partnership across multiple levels of government.    

Both nearshore and offshore data will be important to aid future decision-making in the siting of 
offshore wind projects.  As examples, existing and future data on important nearshore 
recreational areas in Moriches and Shinnecock Bays or the coastal foraging habitats of sea turtles 
may be important for analyzing potential transmission cable sites and landfall locations.  
Likewise, the whale information in this study and other reports on marine mammal presence may 
be important for analyzing potential sites for project elements that are farther offshore, such as 
wind turbine foundations and offshore electrical collection and transmission infrastructure.   

The immediate impacts of this study will include: 

 Informing future analyses that will guide offshore wind project development and 
permitting efforts toward the areas that demonstrate potential for compatibility with 
existing uses and resources.  

 Informing future protection measures for the habitats and places that sustain New York’s 
ocean-based industries, particularly commercial fishing and marine navigation.   

 Increasing the availability of information for use in decision-making in federal waters, 
using widely-accepted scientific analyses and information collected directly from New 
Yorkers who depend on the ocean for their livelihoods and enjoyment.   

Future offshore planning efforts will build from this Study and will include additional data 
collection and analysis of uses and resources important to New York.  DOS is continuing to 
work with partners to model natural resources (e.g., benthic habitats, commercially and 
recreationally-valuable fish stocks) and obtain use data (e.g., surfclamming activity) and 
anticipates making data from these future analyses available in the same data portal used for this 
study. 

This study and subsequent efforts are intended as a planning exercise and do not bind or pre-
determine future decision-making.  As a result, the pre-screening of sites is based upon a 
scientific analysis of available data and information and does not constitute a pre-clearance, a 
pre-approval or an exemption from current and future compliance with all state and federal 
statutory and regulatory requirements pertaining to the siting of offshore energy facilities.  
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C. Offshore Planning Area and Setting   
(Figure 1) 

The offshore planning area covers much of the New York Bight and includes New York’s 
Atlantic territorial sea and those federal waters where located actions are most likely to have an 
effect on New York’s coastal uses and resources.12 The offshore planning area extends from 
1,500 feet off the southern shore of Long Island and New York City to the edge of the 
continental shelf and encompasses approximately 16,740 square miles.  The eastern boundary 
extends from the shared state territorial sea boundary with Rhode Island, off Montauk Point, out 
to the western foot of Block Canyon.  The western boundary begins at the shared state territorial 
sea boundary with New Jersey, extends southeast to the Ambrose navigation buoy, then south 
along the western side of the Ambrose to Barnegat shipping lane to a point approximately 7.7 
nautical miles from the Ambrose navigation buoy, and from that point to the western foot of 
Spencer Canyon (Figure 1).   

The offshore planning area ranges from approximately 90 to 125 miles wide, from 1500 feet 
from the shore to the edge of the Outer Continental Shelf (OCS).  At its outer edge, the shelf 
meets the continental slope, an area 25 - 35 miles wide with very steep slopes that extend to 
water depths greater than 1.5 miles from the ocean surface. The most prominent topographic 
feature in the offshore planning area is the Hudson Canyon, a large submarine canyon at the 
continental shelf edge. At the continental shelf break, waters above the shelf and above the slope 
meet, creating a highly dynamic zone where water moves due to wind forcing, gravitational 
flow, and large scale weather patterns.13  Changes in the relative position of these dynamic 
waters can affect physical parameters such as water temperature and influence species 
distributions. 

The hydrography, or water currents, within the study area varies significantly by season, driven 
by considerable freshwater input from rivers, storm-dominated sediment transport and 
interactions among large distinct water masses.  These characteristics, along with those of the 
seafloor, affect the presence and location of resources (e.g., fish, sand) and ecosystem services 
(e.g., coastal protection, tourism and transportation). 
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Figure 1: Offshore Planning Area 
The Offshore Planning Area includes the continental shelf, slope and a variety of seafloor features such as 
canyons. 
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II. Methods and Findings 

A. Summary 
(Figure 2) 

DOS staff partnered with multiple federal and state agencies, non-government organizations, 
universities, and other stakeholders.  These partners provided critical support in developing, 
vetting, organizing, analyzing and depicting the information provided in this report.  In 
particular, the National Oceanic and Atmospheric Administration (NOAA) National Centers for 
Coastal Ocean Science Biogeography Branch (NCCOS) provided significant technical assistance 
and direct modeling efforts in support of DOS.  

Most of the data used in this planning effort are from federal agencies or from universities with 
oceanographic research and exploration programs.  DOS engaged key federal entities responsible 
for offshore environmental and industry regulation, and other activities related to ocean energy 
planning within federal waters.  Many of these federal entities maintain datasets relevant to 
DOS’s offshore planning area and have helped to analyze the information included in this study.  

DOS also created an “Offshore Renewable Energy Work Group” and an “Offshore Habitat Work 
Group”.  The work groups were created as issue-specific forums for discussing site information 
needs for renewable energy projects offshore New York, and evaluating the best available data to 
identify and describe  unique offshore habitats, respectively.   

DOS evaluated and organized information into four general data topics: infrastructure, bio-
geography, renewable energy requirements and offshore use.  This review led to the 
identification of initial data gaps, particularly offshore use information. DOS then worked with a 
wide range of interests and stakeholder groups to identify, locate and characterize offshore uses.  
This new dataset includes commercial and recreational fishing, boating, surfing, diving, and 
wildlife viewing activities.  DOS supplemented this work with existing information on 
commercial fishing and commercial vessel traffic generated by the federal government.  

The Offshore Atlantic Ocean Study is the most comprehensive collection of information 
available for the offshore planning area.  The study is built from 750 datasets, involved dozens of 
federal agencies, state agencies and non-government organizations, and includes input from over 
one hundred individual ocean users and user groups.  DOS’s emphasis on collaboration and 
direct engagement with ocean users and data repositories provided real-time peer review and 
greater confidence in study results.  The figures and information presented here are a 
representative subset of the hundreds of datasets collected and accessed by DOS (Figure 2).  
DOS will make the information in this study, and additional data, available on the DOS website.  
The website will be updated periodically to incorporate additions and modifications. 
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Figure 2: Selected Datasets. 

Dataset 
Sample size within 
Offshore Planning 

Area 
Time Period 

Groundfish trawl survey 4,000 trawl stations 1975 – 2009 
Seabird surveys 4,500 observations 1980 – 1988 
Marine mammal and sea turtle database 2,500 observations 1978 – 2006 
Deep-sea coral and sponge database 587 records 1880 – 2005 
Commercial fisheries regulatory data 200 grid cells* 2001 – 2010 
Commercial fisher interviews 104 records 2012 
Recreational user interviews 130 records 2010 – 2012 
*trip reports are aggregated by grid cell to protect confidentiality 
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B. Study Base Map 
(Figure 3) 

DOS developed a base map to provide the viewer with context when displaying use or resource 
data layers (Figure 3).  The size of the offshore planning area and relatively low resolution of 
some data required the underlying base map to be standardized at a scale of 1 inch =  20 nautical 
miles.  This scale provides an appropriate focus on resource and use presence in offshore areas 
(i.e., beyond 1500 feet from shore) consistent with the purpose of this study.  However, many 
datasets have higher resolution that also allows for zoomed-in views and maps focused on 
smaller subsets of the offshore planning area that will be the focus of future planning work.  

The GIS data layers used in the base map are: 

 States/coastline – Details state boundaries, giving regional context to the location of the 
offshore planning area within New England and the Mid-Atlantic. 

 New York Counties – Details county boundaries, providing state-level context to New York 
stakeholders.  This data layer was obtained from the New York State GIS Clearinghouse and 
is maintained by the New York State Office of Cyber Security. 

 Bathymetry – Details seafloor bathymetry (also called seafloor topography) that influences 
the planning of human activities (e.g., construction, shipping) and many physical, chemical 
and ecological processes, including habitat characteristics. DOS used bathymetric data layers 
provided by federal agencies.  

 Navigation (shipping) traffic lanes – Details established navigation routes familiar to the 
ocean use community that provide a visual reference for individual use and resource data 
layers.  Offshore wind project development is completely restricted within traffic lanes.  For 
this reason, data layers relevant to offshore wind project siting are often displayed underneath 
the traffic lane layer (see II.F.1 for more discussion of siting constraints). Three major 
navigation traffic corridors14 leading to/from New York Harbor are at least partially within 
the offshore planning area: a west – east corridor off the southern coast of Long Island that 
includes the Ambrose to Nantucket / Nantucket to Ambrose navigation lanes; a north – south 
corridor that includes  the Ambrose to Barnegat / Barnegat to Ambrose navigation lanes; and 
a northwest – southeast corridor that generally follows the Hudson Shelf Valley out to the 
Hudson Canyon and includes the Ambrose to Hudson Canyon / Hudson Canyon to Ambrose 
navigation lanes.  The navigation traffic lane data layer was acquired from NOAA’s online 
Electronic Navigation Chart (ENC) site.15  

 Federal/state territorial seas – Details the boundaries for state and federal territorial seas, 
which are jurisdictional layers that represent defined management areas.  DOS acquired this 
layer from the federal Multi-purpose Marine Cadastre.16 
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 Federal Outer Continental Shelf Lands Act lease grid – Details the grid used to identify 
areas available for leasing for offshore wind project development.  The U.S. Department of 
the Interior’s Bureau of Ocean Energy Management (BOEM) uses 3 nautical mile x 3 
nautical mile “lease blocks” as the basic units for identifying offshore wind lease areas.17  
The offshore data and information in this study can be used to identify locations that may be 
appropriate for offshore wind energy development.  The lease block grid therefore is 
included as a base layer.  DOS acquired this layer from BOEM. 
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Figure 3: Offshore Planning Area – Base Map 
Navigation lanes and state and federal territorial sea boundaries transect the offshore planning area.  Each 
BOEM lease block grid is 9 square nautical miles.  Bathymetric contour lines illustrate the seafloor terrain 
in the offshore planning area. 
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C. Infrastructure 
(Figure 4) 

The seabed offshore New York contains numerous active and relic infrastructure sites.  These 
sites include utility line crossings, ocean observation platforms, and material disposal sites.  DOS 
incorporated the following NOAA data layers representing known, existing infrastructure from 
the Office of Coast Survey18 (Figure 4):   

 Buoys – Details the  location and physical characteristics of the navigational buoys, lights, 
and day beacons that mark where channels and potential obstructions are located, including 
observational buoys used for monitoring weather conditions and other parameters of the sea 
state at that location. 

 Dump (Disposal) sites – Details the  location and general nature of undesirable and/or 
dangerous materials that have been disposed of in a number of areas offshore New York.19  
Dump sites containing materials such as chemical and industrial waste, unexploded 
ordnance, and even municipal sewage sludge have been identified and mapped.    

 Submarine cables – Details the location of submerged cables, including intercontinental 
telecommunications cables and interstate electrical transmission cables.   

 Submarine pipelines – Details the location of the planned Transco pipeline, the only known 
natural gas pipeline in the offshore planning area. 

 Sand Borrow Sites – Details the location of areas that have either been identified as sand 
borrow sites or are potential sand borrow sites that require additional analysis.  Analysis of 
potential sites includes consideration of spatial extent of the sand resource, sediment 
composition and size, depth, biological assessments and other factors.  Once identified, sand 
in these sites may be appropriately used for various needs, such as beach nourishment, etc. 
 The offshore planning area includes 44 current and potential borrow sites totaling 9,414 
acres, of which 62.25 acres are in federal waters.  Further analysis is needed to determine the 
full extent of available sand resources across these sites.      
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Figure 4: Infrastructure 
Multiple layers of marine infrastructure can be seen in this map.  These include stationary navigation and 
research buoys, and submarine cables, many trans-Atlantic, which cross the offshore planning area.  A 
number of locations offshore have been used for disposal of undesirable materials.   
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D. Biogeophysical 
Biogeophysical information covers a wide range of natural processes and resources of potential 
significance to New York.  The biogeophysical data available to DOS include information on: 
 
 physical “landscape” characteristics of the ocean floor, including water depth 

(D.1.Bathymetry) and seafloor composition (D.2. Substrate);  

 annual and seasonal atmospheric and oceanic conditions (D.3.Meteorological-
Oceanographic); and 

 many of the biological resources that are present in the offshore planning area during at least 
some part of the year or at some phase of their life-cycle (D.4.Deep Sea Coral and Sponges, 
D.5.Marine Mammals and Sea Turtles, D.6.Seabirds, and D.7.Groundfish).   

