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ABSTRACT 

Impacts to stock abundance indices due to offshore wind development-driven changes to fishery-
independent survey effort  

 

by Angelia M. Miller 

 

Offshore wind energy development is occurring throughout the Northeast Large Marine 

Ecosystem and will interact with many marine use sectors, including fisheries. Wind areas 

overlap spatially with the footprint of the National Marine Fisheries Service (NMFS) Northeast 

Fisheries Science Center (NEFSC) multispecies bottom trawl survey, which has been conducted 

since the 1960s, and provides data that are relied upon for the assessment and management of 

many fisheries stocks in the Northeast U.S. This fishery-independent survey is confronted by 

potential preclusion of trawl sampling due to the spatial conflict arising from offshore wind 

energy development. My thesis quantifies the impacts of preclusion to survey operations and 

how changes to species distributions and abundances within wind areas could jointly affect 

downstream data products, such as stock abundance indices, and fisheries management advice. 

The first phase of my study uses the empirical data to serve as a proxy for expected impacts to 

survey data products when the survey is precluded from sampling within offshore wind energy 

areas (wind-precluded survey effort). Findings suggest that abundance indices are impacted most 

for species where there were larger differences in their catch rates in and outside of wind areas.  

The second phase of my study used survey data for summer flounder (Paralichthys dentatus) and 

Atlantic mackerel (Scomber scombrus) as case studies to fit spatiotemporal generalized linear 

mixed effects models (GLMMs), simulate survey data, calculate indices of abundance and 

population trends, and compare survey outcomes with and without preclusion from wind 

development areas. The results of the modeling indicate that spatiotemporal models can be used 

to simulate new survey data and evaluate impacts to the survey (and survey data products) when 

it is precluded from offshore wind energy areas. Further employing the species distribution 

operating models, I conducted a simulation study to examine changes in fish density under 
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assumed changes in species productivity within wind areas, and their effects on survey catch 

rates under wind-precluded survey effort. Findings conclude that estimates of abundance indices 

and population trends will be most biased if species experience enhanced productivity and 

survey effort is precluded within these areas. Thus, it is important that the losses in survey effort 

and data be mitigated to maintain at a minimum the existing understanding of species’ relative 

abundance. This study contributes directly to implementation of the Federal Survey Mitigation 

Strategy for the Northeast U.S. Region as a part of the Survey Simulation Evaluation and 

Experimentation Project, which aims to assess potential impacts to the bottom trawl survey 

operations and data products and identify mitigation strategies to maintain data integrity. 

Furthermore, this study contributes to the current knowledge surrounding the impacts that 

offshore wind energy development can have on fishery-independent surveys, which globally is 

scarce. 
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1 INTRODUCTION 

To ensure the sustainable production of fisheries over time, fisheries management employs a 

suite of stock assessment and decision-making tools. Particularly, stock assessments often rely 

on indices of abundance, which are assumed proportional to a stock’s size, to reflect changes in a 

stock’s trend (Harley et al., 2001; Hilborn & Walters, 1992). Indices of abundance are derived 

primarily from data that collects catch numbers and weight. Common types of data collection 

include catch-per-unit-effort (CPUE) data from commercial and recreational, or fishery-

dependent, sources, tag and recapture data, cooperative research studies with industry vessels, 

and fishery-independent surveys (hereafter “surveys”). Indices of abundance are most often 

produced from CPUE data or survey data. Surveys use statistical sampling designs to ensure a 

random sampling of a stock’s distribution relative to its population (Cochran, 1977; Kotwicki & 

Ono, 2019; Ducharme-Barth et al., 2022), though often at a costly price point. Once indices of 

abundance are generated from the data, they can be used within stock assessments to help 

provide advice for implementing fishery management plans (FMPs) with specific management 

measures for the sustainability of a given stock (Large et al., 2013; Gill et al., 2020). 

In the Northeast United States (US), the National Marine Fisheries Service (NMFS) Northeast 

Fisheries Science Center (NEFSC) has conducted bi-annual fishery-independent multispecies 

bottom trawl surveys since 1963 (fall) and 1968 (spring) along the US’ Continental Shelf Large 

Marine Ecosystem (NESLME; Politis et al., 2014). The NESLME is a temperate system that 

encompasses an area of approximately 260,000 km2 from Cape Hatteras in the south to the Gulf 

of Maine in the north (Kleisner et al., 2017). This area was incorporated into the US exclusive 

economic zone (EEZ) as part of the Magnuson-Stevens Fishery Conservation and Management 

Act of 1976 and is cooperatively managed by two of the eight regional councils established in 

the act, the New England Fishery Management Council (NEFMC) and the Mid-Atlantic Fishery 

Management Council (MAFMC). Both the New England and Mid-Atlantic regions are 

experiencing declines in seafood production and commercial fishery profits, with mixed trends in 

ecological stability (i.e., fish diversity, fecundity, decreased length at maturity; Caracappa et al. 

2025, Gaichas et al. 2025). There is also evidence of shifting distributions and changes in 

migration and spawning times in response to changing climate and oceanography metrics 
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(Caracappa et al. 2025, Gaichas et al. 2025). With potential regime shifts and shifting species 

distributions to the northeast (Caracappa et al. 2025, Gaichas et al. 2025), long-running 

standardized surveys such as the NEFSC multispecies bottom trawl survey and its data sets are 

an invaluable source of fisheries information.  

The NEFSC bottom trawl survey employs a stratified random sampling design where strata are 

defined by depth and latitude and stations are randomly selected before leaving port and sampled 

within each stratum, and is designed to produce relative and unbiased abundance indices (Politis 

et al., 2014). Survey stations are allocated proportionally to strata area with a minimum of three 

sets conducted in each stratum to ensure the calculation of a stratified variance and coefficient of 

variation (CV) which is used to assess the survey’s accuracy and precision in estimating a 

stock’s relative abundance. Sometimes, the pre-selected station locations are unable to be 

sampled due to the presence of fixed gear or difficult habitats such as rocky or hard-bottom 

substrates. In these instances, a different pre-selected station is sampled in its place, effectively 

reallocating the survey effort to another location within the same stratum.   

Other survey designs include simple random sampling, where each station has an equal 

probability of being sampled and is chosen at random, or systematic sampling, where a station is 

selected at random and each subsequent station is selected based on another randomly-selected 

unit of distance apart from the first (Cochran, 1977). There is extensive research into the 

performance of each design and comparison among designs (Simmonds, 1996; Overholtz et al. 

2006; Blanchard et al., 2008; Liu et al. 2009, 2011; Yu et al., 2012; Hyun & Seo, 2018; Zhao et 

al., 2018; Von Szalay et al., 2023). However, each sampling strategy has its tradeoffs related to 

the objective of the survey at hand, and while a function of their chosen sampling strategy and 

standardized sampling protocols, surveys are also at the mercy of natural species variability, 

composition, and behavior. The size of the survey area and the timing of the survey can impact 

observations of trends in a species’ spatial distribution or seasonal migration if the survey area is 

too small compared to the actual spatial distribution or the distribution changes over time; if the 

survey occurs within a species migration pattern; or if the population is only surveyed during the 

day when it is more active at night (Godo, 1994; Hjellvik et al., 2002; Rago, 2005; Henderson et 

al., 2017; Nichol et al., 2019). Henderson et al. (2017) found that species distributions and 
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biomasses along the northeast shelf were affected by the timing of spring and fall transitions 

indicated by chosen thresholds of sea surface temperature. More specifically, they found that 

species like Atlantic mackerel and summer flounder were more responsive to extreme spring 

transitions and would have a more northward distribution during the fall survey with longer 

summers or later fall transitions (Henderson et al., 2017). Henderson et al. (2017) also noted 

variable timing of the NEFSC bottom trawl survey over the course of its time series. Earlier 

shifts in distribution or prolonged residence time within sampling areas could affect the 

availability of fish to the survey and even its ability to detect those changes, thereby affecting the 

reliability and robustness of relative abundance indices (Blanchard et al., 2008; Thorson & 

Barnett, 2017). When coupled with the logistical constraints of a standardized fishery-

independent survey, sources of uncertainty in stock abundance indices have the potential to be 

confounded.  

To minimize the effect of uncertainty on survey data products, scientists and researchers 

maintain consistency of the survey design and comparability of its data products by sampling the 

same spatial coverage in time, employing the same gear to standardize catchability (von Szalay 

& Somerton, 2005; Miller et al., 2010), and optimizing the effort allocation and time spent 

transiting between stations (Liu et al., 2011; Oyafuso et al., 2021; Rhodes & Jonzén, 2011; Xu et 

al., 2015). For this reason, fishery-independent surveys are much more costly than their fishery-

dependent counterparts and are more readily susceptible to effort reduction through various 

means such as funding and labor shortages, vessel maintenance and repairs, and no-transit zones 

in response to environmental and animal protections, among many others (Dennis et al., 2015). 

Reductions in survey effort can increase measures of uncertainty and relative bias in abundance 

trends (Zimmermann & Enberg, 2017; Kotwicki & Ono, 2019; ICES, 2020), leading to bias in 

stock assessment outcomes, failure to track population changes, and overfishing (Kotwicki et al., 

2014; Kotwicki & Ono, 2019). Ongoing research efforts strive to prepare scientists and surveys 

to respond to both planned and unplanned reductions and changes to survey designs and 

sampling strategies (ICES, 2020, 2023). For example, Yalcin et al. (2023) found that 

spatiotemporal models can make up for survey lost effort. Oyafuso et al. (2021, 2023) developed 

an approach to optimize survey designs that included the flexibility to adapt easier in the face of 
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unavoidable survey changes, and many others have studied the potential to combine data streams 

to derive representative distribution maps and indices of abundance that could be used to 

supplement gaps in survey effort (ICES 2020, 2023).  

A source of particular interest regarding survey effort reduction is offshore wind energy 

development. The offshore wind industry is expected to interact with many marine use sectors 

and to impose at least four impacts to fishery-independent surveys associated with sound and 

vibration, electromagnetic fields, habitat changes, and fishing practice changes (Lipsky et al., 

2016; BOEM, 2019; Haggett et al., 2020, 2021; Methratta et al., 2020; Hare et al., 2022). In 

Europe, offshore wind areas have been in operation since the early 1990s, and changes to 

commercial fishing practices as a result of preclusion from wind areas has occurred in Germany 

and Belgium (Berkenhagen et al., 2010; Schupp et al., 2021). Government research vessels have 

tended to be an exemption from these preclusions (Coates et al., 2016; Gill et al., 2020). Much of 

the research on impacts of offshore wind to fisheries has been through the lens of commercial 

fishery preclusion, and the resulting socioeconomic and ecological impacts (including 

displacement of fishing effort). Due to the forced exclusion of all fishing vessels during 

construction or operation in Europe, wind energy areas have become quasi-marine protected 

areas (MPAs) or No Take Zones (Inger et al., 2009). Berkenhagen et al. (2010) found that the 

preclusion of fishing operations equated to a 50 percent loss of fishery catch. Large 

socioeconomic losses of that magnitude for the fishing industry in a given area could shift the 

allocation of that effort to less resilient habitats and populations (Bergström et al., 2014), which 

would only exacerbate the importance of the fishery-independent surveys to track changes in 

population abundances.  

Unfortunately, little research has been done to understand impacts to fishery-independent survey 

effort within the offshore wind energy development areas despite a demonstrated need to 

understand and quantify such impacts. As of August 2023, initial phases of construction began 

on over 22 million acres, 10,000 turbines, and 33,000 miles of submarine cables slotted for 

development along the NESLME (BOEM, n.d.), which imposes a potential 30-percent spatial 

overlap with the NMFS NEFSC bottom trawl survey footprint. The bottom trawl survey, along 

with twelve other federal surveys in the region, will experience a spatial conflict driven by the 
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potential preclusion of scientific monitoring and trawling efforts from areas designated for 

offshore wind energy development. The current survey vessel will be unable to sample in wind 

areas. To minimize the impacts felt across the suite of NEFSC surveys, and to sustain consistent 

sampling designs that are conducive to predicting species’ abundances and distributions, NMFS 

has partnered with the Bureau of Ocean Energy Management (BOEM) to produce the Federal 

Survey Mitigation Implementation Strategy for the Northeast Region (hereafter Mitigation 

Strategy; Hare et al., 2022).  

