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1. Introduction

Since the industrial revolution, energy
demand has surged, leading to substantial
greenhouse gas emissions, which in turn
have resulted in climate change.[1–3]

Projections estimate that by 2035, green-
house gas emissions will range 19 billion
tons of carbon dioxide equivalent (BtCO2eq)
globally, with yearly growth rates of 2.39%
and 1.71%, respectively.[4] In efforts to pro-
tect the environment and reduce carbon
emissions, extensive research has been
focused on harnessing clean and renewable
energy resources (RERs) like ocean, wind,
biomass, and solar energies to promote the
sustainable progress of modern society.[5–7]

Among these, wind and solar energy have
emerged as the most economical renew-
able options.[8–10] Nevertheless, their inter-
mittent nature poses challenges, limiting
the potential for completely replacing fossil
fuel consumption. In this scenario, salinity
gradient power/energy (SGP/SGE), also
known as Blue Energy, seems like an attrac-
tive option. Blue energy is considered a

clean and environmentally friendly energy source that can be
exploited continuously 24 h per day and 365 days a year. SGP
relies on the difference in salinity of water resources to generate
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This study explores strategies to maximize salinity gradient power (SGP) gen-
eration using reverse electrodialysis (RED), focusing on key operating parameters
under Swedish environmental conditions. Herein, using a full-factorial experi-
mental design, seawater salinity, flow velocities, and water temperature is varied
across three levels to assess their impact on SGP output. machine learning
methods predict power density (PD), including 1) ensemble learning with
decision tree (DT), 2) gaussian process regression (GPR), and 3) artificial neural
network (ANN). Fivefold cross-validation confirms the ANN’s high accuracy (root
mean squared error (RMSE): 1.173%, R2: 99.35%), closely followed by GPR
(RMSE: 1.95%, R2: 99.17%). A feature and trend pattern analysis among the input
factors reveals sea salinity as the primary influence on PD, with temperature as
the secondary contributor. Complementing this, a life cycle assessment examines
the environmental impact of RED systems, identifying the Seawater River RED
and brine-wastewater treatment plant RED systems as having environmental
effects, particularly on ozone layer depletion and freshwater toxicity. Carbon fiber-
based (CF) electrodes, especially lignin CF, demonstrate a lower impact, yet
concerns remain over key sustainability challenges. These findings highlight
SGP’s potential as a viable renewable source, highlighting areas for future
material selection and system efficiency improvements.
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power without noticeable greenhouse gas emissions. In addition
to anthropogenic resources such as desalination plants and
wastewater treatment plants, natural resources such as river
mouths, where freshwater meets saline seawater, present prime
locations for SGE extraction due to the readily available salinity
gradients.[11,12]

Research conducted in 1973 evaluated the global potential of
SGP at river mouths, revealing an astonishing potential output
of 1.4–2.6 TWh worldwide.[13] The following studies refined these
estimates, suggesting a theoretical power potential of 1.724–
3.158 TW from river mouth systems, which is equivalent to
15 102–27 664 TWh.[14,15] This amount of energy is roughly equiv-
alent to the global electricity usage in 2011, which was around
20 407 TWh.[13] Nevertheless, real-world factors such as location,
extraction efficiency (0.2), operational efficiency (0.84), and tech-
nological efficiency reduce the practical SGE potential signifi-
cantly. For instance, a study of river-sea mixing showed a
revised estimate of 625 TWh year�1.[13] Despite the discrepancy
in the total available energy for harnessing, the amount of energy
available is significant enough that this renewable energy source
should not be overlooked. Therefore, regional and local-scale
assessments of the potential for SGE have been conducted in sev-
eral countries. Notable examples include the Great Salt Lake and
the Columbia river in the United States,[16] the Rhine and Meuse
rivers in the Netherlands,[17] the Paraná River in Argentina, the
Amazon River in Brazil, the Congo River spanning the Congo
and Angola,[16] and the dead sea[18] as well as studies in
Australia,[19] Canada,[20] and Norway.[17] countries such as Italy,
Japan, South Korea, Singapore, Denmark, and the Netherlands
have conducted pilot-scale projects for harvesting SGP. Some of
these pilot sites, including those in Italy and the Netherlands,
are still operational, while others, such as Statkraft in Norway, have
been discontinued. Meanwhile, a paper published in 2024 criti-
cally assessed the competitiveness of SGP.[21]

Despite being an interesting energy source based on theoreti-
cal estimates, the high technological costs of blue energy limit its
application, and the environmental impacts of existing technolo-
gies are not fully recognized.[22] These limitations necessitate fur-
ther studies to understand and optimize operating conditions,
potentially decrease the cost of energy production, and assess
the life cycle of the technologies to recognize their potential
impacts on humans and the environment.

Among the different technologies for harvesting blue energy,
reverse electrodialysis (RED), which is a membrane-based tech-
nology, is a promising candidate for large-scale implementa-
tion.[23] RED generates electricity from the salinity gradient
between saline solutions (e.g., seawater) and dilute solutions
(e.g., freshwater) by using alternating cation-exchange mem-
branes (CEM) and anion-exchange membranes (AEM). When
saline and dilute solutions are placed on opposite sides of the
membrane stack, cations (such as sodium) from the saline solu-
tion flow through the CEM toward the dilute solution, while
anions, such as chloride, move through the AEM in the opposite
direction. This ion movement creates an electrochemical poten-
tial and generates a voltage difference across the membranes,
which can be harnessed by connecting electrodes to the system,
thereby producing electrical power.[24–27]

The potential for SGP across various geographical regions in a
country like Sweden is significantly influenced by environmental

factors, including salinity levels, temperature variations, and flow
rates of water bodies. A comprehensive assessment of these oper-
ating conditions is essential, as it provides valuable insights into
how geographical and seasonal fluctuations affect the operating
parameters and overall performance of RED. Such evaluations
not only facilitate the development of targeted optimization strat-
egies but also contribute to cost-reduction efforts in the implemen-
tation of SGE technologies. Therefore, the first part of this study
investigates the production of blue energy over a range of salinity,
temperature, and flow rates, considering Sweden’s seasonal and
geographical contexts as an exemplary case study. Following that,
artificial intelligence algorithms, in particular machine learning
(ML) and artificial neural networks (ANNs), were used to analyze
the influence of seasonal and geographical variations on the per-
formance of RED by estimation of SGP utilizing a linear or non-
linear relationship between seawater salinity, and its controlling
factors, such as temperature and river discharge.

As stated in published studies on SGP, this energy source is
generally regarded as having a low environmental impact, and
this property has been considered as an advantage.[28–30] In this
context, the life cycle assessment (LCA) methodology provides a
robust framework for evaluating the impacts of SGP on human
health and the environment. LCA allows a comprehensive anal-
ysis of the environmental effects associated with the entire life
cycle of systems such as RED, including phases such as produc-
tion, transportation, installation, operation, and waste manage-
ment. Additionally, it enables comparisons of these results
with those from other renewable energy technologies, such as
solar and wind power 54. In 2020, C. Tristan et al. assessed
the environmental impact of SGE technology, specifically
RED, focusing on two scenarios: a standalone RED unit and
an integrated RED-Sea Water Reverse Osmosis system. The
results of these studies reveal that SGE-RED technology can
be environmentally competitive with other renewable energy
sources, such as solar and wind power, especially when scaled
up.[31] Another study published in 2021 found that a well-
designed SGE plant can minimize environmental impact,
support local ecotourism, aid ecosystem conservation, and con-
tribute to clean and renewable energy.[32]

It is important to note that the environmental impact of harvest-
ing technologies, such as RED, can be significantly influenced by
the components used in the RED system (e.g., spacers, membrane
materials, electrodes), a factor that has been overlooked in past
years. Therefore, the second part of this manuscript will focus
on the LCA of RED, with a specific emphasis on its components.
More specifically, this study assesses how changes in electrode
type impact the overall environmental performance of the system,
allowing for a more comprehensive understanding of potential
improvements and trade-offs in the RED technology.