The biogeophysical data - particularly the data on biological resources - came from a variety of 
sources, and consist of a range of sample sizes, spatial resolutions and time frames.  Many of the 
data sets are large and long-standing.  For example, the North Atlantic Right Whale Consortium 
(NARWC) database, housed at the University of Rhode Island, is made up of thousands of 
observations spanning 31 years from 1978 to 2009.20  The Manomet Cetacean and Seabird 
Assessment Program database includes 9,099 survey locations with observations spanning from 
1980 through 1988.   
 
DOS formed a significant partnership with NCCOS to interpret seabird data sets in applying 
them to the offshore planning area.21  NCCOS developed models using environmental variables 
as well as sightings data to predict seabird abundance and distribution.  DOS also worked with 
the New England Aquarium and Stone Environmental, Inc. to interpret additional data for taxa of 
interest (marine mammals, sea turtles and groundfish).  New England Aquarium developed 
relative abundance maps for marine mammals and sea turtles based on survey sightings data.  
These efforts were captured in several reports generated specifically to support this study.22 
 
The predicted distribution and abundance maps in this study represent model outputs based on 
work described in these supporting documents.  A fundamental characteristic of modeled 
information is that the biases in a model’s output reflect the data that were input to develop it.  
For this reason, a survey methodology that focuses on offshore observations rather than 
nearshore (e.g., the NARWC database) will lead to maps that are more appropriate for predicting 
abundance or distribution offshore rather than nearshore.     
 
The predicted distribution and abundance estimates are a relative index and should not be 
confused with absolute population estimates.  Interpolation smoothed out the relative density 
contours and filled-in predicted values in some unsampled areas.  For the seasonal maps, the 
entire dataset (i.e., all observation points, including those outside the study area) was ranged.  A 
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unique range of values was then created for each annual map to highlight “hotspots” within the 
study area.   
 
As a final note, units of abundance are relative to each species.  Units needed to be statistically 
standardized across all species before creating grouped maps (e.g., All Cetaceans). 

1. Bathymetry 

The technologies used to measure water depth are expensive, time-consuming, and cover 
relatively narrow swaths as an area is surveyed.  Because of the infeasibility of completely 
surveying the offshore planning area, DOS relied on modeling to fill in the gaps between 
measured water depths.   

NCCOS developed a new bathymetric model for the offshore planning area, based on data from 
the standard NOAA Coastal Relief Model (CRM).  NCCOS used a geostatistical approach to 
predict a continuous surface from scattered sounding locations.  They retrieved all available 
NOAA National Ocean Service Hydrographic Survey Data within the study area, including 
information on how and when each sounding was collected.  While certain soundings were 
corrected or eliminated due to accuracy concerns, the vast majority were retained.  Soundings 
were then divided into four depth strata, and interpolated using separate models appropriate for 
each stratum.  Model performance was assessed using cross-validation and comparison to an 
independent high-resolution dataset. 23 

The NCCOS model builds on previous predictive bathymetric modeling completed in the 
region,24 providing a continuous bathymetric surface for the offshore planning area. While the 
spatial resolution of the new model is identical to the standard NOAA CRM, the new model 
provides estimates of prediction certainty, which can be used to prioritize areas where new 
bathymetric surveys are needed and to better understand the reliability of existing depth 
predictions and derived spatial layers (e.g., benthic habitats, positions of depth contours).25  
Certainty was generally higher at shallower depths and lower at deeper depths.  Error also 
increased with distance from soundings.  Cross-validation results indicated that the model 
performed extremely well in the 0-30 m and 30-100 m depth strata (mean absolute errors of 0.60 
m and 0.55 m, respectively) and reasonably well in the 100 - 200 m depth stratum (mean 
absolute error of 2.1 m).  Accuracy at depths deeper than 200 m was considerably degraded. 26   
This model represents the best currently available broad-scale data for the offshore planning 
area.  Collection of new high-resolution bathymetric data will be incorporated by DOS in future 
updates to the study data layers available online.27   

The bathymetric model provided an important base environmental layer for spatial planning 
since bathymetry influences the viability of human activities (e.g., bottom features that may limit 
offshore project construction, water depths necessary for deep-draft shipping) and many 
physical, chemical and ecological processes. For instance, reliable bathymetric information can 
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simultaneously improve habitat conservation and energy development by supporting the 
identification of: 

 unique or vulnerable benthic habitats; 

 distributions of rare or endangered species; 

 efficient corridors for transmission lines; and 

 suitable sites for wind turbine platforms. 

2. Substrate 
(Figure 5-Figure 6) 

Mapping seafloor features, including sediment characteristics and distribution, provides crucial 
information for a number of offshore activities.  Like bathymetric data, other seafloor data can be 
used to help select appropriate offshore wind development sites, and plan sand/gravel mining 
operations.  Bottom sediments play critical roles as habitats for benthic organisms such as 
groundfish (e.g., cod, flounder), clams and corals, and in the storage and processing of organic 
matter.28 

NCCOS developed predictive models of mean sediment grain size and the probability of hard 
bottom occurrence for DOS’s offshore planning area (Section IV).29  Predictions were made on a 
30 arc-second (0.5 nautical mile) geographic grid.   

NCCOS obtained mean grain size data from Dr. John Goff,30 who obtained data from the 
publicly available usSEABED Atlantic Coast Offshore Surficial Sediment Data Release and 
applied bias corrections and quality control procedures.  Using the same general geostatistical 
modeling approach they applied to the bathymetric data, NCCOS created a continuous surface 
for surficial sediment mean grain size from scattered sediment survey point data.  NCCOS also 
compiled an integrated point dataset of known hard bottom locations from the usSEABED 
database, the NOAA and U.S. Coast and Geodetic Survey Bottom Type Descriptions from 
Hydrographic Surveys database, and National Marine Fisheries Service (NMFS) surveys.31     

The new NCCOS models build upon existing data compilations and analytical frameworks.  The 
mean (sediment) grain size model provides a continuous predictive map and corresponding 
certainty estimates. The hard bottom occurrence model also provides a continuous predictive 
map representing the likelihood of hard bottom occurrence.  For display purposes, these models 
are combined in one map to show areas with the greatest likelihood of hard bottom occurrence, 
as well as those likely to have grain sizes equal to or greater than those of coarse sand (Figure 5). 
Nonetheless, any model based on presence-only data should be approached with caution. 

Mean grain size model certainty was poorer in areas offshore of the continental shelf break vs. 
nearshore areas, reflecting the paucity of surveys past the offshore shelf break.  Note that mean 
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grain size predictions are likely biased toward finer particles due to issues with sediment sample 
processing. 

Hard bottom likelihood was high in nearshore areas and in the vicinity of canyon features.  It is 
important to note that the model provides a relative likelihood of at least one hard bottom point 
occuring at a given location, and that these points may be in areas predominated by non-hard 
bottom (e.g., sandy) substrate.   

Although model predictions are static, the offshore planning area is characterized by spatially 
variable seafloor features that have formed as a result of dynamic marine geological processes, 
particularly the dramatic (>100 m) rise in sea level following the last glaciations.32,33  The 
present distribution of surficial sediments in the region reflects deposition, erosion, and other 
sedimentary processes during this period of sea level rise.34 

The continental shelf within the study area has relatively simple topography and slopes gradually 
from the shore to the shelf edge.  The seafloor on the continental shelf is generally composed of 
sand which grades to finer sediments such as silt and clay as water depth increases.35  The 
relatively homogeneous seafloor has sporadic relic sand and gravel ridges from past glacial 
periods, exposed sandstone and bedrock, dumping sites and other infrastructure as detailed 
above, scuttled vessels, artificial reefs (including subway cars submerged through a New Jersey 
reuse program ), shipwrecks, and lost cargo.  The most pronounced topographic features in the 
offshore planning area are the Hudson Shelf Valley, which crosses the entire shelf at the southern 
end of the offshore planning area,36 and the Hudson Canyon, which connects to the Hudson Shelf 
Valley and is the largest submarine canyon on the U.S. Atlantic continental margin.37  The shelf 
edge also features numerous submarine canyons spanning the offshore planning area (Figure 6).   
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Figure 5: Substrate 
This map shows areas with a high likelihood of hard bottom presence as modeled by NCCOS using a 
point dataset of known hard bottom locations.  Areas highly likely to have hard bottom (greater than .75 
relative likelihood) are shown in purple, and areas with a predicted grain size equal to or greater than 
coarse sand (0.5 mm – 1mm) are outlined in green.  Remaining areas are color-ramped from smaller grain 
size (fine silt; approx. 0.016 mm) to larger grain size (pebbles; approx. 4  mm). 
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Figure 6: Submarine Canyons 
The Continental Shelf Edge within the offshore planning area is cut by many canyons from Spencer 
Canyon in the southwest to Block Canyon in the Northeast, with the most significant being the Hudson 
Canyon centered in this map.  Due to water transfer, upwellings, varied slopes, and sea floor make-up, 
submarine canyons are relatively dynamic features of the offshore planning area. 
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3. Meteorological-Oceanographic 
(Figure 7-Figure 13) 

Basic physical processes that occur in the offshore planning area can have a significant influence 
on the presence of certain species and the viability of a range of commercial and recreational 
ocean uses.   In particular, oceanographic conditions are of fundamental importance to 
understanding the context and root causes of many biological processes.    

Meteorological conditions of particular relevance for offshore wind-related planning include 
average wind speeds (annualized) and extreme weather events.38  The U.S. Department of 
Energy’s National Renewable Energy Laboratory (NREL) is the United States’ primary 
laboratory for renewable energy and energy efficiency research and development.  NREL's 
meteorologists, engineers, and GIS staff have led the production of wind resource 
characterization maps and reports, working with leading private industry experts.39  DOS used 
NREL-validated offshore wind resource maps to approximate predicted wind resources in the 
offshore planning area.  Data on hurricanes and extratropical/subtropical storms and depressions 
were obtained from NOAA’s National Hurricane Center.40  Extratropical storms most frequently 
take the form of nor’easters, which usually occur during winter months.   

Wind speeds in the offshore planning area are consistently above 8.5 m/s (Figure 7).    Extreme 
weather events include Atlantic hurricanes that have historically occured in and around the 
offshore planning area (Figure 8).  Because of the large size and high energy of these storms, 
significant impacts may be felt in areas far from the storm’s center.   

Several key dynamic oceanographic variables are important to understand spatial and seasonal 
patterns in the offshore planning area.  NCCOS compiled data on: relative ocean temperature at 
the surface (sea surface temperature, or SST) and within the water column (stratification); the 
relative presence of particulates in the water (surface turbidity); and the relative biological 
productivity, both primary/photosynthetic (suface chlorophyll a, a type of chlorophyll) and 
secondary (near-surface zooplankton biomass), a measure of the amount of particulates in the 
water.  Data were gridded and long-term averages were mapped by season.41 

SST estimates were obtained by averaging monthly satellite data from the NASA Advanced 
Very High Resolution Radiometer SST archive for the Northwest Atlantic region, 1985-2001.  
NCCOS calculated stratification values by subtracting seawater density at 50 meters depth from 
seawater density at the surface.42  Three-dimensional seawater density estimates were 
interpolated by NCCOS from conductivity-temperature-depth casts.  By this definition, 
stratification is usually negative, corresponding to less dense, warmer water occurring on top of 
denser, colder water.  Higher negative values indicate greater stratification.   