The first goal and objective of the Mitigation Strategy is to reduce and rectify impacts of 

offshore wind on NOAA Fisheries surveys by developing and implementing survey-specific 

plans to address four identified impacts: preclusion, impacts to survey design, changes to habitat 

and airspace, and reduced sampling productivity (Hare et al., 2022). To achieve this goal, 

collaborators between NOAA Fisheries, BOEM, Fishery Applications Consulting Team, and the 

University of Massachusetts Dartmouth School for Marine Science and Technology (UMassD 

SMAST) initiated a project, Survey Simulation Experimentation and Evaluation Project 

(SSEEP), to develop a spatially explicit simulation tool that emulates NMFS’ fishery 

independent surveys and assess the statistical performance of alternative survey designs and 

sampling scenarios guided by a set of stakeholder workshops (Guyant et al., 2022a, 2022b, 

2023).  

This thesis contributes to the Mitigation strategy, SSEEP, and the limited studies available for 

the impacts to federal surveys around wind energy areas by considering the impacts that the 

preclusion of fishery-independent survey effort within the wind areas will have on survey 

operations, survey performance, and estimates of stock abundance indices that directly affect 

fisheries management advice. More specifically, I developed a general framework to quantify 

estimates of annual abundance indices derived from existing federal survey operations and 

compared them to estimates of annual abundance indices that were calculated under the 

assumption that the survey would be unable to conduct tows within wind energy areas and would 

not be able to reallocate the lost effort to other pre-selected stations within the same sampling 

unit. I then focused the application of this general framework in the context of the NEFSC 

multispecies bottom trawl survey (BTS), and further on two case study species. 
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The two case study species considered in this work include summer flounder (Paralichthys 

dentatus) and Atlantic mackerel (Scomber scombrus), which were identified in the stakeholder 

workshops as two of 11 species of commercial and recreational importance and of key interest 

identified by industry, academic, and management stakeholders (Guyant et al., 2022a, 2022b, 

2023) to understand impacts of wind preclusion on the multispecies bottom trawl survey. They 

were chosen as the case study species, in part due to their commercial importance and 

stakeholder interest, but also to compare the variation in impacts between two species with 

differing behavioral characteristics and interactions with the bottom trawl survey. 

The geographic distribution of both summer flounder and Atlantic mackerel  has extended from 

North Carolina to the U.S-Canadian border (NEFSC, 2019, 2021), a spatial range that includes 

the full extent of the wind area installation space within the mid-Atlantic as of June 2022. 

Summer flounder is jointly and cooperatively managed by the MAFMC and the Atlantic States 

Marine Fisheries Commission (ASMFC). Although summer flounder does not currently have an 

overfished stock status, it is experiencing overfishing (NEFSC, 2023). It is a sandy bottom-

dwelling fish that has historically been found inshore in the late-summer to early-fall and on the 

outer shelf in the spring both of which are areas that are proposed for offshore wind 

development. Additionally, it is thought to be very well sampled by the fall and spring survey.  

Atlantic mackerel is also managed by the MAFMC and has been declared overfished with 

overfishing occurring (NEFSC, 2021). In contrast to summer flounder, it is a pelagic fish and has 

a much patchier spatial distribution that extends throughout the survey area. The spring survey is 

generally much better at sampling Atlantic mackerel than the fall survey. However, recently, the 

spring survey has been observing a change in Atlantic mackerel availability due to changes in 

habitat availability including a decline in observations on the outer shelf in the mid-Atlantic 

Bight (MAB) and an increase in observations on the inner shelf of the MAB, Gulf of Maine, and 

Georges Bank (McManus et al., 2018).  

An increase in the magnitude of observations of Atlantic mackerel inshore could overlap 

spatially with the planned wind areas in the mid-Atlantic. However, their patchier distribution 

leads to lower encounter rates which incurs a higher variance around the annual abundance 
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indices. Thus, it is expected that the impacts from wind areas for Atlantic mackerel will be 

different than those impacts identified for summer flounder when the same impact analysis is 

applied to both species. Additionally, because of their interactions with the survey, the analysis is 

applied to the fall and spring survey data for summer flounder, and only the spring survey data 

for Atlantic mackerel, which also coincides with the seasonal annual NEFSC bottom trawl 

survey abundance indices used in their stock assessments.  

Both species have experienced distributional shifts poleward related to reduced fishing pressures 

or climate pressures (Nye et al., 2009; Overholtz et al., 2011; Bell et al., 2014, 2015; Henderson 

et al., 2017; McMahan et al., 2020), and have been the subject of initial studies related to their 

interactions and uses within offshore wind farms. It is hypothesized that offshore wind turbines 

could act much like an artificial reef due to the scour protection and artificial rocky bottoms 

installed around the monopiles, with either increases to fish abundance within these areas 

according to the attraction-production hypothesis (Mavraki et al., 2021; Reubens, Braeckman, et 

al., 2013; Reubens, Vandendriessche, et al., 2013); or decreases in abundance due to changes in 

availability of preferred habitats. Mavraki et al. (2021) found that while present within the wind 

areas in the North and Baltic Sea, Atlantic mackerel were not using these areas as feeding 

habitats. Wilber et al. (2022) found a reduction in overall fish condition of summer flounder 

within areas of the Block Island Wind Farm (BIWF), which could translate to a less preferred 

habitat and imply impacts to abundance index calculations if wind energy areas are precluded 

from survey monitoring efforts.  

My work considers those impacts under scenarios where offshore wind areas could result in local 

changes to fish density, like the attraction production hypothesis. My thesis attempts to answer 

three questions: (1) what would the effect on previous stock abundance indices have been if wind 

areas prevented bottom trawl survey effort, (2) can species distribution models be used to 

analyze potential impacts of offshore wind areas on survey operations and changes in abundance, 

and (3) how do the impacts to abundance indices as a result of wind-precluded survey effort 

change when there are changes in species productivity and fish density due to the presence of 

wind turbines.  
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2 METHODS 

The NMFS NEFSC bottom trawl survey actively samples 82 strata encompassing the Gulf of 

Maine, the western Scotian Shelf, Georges Bank, and the mid-Atlantic Bight (MAB), has 

conducted an average of 350 tows per season, and has observed 488 species since 1963. For the 

analyses in this thesis, I focused on data from 2009 to 2021 to allow for the continuity of data 

related to vessel, depth and the strata sampled, which has changed throughout the time series 

(Sosebee & Cadrin, 2006; Bell et al., 2015).   The survey was conducted on the NOAA ship 

Albatross IV up until 2008 at which point it was retired and the Henry B. Bigelow was 

commissioned for the survey. The data and subsequent analyses focus on the period in which the 

Henry B. Bigelow has been in operation.   

Incomplete survey years were also removed from the data sets to account for pre-existing survey 

effort reduction. For instance, the 2017 fall survey was conducted on the sister NOAA ship 

Pisces due to scheduled maintenance of the Henry B. Bigelow and the survey only completed 

half of the stations (n = 128 tows) during the season. In 2020, the COVID-19 pandemic placed a 

halt on all non-essential operations including the 2020 spring survey such that the spring survey 

only completed 132 of its planned 377 tows. While the survey was able to operate by the 2020 

fall survey, its efficiency was still significantly impacted by the pandemic and only completed 

half of the stations during this season. Thus, the 2017 fall survey and 2020 survey year were 

removed from the data. 

Wind energy planning areas and leases are updated periodically and are available online through 

BOEM as a geographic information systems (GIS) geodatabase or shapefile. For this thesis, I 

used the shapefiles of the wind planning and lease areas (hereafter “wind areas”) from June 2022 

(https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data) which 

was the most recent data available at the start of the project and included the lease areas within 

the Mid-Atlantic and the Central Atlantic planning areas (Figure 1).  

https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data
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Using the trawl survey database and the wind planning area information, I developed a general 

framework to assess the impact on survey data and data products used for stock assessments in 

the Northeast U.S. in two phases.   

2.1 An empirical analysis of potential impacts on survey data  

The first phase aimed to identify potential impacts to sample sizes and estimates of seasonal 

stratified random mean biomass indices (hereafter “annual abundance indices”) by removing 

historical survey tows from data analysis if they were identified as overlapping proposed wind 

areas. The wind areas were spatially overlayed with the locations of survey tows from 2009-

2021, and tows intersecting a wind area were denoted as wind-area tows while those that did not 

intersect a wind area were denoted as outside tows. The quantified impacts to historical sample 

sizes and to annual abundance indices were then used as a proxy for information loss due to 

wind-precluded survey effort.    

The impacts on sample size were quantified across two groups: (1) each species that was 

encountered by the survey, and (2) species identified by stakeholders during two Survey 

Simulation Experimentation and Evaluation Project (SSEEP) workshops to be of research 

interest (hereafter “stakeholder-selected species”). The impacts on indices of abundance were 

quantified across three groups: (1) spatially-filtered species that met minimum catch criteria 

(below), (2) stakeholder-selected species, and (3) Atlantic mackerel and summer flounder as the 

case study species.  

Two participatory workshops were held in January and February 2022 and hosted by the SSEEP 

project team with the aim to understand stakeholders’ interests in potential impacts of wind 

preclusion on survey operations and data products. During these workshops, industry, academic, 

and management stakeholders were asked to identify a set of species that were of regional 

importance to evaluate in context of potential impacts from survey preclusion due to offshore 

wind (Guyant et al., 2022a, 2022b, 2023). Participants suggested that the focal species should be 

selected based on the quantity of existing data, the performance of their stock assessments, and 

the variability in efficiency of the bottom trawl survey for each species (Guyant et al., 2022a, 

2022b, 2023). From these discussions and guidelines, eleven (11) species were selected that 
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spanned regional significance across the three fisheries management bodies, the NEFMC, 

MAFMC, and ASFMC, including: a skate complex (barndoor skate, winter skate, clearnose 

skate, little skate), Atlantic herring, Atlantic mackerel, black sea bass, butterfish, longfin squid, 

silver hake, spiny dogfish, summer flounder, winter flounder, and yellowtail flounder.  

2.1.1 Impacts on sample sizes 

For each species encountered by the survey, I calculated the percentage of survey tows that 

caught each species and that would be precluded if it occurred within a wind area, as well as the 

percentage of individuals of that species that were observed by the survey tows designated as a 

wind-area tow. The percentage of survey tows expected to be precluded by wind areas, 𝑃𝑃𝑃𝑃𝑗𝑗,𝑤𝑤, for 

a species, j, was calculated by: 

𝑃𝑃𝑃𝑃𝑗𝑗,𝑤𝑤 =  
∑ 𝑛𝑛𝑗𝑗,𝑤𝑤
𝑊𝑊
𝑤𝑤

∑ 𝑛𝑛ℎ,𝑗𝑗
𝐻𝐻
ℎ

∗ 100     (Equation 1) 

where 𝑛𝑛𝑗𝑗,𝑤𝑤 is the total number of positive tows for a given species, j, observed in a wind area, w, 

and 𝑛𝑛ℎ,𝑗𝑗 is the total number of positive tows, observed in a wind-overlapped stratum, h. 

Similarly, the percentage of individuals of that species, 𝑃𝑃𝑃𝑃𝑗𝑗, within the wind areas was 

calculated as:  

𝑃𝑃𝑄𝑄𝑗𝑗 =  
∑ 𝑁𝑁𝑗𝑗,𝑤𝑤
𝑊𝑊
𝑤𝑤=1
∑ 𝑁𝑁ℎ,𝑗𝑗
𝐻𝐻
ℎ=1

∗ 100               (Equation 2) 

where  𝑁𝑁𝑗𝑗,𝑤𝑤 is the total number of individuals observed within a wind area, w, while 𝑁𝑁ℎ,𝑗𝑗 is the 

total number of individuals observed within a wind-overlapped stratum, h.  

2.1.2 Impacts on indices of abundance  

I estimated and compared the annual abundance index under two survey effort scenarios: (1) 

status quo survey effort, where all the historical observations were used in the index calculation; 

and (2) wind-precluded survey effort, where wind-area tows were removed in each year of the 

dataset representing a reduction in seasonal survey effort. Calculations were performed for all 

species that met a minimum set of criteria in a particular season: (1) the species was observed in 
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three or more strata, (2) the species was observed in three or more years, and (3) the species was 

observed in at least one stratum proposed for overlap with offshore wind development. This 

minimum catch selection allowed analyses to focus on the species that would be most impacted 

by offshore wind developments rather than species rarely observed by the survey.   