2. Experimental Section

2.1. Materials

Sodium chloride (NaCl), magnesium chloride (MgCl2), sodium
sulfate (Na2SO4), calcium chloride (CaCl2), potassium chloride
(KCl), sodium bicarbonate (NaHCO3), potassium bromide
(KBr), boric acid (H3BO3), strontium chloride (SrCl2), and
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sodium fluoride (NaF) were purchased from Sigma-Aldrich. The
sodium bicarbonate (NaHCO3) was purchased from Carlo Erba
Reagents. All of the above chemicals were used to prepare a
simulated seawater (SSW) composition according to the ASTM
D1141-98 standard, as shown in Table 1, which mimics the com-
position of the water in the Baltic Sea.

Potassium ferrocyanide (K4[Fe(CN)6]), potassium ferricyanide
(K3[Fe(CN)6]) were purchased from Sigma-Aldrich, and NaCl
was used to prepare the electrode rinsing solution (electrolyte
solutions). The electrolyte solution composition was 0.05M
K4[Fe(CN)6] and K3[Fe(CN)6] and 0.25M NaCl. A standard range
of CEM (code: PC SK) and AEM (code: PC SA) from Pccell
(Germany) was used. Their characteristics are shown in Table 2.

2.2. Experiment

The experimental setup comprised the bench-scale RED appara-
tus, the membrane stack, a resistive box, and three tanks, each

linked to independent circulating pumps. A schematic drawing
of the RED system is shown in Figure 1a. In the setup, seawater
salinity (high concentration, HC) and river concentration (low
concentration, LC) solutions were kept in two of the 10 L tanks.
The temperature of the tanks was controlled by an external
heater/cooler. As shown in Figure 1b, the RED setup employs
both AEMs and CEMs, arranged in alternating layers. Spacers
were used to maintain proper spacing between the membranes
and to create compartments for the feed solutions. During oper-
ation, the dilute solutions (LC) and the concentrated solutions
(HC) flowed alternately through the compartments. Salt trans-
port from the concentrate to the dilute compartments occured
due to the concentration gradient. As a result, an ionic current
was generated through the stack, which was finally converted
into an electric current utilizing a redox reaction at the electrodes.
The negatively charged ions in the anolyte solution lost electrons
at the anode, a ruthenium-iridium-coated titanium mesh type.
These electrons flowed through an external circuit at the cathode,
which was also a ruthenium-iridium-coated titanium mesh type.
At the same time, positively charged ions from the catholyte
solution gained electrons at the cathode. The following reactions
occur during this entire process:

Anode∶ K4½FeðCNÞ6� ! K3½FeðCNÞ6� þ e� (1)

Cathode∶ K3½FeðCNÞ6� þ e� ! K4½FeðCNÞ6� (2)

During the experiment, the effects of various operating param-
eters on the performance of a RED setup were analyzed.
Specifically, the effects of HC solution concentration, tempera-
ture, and flow rate of both HC and LC solutions were investi-
gated. The concentration of the LC solution was kept constant
at 0.005M. The RED’s external resistance box was used to vary
the resistance and were performed experiments at various resis-
tances, including 80, 20, 5, and 2 ohms. The experiments were
repeated to observe the effects of temperature and flow rate at
three different values for each concentration level (high,
medium, and low) (see Table 3). During the experiments, the
voltages were measured. These values were then used for the cal-
culation of current density and power density (PD).

The HC and LC flow velocities were determined based on the
Swedish water resources. Sea salinity (i.e., HC) was also mea-
sured in grams per liter (g L�1), ranging from 2.5 g L�1 at the
lowest level, characteristic of northern coastal areas in Sweden,
to 17.5 g L�1 at the intermediate level, typical of central coastal
regions, and finally, to 32.5 g L�1 at the highest level, typical
of southern coastal areas in Sweden (see Figure 1c,d).

A total of 81 experiments were conducted, each with varying
salt concentrations. Specifically, 27 experiments utilized a
2.5 g L�1 salt solution, followed by another 27 with 17.5 g L�1,
and the remaining 27 with 32.5 g L�1. This sequential approach
aligned with the concept of a full factorial experimental design,
where each of the four factors, each with three levels (Low,
Medium, and High), necessitates 34= 81 experiments. During
all 81 experiments, the voltage values were measured. These val-
ues were then used to calculate current density and PD. Based on
the experimental data, the performance of a RED stack can be
expressed for the relations between voltage (V ), current (I),
and power (P) shown in Equation (3).

Table 1. Composition of SSW based on ASTM D1141-98 standard (ASTM
standard for standard practice for the preparation of substitute Ocean
Water, Designation: D 1141-98 (Reapproved 2003), ASTM International,
United States of America).

Salt Composition [wt%] 2.0 [g L�1] 17.50 [g L�1] 32.50 [g L�1]

Sodium chloride 58.49 1.4623 10.2358 19.0093

Magnesium chloride 26.46 0.6615 4.6305 8.5995

Sodium sulfate 9.75 0.2438 1.7063 3.1688

Calcium chloride 2.765 0.0691 0.4839 0.8986

Potassium chloride 1.645 0.0411 0.2879 0.5346

Sodium bicarbonate 0.477 0.0119 0.0835 0.1550

Potassium bromide 0.238 0.0060 0.0417 0.0774

Boric acid 0.071 0.0018 0.0124 0.0231

Strontium chloride 0.095 0.0024 0.0166 0.0309

Sodium fluoride 0.007 0.0002 0.0012 0.0023

Table 2. Properties of the membranes used in the RED stack.

Membrane PC SA PC SK

General use Standard Standard

Type of membrane Anionic Cathionic

Ionic transfer capacity >0.95 >0.95

Resistivity coefficient �1.8 �2.5

Water content [%w] �14 �9

Ion exchange capacity:

Strong base [meq g�1] �1.2 3

Weak base [meq g�1] �0.7 n/a

Maximum temperature [°C] 60 50

Stability Ph 0 to 9 0 to 11

Thickness [μm] 100 to 110

Reinforcement Polyester

Ionic form Cl� Naþ
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�
V ¼ RI
P ¼ VI or V2=R orRI2

(3)

The stack resistance (Rstack) and open circuit voltage (OCV )
values can be obtained by the linear equation of the polarization
(V–I) curves as shown in Equation (4).[33,34]

V ¼ RstackI þOCV (4)

The slope of this line yields the Rstack, whereas the V-intercept
indicates the OCV. The relationship between PD and current
density (Id) forms a first-order polynomial as described in
Equation (5). Consequently, the Id corresponding to the maxi-
mum PD (PD, max) is determined as IdðPd,maxÞ ¼ �b

2a , which is
then substituted into Equation (5) to obtain PD, max. For simplic-
ity, henceforth, this is denoted simply as PD.