Surface chlorophyll a and turbidity data for the period 1998-2006 were extracted from SeaWiFS 
satellite imagery.  Point estimates of zooplankton biomass were obtained from the NMFS 
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Copepod database from 1966-200143.  The NMFS Copepod database does not include larval fish 
in its zooplankton dataset.  Points were interpolated for each season. 

SST is dynamic and varies seasonally (Figure 9).  Stratification and chlorophyll a concentrations 
are greatest in the spring and summer and lowest in the winter, following seasonal patterns of 
ocean warming (Figure 10 and Figure 12, respectively).  The shelf’s water column stratifies in 
the spring and summer from solar warming and freshwater inputs. Stratification isolates warm, 
well-mixed surface water from cold, deeper water and deprives the upper water column of 
nutrients.  During stratification, primary productivity -particularly algal growth- is highest 
nearshore where periodic coastal upwelling and runoff from upland areas can provide nutrients.44  
Offshore productivity is limited to discrete pockets where algae can get nutrients from the 
currents and weather-generated movement of water.  In late summer, stratification breaks down 
due to storms and surface cooling.  By winter the entire water column over the shelf is well-
mixed and a sharp frontal zone separates cold, fresh nearshore water from warmer, more saline 
slope water.  In all months, chlorophyll a concentrations are highest nearshore and low over most 
of the shelf and offshore of the continental shelf break.  Turbidity showed a similar spatial 
pattern (Figure 11).  Zooplankton biomass is greatest in the fall, with patches of relatively high 
biomass south of Long Island (Figure 13). 
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Figure 7: Wind Energy Data 
This map shows predicted offshore wind speeds as modeled for NREL. 
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Figure 8: Hurricane and Tropical Storm Paths, 1950–2012 
This map shows the path of previous hurricanes, tropical storms or depressions, and nor’easters during the 
period 1950–2012.  A different color-coded path is shown for the period during which the event was 
classified as a storm, depression or hurricane.  Notable recent severe weather events that made landfall on 
New York’s shoreline or had a significant impact on New York are identified on the map by the names 
assigned by the National Hurricane Center. 
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Figure 9: Sea Surface Temperature – Seasonal 
This map series shows seasonal variation in sea surface temperature.  Higher temperatures southeast of 
the offshore planning area reflect the influence of warmer Gulf Stream waters. 
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Figure 10: Stratification – Seasonal 
This map series shows greatest stratification during summer months, with stratification starting sometime 
during the spring months and dispersing during the fall.  Low stratification values in winter represent a 
homogenous, well-mixed water column. 
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Figure 11: Turbidity – Seasonal 
This map series shows that turbidity, or particulates suspended in the water column, is largely a nearshore 
phenomenon. This map also shows a slight increase in the extent of high-turbidity areas away from the 
coast during winter months, which follows the trend of low-stratification, high-mixing in winter, as seen 
in Figure 10. 
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Figure 12: Chlorophyll a – Seasonal 
This map series shows concentrations of chlorophyll a were highest nearshore in all seasons and low over 
most of the shelf and offshore of the continental shelf break. 
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Figure 13: Zooplankton – Seasonal 
This map series shows highest predicted abundances of zooplankton during the spring and summer and 
lower predicted abundances during the fall and winter. 
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4. Deep Sea Coral and Sponges 
(Figure 14) 

NCCOS compiled information on known locations and taxonomy of deep-sea, coldwater corals 
and sponges in the offshore planning area.   The primary data source was the U.S. Geological 
Survey Cold-Water Coral Geographic Database, which includes over 1,700 entries.45  
Information in this database was collected from over 20 research vessels, including the deep 
submersibles Alvin and Diaphus, and includes data collected from 1880 through 2008.  This 
database was supplemented with additional records from at least eight other sources (mostly 
museum collections).  Together this combined database, known as NOAA’s Deep-sea Coral 
Research and Technology Program, represents 5,619 records of known deep sea coral and 
sponge locations.   

Information on deep sea coral and sponge presence and life history are extremely limited for the 
Northeast.  Marine sponges have shown great potential for biomedical applications and may be 
the subject of future research focus.46  Therefore, the best available data have been included, 
regardless of temporal or spatial distributions, to show historically-present species.  

These data show presence only; they only describe where deep sea coral and sponges were 
observed or collected, rather than where species were sought but not observed.  This lack of data 
on absences made application of NCCOS’s modeling technique infeasible.  Since all areas have 
not been surveyed and since some specimens were not identified, the full extents of the 
distributions of these species remain unknown.  However, these combined databases represent 
the best currently available data on the locations of deep sea coral and sponges in the northeast 
region.  Known deep sea coral and sponge locations can be seen concentrated along the 
continental shelf edge and in the Hudson Canyon (Figure 14). 
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Figure 14: Deep Sea Coral and Sponges 
The map above illustrates locations known to support deep sea corals and sponges.  This information only 
shows where positive results were found; it does not show where corals and sponges were not found. 
Much of the study area remains to be surveyed. 
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5. Marine Mammals and Sea Turtles 
(Figure 15-Figure 32) 

The NARWC database, managed by Dr. Robert Kenney at the University of Rhode Island and 
funded by NMFS, contains thousands of aerial and shipboard survey observations from 1978-
2011 for marine mammals and sea turtles in southern New England waters.  Data extend into the 
New York study area and represent the majority of existing survey records for the region.47  The 
New England Aquarium (NEA) refined this database for DOS, selecting usable records that 
conformed to certain standards48, and assigning them to a regular grid of cells that were 
approximately 25 square nautical miles each.  The number of animals sighted in each cell was 
divided by the survey flight or cruise length in each cell (in kilometers) and multiplied by 1,000 
to avoid decimals, resulting in a relative index of abundance called sightings per unit effort 
(SPUE), represented here as sightings per 1,000 kilometers.  For the majority of species, or in 
some cases groups of species (e.g., dolphins, endangered baleen whales), observational data 
points were interpolated by NEA staff using modeling techniques which resulted in relative 
abundance maps, where relative abundance is an index of the average number of animal 
sightings normalized by survey effort.49  Pinnipeds are not included in this study due to relatively 
few sightings in the offshore planning area.  

Species groupings maps were achieved by combining the number of sightings for all species in 
that group within each 5 nm x 5 nm cell and then calculating the resultant SPUE (survey effort 
was constant across species in each grouping, because the same set of survey data were used for 
every species).  Since SPUEs for grouped species were based on the combined number of 
sightings across species, the relative abundances were influenced more by species with higher 
numbers of sightings than those with fewer numbers.  For example, the All Turtles maps were 
based on sightings data for loggerheads, leatherbacks, hawksbill, green, Kemp’s ridley and a 
category of unidentified turtles, and the total number of sightings for loggerheads (N=1236) was 
an order of magnitude greater than for leatherbacks (N=169) and even greater when compared to 
number of sightings of other species.  

DOS undertook a separate assessment of the modeling technique used by NEA to better 
understand the spatial nature of the model’s certainty (Section IV).   

The maps that follow are representative of the over 20 individual marine mammal and sea turtle 
species modeled by NEA.  Each annual map or set of four seasonal maps for each species or 
grouping utilizes a unique range tailored to the SPUE information.  Many cetacean and certain 
sea turtle species migrate through the Atlantic Ocean waters offshore New York (Figure 15 
through Figure 32).  Based on the sightings data input, models show that all whale species spend 
at least part of the year on and around the contintental shelf edge (Figure 16, Figure 18, Figure 
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20, and Figure 26), while harbor porpoise distribution does not extend as far as the continental 
shelf edge (Figure 23 through Figure 24).   

The All Cetaceans maps provide a general picture of the overall distribution of cetaceans in the 
study area.  The most utilized cetacean habitat in the study area occurs along the shelf break 
where large numbers of dolphins and other small toothed whales congregate.50   

Sea turtle relative distribution occurs almost exclusively on the continental shelf, and is centered 
on a slight rise in the seafloor in the western edge of the offshore planning area (Figure 29 
through Figure 32).   

Recent whale monitoring efforts support the predicted presence of baleen whales in many areas 
offshore New York (Figure 21).  An acoustic monitoring study by the Cornell Bioacoustics 
Research Program revealed that the endangered and rare North Atlantic right whale, as well as 
blue, fin, and humpback whales, occur regularly in the offshore planning area.51  
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Figure 15: North Atlantic Right Whales – Annual Relative Abundance 
This map shows estimated annual distribution of North Atlantic right whales as modeled by the New 
England Aquarium using the NARWC Database.   
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Figure 16: North Atlantic Right Whales – Seasonal Relative Abundance 
This map series shows estimated seasonal distribution of North Atlantic right whales as modeled by the 
NEA using the NARWC Database.   
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Figure 17: Fin Whales – Annual Relative Abundance  
This map shows estimated annual distribution of fin whales as modeled by the NEA using the NARWC 
Database.   
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Figure 18: Fin Whales – Seasonal Relative Abundance 
This series map shows estimated seasonal distribution of fin whales as modeled by the NEA using the 
NARWC Database.   
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Figure 19: Humpback Whales – Annual Relative Abundance 
This map shows estimated annual distribution of humpback whales as modeled by the NEA using the 
NARWC Database.   
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Figure 20: Humpback Whales – Seasonal Relative Abundance 
This series map shows estimated seasonal distribution of humpback whales as modeled by the NEA using 
the NARWC Database.   
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Figure 21: Endangered Baleen Whales – Annual Relative Abundance 
This map shows estimated annual distribution of endangered baleen whales as modeled by the NEA using 
the NARWC Database.  The endangered baleen whale grouping includes: fin, humpback, North Atlantic 
right, and sei whales, plus unidentified members of genus Balaenoptera.  
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Figure 22: Endangered Baleen Whales – Seasonal Relative Abundance 
This series map shows estimated seasonal distribution of endangered baleen whales as modeled by the 
NEA using the NARWC Database.  The endangered baleen whale grouping includes: fin, humpback, 
North Atlantic right, and sei whales, plus unidentified  members of genus Balaenoptera.    
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Figure 23: Harbor Porpoises – Annual Relative Abundance 
This map shows estimated annual distribution of harbor porpoises as modeled by the NEA using the 
NARWC Database.   
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Figure 24: Harbor Porpoises – Seasonal Relative Abundance 
This map series shows estimated seasonal distribution of harbor porpoises as modeled by the NEA using 
the NARWC Database.   
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Figure 25: Sperm Whales – Annual Relative Abundance 
This map shows estimated annual distribution of sperm whales as modeled by the NEA using the 
NARWC Database.   
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Figure 26: Sperm Whales – Seasonal Relative Abundance 
This map series shows estimated seasonal distribution of sperm whales as modeled by the NEA using the 
NARWC Database.   
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Figure 27: All Cetaceans – Annual Relative Abundance 
This map shows estimated annual distribution of all cetaceans as modeled by the NEA using the NARWC 
Database.  The All Cetaceans grouping includes 21 species of toothed (including sperm whales, dolphins, 
and porpoises) and baleen whales.   
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Figure 28: All Cetaceans – Seasonal Relative Abundance 
This map series shows estimated seasonal distribution of all cetaceans as modeled by the NEA using the 
NARWC Database.  The All Cetaceans grouping includes 21 species of toothed (including sperm whales, 
dolphins, and porpoises) and baleen whales.   
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Figure 29: Loggerhead Turtle – Annual Relative Abundance 
This map shows estimated annual distribution of loggerhead turtles as modeled by the NEA using 
the NARWC Database.   
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Figure 30: Loggerhead Turtle – Seasonal Relative Abundance 
This map series shows estimated seasonal distribution of loggerhead turtles as modeled by the 
NEA using the NARWC Database.   
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Figure 31: All Turtles – Annual Relative Abundance 
This map shows estimated annual distribution of all sea turtles found in the offshore planning area 
as modeled by the NEA using the NARWC Database.  The All Turtles grouping includes: green, 
hawksbill, leatherback, loggerhead and Kemp’s ridley sea turtles.   