For each of the species that met the minimum catch criteria, I created seasonal spatial footprints 

and sampling frames such that the annual abundance indices were driven by a species’ 

distribution and not overly influenced by survey tows that occurred in areas where the species is 

never found. For each species, I found the strata that contributed to a threshold of the cumulative 

catch (in biomass) observed in the time series and to remove influence of strata where the species 

has rarely been observed, with additional adjustments to create a contiguous area.  

The thresholds used were either the 95th or 99th percentile of the cumulative biomass, depending 

on the species of interest. For summer flounder, I adjusted the 95th percentile cumulative biomass 

sampling frame for each season to include additional strata that were in a similar depth range or 

accounted for the full extent of wind area overlap with their seasonal distributions (Figure 10). 

The sampling frame for Atlantic mackerel consisted of the full survey area and all 82 strata due 

to minimal differences between the 95th and 99th percentile cumulative biomass sampling frames, 

and the lack of a contiguous area in either case (Figure 16). 

The annual abundance indices were estimated according to Cochran (1977) for each survey 

effort scenario as:  

𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡 =  
∑ 𝐴𝐴ℎ𝐼𝐼ℎ̅,𝑗𝑗,𝑘𝑘,𝑡𝑡
𝐻𝐻
ℎ=1

∑𝐴𝐴ℎ
             (Equation 3) 

where, 𝐼𝐼𝑡𝑡,𝑗𝑗,𝑘𝑘, is the stratified random mean per sampling unit for a given species (j), season (k), 

and year (t). 𝐴𝐴ℎ is the size of stratum, h, and 𝐼𝐼ℎ̅,𝑗𝑗,𝑘𝑘,𝑡𝑡 is the observed mean biomass observed in the 

same stratum. The total survey area is denoted by  ∑𝐴𝐴ℎ.  

With every observed mean biomass calculated in each stratum (𝐼𝐼ℎ̅,𝑗𝑗,𝑘𝑘,𝑡𝑡), the estimated variance of 

observed data (𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡) from the mean in the same stratum was calculated by:  
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𝑣𝑣ℎ,𝑗𝑗,𝑘𝑘,𝑡𝑡
2 =  

∑(𝑥𝑥ℎ,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡−𝐼𝐼ℎ̅,𝑗𝑗,𝑘𝑘,𝑡𝑡)2

𝑛𝑛ℎ,𝑗𝑗,𝑘𝑘−1
      (Equation 4) 

which was then used to quantify the precision of the estimated abundance by the annual stratified 

variance (Cochran, 1977) given by: 

Var (𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡) =  ∑
𝑟𝑟ℎ𝑣𝑣ℎ,𝑗𝑗,𝑘𝑘,𝑡𝑡

2

𝑛𝑛ℎ,𝑗𝑗,𝑘𝑘
(1 − 𝑛𝑛ℎ

∑𝐴𝐴ℎ
)𝐻𝐻

ℎ=1       (Equation 5) 

where 𝑟𝑟ℎ is the relative stratum weight, 𝑣𝑣ℎ,𝑗𝑗,𝑘𝑘,𝑡𝑡
2  is the observed variance, 𝑛𝑛ℎ,𝑗𝑗,𝑘𝑘,𝑡𝑡 is the sample 

size. Some analyses and stock assessments tend to use a bootstrap resampling method to derive 

the variance quantities which has shown to be more precise than the conventional point estimate 

in some respects (Magnusson et al., 2013), but similar in others (Anderson et al., 2024). 

The precision of the survey was quantified as the coefficient of variation (CV; Cochran, 1977) 

and given by:  

𝐶𝐶𝐶𝐶(𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡) =  
�𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡)

𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡
         (Equation 6) 

In addition to quantifying the magnitude of abundance, the index trend for each species over the 

time series was estimated by fitting a linear regression model to the point estimates of annual 

abundance whose structure is (Zuur et al., 2007): 

𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡 =  𝛼𝛼𝑗𝑗,𝑘𝑘,𝑡𝑡 +  𝛽𝛽𝑡𝑡𝑡𝑡𝑖𝑖 +  𝜀𝜀𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡               (Equation 7) 

         𝜀𝜀𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ~ 𝑁𝑁(0,𝜎𝜎2) 

Where 𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡 is the estimated annual abundance index for a given species and season in year, 𝑡𝑡𝑖𝑖, 

the population slope over time is 𝛽𝛽𝑡𝑡, the population intercept is 𝛼𝛼𝑗𝑗,𝑘𝑘,𝑡𝑡, and 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 denotes the 

residuals which are assumed to be normally distributed around 0, with a standard deviation 𝜎𝜎2.  

The bias of survey estimates (e.g., catch rates or trends in catch rates) between survey effort 

scenarios was quantified via the mean relative error (MRE) and mean absolute error (MAE) over 
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the most recent five years, (T; generally, 2016-2021), while the mean absolute relative error 

(MARE) over the most recent five years in the time series was used to quantify the precision:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗,𝑘𝑘 =  1
𝑇𝑇
∑

𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑃𝑃 − 𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑆𝑆𝑆𝑆

𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑆𝑆𝑆𝑆

𝑇𝑇
𝑡𝑡 = 1              (Equation 8) 
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𝑡𝑡=1 ; and              (Equation 9) 
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𝑇𝑇
∑

�𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑃𝑃 − 𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑆𝑆𝑆𝑆 �

𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑆𝑆𝑆𝑆

𝑇𝑇
𝑡𝑡=1                          (Equation 10) 

where 𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑃𝑃  represents the annual abundance index in the preclusion scenario, and 𝐼𝐼𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑆𝑆𝑆𝑆  represents 

the annual abundance index in the status quo survey.    

MRE and MARE were also used to calculate the bias and precision, respectively, of the wind-

precluded survey effort population trend estimates when compared to the trends estimated by the 

status quo survey effort scenario, as well as the differences between the survey’s precision under 

the two effort scenarios.  

Furthermore, I expanded this analysis further for summer flounder and Atlantic mackerel by (1) 

comparing the changes to trend estimates when survey effort is precluded due to wind to those 

when a similar magnitude of survey effort is reduced at random throughout the survey footprint 

due to unforeseen circumstances such as vessel maintenance needs or logistical constraints 

(hereafter “general survey effort reduction”); and (2) calculating the change in perceived trend 

when the preclusion of the survey within wind areas occurred systematically over time. 

2.1.2.1 Comparisons to general survey effort reduction impacts 

To compare wind-precluded impacts to general survey effort reduction impacts, I used bootstrap 

resampling to create independent and distinct seasonal data sets representing a status quo survey 

effort and a reduced survey effort. 1,000 bootstrapped datasets were generated for the status quo 

survey effort scenario by sampling with replacement the seasonal time series for the same 

number of observations that comprised the status quo survey effort datasets. Each new status quo 
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dataset was reduced twice: first by removing the wind-area tows (e.g., those simulated to be in 

wind areas) to recreate the wind-precluded survey effort, and second by randomly removing the 

same number of observations that constituted the wind-precluded survey effort scenario for a 

given species. More specifically, wind-area tows constituted an average of ten (10) percent of the 

total survey data for summer flounder in each season and five (5) percent of the total survey data 

for Atlantic mackerel in the spring. Thus, three types of datasets were generated: (1) status quo, 

where the historical expanded dataset was randomly resampled to generate a new dataset with 

the same number of tows; (2) wind-precluded effort, where the bootstrapped datasets under 

status quo had the wind-area tows removed; and (3) general effort reduction, where the 

bootstrapped datasets were randomly reduced to generate a new dataset with only 90 percent of 

survey tows for summer flounder or 95 percent of survey tows for Atlantic mackerel, emulating a 

10- and 5-percent removal of survey tows respectively. Each dataset was then used to calculate 

annual abundance indices and estimates of the population trend according to Equation 3 through 

Equation 7. Using the distribution of the bootstrap estimates of trend, I identified the proportion 

of estimates that were larger than the observed wind-precluded estimate of trend from the 

original data to quantify the difference between a general survey effort reduction impact and a 

wind-precluded survey effort impact:  

𝑝𝑝 =  
𝑛𝑛𝛽𝛽𝑏𝑏,𝑗𝑗,𝑘𝑘

𝑁𝑁𝛽𝛽𝑏𝑏,𝑗𝑗,𝑘𝑘
     (Equation 11) 

Where 𝑛𝑛𝛽𝛽𝑏𝑏,𝑗𝑗,𝑘𝑘 is the total number of occurrences where the bootstrap estimates of trend were 

greater than the observed wind-precluded survey effort population trend and 𝑁𝑁𝛽𝛽𝑏𝑏,𝑗𝑗,𝑘𝑘  is the total 

number of bootstrap estimates.  

2.1.2.2 Systematic changes in trend over time 

To calculate the change in perceived trend when the survey is precluded from wind areas 

systematically over time, I first calculated the annual abundance indices and the change in 

indices over time under a status quo survey effort assumption for the full time series. Next, I 

calculated the annual abundance index in the most recent year of the seasonal dataset under a 

wind-precluded survey effort assumption but calculated the annual abundance index for the 
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remaining previous years in the time series under a status quo survey effort assumption. This 

iteration resulted in one year of a wind-precluded abundance index, and T-1 years of a status quo 

abundance index, where T-1 is the remaining total number of years in the data set. I then 

repeated this process such that an additional annual index was calculated under a wind-precluded 

survey effort assumption and one less annual abundance index was calculated under a status quo 

survey effort assumption with each repetition, until the last iteration calculated indices under a 

wind-precluded survey effort assumption for all the years in the time series (i.e. the same 

datasets analyzed in Section 2.1.2). Additionally, with each iteration, the population trend over 

the full time series was estimated as above.  

2.2 A simulation study of potential impacts on indices of abundance  

The second phase employed species distribution modeling and simulation testing to understand 

wind preclusion impacts on abundance indices including for survey data simulated under 

assumed changes in fish density. This second phase then helped evaluate possible effects on 

abundance indices when there are both changes in species productivity and reductions in survey 

effort due to the presence of wind turbines. 

Species distribution models are an increasingly prevalent set of tools that can incorporate spatial 

and temporal non-stationarity to understand changes in species geographic distribution and 

density (Anderson et al., 2022; Barnett et al., 2021; Elith et al., 2010; Elith & Leathwick, 2009; 

Johnson et al., 2019; Ward et al., 2022). Here I used species distribution models to characterize 

changes in the seasonal fish density observed by the NEFSC bottom trawl survey over the time 

series for the purposes of simulating data sets for future years under alternative sampling 

strategies and scenarios for fish population change. More specifically, I fit geostatistical 

generalized linear mixed effects models (GLMMs) to the fall and spring survey data for summer 

flounder and spring survey data for Atlantic mackerel given a set of environmental covariates. 