PD ¼ aId2 þ bId þ c (5)

2.3. ML

While uncovering typical patterns within a set of measurement
and experimental data using unsupervised methods holds
significance,[35–37] the authors of this study, drawing upon their
prior knowledge of the experimental data, find supervised ML
methods to be more effective.[38] The chosen ML predictor meth-
ods have been selected based on their good performance and are
briefly explained as follows. The experimental dataset was

Figure 1. RED installation. a) A general schema, Adapted with permission.[57] Copyright 2018, Elsevier. b) A schema of one RED stack pair cell, Adapted
with permission.[57] Copyright 2018, Elsevier. c) Coastal areas and d) various rivers to be used for SGP in Sweden, categorized into three geographical
areas of low, intermediate, and high salinity.

Table 3. Factors and their considered levels for flow, salinity, and
temperature.

Factor Minimum level Medium level Maximum level

Sea Flow velocity [L h�1] 5 15 25

River Flow velocity [L h�1] 5 15 25

Sea Salinity [g L�1] 2.5 17.5 32.5

Temperature [ºC] 4.5 14 23.5
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organized according to Equation (6). Here, the input samples are
denoted as xi ¼ ½xi1, xi2, : : : , xin�, i ¼ 1, : : : ,m, and the input fea-
tures are represented as f j ¼ ½x1j, x2j, : : : , xmj�T , j ¼ 1, : : : , n.

The m rows or n columns build the input matrix as Xm�n ¼
½x1, x2, : : : , xm�T or Xm�n ¼ ½f 1, f 2, .., f n�. The target or output
is indicated by Ym�1 ¼ ½y1, y2, : : : , ym�T . In our case, m equals
81 and n equals four. The input features consist of sea flow veloc-
ity ( f1), river flow velocity ( f2), sea salinity ( f3), and temperature
( f4). Y contains the PD values. The objective is to predict the vec-
tor of PD values Y donated by Ŷ , using input variables (in our
case f 1, f 2, f 3, f 4) referred to here as predictors or features

X ¼

Samp:⇓=Feat: ⇒ f 1 f 2 : : : f n
x1 x11 x12 : : : x1n
x2 x21 x22 : : : x2n
..
. ..

. ..
. ..

. ..
.

xm xm1 xm2 : : : xmn

2
666664

3
777775,Y ¼

y1
y2
..
.

ym

2
6664

3
7775
(6)

2.3.1. ML Predictor Methods

Ensemble Learning (EL)with Decision Trees (DT): EL enhances pre-
diction accuracy by combining multiple models, especially for
weak learners, such as a single DT.[39] Methods such as Bootstrap
Aggregation (bagging), for example, Random Forest,[40] and Least
Squares Boosting (LSBoost)[41] can be employed in EL regressor
methods to aggregate the weak DT learners. LSBoost, utilized fur-
ther in this paper, is a regression variation of boosting originally
presented in the Adaptive Boosting method,[42] aiming at classifi-
cation goals. EL with DT learners using LSBoost results in a robust
predictivemodel by aggregating the predictions of individual trees.
DTs partition the feature space into smaller regions and provide
predictions based on the weighted averages of individual tree out-
puts, as indicated in Equation (7):

ŷi ¼
XN
c¼1

αc:DTcðxiÞ (7)

Here, ŷirepresents the predicted output, N is the total number
of DTs used in EL, αc is the weight assigned to the prediction of
cth DT, and DTc corresponds to the prediction of cth DT on the
input normalized sample xi.

Gaussian Process Regression (GPR): GPR represents a Bayesian
nonparametric methodology for regression. This approach mod-
els the association between input features and output variable(s)
as a distribution across functions, referred to as a Gaussian pro-
cess, rather than discrete parameters. GPR offers a probabilistic
framework for prediction using a kernel (covariance) function as
indicated in Equation (8), which encapsulates uncertainty in pre-
dictions and enables robust estimation of model parameters.[43]

ŷi ¼ kðxi, x́iÞðK þ σ2IÞ�1yi (8)

In this context, yi denotes the actual output for ith input sam-
ple, kð:, :Þ represents a kernel (covariance) function, K stands for

a covariance matrix of basic functions, σ is the initial value for
the noise standard deviation and xi and x́i denote input normal-
ized samples in the training and testing sets, respectively.

ANN: ANNs are inspired by the structure and function of
biological neural networks. ANNs are composed of intercon-
nected nodes, arranged in layers that include input, hidden,
and output layers. Through the iterative process of forward
and backward propagation, ANNs acquire the ability to approxi-
mate complex nonlinear relationships between input variables
and output(s) and generate predictions. When an ANN has
between 1 to 3 hidden layers, it is categorized as a shallow neural
network. However, as the number of hidden layers increases, the
network transforms into what is known as a deep neural network.
The relation between inputs and outputs in an L-hidden-layer
(L= 2, in our case) ANN can be expressed as indicated in
Equation (9) and (10):[44]

NðlÞ ¼ hðWðlÞ:Nðl�1Þ þ bðlÞÞ, l ¼ 1, 2, : : : , L (9)

Ŷ ¼ f ðW ðLÞ:NðLÞ þ bðLþ1ÞÞ (10)

Nð0Þ ¼ ½f 1, f 2, f 3, f 4� represents the input normalized vectors
with four features specified as the input layer, NðlÞ represents the
outputs from lth hidden layer, WðlÞ stands for weight matrices
between neurons within (l-1)th and lth layers. bðlÞ shows bias vec-
tors for the lth hidden layer. ‘h’ represents the activation function
applied to the output of each hidden layer (sigmoid,[45] in our
case), and f denotes the output activation function, such as linear
in regression tasks. In our case, it was defined as “none”, indi-
cating that the network can directly output the continuous values
without further transformation. Finally, the output prediction
vector is denoted as Ŷ .

2.3.2. Cross Validation and Evaluation

Given the moderate size of our dataset, ensuring a reliable eval-
uation of the ML methods was crucial. Therefore, a fivefold
cross-validation technique[46] was employed on the ML models.
This technique involved randomly partitioning the dataset into
five equal subsets (in our case, 81/5� 16). The models were
trained on four subsets and tested on the remaining one, with
this process repeated five times to ensure that the entire dataset
was eventually used for testing. By employing this technique,
we also mitigated the risk of overfitting the methods to specific
parts of the dataset.

The evaluation criteria utilized in this study consist of two
common metrics employed in regression tasks:[47] Root mean
squared error (RMSE) and R-squared (R2), as depicted in
Equation (11) and (12), where “Corr” represents the Pearson cor-
relation coefficient (PCC).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ðyi � ŷiÞ2
s

(11)

R2 ¼ Corr: ðY , ŶÞ2 ¼ 1�
Pm

i¼1 ðyi � ŷiÞ2Pm
i¼1 ðyi � yiÞ2

(12)
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2.3.3. Feature Importance

Besides applying ML predictor methods to identify the most sig-
nificant predictor (feature) among the four input variables for
predicting PD, two statistical methods,[48] correlation analysis
and F-test algorithm, were utilized to assess feature importance.
These methods were used to calculate the PCCs and the negative
logarithm of the p-values (�logðpÞ) between each input feature
f 1, f 2, f 3, f 4 individually, and the PDY, respectively. The p-value
represents the statistical measure used to assess the validity of a
hypothesis against observed data. Higher scores obtained from
both methods indicate the greater significance of the respective
input feature.