 

53 
 

 
Figure 32: All Turtles – Seasonal Relative Abundance 
This map series shows estimated seasonal distribution of all sea turtles as modeled by the NEA using the 
NARWC Database.  The All Turtles grouping includes: green, hawksbill, leatherback, loggerhead and 
Kemp’s ridley sea turtles.   
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6. Seabirds 
(Figure 33-Figure 48) 

Seabird sightings data for the offshore planning region were extracted by NCCOS from the 
Manomet Bird Observatory’s (now the Manomet Center for Conservation Sciences) Cetacean 
and Seabird Assessment Program (CSAP) database, which contains over 9,000 survey locations.  
During these surveys a small number of expert observers were placed on research vessels 
undertaking a wide variety of work, including NMFS groundfish, scallop, and plankton surveys, 
U.S. Coast Guard (USCG) surveys, and U.S. Environmental Protection Agency surveys.  
Seabirds were identified to the most specific taxonomic level possible, usually species, and 
counted within a fixed strip width of 300 m at one side of a ship as it traveled on a straight 
course at a constant speed (generally 8-12 knots).  Observations were separated by season, and 
for each species or group sighting record in each season, the number of individuals of that 
species observed during the timed survey was divided by the corresponding survey tract area to 
yield an index of relative abundance that was standardized by both time and area, resulting in 
SPUE represented as sightings per 15 minutes per sq. km of transect footprint.    

Based on available high-resolution data coverage within the offshore planning area and previous 
studies of environmental correlates of seabird distribution and abundance, NCCOS identified 11 
potential environmental predictor variables which they used to help develop predictive models 
(Section IV).  NCCOS assessed model performance and error via cross-validation, producing 
numerous statistics for model evaluation.52 
 
Fourteen species were modeled individually and remaining species were aggregated into seven 
broader taxonomic groups, due to lower sightings numbers.  Seasonal patterns of abundance 
were summed to derive annual estimated individual species abundances for each individual 
species mapped and for grouped species.  Abundance estimates are a relative index and should 
not be confused with absolute population estimates.   
 
NCCOS combined the predicted relative abundances  of the 14 seabird species individually 
mapped to identify “hotspots” of abundance and species diversity.  Abundance hotspots are 
defined as concentrations of large numbers of individual seabirds. They also developed a model 
of estimated species richness, which was synthesized from a direct count of the number of 
different seabird species seen at a survey location, and species diversity, where a large variety of 
seabird species are proportionally well-represented.  Thus, species diversity is a function of 
relative abundance and species richness.   

The seabird models predict long-term annual and seasonal spatial distributions of avifauna 
offshore New York.  Model outputs were mapped to show patterns among individual species 
(Figure 33 through Figure 42) and across species (Figure 43 through Figure 48).   
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These maps represent the first high-resolution depiction of spatial patterns for marine avifauna of 
New York.53  Of particular note, seabird species richness shows a seasonal pattern that may 
indicate migratory trends (Figure 46).  In particular, the continuous concentration of species from 
the eastern edge of the offshore planning area to the western edge could signal a potential 
migratory flyway.  

Of note, the data used to develop these models do not capture many dynamic aspects of seabird 
ecology and were collected in the 1980s.  Even though shifts in distribution have been 
documented, modeling required an assumption that the climatological patterns of ocean 
conditions have not undergone substantial shifts since then.  Finally, survey biases (e.g., 
detectability) are likely to vary between species. These issues underscore the importance of 
treating the measures of relative abundance presented here as proxies for underlying patterns.   
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Figure 33: Manomet Bird Observatory – Cetacean and Seabird Assessment Program Survey 
This map shows the survey locations for the CSAP database within the offshore planning area and depicts 
the uneven spatial distribution of the survey effort. 
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Figure 34: Black-Legged Kittiwake – Annual Predicted Relative Abundance  
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Figure 35: Black-Legged Kittiwake – Seasonal Predicted Relative Abundance 
N.B., the summer seasonal distribution was not modeled due to the low number of observations. 
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Figure 36: Northern Fulmar – Annual Predicted Relative Abundance 
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Figure 37: Northern Fulmar – Seasonal Predicted Relative Abundance  
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Figure 38: Northern Gannet – Annual Predicted Relative Abundance 
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Figure 39: Northern Gannet – Seasonal Predicted Relative Abundance 
N.B., the summer seasonal distribution was not modeled due to the low number of observations. 
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Figure 40: Pomarine Jaeger – Annual (Fall) Predicted Relative Abundance 
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Figure 41: Wilson's Storm Petrel – Annual Predicted Relative Abundance 



 

67 
 

 

Figure 42: Wilson's Storm Petrel – Seasonal Predicted Relative Abundance 
N.B., the winter seasonal distribution was not modeled due to lack of data. 
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Figure 43: Predicted Seabird Abundance – Annual 
This map shows predicted annual relative abundance in the offshore planning area for a grouping 
of 14 species of seabirds as modeled by NCCOS using the CSAP database.   
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Figure 44: Predicted Seabird Abundance – Seasonal 
This map series shows predicted seasonal relative abundance  in the offshore planning area for a grouping 
of 14 species of seabirds as modeled by NCCOS using the CSAP database.   
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Figure 45: Predicted Seabird Species Richness – Annual 
This map shows predicted annual species richness in the offshore planning area for all species of 
seabirds as modeled by NCCOS using the CSAP database.    
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Figure 46: Predicted Seabird Species Richness – Seasonal 
This map series shows predicted seasonal species richness in the offshore planning area for all 
species of seabirds as modeled by NCCOS using the CSAP database.   
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Figure 47: Predicted Seabird Species Diversity – Annual  
This map shows predicted annual species diversity in the offshore planning area for seabirds as 
modeled by NCCOS using the CSAP database.   
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Figure 48: Seabird Species Predicted Diversity – Seasonal 
This map series shows predicted seasonal species diversity in the offshore planning area for 
seabirds as modeled by NCCOS using the CSAP database.   
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7. Groundfish 
(Figure 49-Figure 51) 

The NOAA Northeast Fisheries Science Center (NEFSC) has been conducting biannual 
fisheries-independent bottom trawl surveys since 1963.  The starting locations (“station”) of each 
tow were assigned based on a stratified random sampling design, and strata were defined in 1963 
based on water depth, latitude, and historical fishing patterns.  The number of stations allotted to 
a stratum was proportional to its area.  Each tow proceeded at approximately 3.5 knots for 30 
minutes, using #36 Yankee trawl (or similar trawling gear).  This methodology may favor 
species which are more easily caught by bottom trawling.  Once onboard, fish were weighed, 
measured, sexed, and identified to the species level.54 

Stone Environmental, Inc. obtained trawl stations and catch records from NEFSC from 1975-
2009.55  They calculated species abundance (number of individuals) at each station and 
summarized it by five-year intervals, season (spring/fall), and life stage (juvenile/adult).  Life 
stage categories were defined based on published estimates of length at maturity.56  

DOS received these pre-processed data from Stone Environmental and selected 14 species 
important to New York’s coastal resources for modeling (Section IV).  DOS modeled abundance 
as a function of 11 environmental predictor variables, consistent with the variables used by 
NCCOS to model seabirds57 based on previous studies of environmental correlates of fish 
abundance.  DOS also developed “persistence” (i.e., presence over time) maps for six selected 
groundfish species.  Groundfish data were aggregated in five-year increments over a 35-year 
period (1975 – 2010).  Each five-year increment was summed to count the number of increments 
for which a selected species age group (adult or juvenile) was found by season (fall or spring).   

Groundfish predicted abundance models were used to show patterns in distribution based on 
seasons or life stages (Figure 49 through Figure 51).  The species displayed here illustrate the 
importance of offshore habitat areas in supporting New York’s fisheries.  More information on 
the most commercially- and recreationally-valuable fish species for New York can be found in 
the Stone Environmental report and are the subject of ongoing survey and modeling work. 

Given the inherent difficulties in modeling dynamic species from limited survey data, cross-
validation statistics suggest that models’ overall performance was fair, with individual model 
performance varying considerably between species, season, and life stage combinations.  
Statistical analyses suggested models successfully described some but not all variation in the 
data. The relationships between groundfish abundance and environmental predictors were in 
most cases statistically significant.   

In some cases dates for trawl surveys and predictor variables differ by as much as 32 years.  
Long-term averages were used to smooth out the differences.  Predictors and the relationships 
between predictors and abundance were assumed to have remained constant from 1975-2009.   
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Figure 49: Coast – Shelf Edge Connections 
This map series shows predicted relative abundance of adult Summer Flounder and adult Sea Bass, two 
important species to New York fishers, as modeled by DOS using the NEFSC groundfish survey data. 
Clear life history patterns can be seen connecting coastal areas of New York with the continental shelf 
edge. For both species, adults can be seen utilizing the shelf edge in spring and nearshore areas in fall. 
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Figure 50: Atlantic Herring 
This map series shows predicted relative abundance of Atlantic Herring, an important species to New 
York fishers, as modeled by DOS using the NEFSC groundfish survey data.  Both juvenile and adults of 
this species are predicted to be widespread throughout the offshore planning area during spring months. 
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Figure 51: Squid 
This map series shows predicted relative abundance of squid, an important species to New York fishers, 
as modeled by DOS using the NEFSC groundfish survey data.  Abundance and distribution patterns 
represent use of the entire offshore planning area by both juvenile and adult life stages. Of particular note 
is adult usage in spring when concentrations are seen along the shelf edge and on a bathymetric rise just 
south of the Hudson Shelf Valley. 
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E. Human Uses 

New Yorkers rely on the ocean for a variety of uses, including: commercial activities that 
support vital ocean-based industries; recreational activities that support New Yorkers’ quality of 
life and may have substantial direct or indirect economic impact on coastal communities; and 
traditional uses important to the culture and history of tribal nations.  DOS used accessible, 
participatory methods to obtain and create geographic information on the location of ocean uses 
(Section IV).  

The recreational boating community is the largest single group of ocean users not included in the 
scope of this study.  Information on recreational boating activities is being sought through a 
separate  project being conducted in coordination with coastal New England States.  Recreational 
boater survey data will be incorporated by DOS in future updates to the study data layers 
available online.58 

1. Recreational and Tribal Uses 
 (Figure 52) 

DOS staff worked with NOAA’s Coastal Services Center (CSC) to design and develop 
participatory geographic information system (pGIS) training materials that described protocols 
for ocean use data collection and reporting back to DOS.  Leaders from 30 partner organizations 
and other knowledgable individuals were invited to participate in one of five offshore use 
workshops: two each in Riverhead and Baldwin, and one in Manhattan.  Over several months, 
workshop participants collected ocean use information from their peers, and the marked-up 
charts with corresponding information tables were returned to DOS, representing over 130 
records of new ocean use information.   

DOS digitized the geographic information provided by ocean users and created an aggregate 
dataset, including linked attribute data characterizing each mapped use area.  DOS staff returned 
to the organizations that provided ocean use information, to “ground truth” the individual and 
aggregate information as organized by DOS.  This was an opportunity for the organizations to 
modify or improve the data and resulted in some additions and corrections.   

DOS received significant input from a wide range of non-commercial and recreational users.  
The resulting map shows that New Yorkers’ non-commercial ocean activities occur 
predominantly in proximity to major public access points (e.g., beaches) and coastal 
communities (Figure 52).  Much of the geographic area of uses is concentrated within 
approximately 12 nautical miles of the shore, though uses do extend to the edge of the offshore 
planning area in the vicinity of the Hudson Canyon.   

Long Island currently is home to one federally recognized tribe, the Shinnecock Indian Nation, 
and one state recognized tribe, the Unkechaug Indian Nation.  DOS provided on-site briefings to 
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the leaderships of both tribes and received ocean use information from the Shinnecock Indian 
Nation.  The Shinnecocks identified ocean uses occur within a narrow coastal band of the larger 
study area.  