From the GLMMs, I simulated future survey time series data sets under scenarios of change in 

sampling effort and fish density in areas of offshore wind energy development.  
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2.2.1 Species distribution models  

Spatiotemporal GLMMs were developed using the R package “sdmTMB” (version 0.5.0.9; 

(Anderson et al., 2022)), which employs Template Model Builder (TMB) to perform integrated 

nested Laplace approximations (INLA) and provides a user-friendly extension of generalized 

linear models for interpretation. A model was fit for each case study species, and estimated 

seasonal biomass catch rates and regression coefficients for depth, year, wind energy area as 

fixed effects:  

𝐸𝐸[𝑦𝑦 𝑠𝑠,𝑡𝑡]  =  𝜇𝜇𝑠𝑠,𝑡𝑡 

𝜇𝜇 𝑠𝑠,𝑡𝑡  = 𝑓𝑓−1(𝑓𝑓(𝛽𝛽𝑗𝑗,𝑘𝑘,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖)  +  𝛽𝛽𝑡𝑡𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖   

+ 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 +  𝜔𝜔𝑖𝑖,𝑠𝑠 +  𝜖𝜖𝑖𝑖,𝑠𝑠,𝑡𝑡)           (Equation 12) 

where the expected survey catch rate, 𝐸𝐸�𝑦𝑦 𝑠𝑠,𝑡𝑡�,  for each species, at a point in space, s, and year, t, 

is equal to a mean, 𝜇𝜇𝑠𝑠,𝑡𝑡, determined by the inverse link 𝑓𝑓−1 and a linear predictor. The linear 

predictor in this study was defined where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖, 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 are elements of the 

design matrix and represented the main effects for a given observation i; 𝛽𝛽𝑗𝑗,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ, 𝛽𝛽 𝑡𝑡, and 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

are the corresponding effects on catch rate for each main effect; 𝜔𝜔𝑖𝑖,𝑠𝑠 is the spatial random effect 

on catch rate that is constant over time; and 𝜖𝜖𝑖𝑖,𝑠𝑠,𝑡𝑡 is the spatiotemporal random effect on catch 

rate that varies over time. The values for 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 were either 1 or 0 depending on 

whether an observation is in that given year or wind area. The spatial (𝜔𝜔𝑖𝑖,𝑠𝑠) and spatiotemporal 

random effects (𝜖𝜖𝑖𝑖,𝑠𝑠,𝑡𝑡), were modeled via the stochastic partial differential equation (SPDE) 

approximation to Gaussian Markov spatial random fields and spatiotemporal random fields:  

𝜔𝜔𝑖𝑖,𝑠𝑠 ~ MVN (0, Σ𝜔𝜔), 

𝜖𝜖𝑖𝑖,𝑠𝑠,𝑡𝑡 ~ MVN (0, Σ𝜖𝜖)    (Equation 13) 

where the annual spatiotemporal random fields were assumed to be independent and identically 

distributed.  
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Separate fall and spring models for summer flounder were fit to survey catch rates assuming a 

Tweedie probability distribution for the observation model: 

𝑦𝑦𝑠𝑠,𝑡𝑡 ~ Tweedie(𝜇𝜇𝑠𝑠,𝑡𝑡, p, 𝜙𝜙)     (Equation 14) 

where, p, represents the power parameter and 𝜙𝜙 represents the dispersion parameter. The fall 

models were evaluated across a triangular mesh with 723 knots or vertices, while the spring 

models were evaluated across 684 knots, using the default assumptions in the make_mesh() 

function in sdmTMB (Anderson et al., 2022). In total, I fit twelve (12) model configurations for 

each season which varied in whether to include spatial and spatiotemporal fields, a categorical 

variable indicating whether tows took place inside and/or outside a wind area, and if a depth 

effect was modeled through a penalized spline or a second-degree orthogonal polynomial (Table 

6). 

The models for Atlantic mackerel were fit to survey observations from the spring assuming 

either a Tweedie probability distribution according to Equation 12 or a Poisson-link delta gamma 

probability distribution (hereafter “delta gamma”). Both the Tweedie and the delta gamma 

observation families are adept at handling positive continuous data with zeroes which is 

characteristic of the NEFSC survey data (Barnett et al., 2021; Commander et al., 2022; Thorson, 

2018; Ward et al., 2022). The difference with the delta gamma models, however, is that the 

process is split into two components, a probability of encounter (hereafter “presence-absence”) 

component and a positive catch rate component. The presence-absence component, 𝑝𝑝𝑖𝑖,𝑠𝑠,𝑡𝑡, is 

derived by: 

𝑝𝑝𝑖𝑖,𝑠𝑠,𝑡𝑡 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(-𝑁𝑁𝑖𝑖,𝑠𝑠,𝑡𝑡)    (Equation 15) 

where 𝑁𝑁𝑖𝑖,𝑠𝑠,𝑡𝑡 is the predicted density of individuals or groups at sample, i, given by a linear 

predictor with the same structure as Equation 10 and is distributed according to (Thorson, 2018):  

𝑃𝑃𝑖𝑖,𝑠𝑠,𝑡𝑡 ~ Bernoulli(𝑝𝑝𝑖𝑖,𝑠𝑠,𝑡𝑡)    (Equation 16) 
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The predicted density and probability of encounter is then used to derive the positive catch rate 

component, 𝑟𝑟𝑖𝑖,𝑠𝑠,𝑡𝑡, such that  

𝑐𝑐𝑖𝑖,𝑠𝑠,𝑡𝑡 =  𝑁𝑁𝑖𝑖,𝑠𝑠,𝑡𝑡
𝑝𝑝𝑖𝑖,𝑠𝑠,𝑡𝑡

 ×  𝑏𝑏𝑖𝑖,𝑠𝑠,𝑡𝑡          (Equation 17) 

where 𝑏𝑏𝑖𝑖,𝑠𝑠,𝑡𝑡 is the predicted biomass per group of individuals also given by a linear predictor with 

the same structure as Equation 10 but distributed according to:  

𝐶𝐶𝑖𝑖,𝑠𝑠,𝑡𝑡 ~ Gamma(𝜙𝜙, 𝑐𝑐𝑖𝑖,𝑠𝑠,𝑡𝑡
𝜙𝜙

)   (Equation 18) 

where 𝜙𝜙 represents the shape of the distribution (Thorson, 2018). Applying the two distribution 

families, a total of sixty-nine (69) models were fit to Atlantic mackerel spring survey data which 

varied in whether to include spatial and spatiotemporal fields, a categorical variable indicating 

whether tows took place inside and/or outside a wind area, and the habitat relationship 

assumption associated with the observed biomass at a given average depth. Preliminary model 

selection identified better fits to biomass catch rates that were limited to average depths at less 

than 200 meters and estimated as a function of a fourth-order polynomial depth relationship, 

independent year effects, and spatial and spatiotemporal random effects. Of the 69 models fit, 

only four (4) models were chosen as potential candidates for further evaluation. These models 

varied in the distribution families and the estimation of the range parameter, or the distance at 

which two observations were no longer correlated. More specifically, one model with a Tweedie 

distribution estimated independent spatial and spatiotemporal ranges, and three models with the 

delta gamma distribution were fit by varying which component, presence-absence and/or positive 

catch rate, estimated independent or shared ranges. Table 13 includes the list of candidate model 

configurations evaluated for Atlantic mackerel.   

Model Selection 

Models were compared using Akaike’s information criterion (AIC, Akaike 1974) which 

measures the goodness of fit (Barnett et al., 2021), and a cross-validation approach to quantify 

the predictive accuracy of each model according to a cross-validation test error rate, and the total 
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log-likelihood of each model (Anderson et al., 2022). Additional model diagnostics included 

inspecting residuals, such as Empirical Bayes, approximate posterior samples assuming a 

multivariate normal distribution, Markov Chain Monte Carlo (MCMC) samples, and simulation-

based Dharma, as well as visualizing marginal and conditional effects of model predictors, and 

post-model predictive checking of abundance indices following a similar process to a posterior 

predictive check (Conn et al., 2018). For the posterior predictive check, new survey data and 

random effects were simulated at the same locations and in the same time period used to fit the 

model. Annual abundance indices were derived under the same status quo and wind-driven 

preclusion survey effort scenarios as for section 2.1.2 and summarized across years by estimating 

the population trend over time, invoking the same process and equations as described above in 

section 2.1.2. I repeated this process for 1,000 iterations and contrasted the distribution of the 

estimated average biomass catch rates, proportions of zeroes, annual abundance indices, and 

population trends from the simulated data to the best estimates from the originally fitted model. 

Equation 11 from section 2.1.2 was employed to contrast the distribution to the fitted population 

trend such that 𝑛𝑛𝛽𝛽𝑏𝑏,𝑗𝑗,𝑘𝑘 are the simulated population trends.  

2.2.2 Scenarios of changing spatial distributions   

The fitted models then served to simulate data to analyze the effect of changes in fish density and 

the preclusion of survey effort within wind areas on survey data, annual abundance indices, and 

estimates of the population trend. Five-year datasets of survey stations were produced by 

randomly selecting with replacement five years from the historical survey period and thereby the 

previously surveyed locations for a selected year which served as assumed locations of future 

survey efforts. New survey biomass catch rates were then simulated at these assumed future tow 

locations based on the estimated spatial random fields from the same locations used in the model 

fit, the estimated year effects from the respective resampled year of the time series, the estimated 

depth effects, and new spatiotemporal random fields that were generated by the simulation. 

Biomass catch rates were simulated under three scenarios of wind-driven fish density 

assumptions (hereafter “productivity scenarios”): (1) baseline density where the effect of wind 

areas on expected survey catch rate was unchanged from the effect predicted by the fitted model, 

(2) enhanced density where the effect of wind areas on simulated survey catch rates was doubled 
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from the baseline effect assuming that fish density would increase within wind areas once in 

place, and (3) reduced density where the effect of wind areas on simulated observations of 

biomass was halved from the baseline effect assuming that fish density would decrease within 

wind areas. In practice, this was implemented by adjusting the linear predictor for wind-area tow 

locations accordingly. Once survey data were simulated under each productivity scenario, annual 

abundance indices and estimates of the simulated population trends were calculated and 

compared under the survey effort scenarios, status quo or full survey effort, and wind-precluded 

survey effort. This was conducted over 1,000 iterations to represent 1,000 instances of different 

populations and five years of a randomly stratified survey. The performance of survey effort 

scenarios was calculated using the same MRE, MAE, and MARE calculations as discussed in 

Section 2.1.2 above. 
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3 RESULTS 

3.1 An empirical analysis of potential impacts on survey data 

3.1.1 Impacts on sample sizes 

Analysis of the spatial overlap of actively sampled survey strata with proposed wind areas 

showed that inshore strata in the mid-Atlantic will have the highest overlap measured by the 

percent of stratum overlapped by wind areas, directly off the coast of southern New Jersey, 

south-eastern Maryland, and southern Massachusetts (Figure 2).  

Over the time series, 8,102 survey tows caught 488 species. No species was caught in all 8,102 

survey tows. Silver hake had the highest capture frequency, occurring in 77% (n = 6,244) of the 

tows over the total survey area across the time series. Survey tows in planned and leased wind 

areas (‘wind-area tows’) accounted for 5% (n = 431) of the total tows across the full survey 

spatial footprint over the time series. Alternatively, wind-area tows accounted for 18% of the 

total tows when the sampling frame was restricted to only strata that are overlapped by wind 

areas (n = 2,337). Survey tows within strata that overlap with wind areas (n = 2,337) account for 

29% of the total tows over the full survey footprint.  

Of the 8,102 tows, there were two wind-area tows that caught the only observations of 

silverstripe halfbeak and frigate mackerel. Thus, 100% of the tows over the time series for each 

of these two species occurred in wind areas (Figure 3b). The same wind-area tow that caught 

frigate mackerel was also the only tow that caught silver hatchetfish in strata overlapped by wind 

(Figure 3a). However, that wind-area tow was one of a total 11 tows (9%) that caught silver 

hatchetfish throughout the survey area (Figure 3b). There were an additional 7 wind-area tows 

that each caught the only observation of 7 other species in strata overlapped by wind (Figure 3a). 

Each wind-area tow that caught the given species constituted 100% of the total tows in those 

strata, but anywhere from 4% to 50% of the total tows that occurred over the survey footprint 

(Figure 3b).  

Out of the 488 species caught by the survey, 323 were not caught in any wind-area tows (Figure 

3b) and 156 were caught across all 431 wind-area tows that occurred in strata overlapped by 
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wind areas (Figure 3a). Of the 156 species, a single fish was caught from 26 species within wind 

areas. Those single fish from a wind area made up 0.02% to 4% of the total number of fish 

caught for that species across the survey area. Longfin squid was caught the most in wind areas 

in terms of the numbers of fish (n = 177,518) totaling 7% of the total numbers of squid caught 

across the survey area and the time series. Spiny dogfish were caught the most in wind areas in 

terms of biomass (n = 55,968.3 kg) totaling 6% of its total biomass caught across the survey area 

and time series. Blotched swimming crab was caught the least in wind areas in terms of biomass 

(n = 0.001 kg) totaling 0.08% of its total biomass caught across the survey area and times series.  

3.1.1.1 SSEEP Workshop Species  

The eleven (11) species prioritized in the stakeholder workshops were caught in up to 20% of the 

wind-area tows that occurred in strata overlapped by wind energy areas and constituted up to 

35% of the total number of fish caught in those areas (Figure 4). Compared to those 11 species, 

butterfish and silver hake were caught in a lower percentage of tows occurring in potential wind 

areas with 15% (n = 200 and n = 240) of the total tows that occurred in survey strata overlapped 

by wind areas (Figure 4). Biomass from those tows constituted 15% (2,569 kg), and 7% (2,116 

kg), respectively, of the total biomass caught in the strata overlapped by wind areas (Figure 4). 