2.4. LCA

This LCA study aims to evaluate the potential environmental
impacts of the RED system, with the objective of guiding its
development from a sustainability perspective. In this analysis,
the functional unit was defined as the lifetime energy generated
by the RED plant, measured in megawatt-hours (MWh), having a
lifetime of 25 years. This unit represents the total amount of net
electricity delivered to the grid. The plant sizing was determined
by estimating the net power available in the system, based on the
flow of available water, and then calculated the required mem-
brane area to generate this power. Net power production, as
stated in Equation (13), was derived from the available water
quantities, the theoretical energy density (ED) of the feedwater
streams, and the plant’s efficiency, as outlined in the methodol-
ogy stated in.[28]

Pnet ¼ Q � EDwater � ηplant (13)

Where Pnet represents the net power production in (MW),Q is
the water flow rate of the plant in (m3 s�1), EDwater denotes the

theoretical ED of the water in (MJm�3), and ηplant is the conver-
sion efficiency of the plant.

As illustrated in Equation (14), the membrane area required
for the plant’s lifespan was determined by the plant’s power pro-
duction, the membrane PD, and the membrane and plant life-
times.

Amembrane ¼
ðPnet=ηplantÞ

PDmembrane � Lplant
Lmembrane

� � (14)

Where Amembrane (m
2) represents the membrane area required

over the lifetime of the plant, PDmembrane denotes the PD normal-
ized to the membrane surface area, Lplant is the Plant’s lifetime,
and Lmembrane refers to the membrane’s lifetime.

The system boundary under evaluation included the environ-
mental impacts that result from natural resources utilization,
water pretreatment facility, component manufacturing, opera-
tional activities, as well as end-of-life practice (Figure 2). The
assembly of the RED stack system comprises the materials
and processes required for constructing a membrane stack,
incorporating cathode and anode membrane material,
Polypropylene (PP) endplates, spacer gaskets, electrodes (Ti
mesh coated with Ru-lr), Polyvinyl Chloride (PVC), and PP water
pipes and containers. However, the construction of the site was
not included in this analysis.

2.4.1. Life Cycle Inventory (LCI)

LCI analysis phase entails the compilation of an inventory of
input and output data that was relevant to the system being inves-
tigated. In this analysis, inventory data were gathered from both
lab-scale primary data and peer-reviewed articles.[31,49] The water
requirements for Seawater-River RED systems fluctuated based
on the accessibility of water sources and the intended power

Figure 2. System boundary diagram for energy generation by the Seawater-River RED system.
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generated by the facility. For this assessment, 35 and 15m3 s�1 of
concentrated and diluted water were used, respectively, and
water was conveyed from the source to the plant through pump-
ing. In the seawater-river analysis, granular activated carbon
(GAC) was considered for water pretreatment (0.1 kg per cubic
meter of water).[49] The estimated lifetime of the GAC filter
ranges between 8 and 10 years, with an 8-year lifespan assumed
for this study (Table 4). Over the 25-year operational lifetime of
the salinity gradient plant, it is anticipated that the GAC filters
will need to be replaced three times. Consequently, the total GAC
required for the entire lifespan of the plant was estimated to be
1,296 tons. However, the spent GAC produced during the water
pretreatment process was categorized as waste and was not con-
sidered within the scope of this analysis.

During plant operation, RED facilities generated their own
electricity, with about 25% of gross power consumed internally
for operations, mainly pumping. The net electricity production
reflects this difference.[50] Therefore, the facility’s net efficacy
was estimated to be 75%. The net power production for this
Seawater-River RED system was assumed as 60MW. The
Swedish electricity grid was used for modeling electricity for
the operation of both RED systems. Due to the extensive mem-
brane area required throughout the lifespan of a RED facility, the
environmental impacts associated with membrane production
constitute a substantial component of the LCI. According to pub-
lished estimates, the lifespan of membranes typically falls
between 5 to 7 years.[51] This reduction in lifespan was observed
due to the ageing and fouling of the membranes. For this analy-
sis, a membrane lifetime of 6 years was selected. Waste
incineration at a municipal facility was employed to simulate
the end-of-life stage of the PP and PVC products, which were
classified as plastic waste from the RED stack. However, the

Ti electrode was assumed to be recycled. The brine-wastewater
treatment plant (WWTP) scenario utilized a combination of brine
and WWTP for electricity generation, with the potential to be
implemented as a modular, portable system. This approach lev-
erages the energy from concentrated brine, a byproduct of desa-
lination, sea salt production, and industrial processes. Here, the
brine flow rate limits electricity production, while WWTP water
was assumed unlimited. Table 5 summarizes the brine-WWTP
RED system properties.

2.4.2. Life Cycle Impact Assessment

To assess the impacts associated with RED technology, the
ReCiPe World (H) midpoint impact assessment methodology
was employed in this study.[52] Table 6 lists the selected midpoint
impact categories for this analysis and their corresponding
impact indicators.

2.4.3. Interpretation and Scenario Analysis

In this LCA study, a scenario analysis was performed by investi-
gating a variety of configurations involving various electrode
materials, including Titanium electrodes (as baseline scenario),
polyacrylonitrile carbon fiber (PAN-CF), and lignin-CF electro-
des. PAN-CF electrodes are carbon fiber electrodes made from
polyacrylonitrile, offering high electrical conductivity, mechani-
cal strength, and chemical stability for use in electrochemical
applications.[53] In contrast, Lignin-CF electrodes are derived
from lignin, providing a sustainable alternative with good elec-
trical conductivity and mechanical properties for use in electro-
chemical applications.[54] The scenarios were designed to
evaluate how variations in electrode types influence the system’s

Table 4. Seawater-River RED system property summary.[31,49]

Lifecycle Stage Parameter Description and Assumptions

Water Pumping Flowrate Total flowrate: 50 m3 s�1

(Seawater: 35 m3 s�1, River Water:
15 m3 s�1); Daily Plant flowrate:

4 320 000m3 d�1

Pretreatment
(GAC Filtration)

Amount Needed per
Lifetime

GAC required: kg m�3; GAC
lifetime: 8 years; Total GAC

required: 1 296 tons

RED Stack System
Installation

Materials Used for
Membrane Construction

& plant lifetime

Membrane lifespan: 6 years; Plant
lifetime: 25 years; PD = 3.5 Wm�2;

ED = 1.6 MJm�3

Membrane Area Total membrane area: 5 494 506m2

RED Stack System
Operation

Lifetime Energy
Generation

Lifetime energy generation:
12 600 000MWh; Net power
production: 60MW (based on

8400 h year�1 over 6 years with 4
membrane changes in 25 years)

Red Stack System
Decommissioning

– Plastic parts (spacers, end plates,
pipes, containers) sent to

incineration with energy recovery
credit; Metal parts (Ti-coated

electrodes) recycled with credit for
Ti recovery.

Table 5. Brine-WWTP RED system property summary.

Lifecycle stage Parameter Description and assumptions

Water pumping Flowrate Total flowrate = 0.05m3 s�1; Daily
Plant flowrate = 4320m3 d�1

Pretreatment
(GAC Filtration)

Amount needed per
lifetime

GAC required: kg m�3; GAC
lifetime: 10 years; Total GAC

required: 864 kg

RED stack system
installation

Materials used for
membrane construction

& plant lifetime

Membrane lifespan: 6 years; Plant
lifetime: 25 years; PD = 6Wm�2;

ED = 15MJ m�3

Membrane Area Membrane area total= 30 049m2

RED stack system
operation

Lifetime energy
generation

Lifetime energy generation:
118 125MWh; Net power

production: 0.5625 MW (based on
8400 h year�1 over 6 years with 4
membrane changes in 25 years)

RED stack system
decommissioning

– Plastic parts (spacers, end plates,
pipes, containers) sent to

incineration with energy recovery
credit; Metal parts (Ti-coated

electrodes) recycled with credit for
Ti recovery.
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overall environmental performance, providing a thorough analy-
sis of potential enhancements and trade-offs in RED technology.