As a result of the series of questions prepared by DOS and CSC, and the positive response from 
workshop participants, DOS has more detailed information that supports each data layer and 
provides a more in-depth overview of the mapped activity.  Creating the dataset in this way 
allows access to details such as the use of a given area, when the use occurs, and how often it 
occurs.   This offshore use information is depicted on maps and includes both non-commercial 
uses (e.g., wildlife viewing, surfing, boating, diving) and commercial fishing data gathered 
through the separate outreach conducted by Cornell Cooperative Extension of Suffolk County 
(CCE).  These metadata are part of a new offshore use dataset and will provide an important 
basis for more detailed future analysis of the potential effects of specific proposed projects and 
activities. 
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Figure 52: Coastal and Offshore Uses 
This map aggregates the information collected from ocean user groups who participated in DOS’s 
offshore uses workshops.  Many of the uses, such as recreational fishing, wildlife viewing along the 
Hudson Shelf Valley, and diving activities, are concentrated near the shore.    
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2. Commercial Fishing 
(Figure 53- 
Figure 76) 

Owners and operators of commercial fishing vessels with federal permits provide information to 
the NEFSC on when and where catch occurs. This information, called Vessel Trip Reporting 
(VTR) data, is grouped spatially into 10-minute squares and aggregated by gear type to protect 
the confidentiality of individual vessels and fishing locations.  The data can reveal patterns or 
hotspots of fishing activity, albeit at relatively coarse resolution.  The NEFSC provided VTR 
data to DOS in two categories: “effort”, which is the number of days dedicated to fishing in a 
particular 10 minute square; and “landings”,59 which in commercial fishing is tallied in pounds 
of fish caught and in boat-for hire fishing is tallied as actual number of fish caught.  In 
consultation with NEFSC staff, DOS separated the data into five classes,60 summarizing the 
distribution of the data into more easily-interpreted classes while retaining major patterns in the 
distribution. 

Through the NEFSC, NMFS has commercial fisheries data that span decades.61  The NEFSC 
supplied DOS with VTR data for seven different commercial fishing gear types for the period 
2001–201062 including dredge, otter trawl, gillnet, long-line, pot, seine and a category for “other” 
types (Figure 53: Dredge Gear Effort through Figure 60).  DOS also received information from 
NEFSC on Charter and Party Boat63 catch (Figure 61 through Figure 64).   

The information in these VTR data is not limited to licensed commercial fishers based in New 
York or commercial fishers bringing fish to New York ports.  Rather, these VTR data capture all 
federally-licensed vessels fishing in this reporting area.  For this reason, the VTR data give a 
general picture of the areas of greatest overall value to commercial fishing offshore New York.  

DOS supplemented the federal fishing data with new data gathered directly from licensed 
commercial fishers and charter boat captains64.  DOS used the same pGIS protocols as above 
(Section II.D.1), focusing the approach on individual fishers rather than hosting group 
workshops.  This survey was the first of its kind for New York’s commercial fishers, and 
spanned six ports running the length of Long Island.  Response rates varied depending on gear 
type.  Overall, the commercial fishing and boat-for-hire data include 111 records, representing a 
substantial portion of New York’s federally-licensed active fishers.  Interviews were conducted 
by CCE and tailored to the type and breadth of commercial fishing activities located at each port.  
Individual commercial fishers’ contributions were protected as research data via Cornell 
University, thereby addressing fishers’ concerns about maintaining the confidentiality of their 
use data.  To further protect the confidentiality of individual fishers, CCE created aggregate 
maps that identify, locate, and characterize commercial fishing in DOS’s offshore planning area.   

Using the VTR data from NEFSC and information from consultation with commercial fishers, 
DOS compared the identified locations of fishing activity across the two different data sets.  
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VTR data were used as the underlying base layer, and information provided by New York 
commercial fishers in the CCE interviews was displayed as the top layer to highlight those areas 
identified as important to New York’s fishing industry.    

Figure 65 shows areas fished in the offshore planning area by general gear type: fixed, mobile 
and boat-for-hire.  Seasonal trends of commercial fishing use are apparent in Figure 66 and 
Figure 67, exhibiting pot and trawl gear respectively.  As seen in Figure 68 through Figure 71 for 
four representative gear types -dredge, long line, gillnet and trawl- the VTR data and the fishers’ 
data appear to be well-correlated.  Maps were also created to show where and how many 
individually-reported commercial fishing areas overlapped ( 

Figure 72 through  

Figure 76). 
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Figure 53: Dredge Gear Effort 
This map uses NMFS NEFSC VTR data to show commercial fishing dredge gear effort (days), summed 
over a 10-year period.   
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Figure 54: Landings by Dredge Gear – 2001-2010 
This map uses NMFS NEFSC VTR data to show commercial fishing dredge gear landings (pounds), 
summed over a 10-year period.  
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Figure 55: Otter Trawl by Effort – 2001-2010 
This map uses NMFS NEFSC VTR data to show commercial fishing otter trawl effort (days), summed 
over a 10-year period. 
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Figure 56: Landings by Otter Trawl – 2001-2010 
This map uses NMFS NEFSC VTR data collected to show commercial fishing otter trawl landings 
(pounds), summed over a 10-year period.  
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Figure 57: Landings by Gillnet – 2001-2010 
This map uses NMFS NEFSC VTR data to show commercial fishing gillnet landings (pounds), summed 
over a 10-year period.  
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Figure 58: Landings by Longline – 2001-2010 
This map uses NMFS NEFSC VTR data to show commercial fishing landings (pounds) by longline, 
summed over a 10-year period.  
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Figure 59: Landings by Pot Gear – 2001-2010 
This map uses NMFS NEFSC VTR data to show commercial fishing pot gear landings (pounds), summed 
over a 10-year period.  
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Figure 60: Landings by Seine – 2001-2010 
This map uses NMFS NEFSC VTR data to show commercial fishing landings (pounds) by seine, summed 
over a 10-year period.  Seine fishing is limited to nearshore areas. 
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Figure 61: Recreational Charter Effort – 2001-2010 
This map uses NMFS NEFSC VTR data to show recreational charter effort (# of trips), summed over a 
10-year period. 
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Figure 62: Recreational Charter by Catch – 2001-2010 
This map uses NMFS NEFSC VTR data to show recreational fishing catch (pounds), summed over a 10-
year period. 
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Figure 63: Recreational Party Boat Effort – 2001-2010 
This map uses NMFS NEFSC VTR data to show recreational party boat effort (# of trips), summed over a 
10-year period. 
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Figure 64: Recreational Party Boat by Catch – 2001-2010 
This map uses NMFS NEFSC VTR data to show recreational party boat catch (pounds), summed over a 
10-year period. 
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Figure 65: Commercial Fishing 
This map aggregates information collected from New York-based commercial fishers who participated in 
one-on-one information gathering sessions with CCE.  Mobile gear (e.g., trawls, long line, dredge, etc.) 
occurs throughout the offshore planning area, fixed gear (anchored to the bottom) is depth-limited, and 
boat-for-hire (Charter and Party boat) fishing occurs mostly within 20 miles from shore. 
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Figure 66: Commercial Fishing – Pot Gear Fishers by Season 
This map aggregates information collected from New York-based commercial fishers using pot gear (e.g., 
lobster traps, fish traps, etc.) who participated in information gathering sessions with CCE.   
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Figure 67: Commercial Fishing – Trawl Areas by Season 
This map aggregates information collected from New York-based commercial fishers using trawl gear.  In 
addition to seasonal trawling information above, some trawlers identified themselves as year-round users, 
shown in the bottom left map. 
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Figure 68: Commercial Fishing – Dredge Gear – Annual  
This map aggregates information collected from New York-based commercial fishers using dredge gear 
who participated in one-on-one information gathering sessions with CCE and combines it with NMFS 
NEFSC VTR data. 
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Figure 69: Commercial Fishing – Long Liner – Annual  
This map aggregates information collected from New York-based commercial fishers using long line gear 
who participated in one-on-one information gathering sessions with CCE and combines it with NMFS 
NEFSC VTR data. 
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Figure 70: Commercial Fishing – Gillnet Gear – Annual 
This map aggregates information collected from New York-based commercial fishers using gillnet gear 
who participated in one-on-one information gathering sessions with CCE and combines it with NMFS 
NEFSC VTR data.  New York gillnet fishers use areas in the northeast quadrant of the offshore planning 
area, with the offshore extent limited by depth.  
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Figure 71: Commercial Fishing – Trawl – Annual 
This map aggregates information collected from New York-based commercial fishers using trawl gear 
who participated in information gathering sessions with CCE and combines it with NMFS NEFSC VTR 
data. 
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Figure 72: All Seasons Boat-for-Hire  
This map shows fishing areas identified from CCE survey work with New York boat-for-hire operators.  
Colors indicate the locations identified, and number of overlapping areas. 
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Figure 73: Boat-for-Hire by Season 
This map shows those areas identified from CCE survey work with New York boat-for-hire operators.  
Colors indicate the locations identified, and number of overlapping areas.  Red areas in the spring, 
summer and fall indicate two operators fishing in an area; yellow indicates one operator fishing in an area.  
These maps are based on 18 records, representing four individual operators and eight vessels. 
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Figure 74: All Seasons Commercial 
This map shows those areas identified from CCE survey work with New York commercial fishers.   
Colors indicate the locations identified, and number of overlapping areas.  Names refer to place 
names used by New York commercial fishers. 
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Figure 75: Commercial Fishing by Season 
This map shows those areas identified from CCE survey work with New York commercial fishers.   
Colors indicate the locations identified, and number of overlapping areas (e.g., red areas range from a 
high of 12 overlapping areas fished during the winter to 17 overlapping areas in the summer). 



 

108 
 

 
 
Figure 76: All Seasons Commercial and Boat-for-Hire 
Data from CCE survey work with New York commercial fishers and boat-for-hire operators.  This map 
shows those areas identified.  Colors are used to indicate the locations identified, and number of 
overlapping areas (e.g., red areas indicate that 26 fishers identified areas that overlap in these locations).  
Names refer to place names used by New York commercial fishers. 
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3. Commercial Vessel Traffic 
(Figure 77) 

The offshore planning area is heavily used by commercial shippers.65  Large ocean-going vessels 
carrying bulk materials, container ships, and barge and medium-sized ships travelling along the 
coast transit the offshore planning area.  The USCG requires all vessels with a gross tonnage of 
300 tons or more and all passenger ships with a gross tonnage over 150 tons, to carry Automated 
Information System (AIS) equipment to identify, locate and electronically exchange information 
with other nearby ships.66   

AIS information includes an identification number unique to each vessel, and data on vessel 
position, course and speed, all of which can be displayed on a computer screen and in a GIS 
dataset.  AIS data are a time series of data points, each representing a vessel’s location (in xy 
coordinates) at the time that the vessel transmitted its location.  Datasets of AIS information are 
typically extremely large consisting of millions of point locations and associated information 
(e.g., Vessel ID#, course, speed) and usually require an intense level of synthesizing in order to 
render a map or image that is meaningful.   

The USCG has initiated a significant effort to better understand existing commercial vessel 
traffic patterns along the Atlantic Coast.  The Atlantic Coast Port Access Route Study 
(ACPARS) will be used, in part, to assess potential effects of new offshore wind energy facility 
installations on vessel movement.  As part of the ACPARS-related analysis, the USCG is 
synthesizing AIS information and analyzing large-scale vessel traffic patterns, and making the 
resultant maps publicly available.67   

Figure 77 shows ship track intensity offshore New York using ACPARS data.  Designated 
navigation traffic lanes are quite visible as highly-used areas, but also readily apparent is 
significant coast-wise traffic that can be seen within the federal territorial sea limit of 12 miles 
from shore.   