That is equivalent to 15% (n = 81,361), and 9% (n = 47,950), respectively, of the total numbers 

of fish caught (Figure 4). 

The skate complex, on the other hand, was caught in 20% (n = 411) of the tows from strata that 

overlap with wind areas, catching a total of 44,541 kg of skates and 83,141 individual skates 

(Figure 4). Although the skate complex was caught in the largest proportion of tows in strata 

overlapped by wind areas (Figure 4), those tows did not catch the largest proportion of biomass 

or numbers of fish that would be precluded by wind areas. Rather, wind-area tows caught a 

higher proportion of Atlantic herring and yellowtail flounder in terms of biomass and numbers of 

fish than they did of the skate complex. Wind-area tows caught 37% (n = 85,083) of the total 

number of yellowtail flounder and 28% (n = 4,214.5 kg) of its total biomass caught in overlapped 

strata, while also catching 34% (n = 1,354) of the total number of Atlantic herring and 35% (n = 

456.9 kg) of its total biomass caught in overlapped strata (Figure 4).  
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For the stakeholder identified species, up to 10% of positive tows for each species occurred in 

wind areas, accounting for up to 13% of the total catch of those species (both by weight and by 

numbers) across the full survey footprint (Figure 5). Of the total survey tows, winter flounder, 

silver hake, Atlantic mackerel, and Atlantic herring were caught in 4% of the tows that occurred 

in wind areas (Figure 5). However, these tows only represented 2% (n = 307.7 kg) of the total 

survey biomass and 1% (n = 721) of the total number of winter flounder over the full survey area 

and time series (Figure 5). These observations of biomass and numbers of fish were the second 

lowest over the 11 species, ahead of silver hake which was caught in tows that made up 1% (n = 

2,115.9 kg) of the total biomass and 2% (n = 47,950) of the total numbers of fish that occurred 

throughout the survey footprint, within wind areas (Figure 5).  

3.1.1.1.1 Summer flounder  

Summer flounder was caught in the highest percentage of tows located in wind areas of the 11 

species and across tows that occurred in strata overlapped by wind (Figure 4a) as well as the total 

survey area (Figure 5a). The positive tows in strata overlapped by wind represented the third 

highest percentage of biomass and the fourth highest percentage of total number of fish observed 

in wind areas (Figure 4b and Figure 4c). From 2009-2021, 20% of survey tows (n = 256) in 

wind-overlapped strata that caught summer flounder were in wind areas (Figure 4a). These wind-

area tows constituted 25% of the total biomass (n = 1,685.9 kg) and 24% of the total number of 

summer flounder (n = 2,321) caught in survey strata overlapped by wind (Figure 4b and Figure 

4c).  

Summer flounder was caught in 30% (n = 2,461) of the total survey tows, catching a total of 

13,350 kg or 17,689 fish. Of those tows, 10% (n = 256) were in wind areas, the highest 

proportion of the 11 key species. (Figure 5a). These wind-area tows corresponded to 13% of total 

weight and numbers of fish caught by the survey, again the highest proportions for the 11 species 

(Figure 5b and Figure 5c).  
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3.1.1.1.2 Atlantic mackerel  

Of the eleven species, Atlantic mackerel had the fifth lowest percentage of total biomass and 

total number of fish caught in tows located in wind areas out of the tows that occurred in survey 

strata proposed for overlap (Figure 4b and Figure 4c). Atlantic mackerel was also caught in the 

lowest proportion of total survey tows that occurred in survey strata overlapped by wind areas 

(14%; n = 76; Figure 4a) across the eleven species within the time series. Biomass and the 

number of Atlantic mackerel in these tows constituted 15% of the total biomass (n = 1,103 kg) 

and the total number of Atlantic mackerel (n = 11,206) caught by survey tows in strata 

overlapped by wind (Figure 4b and Figure 4c). 

Atlantic mackerel was caught in 24% (n = 1,902) of the total survey tows between 2009 and 

2021. Of those tows, only 4% (n = 76) were in wind areas, the second lowest proportion of total 

survey tows throughout the survey area compared to the other key species (Figure 5a). It was 

also found to be the third lowest in terms of percent of total biomass (3%; n = 1,102.8 kg) and 

sixth lowest (5%; n = 11,206) in terms of percent of total numbers of fish caught throughout the 

survey area that occurred in wind areas (Figure 5b and Figure 5c.).  

3.1.2 Impacts on indices of abundance 

A total of 278 species were caught in 3 or more strata within a given year. Of those 278 species, 

255 were caught in 3 or more strata within a given year during the fall survey, and 201 were 

caught in 3 or more strata within a given year during the spring survey. The fall survey observed 

189 species in 3 or more strata in at least 3 survey years, and the spring survey observed 151 

species in 3 or more strata in at least 3 survey years. Of these, 149 species were observed in the 

fall survey in at least one stratum overlapping with wind areas, and 113 species in the spring 

survey (Table 1). Stratified random mean annual abundance indices were calculated for each of 

the 149 species caught by the fall survey, and the 113 species caught by the spring survey under 

the two survey effort scenarios, status quo and wind preclusion (Table 2, Appendix A).  

Precluding the fall survey from wind areas had the largest impact on the annual abundance 

indices and the precision of the survey when estimating roughtail stingray with a 60% relative 
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difference between indices (Table 2 and Figure 7a) and a MARE in CVs of 40% (Table 2 and 

Figure 8a); it also had the second largest impact in estimating the population trends for roughtail 

stingray (MAE = 0.94; Table 2 and Figure 9a). Five percent of the total tows that caught 

roughtail stingray overlapped wind areas but caught roughly 30% of the total biomass caught 

throughout the survey (7,325.4 kg). On average, wind-area tows caught 16 kg of roughtail 

stingray compared to tows occurring outside wind areas which caught a nominal average of 1.5 

kg of roughtail stingray. Furthermore, the fall survey had higher catch rates of roughtail stingray 

within wind areas in the most recent five years of the times series. Specifically in 2016, 2018, 

and 2021, wind catch rates constituted 93%, 81%, and 63% of the total biomass caught in those 

years, respectively. In 2019, on the other hand, roughtail stingray was exclusively caught in areas 

outside of wind areas and was the highest recorded annual catch of roughtail stingray biomass 

during the time series (1,040 kg), though comparatively was still less than the total biomass 

caught in wind areas between 2016, 2018 and 2021 (1,742.36 kg). The removal of these large 

observations in wind catches in turn results in large differences in the survey precision and 

estimates of their population trend. For instance, the average CV of the fall survey under wind 

preclusion was 0.70 compared to the status quo CV of 0.59 (Table 2), which represented a 40% 

difference and therefore more imprecise survey for roughtail stingray. Population trends were 

also less accurate when estimated under the reduced survey effort (MAE = 0.94; Table 2 and 

Figure 9a) meaning that the slope estimate under wind preclusion was less than those under 

status quo, and the confidence intervals around the estimates were wider and thus more variable 

under wind preclusion.  

Precluding the spring survey from wind areas had the largest impact on the annual abundance 

indices when estimating smallmouth flounder (MARE = 50%; Table 2 and Figure 7b), on the 

precision of the survey when estimating horseshoe crab (MARE = 30%; Table 2 and Figure 8b), 

and on estimating population trends of smooth dogfish (MAE = 3.27; Table 2 and  Figure 9b).  

Catch rates of smallmouth flounder were higher in earlier years of the time series, and at stations 

outside of wind areas. Of the total tows, 5% occurred in wind areas and caught 7% of the total 

smallmouth flounder biomass throughout the time series (7.4 kg). Differences in abundance 

indices were calculated for smallmouth flounder based on abundance estimates from 2009 to 
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2012 and 2015 due to a lack of observations in the more recent years of the time series (e.g. 2016 

to 2021) and were consistent across that timeframe. Between 2016 and 2021, estimates of annual 

abundance indices for striped bass were most impacted by wind preclusion of the spring survey 

(MARE = 38%; Table 2 and Figure 7b), with consistent differences over the five-year period. 

The spring survey rarely caught the species that were highlighted as having the highest impacts 

across abundance indices and coefficients of variation in Table 2, apart from striped bass, 

clearnose skate, and smooth dogfish. For example, the spring survey on average caught 0.71 kg 

of bluefish across the time series, but catch rates were highly variable (SD = 4.4 kg). As a result, 

the survey CV for catches of bluefish is high under status quo survey effort conditions (CV = 

0.64; Table 2). When survey effort was precluded in wind areas, the survey CV increased to 

0.74; because catch rates were variable over time, the CV was also variable over time. Both fall 

and spring surveys experienced an increase in CVs across the majority of species caught in Table 

2 when effort was precluded from wind areas. Thus, precluding survey effort generated further 

imprecision for some species caught by each of the seasonal surveys.  

There were marked differences across annual abundance indices, survey precision, and 

population estimates for a number of species when the seasonal surveys are precluded from wind 

areas (Table 2). However, annual abundance indices were unimpacted or minimally impacted for 

less than 60% of the species (approximately 85 species; Figure 7) caught by the seasonal 

surveys. Survey precision was unimpacted or minimally impacted for less than 80% of the 

species caught by the seasonal surveys (approximately 90 species; Figure 8). Population 

estimates were unimpacted of minimally impacted for less than 35% of the species caught by the 

seasonal surveys (approximately 40 species; Figure 9).   

3.1.2.1 SSEEP Workshop Species 

Preclusion of the fall survey from wind areas would have the greatest impact on the estimates of 

annual abundance indices for black sea bass (MARE = 23%) and the least impact on estimates of 

annual abundance indices for Atlantic mackerel (MARE = 0%; Table 3). Compared to all other 

species, impacts to abundance indices for black sea bass were above average (94th percentile) 

along with impacts to abundance indices for summer flounder (86th percentile), butterfish (70th 
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percentile), and the skate complex (56th percentile; Figure 7). All other stakeholder species were 

below the 50th percentile including Atlantic mackerel which represented the 28th percentile in 

terms of impacts to estimates of abundance across all species (Figure 7).   

Precision estimates of the fall survey for black sea bass indices were lower on average during the 

most recent 5 years when the survey was precluded from wind areas, signaling that estimates of 

black sea bass abundance were more certain under wind-precluded effort (Table 3). Furthermore, 

these differences between precision estimates under the effort scenarios were the largest across 

the stakeholder species (MARE = 20%; Table 3) and represent the 96th percentile of impacts 

across all the species caught by the fall survey (Figure 8). Precision estimates of the fall survey 

were on average unchanged under the survey effort scenarios for yellowtail flounder, silver hake, 

Atlantic herring, and Atlantic mackerel (Table 3) and thus were the least impacted by wind 

preclusion when compared to the other stakeholder species. Precision estimates for winter 

flounder were also not notably different on average (MARE = 2%; Table 3). However, these 

differences were above average when compared to all the species caught by the fall survey (57th 

percentile; Figure 8). Yellowtail flounder, silver hake, Atlantic herring, and Atlantic mackerel, 

on the other hand, were below the average distribution of differences, representing the 46th, 42nd, 

34th, and 29th percentiles, respectively (Figure 8).  

Population trends of spiny dogfish were most affect by the preclusion of the fall (MAE = 0.68; 

Table 3), both across stakeholder species, and all species caught by the fall survey (99th 

percentile; Figure 9). Population trends for Atlantic mackerel, on the other hand, were again the 

least impacted by the preclusion of the fall survey (MAE = 0; Table 3), and this was the only 

stakeholder species below the average distribution of population trend impacts for all the species 

that were caught by the fall survey (26th percentile; Figure 9). The 10 other stakeholder species 

were above the 50th percentile of the cumulative distribution of impacts to population trends by 

precluding the fall survey (Figure 9).  