3. Results and Discussions

3.1. SGE and ML Interpretation Besides the Results

The polarization intensity curve (V vs. I) and the resulting PD
variation as a function of current density for experiments per-
formed at different temperatures (i.e., 21, 15, and 8 °C, respec-
tively) and using different salinity gradients (i.e., 2.5, 17.5, and
32.5 g L�1, respectively), are shown in Figure 3. In the polariza-
tion intensity curves, there is a significant decrease in the slope
as the HC concentration increases, resulting in a reduction in the
stack resistance.

This is due to the increase in electrical conductivity, which
decreases resistance. There is also a decrease in the slope of curves
as the temperature increases. This might be due to an increase in
ion mobility and, thus, an increase in the electrical conductivity of
the solutions. In contrast, an increase in the concentration of HC
increased OCV. This is because OCV is defined where there is no
current flowing through the system. In this case,OCV is primarily
a function of HC concentration. As the HC concentration
increases, the chemical potential will also increase, resulting in
increased OCV. Figure S1–S4 (Supporting Information) illustrate
the impact of adjusting operating parameters—sea flow velocity,
river flow velocity, sea salinity, and temperature—on PD, stack
resistance, and open-circuit voltage (Figure 4).

Given that the ML methods are strongly dependent on the
selection of their hyperparameters, we carried out a

Table 6. Summary of the midpoint impact categories and impact indicators.

Impact Category Indicator CFm Abbrev Unit

Climate Change Infrared radiative forcing increases Global warming potential GWP kg CO2 eq

Ozone Depletion Stratospheric ozone decrease Ozone depletion potential ODP kg CFC-11 eq

Ozone formation, Human Health Tropospheric ozone increase Photochemical oxidant formation potential: ecosystems POFP kg NOx eq

Fine; Particulate matter; formation PM2.5 population intake increases Particulate matter formation potential PMFP kg PM2.5 eq

Terrestrial acidification Proton increase in natural soils Terrestrial acidification potential AP kg SO2 eq

Freshwater eutrophication Phosphorus increase in freshwater Freshwater eutrophication potential FEP kg P eq

Freshwater ecotoxicity Hazard-weighted increase in fresh waters Freshwater ecotoxicity potential FETP kg 1,4-DCB eq

Human toxicity: cancer Risk increases of cancer disease incidence Human toxicity potential HH-CP kg 1,4-DCB eq

Human toxicity: non-cancer Risk increase of noncancer disease incidence Human toxicity potential HH-NCP kg 1,4-DCB eq

Fossil resource scarcity upper heating value Fossil fuel depletion potential FDP kg oil eq

Figure 3. a–c) RED stack response regarding PD versus current density and d–f ) polarization intensity curves for varying concentrations and temper-
atures at a constant flux of 10 L h�1.
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hyperparameter optimization using Bayesian optimization dur-
ing the training of the ML methods, and the results are given in
Table 7. The comparison between predicted and experimental
PD values, both collectively (one V.S. one) and individually plot-
ted against record numbers from those 81 experiments, is pre-
sented in Figure 5. Predictions are produced utilizing three
optimized ML methods: an ensemble method with DT weak
learners, the GPR method, and a custom-designed ANN.
Furthermore, the performance of each method is assessed
using fivefold cross validation based on RMSE and R2, which
are displayed on top of subplots in Figure 5a–c. The RMSE
and R2 values for each method are as follows: for the
Ensemble method, the values are 2.448 and 98.7049; for
GRP, they are 1.9574 and 99.1757, and for ANN, they are
1.7372 and 99.3495. Notably, the results highlight the superior
predictive capability of the ANNmethod, evidenced by its lowest
RMSE and highest R2, followed by the GRP method, thus indi-
cating their efficiency in PD prediction compared to the
Ensemble approach.

While GPR and ANN performed well on our experimental
dataset, it’s important to note that GPR can be computationally
expensive in real applications, and ANN can be complex, though
it performs reliably with smaller datasets.[55] This study used five-
fold cross validation to confirm the reliable performance of
ANNs, even with limited data, among ML methods.

The 3D surfaces in Figure 6 present the impact of the chang-
ing operating parameters on PD. The filled dot points represent
the experimental data points, while the hollow dot points depict
predictions generated by the best ML-based predictor, the ANN.
Considering all aspects of Figure 6a–c, irrespective of seasonal
temperatures, higher sea salinity values correlate with increased
PD extraction. In Figure 6a–c, which include three seasonal tem-
perature levels, a rise in temperature also positively affects PD.
Both sea flow velocity and river flow velocity demonstrate a posi-
tive correlation with PD, as depicted in Figure 6a–c. However, at
higher temperatures, particularly during summer at 23.5 °C, and
higher sea salinity i.e., 32.5 g L�1, sea flow velocity shows a nota-
bly strongr positive impact on PD than river flow velocity. In

Figure 4. a–c) Experimental result of the RED system in terms of PD; d–f ) stack resistance; and g–i) open-circuit voltage operating with 2.5, 17.5, and
32.5 g L�1 of SSW solutions, respectively.
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Figure 6c, the highest extracted PD recorded was 1.1605 wm�2,
predicted by the ANN as 1.1737 wm�2, with the highest tem-
perature, 23.5 °C, and the highest sea and river flow velocities
at 25 LH�1.

As observed in Figure 6d–f, irrespective of river flow velocity
levels, increasing sea salinity values have a positive impact on PD
extraction, as demonstrated in Figure 6a–c as well. This is due to
the increase in salinity, which causes OCV and V to increase,
while the number of free ions in the concentrated solution rises.
This increase boosts conductivity, decreases Rstack, and results in
higher PD. From Figure 6d–f, representing three river flow veloc-
ity values, a rise in flow shows only a very shallow positive effect
on PD because it flushes ions from the dilute side, maintaining a
low concentration on that side. However, this effect remains very
small. Increasing temperature and sea flow velocity together lead
to a higher PD, with this finding being much clearer for higher
sea salinity values. The free ions in the solutions become more
active as temperature rises, increasing ion migration and
enhancing the potential difference on both sides of the ion
exchange membranes (IEMs), which increases OCV. The con-
ductivity of the solution is also improved with an increase in tem-
perature, reducing Rstack and boosting PD extraction. Across
Figure 6g–i, depicting three sea flow velocity values, a rise in flow
from 5 to 15 L h�1 shows only a very slight positive impact on PD.
In contrast, raising the flow to 25 L h�1 exhibits a more

pronounced positive effect (due to a high salinity gradient).
From Figure 6a–c, it is evident that the impact of sea salinity
is more significant than that of temperature. This distinction
becomes even clearer at higher sea flow velocity values, as shown
in Figure 6i.

The results of applying the feature importance extraction
methods are depicted in Figure 7. Both methodologies yield con-
sistent importance rankings: sea salinity ( f3) is the most signifi-
cant, followed by temperature ( f4), (that was observed from
Figure 7a–c too), sea flow velocity ( f1), and river flow velocity
( f2), with sea salinity exerting a notably pronounced impact com-
pared to the other variables.