Patterns of commercial vessel usage are expected to change following the completion of the  
expansion of the Panama Canal.  In its ACPARS effort the USCG has acknowledged these 
forthcoming changes, which is expected to include increased vessel traffic in and out of the Port 
of New York and the handful of other Atlantic Coast ports that can accommodate larger post-
Panamax vessels.  Expansion of port activity would likely have significant economic benefits to 
New York. 
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Figure 77: Coast Guard “Heat” Map 
In this synthesis of AIS ship tracking information provided by the USCG through the ACPARS, increased 
traffic patterns can be seen within established navigation lanes. Significant coast-wise traffic can also be 
seen between the shore and the red federal territorial sea boundary. 
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F. Selected Data Overlays 

Through the Offshore Renewable Energy Work Group and Offshore Habitat Work Group, DOS 
is determining the most useful spatial data necessary to site new wind energy projects and 
identify important offshore habitats, respectively.  Using the data and information in this study, 
DOS is developing data overlays that reflect the discussions of both Work Groups.  These 
overlays are presented below as a launching point for future consultations with ocean users, the 
respective federal agencies of jurisdiction, and other potentially affected stakeholders. 

1. Initial Wind Siting Data 
(Figure 78) 

In consultation with state and federal agencies and consistent with recent findings,68 DOS is pre-
screening the offshore planning area to identify those locations that appear most compatible with 
offshore wind development activities.   Since the strongest and most consistent winds are farther 
offshore, in OCS waters, DOS’s offshore wind planning effort is intended to align not only with 
existing State efforts but also with the federal offshore leasing and licensing process.69 

As a first step, in consultation with the Offshore Renewable Energy Work Group, DOS identified 
initial uses and resources that are known or assumed to be incompatible with offshore wind 
energy generation or transmission.  DOS staff reviewed federal, state, industry, and consultant 
literature70 to identify potential uses and resource incompatibilities, based on the planning efforts 
of other States.  The resulting list formed the basis of the “baseline criteria”, the initial exclusion 
areas listed below and used for planning purposes to pre-screen sites (Figure 78).  As the next 
step in this pre-screening, DOS will continue to evaluate additional siting constraints, based on 
the use and resource data in this study, that may also limit a site’s suitability for development or 
make the site less desirable for commercial wind development.  The identification of these 
constraints and their locations within the offshore planning area will help DOS better assess the 
“technical potential”, or upper bound, of the developable offshore wind resource within the 
offshore planning area.  As defined by the U.S. Department of Energy’s classification system for 
renewable energy potential,71 technical potential addresses the system/topographic and ocean use 
constraints, as well as system performance, but does not include market or economic 
considerations.  Consistent with this approach, in developing baseline criteria DOS is not 
considering cost or the availability of equipment or components as limiting factors.   
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The initial exclusion areas, as defined by the baseline criteria, include the following:   

Electrical Generation Turbines and Substation/Conversion Facilities are excluded within 

 12 nm of shore (turbines only) 
 Established navigation lanes and within a one nautical mile buffer of those lanes 
 Airport approaches (turbines only) 
 Hazardous material disposal sites 
 Other discrete areas to be determined 

Transmission Cables are excluded within 

 Hazardous material disposal sites 
 Other discrete areas to be determined 
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Figure 78: Wind Energy Baseline Criteria 
This map displays categories of information, or criteria, considered by the Offshore Renewable Energy 
Work Group as areas unlikely to be favorable for offshore wind turbine development.  The USCG has 
suggested a one nautical mile buffer around navigation lanes, represented by the pink area surrounding 
the navigation lanes. 
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2. Initial Habitat Identification Data 
(Figure 79- 
Figure 81) 

In consultation with the Offshore Habitat Work Group, DOS collected and combined species’ 
predicted relative abundance and distribution data layers to begin to identify potential habitat 
areas important for commercial fishing and other uses.  Predictive methods differed between 
seabird, marine mammal/sea turtle, and groundfish taxa.  To address these disparities among 
datasets, DOS selected the top interval for each data layer to identify areas most important to 
each species or group.  In the case of deep sea corals and sponges, areas were drawn to capture 
locations with the highest observation density.   

The Offshore Habitat Work Group examined a wide range of natural resource data, modeled 
using different statistical tools to develop (in most cases) predicted relative abundance maps for 
certain species. DOS chose an equal-interval classification scheme to summarize the map data 
for display and overlay purposes.  Specifically, the range of predicted abundance values for each 
species was divided into five equal-sized intervals, and the top interval was retained.  This 
method was applied to seasonal (when available) and annual datasets.  DOS overlaid these top 
interval areas together to examine seasonal and annual patterns of predicted abundance within 
the offshore planning area across various groups of species.  For example, Figure 79 depicts the 
top intervals of predicted seabird species abundance, richness, and diversity using annual data.  
The abundance map in Figure 79 suggests nearshore areas are home to the highest raw number of 
birds, and the richness map suggests the greatest number of species may be found in a band 
between the shore and continental slope.  This likely reflects the overlap between coastal and 
pelagic seabird distributions.  The diversity map highlights areas along the continental slope in 
addition to areas revealed by the abundance and richness maps.  The hotspots map shows an 
overlay of all three maps together (abundance, richness, and diversity), revealing general seabird 
geographic patterns in the region.  Note that while DOS received species abundance, richness, 
and species diversity data for seabirds, DOS only received abundance data for most other taxa.  

DOS selected representative species and groupings of species relevant to New York’s coastal 
ecosystems and economies.  Data layers in Figures 80 and 81 are therefore the result of two 
refinements and represent relatively abundant, rich, or diverse areas.  Where these data layers 
overlap, important ecological areas may be inferred.  Seasonally important areas could have been 
masked by combining and modeling solely on an annual basis.  Therefore, this overlay was done 
on both a seasonal (Figure 80) and annual basis (Figure 81).  To the extent that these data layers 
are indicative of broader ecological trends, Figure 80 and 81 help identify areas with important 
habitat characteristics based on the best available information.  In particular, Figure 81 may 
suggest that the shelf edge comprises important habitat for both a high number and high variety 
of species on an annual basis.  Ongoing analysis of these and future expected data will help to 
identify resource areas important to New York. 
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Figure 79: Seabird Annual Data Top Intervals and Overlay 
This map series shows the construction of a natural resource overlay (lower right corner) through its 
component pieces. 
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Figure 80: Natural Resources – Seasonal 
This map aggregates seasonal relative abundance and distribution predictions of natural resources 
information, including sea turtles, seabirds, fish and marine mammals, from various sources previously 
mentioned.   
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Figure 81: Natural Resources – Annual 
This map aggregates annual relative abundance and distribution predictions of natural resources 
information, including sea turtles, seabirds, fish, and marine mammals, and deep sea coral and sponge 
observations, from various sources.   The map shows that diverse natural resource areas occur along the 
continental shelf edge and mid-shelf south of the Hudson Shelf Valley.  
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III. List of Acronyms 
The following is a list of acronyms used throughout this document. 

ACPARS  Atlantic Coast Port Access Route Study 

AIS   Automated Information System 

BOEM   Bureau of Ocean Energy Management  

CCE  Cornell Cooperative Extension of Suffolk County    

CRM   Coastal Relief Model 

CSAP   Cetacean and Seabird Assessment Program  

CSC   Coastal Services Center  

CZMA  Coastal Zone Management Act 

DOI   U.S. Department of the Interior 

DOS   New York State Department of State  

ENC  Electronic Navigation Chart 

NARWC   North Atlantic Right Whale Consortium  

NCCOS   National Centers for Coastal Ocean Science 

NEA   New England Aquarium 

NEFSC   Northeast Fisheries Science Center 

NMFS  National Marine Fisheries Service 

NOAA   National Oceanic and Atmospheric Administration 

NREL   National Renewable Energy Laboratory 

OCS   Outer Continental Shelf 

pGIS   participatory Geographic Information System 

SPUE  Sightings Per Unit Effort 
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SST  Sea Surface Temperature 

USCG   U.S Coast Guard 

VTR   Vessel Trip Report 
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IV. Detailed Methodology 

A. Introduction 

The material included in this Section provides a more detailed version of the methodologies used 
to develop the predictive models that were discussed more generally in the New York 
Department of State’s (DOS) Offshore Atlantic Ocean Study.  In particular, the below provides 
information on statistical analyses undertaken by DOS to better understand the certainty of 
models used by the National Oceanic and Atmospheric Administration (NOAA) National Center 
for Coastal and Ocean Science (NCCOS), the New England Aquarium, and Stone 
Environmental. 

B. Methods 
1. Substrate 

NCCOS developed predictive models of mean sediment grain size and the probability of hard 
bottom occurrence for DOS’s offshore planning area.72  Predictions were made on a 30 arc-
second geographic grid.   

NCCOS obtained mean grain size data from Dr. John Goff,73 who obtained data from the 
publicly available usSEABED Atlantic Coast Offshore Surficial Sediment Data Release and 
applied bias corrections and quality control procedures.  Using the same general geostatistical 
modeling approach they applied to the bathymetric data, NCCOS created a continuous surface 
for surficial sediment mean grain size from scattered sediment survey point data.  NCCOS also 
compiled an integrated point dataset of known hard bottom locations from the usSEABED 
database, the NOAA and U.S. Coast and Geodetic Survey Bottom Type Descriptions from 
Hydrographic Surveys database, and a database of usSEABED and National  Marine Fisheries 
Service (NMFS) surveys compiled by The Nature Conservancy.  Points in densely-surveyed 
nearshore areas were removed to create a dataset with more uniformly-distributed sampling 
effort.  Because hard bottom data did not include absences, geostatistical methods similar to 
those used for bathymetric modelling were inappropriate. Thus, a maximum entropy (MaxEnt) 
model was used to predict the likelihood of hard bottom occurrence based on known locations 
and potential predictor variables.  Eighty percent of the hard bottom presence points were used to 
train the model and 20% were randomly withheld for testing.  A number of predictor importance 
metrics were calculated within the MaxEnt software, and model performance was evaluated by 
qualitative comparison to an independent sidescan sonar dataset and cross-validation on the 20% 
of data withheld for testing.  DOS selected areas with a high likelihood of hardbottom occurrence 
and overlaid them on a map of predicted mean grain size for context.74     

Mapping seafloor features, including sediment characteristics and distribution, provides crucial 
information for a number of offshore activities.  Like bathymetric data, other seafloor data can be 
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used to help identify habitat areas for benthic organisms (e.g., corals, and groundfish), select 
appropriate offshore wind development sites, and plan sand/gravel mining operations.  

The new NCCOS models build upon existing data compilations and analytical frameworks.  The 
mean grain size model provides a continuous prediction map and corresponding certainty 
estimates. The hard bottom occurrence model also provides a continuous prediction map 
representing the likelihood of hard bottom occurrence.  

Mean grain size model certainty was poorer in areas offshore of the continental shelf break vs. 
nearshore areas, reflecting the paucity of surveys past the offshore shelf break.  Overall cross-
validation results yielded reasonable performance (root-mean-square error or RMSE of 1.4 φ) 
given the measurement error inherent to the grain size samples (1.0 φ).  Qualitative comparison 
to a U.S. Geological Service (USGS) backscatter map suggested a good, albeit imperfect, 
matchup.75  Note that mean grain size predictions are likely biased toward finer particles due to 
issues with sediment sample processing. 

Hard bottom likelihood was high in nearshore areas and in the vicinity of canyon features.  It is 
important to note that the model provides a relative likelihood of at least one hard bottom point 
occurring at a given location, and that these points may be in areas predominated by non-hard 
bottom (e.g. sandy) substrate.  Model performance was good in tests of both cross-validation 
(test area under the curve or AUC value of 0.73) and comparison to the independent backscatter 
dataset. 76  Nonetheless, any model based on presence-only data should be approached with 
caution. 