While the preclusion of the fall survey had minimal impacts on abundance estimates, survey 

precision, and population trends for Atlantic mackerel, the preclusion of the spring survey from 

wind areas had the greatest impact on the estimates of  annual abundance for Atlantic mackerel 
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(MARE = 8%) and some of the larger effects on estimated population trends (MAE = 0.1; Table 

3). Differences between survey effort indices for Atlantic mackerel represented the 82nd 

percentile across all species caught by the spring survey (Figure 7). Of the 11 stakeholder 

species, estimates of annual abundance for silver hake and yellowtail flounder were mostly 

unchanged by wind preclusion of the spring survey (MARE = 0% and MARE = 0%; Table 3) 

and were below the average cumulative distribution of impacts across spring survey species, 

representing the 44th and 43rd percentile, respectively (Figure 7).  

Silver hake and yellowtail flounder were also the least impacted stakeholder species in terms of 

survey precision estimates (MARE = 0% and MARE = 0%; Table 3). However, yellowtail 

flounder was the only stakeholder species below the 50th percentile of the cumulative distribution 

of impacts to survey precision across the species caught by the spring survey. All other 

stakeholder species were above the 50th percentile, and silver hake represented the average 

impact (Figure 8). Estimates of survey precision and population trends for spiny dogfish were the 

most impacted by precluded survey effort. On average, the CVs for spiny dogfish increased 

when the survey was precluded from wind areas suggesting greater uncertainty in annual 

abundance indices from the spring survey (Table 3).  

Population trends for spiny dogfish were more negative when the survey was precluded and 

represented the 99th percentile of impacts to population trends across spring survey species 

(Figure 9). Population trend estimates of longfin squid were the least impacted across the 

stakeholder species by preclusion of the spring survey; though impacts to these estimates were 

still a part of the upper 75th quantile of the distribution of all species impacts.  

3.1.2.1.1 Summer flounder  

The spatial distribution of summer flounder catches varied by season (Figure 11), but the amount 

of tows occurring in wind areas was consistent over time between the two seasonal surveys 

(Figure 12).  

Fall estimates of the annual abundance per tow were lower when survey effort was precluded 

from wind areas (Figure 12). This was especially true in 2009, 2011, 2013, and 2016. These 
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differences were driven by higher and more variable catch rates in wind areas, on average 9.01 ± 

22.1 kg/tow, than those in the surrounding outside areas, 2.6 ± 5.7 kg/tow on average. These 

catch rates notably occurred at the northern end of their range, off the coast of New York and 

Massachusetts in these years. For spring, estimates were both lower (5 of 12 years) and higher (6 

of 12 years) when wind-area tows were precluded than under the status quo (Figure 13b). The 

difference between a status quo survey effort and a wind-precluded survey effort was larger in 

the fall than in the spring. A reduction in survey effort due to wind in the fall resulted in a 

MARE between annual abundance indices of 14% whereas the spring had a 4% MARE (Table 

5). Of the 164 species initially evaluated in terms of impacts to annual abundance indices, 80% 

had a lower MARE in the fall and 66% had a lower MARE in the spring compared to summer 

flounder (Figure 7).  

CVs of annual estimates were similar between the two effort scenarios, except for CVs in the fall 

of 2009, 2011, 2013, and 2016 (Figure 13a). As noted above, the differences in these years were 

driven by the higher and more variable catch rates within areas, such that removing these years 

resulted in a 30% reduction in nominal average catch rates within wind areas but had little effect 

on the nominal average catch rates in surrounding outside areas. Differences in the survey CVs 

were similar to the differences in annual abundance indices in each season, with a 15% MARE 

and a 6% MARE in the fall and spring, respectively (Table 5). The MARE in survey CVs for 

summer flounder was in the upper third quantile of the distribution over species for each season, 

such that 89% of species had lower MARE in CVs from the fall survey between the two survey 

effort scenarios and 80% of species had lower MARE in CVs from the spring survey (Figure 8). 

The linear regression slope estimate represents the average change in abundance index over time 

and can be used as an estimate of population trend. A decreasing trend was estimated for both 

seasons and effort scenario (Table 4), however under the wind-precluded survey effort the trend 

was slightly less negative than trends estimated under status quo effort (Table 4). Estimates of 

changes in population trend also had a larger MAE between the two survey effort scenarios in 

the fall (MAE = 0.05) than in the spring (MAE = 0.01; Table 5). These errors represented the 

83rd and 80th percentiles of the distribution in errors across species between estimates of 
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population trend under the survey effort scenarios for the fall and spring survey, respectively 

(Figure 9).  

3.1.2.1.1.1 Comparisons of general survey effort reduction 

The fall and spring estimates of population trend under wind-precluded survey effort (slope = -

0.10 and -0.04 respectively; Table 4) were compared to 1,000 estimates of population trend 

under three survey effort scenarios: (1) status quo, (2) wind-preclusion, and (3) general survey 

effort reduction using bootstrap resampling methods according to section 2.1.2.1 (Figure 14a-c). 

Estimates in trend for summer flounder in the fall under the status quo effort and the general 

survey effort reduction scenarios were different than the observed wind-precluded estimate in 

trend (Figure 14a and Figure 14c). The observed wind-precluded estimate in trend occurs at the 

upper bounds of the percentile intervals of both distributions and represents the 93rd percentile of 

the status quo distribution and the 92nd percentile of the general survey effort reduction 

distribution (Figure 14a and Figure 14c).  Conversely, when comparing the observed estimate in 

trend for the wind-precluded survey to the bootstrap resampled estimates under wind preclusion, 

the observed estimate resulted in some minor differences but ultimately represented the 83rd 

percentile of the distribution, such that 17% of the bootstrap estimates were greater than the 

observed value (Figure 14b). Thus, the effect of removing wind-area tows in the fall on 

population trend estimates under a wind preclusion scenario is different than the effect of 

removing survey tows due to some other effort reduction mechanism. 

Bootstrapped estimates of spring population trends, on the other hand, were not different from 

the observed wind-precluded population trend estimate under any of the three scenarios, status 

quo, wind preclusion or general survey effort reduction (Figure 14d-f). The observed estimate 

represented the 65th percentile, 61st percentile, and 64th percentile across the status quo, wind-

preclusion, and general survey effort reduction scenarios, respectively (Figure 14d-f).  

3.1.2.1.1.2 Systematic changes in trend over time 

Estimating summer flounder population trends when the period of years with wind-preclusion 

changed also showed larger changes to trends in the fall than in the spring. The latter 
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experienced minimal changes to the estimated trends as the number of years that the survey is 

precluded from wind areas was increased (Figure 15b). The most notable change occurred in the 

ninth time step (Figure 15b), or when 2011 was added to the suite of years in which the survey 

was precluded from wind areas (Figure 13b). The spring survey in 2011 conducted the highest 

number of tows that overlapped wind areas throughout the time series (n = 23; Figure 12b), 

followed by 2016, which had the same number of tows. However, between those two years, the 

2011 survey observed twice the biomass and three times the number of fish than the 2016 

survey. Catch rates in the wind areas during the 2011 spring survey were higher than the catch 

rates in the wind areas during the 2016 and had a larger negative effect on the annual abundance 

index and the survey CV when it was precluded from the survey (Figure 13b). In other words, 

the abundance index and CV was lower in 2011 when the wind-area tows were removed because 

wind area catch rates were larger than the outside area catch rates. Comparing these estimates to 

the abundance index and CV in 2016 which was slightly higher when the wind-area tows are 

removed, indicated lower wind area catch rates than outside area catch rates during that survey 

year. Furthermore, the difference between the annual abundance index estimates under the two 

scenarios in 2011 was larger than the difference between the indices in the years succeeding, 

regardless of the direction of change (Figure 13b).  

The fall trends became more negative as more years from the survey were precluded from wind 

areas until the time series became extremely short (Figure 15a). The notable change for this 

survey occurred in the seventh time step, or when 2013 was added to the length of a wind-

precluded survey time series (Figure 15a). Contrary to the spring survey, this survey year was 

influential because the status quo abundance index was higher than the succeeding years prior to 

the survey being precluded and because the wind-precluded index was of the same magnitude as 

the succeeding years when it is added to the wind preclusion time series, not because the 

difference between survey effort indices was larger than the years succeeding. Thus, the 

estimates of trend are driven by the higher earlier years of the status quo index when the 2014 to 

2021 surveys operate under wind-precluded effort, and then driven again by more stabilizing 

years of wind-precluded abundance indices when 2009 to 2013 is added to the time series 

(Figure 15a). In general, the perceived change in trend over time depended on the length of the 
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time series that was precluded to survey effort in wind areas and how much survey effort 

overlaps wind areas across years until the time series become extremely short (Figure 15a).  

3.1.2.1.2 Atlantic mackerel 

Annual abundance indices of Atlantic mackerel were only calculated across the full survey area 

using the spring survey data from 2009 to 2021 (Figure 16). Catch rates of Atlantic mackerel 

were much more variable over the spatial frame than summer flounder, with high observations of 

Atlantic mackerel occurring both in inshore and offshore areas (Figure 17 and Figure 20). Very 

few high catch rates of Atlantic mackerel biomass occurred in wind areas (Figure 17), and the 

number of tows that were located within wind areas were much lower (n = 209) than the number 

of tows that occurred outside the wind areas (n = 3,839; Figure 18), constituting 5% of the tows 

that occurred throughout the time series. While in contrast to the proportion of wind-area tows 

that observed summer flounder, on a whole Atlantic mackerel was encountered more frequently 

in the spring survey than summer flounder. 

Estimates of annual abundance indices under the wind-preclusion scenario were more often 

unchanged from estimates under the status quo scenario, except for the indices in 2010, 2011, 

and 2017, when the wind-precluded abundance index point estimates were lower than the status 

quo abundance index (Figure 19). There were two years when the wind-precluded abundance 

index was higher than the status quo index, 2016 and 2018 (Figure 19). The MARE between the 

status quo abundance indices and the wind-precluded indices was 7% (Table 5), which represents 

the 80th percentile of distribution of errors across the full suite of species (Figure 7). 

The CV estimates in each year under a wind-precluded survey effort were unchanged when 

compared to the CV estimates in each year under a status quo survey effort (Figure 19). Further, 

the MARE between survey CVs between efforts was 3% signaling little impact to precision of 

the survey when it was precluded from wind areas (Table 5). Though small, the impacts to 

survey CVs for Atlantic mackerel represent the upper third quantile of the distribution of impacts 

across the species that were caught in the survey, such that across the 113 species caught by the 

spring survey, 71% of the survey CVs were less impacted by wind-precluded survey effort than 

survey efforts that caught Atlantic mackerel (Figure 8). 
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Atlantic mackerel was found to have a slightly declining, almost zero, trend (slope = -0.04) in 

population over time under a status quo survey effort scenario and a slightly increasing, almost 

zero, trend (slope = 0.01) in population over time under a wind-precluded survey effort scenario 

(Table 4). MAE for the change in trend when the survey is precluded from wind areas is 5%, 

which is a larger MAE than 93% of the 113 species analyzed, including spring trends of summer 

flounder (Figure 9). 

3.1.2.1.2.1 Comparisons of general survey effort reduction 

The spring estimate of population trend under wind-precluded survey effort (slope = -0.01; Table 

4) for Atlantic mackerel was compared to 1,000 estimates of population trends under three 

survey effort scenarios: (1) status quo, (2) wind-preclusion, and (3) general survey effort 

reduction The observed estimate of trend under a wind preclusion scenario for Atlantic mackerel 

was not different from those trends estimated under a general survey effort reduction (Figure 

20c). Even more so, the observed wind-precluded estimate represented the same percentile of the 

distribution of estimates under a general survey effort reduction as the distribution of estimates 

under a status quo survey effort (60%; Figure 20a and Figure 20c). Notably, though, the 

variability in the estimates across the three scenarios was wide, ranging from -2 to 2, with some 

slope estimates reaching as high as 4 (Figure 20). While the effect of wind-precluded survey 

effort in the spring on Atlantic mackerel population trend estimates was similar to some other 

general survey effort reduction. This is in part due to the high variability across catch rates in the 

observed data used to generate the bootstrap distributions. Less variable catch rates and more 

precise population trend estimates under either scenario would be needed to resolve a difference 

between efforts.  