3.2. LCA Results

3.2.1. System 1: Seawater-River RED System Impact Analysis

The LCA of the seawater-river RED system reveals a diverse range
of environmental impacts across various categories, with notable
contributions to global warming, human health, and resource
depletion. In the climate change category, the system results in
a global warming potential (GWP) of 178 g CO2 eq. per kWh
of energy produced, based on the total energy output of 12.6 mil-
lionMWh over its life cycle of the RED system. This is attributed to
the energy-intensive processes involved in Ti electrode production
and operational energy use for pumping. Although stratospheric
ozone depletion is on a lower scale at 1416 kg chlorofluorocarbon
equivalent (CFC11eq), this impact is because of the ozone-
depleting substances in the manufacturing of electrodes (56%)
and the pumping process (40%). In terms of impacts from ozone
formation and fine particulate matter formation, Ti electrodes con-
tribute 82–86% of the impact, whereas pumping contributes for
the remaining 12–18%. A similar trend was seen for the terrestrial
acidification category, further demonstrating the significant
release of sulfur oxides from industrial processes associated with
electrode production and fuel combustion.

Freshwater eutrophication highlights the impact of nutrient
runoff and toxic chemical discharges into aquatic systems, where
contribution analysis indicated most impacts (76%) come from
Ti electrode production. Pumping, in contrast, accounts for
�71% of the impact in the freshwater ecotoxicity. The system
also shows substantial human toxicity impacts, with carcinogenic
and non-carcinogenic toxicities amounting to 1.66� 109 kg
1,4-Dichlorobenzene (1,4-DCB) and 6.8� 109 kg 1,4-DCB,
respectively. These findings emphasize the presence of harmful
substances throughout the RED life cycle, particularly in the pro-
duction and handling of membranes and other components.
Lastly, the fossil resource scarcity impact is 4.97� 108 kg oil
eq, reflecting the system’s reliance on fossil fuels for its energy
inputs, particularly during electrode production (87%). Figure 8a
presents the contribution analysis for the seawater-river RED sys-
tem, highlighting that the production of Ti electrodes and the
energy required for pumping account for the majority of environ-
mental impacts across all assessed categories.

3.2.2. System 2: Brine-WWTP System Impact Analysis

The results for the brine-WWTP RED system reveal a similar
trend, with the majority of environmental impacts arising

Table 7. Optimal hyperparameter values for the ML methods.

ML method Hyperparameter Range Optimal value

Ensemble-DT Method Bag, LS-Boost LS-Boost

Num Learning
Cycles/Num

Trained

[10,500] 420

Learn Rate [1� 10�3, 1] 0.1855

Min Leaf Size [1,40] 2

Max Num Splits [1,80] 7

Num Variables
to Sample

[1,4] 4

GPR σ [1� 10�3, 2.1645] 3.18� 10�4

Basic Function Constant, none, linear,
pure Quadratic

none

Kernel Function Ard exponential,
ardmatern32,

ardmatern52, hard rational
quadratic, exponential,

rational quadratic, squared
exponential, etc

ardmatern32

Kernel Scale [0.0024, 2.4343] NaN

ANN Num Layers [1,5] 2

Activations Relu, tanh, sigmoid, none “sigmoid” for
hidden layers and
“none” for output

layer

Lambda [1.23� 10�07,
1.23� 10þ03]

3.37� 10�06

Layers Size [1,400] [302, 41]
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primarily from Ti electrode production and pumping activities
(Figure 8b). The system contributes 158 g CO2 eq/kWh of energy
produced, based on a total energy output of 118 125MWh. This
carbon footprint is driven by the manufacturing processes for
key components, such as electrodes, and operational energy
demands for pumping, as discussed before. The system’s strato-
spheric ozone depletion potential of the system is 49 kg CFC11 eq,
whereas it also shows considerable impacts on ozone formation
related to human health, with 53416.97 kg Nitrogen oxides
(NOx) eq. This result implies that nitrogen oxide emissions which
contribute to ground-level ozone and degrade air quality.
Furthermore, the system produces 39119.09 kg Particulate matter
with a diameter of 2.5micrometers (PM2.5) eq of fine particulate
matter, highlighting the potential harm from airborne particles,
mainly produced during the electrode production (81%). In terms
of terrestrial acidification, the system contributes 106156.83 kg
SO2 eq, indicating substantial emissions of acidifying substances
like SO2. These emissions, largely generated from electrode pro-
duction, can damage soil health and biodiversity.

The Brine-WWTP RED system also presents a high FEP of
43 336.58 kg P eq. In terms of toxicity impacts, the results for
freshwater ecotoxicity (2.2� 106 kg 1,4-DCB), human carcino-
genic toxicity (6.89� 108 kg 1,4-DCB), and human non-
carcinogenic toxicity (1.0� 108 kg 1,4-DCB) were found, where
pumping and electro production are found mainly responsible
for the impacts. Finally, the fossil resource scarcity result of
3 761 601.27 kg oil eq reveals the system’s reliance on nonrenew-
able energy sources throughout its lifecycle.

3.2.3. Scenario Analysis: Seawater-River RED System

The comparative analysis of the environmental impacts from dif-
ferent electrodematerials in the seawater-river RED system reveals
significant variations across the impact categories (Figure 8c). The
baseline materials (Ti electrode), show a significantly higher cli-
mate change impact when compared to both PAN CF and
Lignin Carbon Fiber (Lignin CF) electrodes. The PAN CF elec-
trode achieves a substantial reduction in GWP, resulting in
�80.15 g CO2 eq per kWh of energy produced, reflecting a
54% decrease from the baseline. Lignin CF electrodes offer even
greater environmental benefits, reducing GWP to 33.73 g CO2 eq/
kWh, marking an 81% decrease compared to the baseline. These
results indicate that both PAN CF and lignin CF electrodes are
more sustainable alternatives, with lignin CF emerging as the
most efficient choice for minimizing greenhouse gas emissions.

Stratospheric ozone depletion, a decrease in atmospheric total
ozone due to ozone-depleting substances in any process system,
shows a more complex trend in terms of electrode materials. The
baseline Ti electrode shows a relatively lower impact, recording
1416 kg CFC11 eq. In contrast, the PAN CF electrode significantly
increases this impact to 4691 kg CFC11 eq, a threefold rise. Lignin
CF electrodes demonstrate a slightly better performance with an
impact of 4293 kg CFC11 eq, making them a more favorable
option than PAN CF. However, both carbon-based electrodes
show higher ozone-depleting potential compared to baseline Ti
electrodes. This trade-off is important to consider, especially in
regions where ozone layer protection is a priority.

Figure 5. Comparison of predicted and experimental PD: a,d) Ensemble; b,e) GRP; c,f ) ANN. Validation RMSE and R2 values are shown at the top of each
subfigure (a), (b), and (c).

www.advancedsciencenews.com www.advenergysustres.com

Adv. Energy Sustainability Res. 2025, 2500124 2500124 (11 of 16) © 2025 The Author(s). Advanced Energy and Sustainability Research
published by Wiley-VCH GmbH

 26999412, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aesr.202500124 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [02/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advenergysustres.com


The substantial reduction in ozone formation and fine partic-
ulate matter further supports the environmental advantages of
Lignin CF electrodes. Ozone formation impact is reduced from
7.44� 106 kg NOx eq in the baseline to 2.45� 106 kg NOx eq
with PAN CF, and even further to 1.32� 106 kg NOx eq with lig-
nin CF, showing a reduction of 64% and 82%, respectively.
Similarly, fine particulate matter formation sees a substantial

decline, with lignin CF reducing it to just 2.77� 105 kg PM2.5
eq, a 96% decrease from the baseline. These results highlight
the superior environmental performance of lignin CF in reduc-
ing air quality-related impacts.