2. Marine Mammals and Sea Turtles 

The North Atlantic Right Whale Consortium (NARWC) database, managed by Dr. Robert 
Kenney at the University of Rhode Island and funded by NMFS, contains thousands of aerial and 
shipboard survey observations from 1978-2011 for marine mammals and sea turtles in southern 
New England waters.  Data extend into the New York study area and represent the majority of 
existing survey records for the region.77  The NEA refined this database for DOS, selecting 
usable records and binning them by a regular grid of cells that had an area of 

Marine Mammal and Sea Turtle Species Examined by DOS as Modeled by NEA: loggerhead sea turtle,  
Risso's dolphin, bottlenose dolphin, short-beaked common dolphin, fin whale, pilot whale, sperm whale, 
harbor porpoise, leatherback sea turtle, Atlantic white-sided dolphin,  common minke whale, Kemp's 
ridley sea turtle, striped dolphin, humpback whale, spotted dolphin, harbor seal, North Atlantic right 
whale, beaked whale, sei whale, Cuvier's beaked whale, green sea turtle, Sowerby's beaked whale, 
Atlantic spotted dolphin, killer whale, white-beaked dolphin, hawksbill sea turtle, northern bottlenose 
whale, pygmy sperm whale, pygmy killer whale. 
 
*Individual species may have been pooled into larger taxonomic groups for modeling   (e.g. “all protected 

species”, “all cetaceans”, "endangered baleen whales", “small toothed whales”, etc.) 
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Figure 82: Pooled NARWC Records 
Pooled species categories  N 

All protected species: Atlantic spotted dolphin, beaked whale, bottlenose dolphin, fin whale, Cuvier's beaked whale, Risso's 
dolphin, green sea turtle, harbor porpoise, harbor seal, hawksbill sea turtle, humpback whale, killer whale, leatherback sea 
turtle, loggerhead sea turtle, common minke whale, northern bottlenose whale, pilot whale, pygmy sperm whale, pygmy killer 
whale, Kemp's ridley sea turtle, North Atlantic right whale, short-beaked common dolphin, sei whale, Sowerby's beaked whale, 
spotted dolphin, sperm whale, striped dolphin, unidentified Balaenoptera, unidentified blackfish, unidentified beaked whale, 
common or white-sided dolphin, unidentified dolphin/porpoise, fin or sei whale, bottlenose or spotted dolphin, unidentified 
Kogia, unidentified large whale, unidentified medium whale, unidentified rorqual (Balaenopteridae), unidentified seal, 
unidentified Stenella, unidentified sea turtle, unidentified whale, white-beaked dolphin, Atlantic white-sided dolphin   

4980 

All marine mammals: Atlantic spotted dolphin, beaked whale, bottlenose dolphin, fin whale, Cuvier's beaked whale, Risso's 
dolphin, harbor porpoise, harbor seal, humpback whale, killer whale, common minke whale, northern bottlenose whale, pilot 
whale, pygmy sperm whale, pygmy killer whale, North Atlantic right whale, short-beaked common dolphin, sei whale, 
Sowerby's beaked whale, spotted dolphin, sperm whale, striped dolphin, unidentified Balaenoptera, unidentified blackfish, 
unidentified beaked whale, common or white-sided dolphin, unidentified dolphin/porpoise, fin or sei whale, bottlenose or 
spotted dolphin, unidentified Kogia, unidentified large whale, unidentified medium whale, unidentified rorqual 
(Balaenopteridae), unidentified seal, unidentified Stenella, unidentified whale, white-beaked dolphin, Atlantic white-sided 
dolphin    

3340 

All cetaceans: Atlantic spotted dolphin, beaked whale, bottlenose dolphin, fin whale, Cuvier's beaked whale, Risso's dolphin, 
harbor porpoise, humpback whale, killer whale, common minke whale, northern bottlenose whale, pilot whale, pygmy sperm 
whale, pygmy killer whale, North Atlantic right whale, short-beaked common dolphin, sei whale, Sowerby's beaked whale, 
spotted dolphin, sperm whale, striped dolphin, unidentified Balaenoptera, unidentified blackfish, unidentified beaked whale, 
common or white-sided dolphin, unidentified dolphin/porpoise, fin or sei whale, bottlenose or spotted dolphin, unidentified 
Kogia, unidentified large whale, unidentified medium whale, unidentified rorqual (Balaenopteridae), unidentified Stenella, 
unidentified whale, white-beaked dolphin, Atlantic white-sided dolphin    

3141 

All endangered & threatened species: fin whale, green sea turtle, hawksbill sea turtle, humpback whale, leatherback sea 
turtle, loggerhead sea turtle, Kemp's ridley sea turtle, North Atlantic right whale, sei whale, sperm whale, unidentified 
Balaenoptera, fin or sei whale, unidentified large whale, unidentified rorqual (Balaenopteridae), unidentified sea turtle 

2329 
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Small toothed whales: Atlantic spotted dolphin, bottlenose dolphin, Risso's dolphin, harbor porpoise, pilot whale, pygmy 
sperm whale, pygmy killer whale, short-beaked common dolphin, spotted dolphin, striped dolphin, unidentified blackfish, 
common or white-sided dolphin, unidentified dolphin/porpoise, bottlenose or spotted dolphin, unidentified Kogia, unidentified 
Stenella, white-beaked dolphin, Atlantic white-sided dolphin    

2245 

All sea turtles: green sea turtle, hawksbill sea turtle, leatherback sea turtle, loggerhead sea turtle, Kemp's ridley sea turtle, 
unidentified sea turtle  

1640 

Endangered baleen whales: fin whale, humpback whale, North Atlantic right whale, sei whale, unidentified Balaenoptera, fin 
or sei whale, unidentified rorqual (Balaenopteridae)  

398 

Large toothed whales: beaked whale, Cuvier's beaked whale, killer whale, northern bottlenose whale, Sowerby's beaked whale 
sperm whale, unidentified beaked whale (Ziphiidae)  

359 

All seals: unidentified seal, harbor seal  199 
All beaked whales: beaked whale, Cuvier's beaked whale, northern bottlenose whale, Sowerby's beaked whale and 
unidentified beaked whale (Ziphiidae)  

53 
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Figure 83: NARWC Database Marine Mammal and Sea Turtle Records  
(N = number of sightings) 

Individual Species  N  
Atlantic spotted dolphin (Stenella frontalis)  3 
Atlantic white-sided dolphin (Lagenorhynchus acutus) 129 
Beaked whale (Mesoplodon sp.)  8 
Blue shark (Prionace glauca)  113 
Bottlenose dolphin (Tursiops truncatus)  368 
Bottlenose or spotted dolphin  5 
Common minke whale (Balaenoptera acutorostrata)  94 
Common or white-sided dolphin  30 
Cuvier’s beaked whale (Ziphius cavirostris)  7 
Fin or sei whale  67 
Fin whale (Balaenoptera physalus)  238 
Green sea turtle (Chelonia mydas)  7 
Harbor porpoise (Phocoena phocoena)  178 
Harbor seal (Phoca vitulina)  20 
Hawksbill sea turtle (Eretmochelys imbricata)  1 
Humpback whale (Megaptera novaeangliae)  47 
Kemp’s ridley sea turtle (Lepidochelys kempii)  73 
Killer whale (Orcinus orca)  2 
Leatherback sea turtle (Dermochelys coriacea)  169 
Loggerhead sea turtle (Caretta caretta)  1236 
North Atlantic right whale (Eubalaena glacialis)  16 
Northern bottlenose whale (Hyperoodon ampullatus)  1 
Pilot whale (Globicephala sp.)  208 
Pygmy killer whale (Feresa attenuata)  1 
Pygmy sperm whale (Kogia breviceps)  1 
Risso’s dolphin (Grampus griseus)  375 
Sei whale (Balaenoptera borealis)  8 
Short-beaked common dolphin (Delphinus delphis)  307 
Sowerby’s beaked whale (Mesoplodon bidens)  5 
Sperm whale (Physeter macrocephalus)  204 
Spotted dolphin (Stenella sp.)  24 
Striped dolphin (Stenella coeruleoalba)  54 
Unidentified Balaenoptera  7 
Unidentified beaked whale (Ziphiidae)  32 
Unidentified blackfish  2 
Unidentified dolphin/porpoise  486 
Unidentified Kogia  7 
Unidentified large whale  87 
Unidentified medium whale  29 
Unidentified rorqual (Balaenopteridae)  15 
Unidentified sea turtle  154 
Unidentified seal (Phocidae)  179 
Unidentified Stenella  65 
Unidentified whale  29 
White-beaked dolphin (Lagenorhynchus albirostris)  2 
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approximately 25 square nautical miles each.  The number of animals sighted in each cell was 
divided by the survey flight or cruise length in each cell, resulting in a relative index of 
abundance called sightings per unit effort (SPUE), represented here as sightings per mile.  The 
majority of species, or in some cases groups of species (e.g., dolphins, endangered baleen 
whales; see Figure 82 – Figure 83), were interpolated by NEA staff using geostatistical modeling 
techniques which resulted in predictive abundance maps.78  Pinnipeds are not included in this 
study due to relatively few observations in the offshore planning area. 

In addition to the NEA-models, DOS developed predictive abundance models using the same 
data for two species (fin whale, sperm whale) and two groupings (all cetaceans, baleen whale) of 
species using methods that, while somewhat similar, allowed DOS to understand the certainty 
behind the prediction.  DOS interpolated SPUE point data with separate, seasonal models for 
sperm whales, fin (finback) whales, baleen whales (including fin whales, North Atlantic right 
whales, humpback whales, sei whales, an unidentified fin or sei whale group, unidentified 
rorquals, and an unidentified Balaenoptera group), and an “all cetaceans” group (all whales, 
dolphins, and porpoises for which data were available).   

The processes determining presence or absence may be different from the ones determining 
abundance, so interpolations were conducted using a two-stage approach.79  First, the abundance 
observations were re-coded into presence/absence observations, and these were interpolated 
using Indicator Kriging (Stage I).  The resulting continuous probability of presence surface (0 to 
1) was then thresholded (0 or 1) at an optimal cutoff determined via Receiver Operating 
Characteristic (ROC) analysis (e.g.,Figure 84).  Finally, this thresholded "mask" was multiplied 
by a surface based on an Ordinary Kriging interpolation of the non-zero abundance data (Stage 
II).  The final map depicts estimated abundance only where the species or group is predicted to 
be present in the first place (e.g.,Figure 85).   Modeling presence/absence separately from 
abundance also allows certain statistical assumptions to be met, which in turn allows for the 
creation of certainty (prediction error) maps. 

Error estimates ("certainty") for these predictions were created via leave-one-out cross-
validation, and DOS divided these error maps by the standard deviation of the input data.  When 
the resultant value is greater than one, the prediction error is greater than the inherent variability 
of the input data, and therefore the prediction may be less reliable.  Lower values of the index 
relate to higher confidence in the prediction.  Note that this index only captures error associated 
with Stage II. 
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Figure 84: ROC Analysis Example  
ROC curve for baleen whale presence/absence indicating the optimal cutoff probability (0.105 in this 
case) that maximizes the correct number of classifications.  Cutoffs were determined in cross-validation 
but applied to the full dataset for the final models. 

 

Sea turtle sightings are part of the NARWC database and predicted abundance distributions for 
the offshore planning area were carried out by NEA in the same way as marine mammal 
distributions.  Information in the database represents sightings for five sea turtle species grouped 
together: green; hawksbill; Atlantic (Kemp’s) ridley; leatherback; and loggerhead sea turtles.   

For NEA models, there was general agreement (>70% for most taxa) between marine mammal 
and sea turtle interpolated values and original points withheld for cross-validation.  For DOS 
models, measures of Stage I and Stage II error suggested that models performed fairly well 
overall, although this performance varied with species, season, and space.  In particular, area 
under the curve (AUC) values (>.70 for most species/season combinations) suggested the Stage I 
presence/absence classifier performed much better than random in most models, and ratios of 
Kriging standard error to data standard deviation (<1.0) suggested errors for the Stage II 
abundance predictions are moderate in most cases.  Note that abundance estimates for both NEA 
and DOS models are a relative index and should not be confused with absolute population 
estimates. 
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Figure 85: Two-Stage Kriging Example 
Example of the two-stage Kriging model for the “all cetaceans” grouping, showing abundance prediction 
and associated certainty (certainty was lower in winter, corresponding to fewer observations). Lower 
values of the error index relate to higher confidence in the model prediction. 