3.1.2.1.2.2 Systematic changes in trend over time 

Estimates of spring Atlantic mackerel population trends were mostly unchanged as the number 

of years the survey was precluded increased and had high variability due to the variation in catch 

rates between years (Figure 21).  
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3.2 A simulation study of potential impacts on indices of abundance 

3.2.1 Species distribution modeling and diagnostics 

3.2.1.1 Summer flounder 

The most parsimonious GLMM for summer flounder fall survey catch rates included a second-

order polynomial relationship with depth, independent year effects, spatial and spatiotemporal 

random fields (model 10; Table 6). The final fall model had the lowest AIC and highest deviance 

explained of the candidate models (Table 7). Though model 12 (Table 7), can explain the data as 

well as model 10, it is a more complex model and is penalized as such with a higher AIC. The 

optimal spring survey GLMM estimated catch rates of summer flounder as a function of a 

second-order polynomial relationship with depth, year effects, a categorical wind area effect, 

spatial and spatiotemporal random fields (model 12; Table 6). The final spring model had the 

lowest AIC and most deviance explained of the candidate models (Table 7), indicating this more 

complex model better explains spring survey catch rates of summer flounder.  

Residuals were returned with 10 samples from a single MCMC chain for both models. The 

QQplot of the MCMC-resampled residuals for the fall model is summed over the 10 samples and 

indicates some deviation from the assumed distribution around the lower tail of the distribution 

(Figure 22a). Of the 10 samples returned, only two resulted in a distribution about the theoretical 

quantiles; the remaining 8 produced underestimation to some degree (Appendix A). The greatest 

values of predicted biomass were underestimated in link space (Figure 23a). Residuals from the 

spring model, on the other hand, did not deviate much from the theoretical quantile distribution 

(Figure 22b) and were evenly distributed about 0 when compared to the fitted values in link 

space (Figure 23b).  

There is some uncertainty around the depth covariate in both the fall and spring models with the 

largest uncertainties around the peak expected biomass (Table 8, Figure 24). The fall model 

expected biomass catch rates to peak around 0.7 kg at around 38 meters of depth but could vary 

as high as 2.1 kg (Figure 24a). The spring model predicted the largest biomass catch rates of 1.3 

kg between 133 and 145 meters but could reach as high as 3.4 kg (Figure 24b). The fall model 
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predicted higher values of biomass catch rates around 40 meters, but the maximum catch rates 

plateaued at differing values each year (Figure 25a). The highest peak biomass catch rate was 

predicted around 0.7 kg in 2009, while the lowest peak biomass catch rate was predicted around 

0.3 kg in 2015 (Figure 25a). The spring model predicted biomass catch rates peaking at 146 

meters but also varied each year. The highest peak biomass catch rate at this depth was 2.4 kg in 

2016 while the lowest was 1.1 kg in 2015 (Figure 25b). Similarly, at this depth, the spring model 

expected the marginal effect of wind areas to have higher biomass catch rates than in outside 

areas, 1.70 kg with 95% confidence intervals (CI)[0.59, 4.91] and 1.3 kg with 95% CI [0.5, 3.4], 

respectively (Figure 26). The spring model predicted a similar marginal effect for the year and 

area predictors where the larger biomass catch rates were within wind areas, though 2016 was 

predicted to have the highest biomass catch rates in both areas (Figure 27). Furthermore, when 

evaluating the estimated wind area parameter (Table 8), there was a more positive effect 

expected for catch rates within those areas in turn resulting in higher observed biomass within 

wind areas (Figure 26b). 

Fixed effects from the fall model predicted a strong relationship with the inshore areas of the 

continental shelf (Figure 28a). This spatial influence is reinforced by the predictions of the 

spatial random effects, noted by the greater amount of constant biological or oceanographic 

influence along these same areas in Figure 29a. Predictions of the spatiotemporal fields from the 

fall model in Figure 30a demonstrate the expected patchiness over space; though in recent years, 

and in years later in the time series (Appendix A), there tended to be large areas in the northern 

portion of the fall summer flounder spatial range that recurringly expected high biomass 

indicating there might be a potential biological or oceanographic covariate not explicitly 

captured in terms of fixed effects influencing catch rates in those years (Figure 30a). In general, 

the fall model estimated biomass catch rates to be fairly dispersed with a φ parameter of 1.5 but 

correlated within a range of 94 km (Table 8), and expected higher catch rates along the inshore 

areas in the fall to be driven by the fixed effects and spatial random effects (Figure 31). 

The spring model estimated a continuous and strong relationship along the entire length of the 

offshore areas of the continental shelf both in terms of the fixed effects and the spatial random 

effects (Figure 28b and Figure 29b). The predictions of the spatiotemporal random fields also 
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detected some persistent connections with the offshore areas, especially in earlier years of the 

time series (Figure 30b and Appendix A). The spring model expected more dispersed 

observations of biomass with a φ parameter of 1.7 but that catch rates were more similar within a 

range of 112 km (Table 8).  

Posterior checks of predictive performance show that nominal averages of fall biomass catch 

rates (3 kg/tow) did not correspond across the simulations (quantile = 0%; Figure 32a and Table 

9); though the fall model was better at generating representative biomass catch rates in some 

years over others (Figure 33a and Table 9). The observed average biomass catch rate 

corresponded to approximately the interquartile range of the simulated distribution in five out of 

the eleven years (Table 9). All other years in the time series were overestimated with more than 

80% of the distribution above the observed mean biomass catch rate (Table 9). Conversely, the 

distribution of simulated average proportion of zeroes was below the observed proportion of 

zeroes, indicating that the fall model is underinflated (Figure 34a and Table 10). When broken 

out by yearly proportions, simulated distributions in six out of twelve years were below the 

overall average proportion (proportion = 0.51). However, there were four years when the 

observed yearly average proportion was above the overall average, three of which corresponded 

to the central tendency of the simulated yearly distribution (Figure 35a). In other words, the 

observed proportion corresponded to the 76th, 48th, and 68th percentile of the simulated 

distribution of proportions in 2015, 2016, and 2018, respectively (Figure 35a and Table 10). 

Moreover, the simulated distribution in 2019 was centered about the overall average proportion 

(proportion = 0.51), but the observed proportion of zeroes in that year (proportion = 0.47) only 

corresponded to the 6th percentile of the distribution. Thus, while generally underinflated, the 

model was able to adequately capture the proportion of zeroes in some years. 

The fall model was much better at estimating seasonal annual abundance indices, and more so 

for the wind-precluded index than the status-quo index (Figure 36a, Figure 36b, and Table 11). 

Under the wind-precluded survey effort scenario, the model performed well estimating 9 out of 

the 12 years in the time series, with the lowest performance occurring for 2012 and the best 

performance occurring for 2011 based on the quantile that the observed abundance index 

represents of the simulated distribution (Table 11). Further still, the model performed relatively 
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well when estimating the population trends under both survey effort scenarios, where the 

observed population trend represented the 50th percentile under simulated status quo survey 

effort and the 73rd percentile under the wind-precluded survey effort (Figure 37 and Table 12). 

The observed average spring biomass catch rate corresponded to the extreme 10% of the 

simulated distribution of averages from the spring model indicating that the model was 

overestimating average biomass catch rates (Figure 32b and Table 9). When examined by year, 

observed averages in seven out of the twelve years drove the overall average biomass catch rate 

(Figure 33b). Out of those seven, the model was able to simulate average biomass catch rates in 

four years that closely corresponded to the observed average biomass catch rate, 2009 (quantile = 

63%), 2011 (quantile = 38%), 2013 (quantile = 53%), and 2018 (quantile = 48%) respectively 

(Table 9). On the other hand, the model was also able to simulate average proportions of zeroes 

that corresponded with the observed proportion of zeroes from the data (proportion = 0.41). 

Furthermore, the observed proportion only corresponded to the extreme 4th percentile of the 

simulated distribution (Figure 34b and Table 10). When broken down by yearly proportions, the 

observed proportions corresponded to the extreme 30th percentiles in eight out of the twelve 

years (Figure 35b and Table 10).  

The observed annual abundance index under both the status quo survey effort scenario and the 

wind-precluded survey effort scenario were well represented by the simulated distribution in the 

six years for each scenario (Figure 36c, Figure 36d, and Table 11). The model performed poorly 

in the remaining six years of the time series (Figure 36c and Figure 36d), where the observed 

abundance index under both scenarios corresponded to the most extreme 15% of the distribution 

of the simulated means (Table 11). Lastly, the spring model performed relatively well at generating 

distributions of trends in either scenario, such that the observed trend corresponded to the 65th percentile 

of the status quo survey effort distribution and the 80th percentile of the wind-precluded survey effort 

scenario (Figure 37 and Table 12). 

3.2.1.2 Atlantic mackerel 

The most parsimonious model for Atlantic mackerel spring survey catch rates included a fourth-

order polynomial relationship with depth, independent year effects, spatial and spatiotemporal 
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random effects, and assumed a Delta Gamma observation distribution with a Poisson link (model 

5; Table 13). This model had the lowest AIC out of the candidate delta gamma models and had 

the same amount of deviance explained as model 4 (Table 14). However, Model 4 had a higher 

AIC most likely due to the added complexity of spatial random fields estimation in the positive 

catch rate component, which was omitted from model 5’s positive catch rate component. 

Additionally, a deeper inspection of the three delta gamma models that converged found that the 

positive catch rate component was over-parameterized when spatial random effects were 

included in the estimation, thereby selecting model 5 as the more optimal model.  

According to the QQplots, the presence-absence component of the model indicated a successful 

fit (Figure 38). However, the positive catch rate component did not fit the tails of the distribution 

well (Figure 39). The comparison of fitted biomass values to the MVN residuals resulted in 

similar findings, where the residuals were more normally distributed in the presence-absence 

component but deviated at the lower and upper ends of biomass in the positive catch rate 

component (Figure 40 and Figure 41). Based on the analysis conducted on the impacts on sample 

size (Section 2.1.1), the spring survey of Atlantic mackerel observed a wide range of biomass 

that was variable over the time series which could contribute to the overestimation within the 

model; on average, positive catch rates from the survey observed 15 ± 82 kg of Atlantic 

mackerel with a median of 0.7 kg, and a single maximum observation of 1,894 kg. This is further 

supported by the QQplot of the simulated Dharma residuals where the middle of the distribution 

does not conform to the assumed distribution, suggesting an influence from the positive catch 

rate component (Figure 42). Therefore, while the presence-absence component of the model was 

able to adequately reflect the data, the positive catch rate component was not.    

The model predicted higher values of biomass catch rates around 66 meters, though the value of 

which was different in each year (Table 15, Figure 43). The largest peak biomass catch rate was 

predicted at 0.5 kg in 2016, and the lowest peak biomass catch rate at 60 meters was predicted in 

2009 at 0.2 kg (Figure 43). 

Model predictions of the main effects found a strong relationship with depth throughout Georges 

Bank the mid-Atlantic, and the inshore areas of the Gulf of Maine (Figure 44). The strongest 
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relationships were found at depths ranging from 55 meters to 110 meters, while the weakest 

relationships were found at depths greater than 110 meters within the Gulf of Maine. The model 

found a similar relationship through the mid-Atlantic in terms of estimated spatial random 

effects, but it also expected consistent spatial deviations within the Gulf of Maine (Figure 45) 

indicating there are other spatially latent covariates affecting the biomass catch rates of Atlantic 

mackerel that were not explicitly accounted for through the fixed effects. The spatiotemporal 

random fields generally expected a patchy distribution throughout space and time (Figure 46). 

However, in recent years, the model estimated a consistent positive deviation in the 

spatiotemporal random field off the coast of Cape Cod (Figure 46).  

The presence-absence component estimated a large spatial range (161 ± 46 km) and a low spatial 

standard deviation (1.4±0.3) indicating that a pair of present or absent observations are more 

correlated over a wider space (Table 15). More specifically, these estimates correspond with the 

spatial correlation of the survey observations rather than the behavior of the species, in that over 

time the survey observations over large distances in space are very similar and that the survey 

would need to travel farther 161 km before two observations are different (Figure 45). The 

spatiotemporal range for this component was estimated as 99 ± 12 km and the spatiotemporal 

standard deviation was estimated as 1.5 ± 0.1 (Table 15). Thus, observations of presence or 

absence are more correlated and more similar over space.  

The spatial random fields were omitted from the positive catch rate component and thus only a 

spatiotemporal range and standard deviation were estimated from the gamma observation model. 

The spatiotemporal range was estimated at 27 ± 6 km and the standard deviation was estimated 

at 2.1 ± 0.3 (Table 15). However, the phi parameter was relatively low (φ = 0.83; Table 15). 