In terms of, Both PAN CF and lignin CF significantly reduce
terrestrial acidification impact compared to Ti electrodes. PAN
CF shows a reduction to 7.61� 106 kg SO2 eq from the baseline

Figure 6. a–c) Impact of sea/river flow velocity on PD at three salinity levels; d–f ) Impact of flow velocity and temperature on PD at three salinity levels;
g–i) Impact of sea salinity/temperature on PD at three river flow levels. Filled dots are experimental data; hollow dots are predictions from ANN.
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1.81� 107 kg SO2 eq, and lignin CF achieves an even greater
reduction to 1.32� 106 kg SO2 eq, nearly 93% less than the base-
line. This indicates that lignin CF electrodes offer the best per-
formance in mitigating acid rain and other acidification-related
environmental concerns. However, freshwater eutrophication
tells a different story. Both PAN CF and lignin CF electrodes
exhibit much higher impacts compared to the baseline. PAN

CF electrodes result in a fourfold increase in eutrophication
potential, reaching 4.16� 106 kg P eq, and lignin CF follows
closely with 3.82� 106 kg P eq. This suggests that while carbon
fiber electrodes offer many environmental benefits, they may
make worse issues related to nutrient loading and water quality,
which should be addressed in future designs.

Freshwater ecotoxicity and human carcinogenic toxicity also
see significant reductions with carbon-based electrodes. PAN
CF reduces freshwater ecotoxicity by 86% compared to the base-
line, while Lignin CF further improves this to an 87% reduction.
Human carcinogenic toxicity, a critical health impact category,
also drops by over 90% with both carbon fiber electrodes com-
pared to Ti. Despite this, the human non-carcinogenic toxicity
remains relatively high for both PAN CF and Lignin CF, even
surpassing the baseline Ti electrode impacts. This suggests that
while carbon-based electrodes improve health-related toxicities in
certain areas, challenges remain in addressing non-carcinogenic
toxicity concerns. Lastly, fossil resource scarcity is markedly
lower for both PAN CF and Lignin CF electrodes compared to
Ti. Lignin CF, in particular, performs best with a drastic reduc-
tion to just 7.11� 106 kg oil eq, which is over 98% lower than the
baseline, indicating that lignin CF is the most sustainable choice
when considering resource use.

The scenario analysis of the brine-WWTP RED reveals that
Lignin CF electrodes have lower impacts across all categories
compared to the PAN CF and the baseline scenario

Figure 7. Predictor (feature) importance scores by correlation analysis and
F-test algorithm.

Figure 8. a,b) Contribution c,d) and scenario for (a,c) Seawater-River RED system; (b,d) Brine-WWTP RED system.
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(Figure 8d). In terms of climate change impact, the PAN CF elec-
trode results in �49% decrease in CO2 emissions compared to
the baseline, reducing emissions to 80 g CO2 eq per kWh. The
Lignin CF electrode further reduces emissions by about 79%,
reaching 33.7 g CO2 eq per kWh. This reflects a substantial
improvement in reducing carbon emissions with alternative
electrodes.

For stratospheric ozone depletion, the PAN CF electrode
improves performance by 10%, while the Lignin CF electrode
shows a slightly better improvement of around 18%, resulting
in a final impact of 40.24 kg CFC-11 eq. Regarding ozone forma-
tion impacting human health, the PAN CF electrode reduces the
impact by 57% compared to the baseline; however, Lignin CF
performs even better with a 77% reduction. The reduction in fine
particulate matter formation is especially pronounced with lignin
CF, which achieves a 93% decrease compared to the baseline,
lowering the impact from 39 119.10 kg PM2.5 eq to 2598.04 kg
PM2.5 eq. PAN CF offers a more moderate reduction of about
64%, with an impact of 14 132.35 kg PM2.5 eq.

The PAN CF electrode reduces terrestrial acidification impact
by �33%, bringing it down from 106 156.84 kg SO2 eq to
71 320.78 kg SO2 eq. Whereas, the lignin CF electrode performs
far better, achieving an 88% reduction to 12 419.07 kg SO2 eq.
Freshwater eutrophication decreases by around 10% with PAN
CF, while lignin CF shows a 17% reduction. In terms of fresh-
water ecotoxicity, PAN CF provides a 40% reduction compared to
the baseline, lowering the impact from 2.20� 106 kg 1,4-DCB to
1.33� 106 kg 1,4-DCB, while lignin CF reduces it by 44%.

Human carcinogenic toxicity is significantly reduced with
both alternative electrodes. The PAN CF achieves a 79%
decrease, lowering the impact from 6.89� 106 kg 1,4-DCB in
the baseline to 1.45� 106 kg 1,4-DCB. The lignin CF performs
even better, reducing the impact by 81%, 1.31� 106 kg

1,4-DCB. In terms of fossil resource scarcity, Lignin CF achieves
an astounding 98% reduction compared to the baseline, bringing
the impact from 3.76� 106 kg oil eq to just 66689.19 kg oil eq.
PAN CF also reduces the impact, but less dramatically, by about
43%, with a final value of 2.13� 106 kg oil eq.

3.2.4. Key Insights from LCA Analysis

While the seawater-river RED and brine-WWTP RED systems
offer an innovative solution for energy generation, significant
environmental impacts, particularly in GWP, toxicity categories,
and resource scarcity, must be addressed. Future improvements
should focus on optimizing materials, reducing energy con-
sumption, and adopting cleaner technologies for membrane pro-
duction. These optimizations could help the RED system align
better with sustainability goals and reduce its overall environ-
mental footprint.

In the scenario analysis for the seawater-river RED system, the
comparison across three electrode materials suggests that while
both PAN CF and Lignin CF electrodes significantly reduce most
environmental impacts, Lignin CF electrodes present the most
environmentally beneficial alternative overall, especially in terms
of global warming, particulate matter, and resource scarcity.
However, the increased impacts related to ozone depletion
and freshwater eutrophication should not be overlooked, as they
indicate potential areas for further refinement in deploying
carbon-based electrodes. In the brine-WWTP RED scenario anal-
ysis, Lignin CF consistently outperforms both the baseline and
PAN CF electrodes across all the impact categories, with reduc-
tions ranging from 17% to as much as 98%. While PAN CF also
provides significant improvements, its reductions are generally
less pronounced than those of lignin CF. This highlights the

Figure 9. Life-cycle grams CO2 eq emissions per kWh energy Production.
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potential of Lignin CF as a more environmentally sustainable
alternative for Brine-WWTP RED systems.

When comparing with other renewable sources, the carbon
emission per kWh of energy produced from the seawater-river
RED system, especially with the baseline Ti electrode, are still
significantly higher at 178 g CO2 eq/kWh compared to wind,
solar PV, and hydropower (see Figure 9).[56] However, using car-
bon fiber electrodes such as PAN CF and Lignin CF notably
reduces emissions to 80.15 g CO2 eq/kWh and 33.73 g CO2

eq/kWh, respectively. These reductions demonstrate that while
RED systems initially have higher emissions than many renew-
able energy sources, advancements like carbon fiber electrodes
can considerably improve their environmental performance.