3. Seabirds 

Seabird sightings data for the offshore planning region were extracted by NCCOS from the 
Manomet Bird Observatory’s (MBO, now the Manomet Center for Conservation Sciences, or 
MCCS) Cetacean and Seabird Assessment Program (CSAP) database, which contains over 9,000 

Seabird  Species/Groups* Examined by DOS as Modeled by NCCOS: black-legged kittiwake, common tern, 
common loon, Cory's shearwater, dovekie, great black-backed gull, great shearwater, herring gull, 
laughing gull, northern fulmar, northern gannet, pomarine jaeger, sooty shearwater, Wilson's storm-
petrel, less common alcids (incl. Altlantic puffin, common murre, thick-billed murre, razorbill), coastal 
waterfowl (incl. white-winged scoter, black scoter, surf scoter, long-tailed duck, red-throated loon, red-
breasted merganser, common eider), jaegers (incl. parasitic jaeger, long-tailed jaeger), phalaropes (incl. 
red phalarope, red-necked phalarope), less common shearwaters (incl. manx shearwater, Audobon's 
shearwater), small gulls (ring-billed gull, Bonaparte's gull), less common storm-petrels (incl. Leach's 
storm-petrel, band-rumped storm petrel, white-faced storm petrel), less common terns (incl. royal tern, 
arctic tern, roseate tern, least tern, sooty tern, bridled tern, Forster's tern), and unidentified gulls. 
 
*Some species grouped for modeling. Group members given in parentheses.    
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survey locations.  During these surveys a small number of expert observers were placed on 
research vessels undertaking a wide variety of work, including NMFS groundfish, scallop, and 
plankton surveys, U.S. Coast Guard (USCG) surveys, and U.S. Environmental Protection 
Agency surveys.  Seabirds were identified to the most specific taxonomic level possible, usually 
species, and counted within a fixed strip width of 300 m at one side of a ship as it traveled on a 
straight course, at a constant speed (generally 8-12 knots).  Observations were separated by 
season, and for each species or group sighting record in each season, the number of individuals 
of that species observed during the timed survey was divided by the corresponding survey tract 
area to yield an index of relative abundance that was standardized by both time and area, 
resulting in SPUE represented as sightings per 15 minutes per sq. km of transect footprint.    

Based on available high-resolution data coverage within the offshore planning area and previous 
studies of environmental correlates of seabird distribution and abundance, NCCOS identified 11 
potential environmental predictor variables.  These variables were: bottom depth; bottom slope; 
slope-of-slope; distance from shore; signed distance from shelf; mean sediment grain size; water-
column stratification; sea surface temperature; surface turbidity measure; surface chlorophyll-a 
concentration; and zooplankton biomass.  For each season with sufficient data within each 
species/group selected for predictive modeling, they modeled the transect estimates of SPUE as 
point samples (located at the centroid of each transect) of two spatial random processes, Stage I 
and Stage II.  Stage I used binary (presence/absence) data from the CSAP surveys and Stage II 
used relative abundance (i.e., SPUE) observations for each species or group from the same 
surveys, but did not consider locations where SPUE=0.  Within each stage of the model, they 
used a regression-Kriging framework to account for both seabird-environment relationships and 
spatial structure.  Both Stage I and Stage II models included two components: a trend model that 
used a generalized linear model (GLM) and incorporated environmental predictors and a 
geostatistical model that accounted for spatial autocorrelation in the residuals.  NCCOS assessed 
model performance and error via cross-validation, producing numerous statistics for model 
evaluation.80 
 
Fourteen species were individually mapped and remaining species were aggregated into seven 
broader taxonomic groups, due to lower sightings numbers.  Seasonal patterns of abundance 
were summed to derive an annual estimated individual species abundance for each individual 
species mapped and for grouped species.  Abundance estimates are a relative index and should 
not be confused with absolute population estimates.   
 
NCCOS combined the estimated abundance distributions of the 14 seabird species individually 
mapped to identify “hotspots” of abundance and species diversity.  Abundance hotspots are 
defined as concentrations of large numbers of individual seabirds. They also developed a model 
of estimated Species Richness, which is synthesized from a direct count of the number of 
different seabird species seen at a survey location, and Species Diversity, where a large variety 
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of seabird species are proportionally well-represented.  Thus, Species Diversity is a function of 
Abundance and Species Richness.   

The data used to develop these models do not capture many dynamic aspects of seabird ecology 
and were collected in the 1980s.  Modeling required an assumption that the climatological 
patterns of ocean conditions have not undergone substantial shifts since then.  Finally, survey 
biases (e.g., detectability) are likely to vary between species. These issues underscore the 
importance of treating the measures of relative abundance presented here as proxies for 
underlying patterns.  Nonetheless, these maps represent the first high-resolution depiction of 
spatial patterns in the marine avifauna of New York.81   

4. Groundfish 

 

The NOAA Northeast Fisheries Science Center (NEFSC) has been conducting biannual 
fisheries-independent bottom trawl surveys since 1963.  The starting locations (“station”) of each 
tow were assigned based on a stratified random sampling design, and strata were defined in 1963 
based on water depth, latitude, and historical fishing patterns.  The number of stations allotted to 
a stratum was proportional to its area.  Each tow proceeded at approximately 3.5 knots for 30 
minutes, using #36 Yankee trawl (or similar trawling gear).  Once onboard, fish were weighed, 
measured, sexed, and identified to the species level.82 

Stone Environmental, Inc. obtained trawl stations and catch records from NEFSC from 1975-
2009.83  They calculated species abundance (number of individuals) at each station and 
summarized it by five-year intervals, season (spring/fall), and life stage (juvenile/adult).  Life 
stage categories were defined based on published estimates of length at maturity.84 

DOS received this pre-processed data from Stone Environmental and selected 14 species 
important to New York’s coastal resources for modeling.  DOS modeled abundance as a function 
of 11 environmental predictor variables85 based on previous studies of environmental correlates 
of fish abundance.  DOS implemented models as zero-inflated GLMs.  The zero-inflation 
component was necessary as the data exhibited a preponderance of absences likely arising from 
both unsuitable environmental conditions and the difficulty of catching the fish when they were 
in fact present.  Because model residuals displayed spatial autocorrelation, an additional, 
geostatistical model was necessary to capture this pattern.  This hybrid approach is known as 

Groundfish Species Examined by DOS as Provided by NEFSC: American lobster*, American shad, Atlantic 
cod, Atlantic herring*, Atlantic mackerel, Atlantic menhaden, Atlantic sturgeon, barndoor skate, bay 
anchovy, black sea bass*, blue crab, bluefish, butterfish*, clearnose skate, goosefish*, haddock, 
horseshoe crab, little skate, longfin squid*, northern shortfin squid*, red hake, rosette skate, sandbar 
shark, scup*, sea scallop*, silver hake*, smooth dogfish*, spiny dogfish, striped bass, summer flounder*, 
tautog, weakfish, winter flounder*, winter skate, yellowtail flounder*. 
 
*selected by DOS for modeling.    
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regression-Kriging.86  Residual maps from the geostatistical model were added to prediction 
maps from the trend model to produce the final maps.  To avoid extrapolation beyond the range 
of the data, maps were clipped to the spatial extent of the NEFSC surveys. 

For each dataset, 50% of the observations were randomly allocated to a training subset and the 
remaining 50% were allocated to a test subset.  Model selection and model fitting proceeded with 
the training subset, and the predictions from these models were compared to the true values from 
the test subset, resulting in cross-validation statistics (e.g., Figure 86).  However, the final 
predictions were based on applying the models selected via training to the entire dataset.   

DOS also developed “persistence” (that is, presence over time) maps for six selected groundfish 
species.  Groundfish data were aggregated in five-year increments over a 35-year period (1975 – 
2010).  Each of those five-year increments were summed to count the number of increments a 
selected species age group (adult or juvenile) was found by season (fall or spring).   
 

 
 
Figure 86: Observed vs. Predicted Abundance Example 
Plots of observed vs. predicted abundance using cross-validation data for summer flounder.  The dashed 
line represents perfect fit and the solid line is a Loess regression.  In these graphs models tend to under-
predict abundance. 
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Groundfish predicted abundance models were used to show distribution during different seasons 
and life stages.  Given the inherent difficulties in modeling dynamic species from limited survey 
data, cross-validation statistics suggest that the models’ performance was fair overall, with 
individual model performance varying considerably between species, season, and life stage 
combinations.  Spearman rank correlation between predicted and observed responses in cross-
validation generally ranged between 0.3 – 0.6, suggesting models were successful in describing 
some but not all variation in the data. Abundance displayed significant relationships with many 
environmental predictors in most cases.   

Although long-term averages have been used to smooth out the differences, dates for certain 
trawl surveys and some predictor variables differ by as much as 32 years.  The assumption is that 
predictors and the relationship between predictors and abundance has remained constant through 
the 1975-2009 time period.  The validity of this assumption is likely to vary by species, area, and 
predictor.  Many stocks have shifted north in response to warming ocean temperatures87 and 
models predict average historical abundance, which does not necessarily represent current or 
future trends.  Also, species which are more easily caught by bottom trawling are likely to be 
over-represented in the data used here.  Finally, these abundance estimates are a relative index 
and should not be confused with absolute population estimates. 

5. Human Use Workshops 

DOS identified leaders and key contacts from 30 partner organizations whose members regularly 
use the ocean.  DOS also identified a number of individuals who have worked with DOS on past 
coastal and ocean issues and demonstrated a reliable knowledge of how New Yorkers use the 
ocean.  These organizational contacts and individuals were invited to participate in one of five 
offshore use workshops: two each in Riverhead and Baldwin, and one in Manhattan. 

Prior to the workshops, DOS staff worked with NOAA’s Coastal Services Center (CSC) to 
design and develop participatory geographic information system (pGIS) training materials that 
described protocols of ocean use data collection and reporting back to DOS.  CSC also provided 
technical assistance in the pGIS workshops to prepare and equip participants to compile ocean 
use information.   

At the workshops, DOS and CSC trained these organizational contacts and knowledgeable 
individuals to work with their colleagues, constituents and memberships to collect ocean use 
information.  DOS and CSC conducted mock mapping and data collection exercises to 
familiarize participants with how information needed to be collected.   

At the conclusion of the workshops, participants were provided with information-collecting kits 
containing navigation charts, information tables, guidance for meeting with their members and 
collecting information, sample charts and tables, and copies of several one-pagers explaining 
DOS’s offshore study and planning process, ocean uses, offshore habitats, and offshore 
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renewable energy development.  DOS’s assistance and support contacts also were distributed.  
At later dates, DOS conducted a refresher webinar and hosted two conference calls for 
participants to call in with questions, concerns, or ideas.   

DOS digitized the geographic information provided by ocean users and created an aggregate 
dataset, including linked attribute data characterizing each mapped use area.  Creating the dataset 
in this way allows access to details such as the use of a given area, when the use occurs, and how 
often it occurs.     

During the winter of 2011 and through the spring of 2012, DOS staff returned to the 
organizations that provided ocean use information, to “ground truth” the individual and 
aggregate information as organized by DOS.  This was an opportunity for the organizations to 
modify or improve the data and resulted in some additions and corrections.   

Long Island currently is home to one federally recognized tribe, the Shinnecock Indian Nation, 
and one state recognized tribe, the Unkechaug Indian Nation.  DOS provided on-site briefings to 
the leaderships of both tribes and received ocean use information from the Shinnecock Indian 
Nation.  The Shinnecocks identified ocean uses within a narrow coastal band of the larger study 
area.  
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