4. Conclusion

This study applied a full-factorial experimental design to evaluate
the key parameters—salinity, flow rate, and temperature of sea
and river water—that influence SGP generation using RED, spe-
cifically within the seasonal and geographical context of Sweden.
To enhance predictive capabilities, ML methods were employed,
including 1) EL with DT weak learners, 2) GPR, and a custom-
designed 3) ANN. Among these, the custom-designed ANN dem-
onstrated the highest predictive accuracy with an R2 of 99.35%
and an RMSE of 1.173%, closely followed by the GPRmodel with
an R2 of 99.17% and an RMSE of 1.95%. Feature importance
analysis underscored sea salinity as the most influential factor
in determining PD, followed by temperature, sea flow velocity,
and river flow velocity. These findings highlight the complex
interplay of environmental factors in optimizing energy genera-
tion from salinity gradients and provide a robust framework for
further exploration and development of RED technology in
diverse settings.

The LCA discovered notable environmental impacts for both
the seawater-river RED and brine-WWTP RED systems, with
respective GWP of 178 g CO2 eq/kWh and 158 g CO2 eq/kWh,
largely attributed to energy-intensive Ti electrode production and
system pumping requirements. Comparative analysis showed
that substituting Ti electrodes with advanced carbon fiber-based
options, particularly lignin-derived carbon fiber (CF), signifi-
cantly reduced GWP by 81%, achieving a GWP as low as
33.73 g CO2 eq/kWh. This highlights the potential of lignin
CF to enhance the sustainability of RED systems. However, chal-
lenges remain, as ozone depletion and freshwater eutrophication
impacts associated with carbon-based electrodes warrant further
investigation into synthesis and material refinement. Despite
higher emissions compared to RERs like hydropower, solar
PV, and wind, the integration of advanced CF electrodes within
seawater-river RED systems demonstrates a promising pathway
for enhancing the efficiency and sustainability of blue energy,
especially within the context of Swedish energy needs.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
Y.M. and M.M. contributed equally to this work. The authors would like to
express their appreciation for the financial support of Swedish Energy
Agency, Sweden (ref. 51675-1) as well as and the Kempe Foundation
(grant no. JCK22-0225) Sweden. The authors appreciated the contribution
of Ms. Defne Bilen.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the sup-
plementary material of this article.

Keywords
blue energy in sweden, life cycle assessments, machine learning, power
density, reverse electrodialysis, salinity gradient power

Received: April 2, 2025
Revised: May 12, 2025

Published online:

[1] H. Yu, B. Wen, I. Zahidi, M. F. Chow, D. Liang, D. Ø. Madsen, Results
Eng. 2024, 22, 102324.

[2] L. Nouri, G. Mahtabi, S. H. Hosseini, C. V. S. R. Prasad, Results Eng.
2024, 21, 101871.

[3] L. Nordenstam, Energy Rep. 2024, 11, 6126.
[4] I. Karakurt, B. D. Avci, G. Aydin, Environ. Sci. Pollut. Res. 2024, 31,

52448.
[5] M. Rastgar, K. Moradi, C. Burroughs, A. Hemmati, E. Hoek,

M. Sadrzadeh, Chem. Rev. 2023, 123, 10156.
[6] L. Amjith, B. Bavanish, Chemosphere 2022, 293, 133579.
[7] J. Rani, J. Kumari, S. K. Chand, S. Chand, Big Data, Artificial

Intelligence, and Data Analytics in Climate Change Research,
Springer, Singapore 2024, pp. 153–171, https://doi.org/10.1007/
978-981-97-1685-2_9.

[8] Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, M. Jaszczur,
Results Eng. 2023, 20, 101621.

[9] E. Kabir, P. Kumar, S. Kumar, A. Adelodun, K.-H. Kim, Renewable
Sustainable Energy Rev. 2017, 82, 894.

[10] L. Bird, D. Lew, M. Milligan, E. M. Carlini, A. Estanqueiro, D. Flynn,
E. Gomez-Lazaro, H. Holttinen, N. Menemenlis, A. Orths,
P. B. Eriksen, J. C. Smith, L. Soder, P. Sorensen, A. Altiparmakis,
Y. Yasuda, J. Miller, Renewable Sustainable Energy Rev. 2016, 65, 577.

[11] W.-S. Hsu, A. Preet, T.-Y. Lin, T.-E. Lin, Molecules 2021, 26, 5469.
[12] K. Zachopoulos, N. Kokkos, C. Elmasides, G. Sylaios, Energies 2022,

15, 2970.
[13] O. A. Alvarez-Silva, A. F. Osorio, C. Winter, Renewable Sustainable

Energy Rev. 2016, 60, 1387.
[14] J. Kuleszo, C. Kroeze, J. Post, B. M. Fekete, J. Integr. Environ. Sci. 2010,

7, 89.
[15] P. Stenzel, H. J. Wagner, in 3rd Int. Conf. Ocean Energy, Bilbao

October 2010.
[16] F. Helfer, C. Lemckert, Y. G. Anissimov, J. Memb. Sci. 2014, 453, 337.

www.advancedsciencenews.com www.advenergysustres.com

Adv. Energy Sustainability Res. 2025, 2500124 2500124 (15 of 16) © 2025 The Author(s). Advanced Energy and Sustainability Research
published by Wiley-VCH GmbH

 26999412, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aesr.202500124 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [02/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/978-981-97-1685-2_9
https://doi.org/10.1007/978-981-97-1685-2_9
http://www.advancedsciencenews.com
http://www.advenergysustres.com


[17] J. W. Post, Blue Energy: Electricity Production from Salinity Gradients by
Reverse Electrodialysis, Wageningen University and Research,
Wageningen 2009.

[18] S. Loeb, R. S. Norman, Science 1975, 189, 654.
[19] F. Helfer, C. Lemckert, Renewable Sustainable Energy Rev. 2015, 50, 1.
[20] Y. Berrouche, P. Pillay, J. Renewable Sustainable Energy 2012, 4,

053113.
[21] S. Lin, Z. Wang, L. Wang, M. Elimelech, Joule 2024, 8, 334.
[22] European Commission, D.-G. for Maritime Affairs, Fisheries, Blue

energy : action needed to deliver on the potential of ocean energy
in European seas and oceans by 2020 and beyond : communication
from the Commission to the European Parliament, the Council, the
European Economic and Social Committee and the Committe,
Publications Office 2014, https://doi.org/10.2771/32703.

[23] C. Simões, M. Saakes, D. Brilman, Ind. Eng. Chem. Res. 2023,
62, 1665.

[24] J. Kim, K. Jeong, M. J. Park, H. K. Shon, J. H. Kim, Energies 2015,
8, 11821.

[25] S. Foorginezhad, M. M. Zerafat, Y. Mohammadi, M. Asadnia, Clean.
Eng. Technol. 2022, 10, 100550.

[26] J. Jang, Y. Kang, J.-H. Han, K. Jang, C.-M. Kim, I. S. Kim, Desalination
2020, 491, 114540.

[27] M. Sharma, P. P. Das, A. Chakraborty, M. K. Purkait, Sustainable
Energy Technol. Assessments 2022, 49, 101687.

[28] K. E. Mueller, J. T. Thomas, J. X. Johnson, J. F. DeCarolis, D. F. Call,
J. Ind. Ecol. 2021, 25, 1194.

[29] C. Li, Z. Zhang, Z. Li, N. Qiao, H. Guo, J. Liao, Desalination 2024,
571, 117044.

[30] C.(李昌铮) Li, Z.(李振全) Li, Z.(张哲) Zhang, N.(乔楠) Qiao,
M.(廖梦振) Liao, Phys. Fluids 2024, 36, 22007.

[31] C. Tristán, M. Rumayor, A. Dominguez-Ramos, M. Fallanza,
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