While observations had a tighter distribution, the values of biomass catch rates were expected to 

change quicker over space, and over a larger magnitude of change. Ultimately, the 

spatiotemporal fields from the gamma model component were the driving force behind 

predictions of biomass catch rates as evidenced by Figure 47, where areas of higher expected 

catch rates corresponded with areas estimated to have positive deviations in the spatiotemporal 

fields.  
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The post-model predictive check was used to further assess the model’s performance. In general, 

the model was unable to generate representative distributions of average biomass catch rates or 

proportions of zeroes. Simulated average biomass catch rates were greater than the observed 

average catch rate (5.1 kg/tow; Figure 48). There were only two years, 2012 and 2019, where the 

simulated catch rates moderately represented the observed biomass catch rates in those years 

(Figure 49 and Table 16). Simulated proportions of zeroes were less than the observed 

proportion of zeroes (proportion = 0.67), both across years and between years (Figure 50, Figure 

51, and Table 17). 

The model was slightly better at simulating estimates of annual abundance indices, and more 

specifically indices under status quo survey effort with seven years where the distributions 

corresponded well to the observed respective index  (Figure 52 and Table 18). Under wind-

precluded survey effort, the model was able to simulate representative distributions of indices in 

six years. Furthermore, between years, the model was able to simulate representative 

distributions under status quo effort as well as those under wind-precluded survey effort in the 

same three years (Table 18). Lastly, the model performed much better at simulating population 

trends than nominal average catch rates, proportions of zeroes, or annual abundance indices. 

Across simulations, the observed population trend by status quo survey effort was represented by 65% 

of the distribution while the population trend estimated under wind-precluded survey effort was 

represented by 80% of the distribution (Figure 53 and Table 19). Therefore, the model is much 

better at generating population trends and abundance indices across years within the bounds of 

the observed uncertainty but ultimately was unable to adequately represent survey catch rates. 

3.2.2 Scenarios of changing spatial distributions  

3.2.2.1 Summer flounder 

Simulations of the fall survey under a baseline, or unchanged, fish density from what was estimated by 

the seasonal model, generated similar estimates of annual abundance of summer flounder regardless of 

the survey effort (status quo or wind-precluded effort; Figure 54a and Figure 55). However, when 

changes in fish density from the baseline were simulated in response to wind areas, simulated 

estimates of annual abundance indices were different when survey effort was precluded from the 
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wind areas compared to estimates calculated based on status quo survey effort. Under scenarios 

of enhanced fish density, simulated estimates of annual abundance were lower when survey 

effort was precluded from wind areas (Figure 54b and Figure 55a), mirroring the findings from 

Section 3.1.2.1.1. Whereas, under reduced fish density scenarios, estimates of annual abundance 

were higher under wind-precluded survey effort as a result of lower catch rates within wind areas 

compared to catch rates outside of wind areas (Figure 54c and Figure 55a). Notably, the 

distribution of estimates of abundance when survey effort was precluded under the reduced fish 

density scenario was similar to the distribution of estimates of abundance based on status quo 

effort under the baseline fish density (Figure 55a).  

Across all scenarios, the preclusion of the fall survey resulted in biased stock abundance indices 

for summer flounder (Figure 56a). The bias between indices under enhanced and reduced fish 

densities was almost twice the bias between indices under baseline fish densities, with the 

greatest bias occurring when the survey was precluded from surveying wind areas with enhanced 

fish densities overall (Figure 56a). The bias between survey effort scenarios also resulted larger 

MARE in the estimates of abundance under the enhanced fish density scenarios when compared 

to the baseline and reduced fish density scenarios for fall populations of summer flounder 

(Figure 57a). While the bias between indices under reduced fish density was also greater when 

the fall survey was precluded compared to under baseline fish densities; the differences were 

only about 10% (Figure 57a).  

CVs across all simulations and fish density scenarios were about 20% higher when wind areas 

were precluded from fall survey effort (Figure 58a). In other words, the fall survey was less 

precise in estimating the relative abundance of summer flounder when wind areas were 

precluded from survey effort.  

Distributions of population trend estimates were similar across survey effort and fish density 

scenarios (Figure 59a). The only minor difference occurred under the status quo survey effort 

scenario with enhanced fish density where the distribution of population trends was wider at the 

tails (Figure 59a). Regardless of their similarity in distribution, there were marked differences 

between trends estimated under enhanced fish densities and reduced fish densities inside wind 
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areas (Figure 60a). The distribution of differences was greatest when fish density was enhanced 

within wind areas indicating that population trends estimated based on status quo survey effort 

were more different that estimates based on wind-precluded effort, especially when compared to 

the differences in estimates under baseline fish density (Figure 60a). The distribution of 

differences when fish density was reduced in wind areas, on the other hand, was lower than 

either cases where fish density was enhanced or under baseline fish densities. Thus, wind-

precluded population trend estimates were closer to trends estimated under status quo survey 

effort when fish density was reduced compared to the estimates between survey effort scenarios 

when fish density was enhanced or unchanged from the baseline.   

Simulations of the spring survey and baseline fish densities resulted in minor differences 

between annual abundance indices calculated from status quo and wind-precluded survey effort, 

such that the wind-precluded estimates were lower than status quo estimates in each year and 

across simulations (Figure 54d and Figure 55b). Similarly, wind-precluded abundance indices 

were lower than the status quo abundance indices under the enhanced fish density scenario 

(Figure 54e and Figure 55b). However, wind-precluded abundance indices were higher than the 

status quo abundance indices under the reduced fish density scenario (Figure 54f and Figure 

55b).  

These differences translated to biased annual abundance indices for summer flounder when the 

spring survey was precluded from wind energy areas across all fish density scenarios. The 

greatest bias occurred when the survey was precluded from surveying wind areas with enhanced 

fish densities in terms of magnitude, which was double the bias quantified under the baseline 

scenario (Figure 56b). Further, these differences between survey effort scenarios resulted in 

higher MARE in the estimates of abundance when compared to the baseline fish density for 

spring populations of summer flounder (Figure 57b). 

Under reduced fish densities, bias between annual abundance indices was also greater than the 

bias between indices under baseline fish densities, though to a lesser degree than the difference 

in bias when comparing enhanced fish densities and baseline fish densities (Figure 56b). As a 

result, MARE in the estimates of abundance under reduced fish densities were lower than the 
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MARE in estimates of abundance under baseline fish density (Figure 57b). This differs from the 

findings for the fall survey under reduced summer flounder densities due to the positive effect of 

wind areas on biomass catch rates estimated by the optimal spring model (Table 8). Simulating 

reduced fish densities in wind areas effectively removed the effect of wind areas on biomass 

catch rates thereby equalizing catch rates regardless of the area in which they occurred and 

lessening the difference between survey effort estimates when compared to baseline estimates of 

fish density in wind areas (Figure 57b).  

Across all simulations and fish density scenarios, the CV of survey estimates when wind was 

precluded was higher than the CV of survey estimates under status quo survey effort (Figure 

58b). Thus, the spring survey was also less precise in estimating a stocks relative abundance 

when survey effort was precluded from wind areas. 

Similar to the findings for the fall survey under the fish density scenarios, distributions of spring 

population trend estimates were similar across survey effort and fish density scenarios (Figure 

59b). Furthermore, differences between survey effort population trends were greater under 

enhanced fish densities and lowest under reduced fish densities across simulations when 

compared to baseline fish density (Figure 60b).  

At a minimum, under baseline fish densities, estimates of annual abundance and population 

trends would be biased and less precise when either fall or spring survey is precluded from wind 

energy areas. This effect is exacerbated when the surveys are precluded from wind energy areas 

and in scenarios where fish density increases within these areas after installation. For the fall 

survey, there was also an increased effect on estimates on annual abundance indices when fish 

densities declined within wind areas after installation. While the spring survey, on the other 

hand, demonstrated a decreased effect on estimates of annual abundance indices when the survey 

was precluded and fish densities were reduced from baseline levels, such that the preclusion of 

the spring survey had a greater effect on estimates of abundance in scenarios of unchanged fish 

density than it did on estimates of abundance in scenarios where fish density declined in wind 

areas. Similarly, the preclusion of the fall and spring surveys had a smaller effect on estimates of 
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population trends of summer flounder when fish density was reduced within wind areas than 

when fish density was unchanged from baseline levels.  

3.2.2.2 Atlantic mackerel 

Simulations of the spring survey under baseline Atlantic mackerel densities generated estimates 

of annual abundance that were similar each year and across simulations regardless of the survey 

effort, status quo or wind-precluded (Figure 61a and Figure 62). Simulated estimates of annual 

abundance were lower when the survey was precluded from wind areas when enhanced Atlantic 

mackerel densities were simulated compared to estimates calculated based on status quo survey 

effort (Figure 61b and Figure 62). Under reduced Atlantic mackerel densities, simulated 

estimates of annual abundance were slightly higher when the survey was precluded than those 

calculated at the status quo survey effort (Figure 61c and Figure 62).  

These differences translated to biased annual abundance indices for Atlantic mackerel (Figure 

63). Mean relative differences between annual abundance indices under survey effort scenarios 

deviated further from zero than the differences at baseline fish densities under both enhanced and 

reduced fish density scenarios (Figure 63). The greatest deviation occurred under enhanced fish 

densities, indicating that annual abundance indices under enhanced fish density scenarios were 

more biased than either indices calculated in the baseline or reduced fish density scenario (Figure 

63). This was further reinforced by the higher MARE values under enhanced fish density when 

compared to baseline or reduced fish density errors (Figure 64).  

When fish densities in wind areas were reduced and the survey was precluded, bias was also 

higher than the bias quantified under baseline fish densities (Figure 63). However, when 

translated to MARE, the differences between indices were slightly lower compared to a baseline 

fish density scenario (Figure 64). Lower MARE under reduced fish density are most likely a 

result of the high variability between catch rates used to fit the model (Section 3.1.2.1.2) and the 

lack of relationship found by the model between wind areas and expected catch rates (Table 15). 

Thus, manipulating catch rates under a reduced fish density assumption forced catch rates to be 

more similar to each other across areas thereby resulting in lower differences between indices 
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when effort was or was not precluded (Figure 64). In either survey effort or fish density 

scenarios, survey precision estimates were unchanged across simulations (Figure 65).  

Distributions of population trend estimates were similar across survey effort and fish density 

scenarios (Figure 66). Though, there were notable differences between survey effort trends 

estimated under enhanced and reduced fish densities (Figure 67). The distribution of differences 

was greatest when fish density was enhanced within wind areas, indicating that population trends 

estimated based on status quo survey effort were more different that estimates based on wind-

precluded effort, while the distribution of differences when fish density was reduced in wind 

areas was lower than either cases where fish density was enhanced or unchanged (Figure 67). 

More specifically, wind-precluded population trends estimated under reduced fish densities were 

closer to trends estimated based on status quo survey effort compared to the estimates between 

survey effort scenarios when fish density was enhanced or unchanged from the baseline.  

The preclusion of wind energy areas to the spring survey would have a greater effect on 

estimates of Atlantic mackerel annual abundance indices and population trends under a scenario 

where fish density increases within these areas after installation. Whereas the reduction of fish 

and the preclusion of the survey in these areas would result in a smaller effect to that seen if fish 

density was unchanged from existing conditions due to the high variability in catch rates 

throughout the spatial footprint. 
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4 DISCUSSION 

It is expected that the installation of large-scale offshore wind areas will preclude fishery-

independent surveys along the eastern coast. Even though current protocols for the NEFSC 

bottom trawl survey dictate the reallocation of pre-selected tows in the case of untrawlable areas, 

here I set out to illustrate the impacts to stock abundance indices if the full reallocation of lost 

survey tows would not be possible.  

In this study, I aimed to address three main research questions: (1) what would the effect on 

previous annual abundance indices have been if wind areas prevented bottom trawl survey effort, 

(2) can species distribution models be used to analyze potential impacts of offshore wind areas 

on survey operations and changes in abundance, and (3) how do the impacts to abundance 

indices as a result of wind-precluded survey effort change when there are changes in species 

productivity and fish density due to the presence of wind turbines. To address these questions, I 

assumed that the understanding of proposed and leased wind energy areas as of June 2022 were 

in place and precluding survey efforts at the start of the bottom trawl survey times series (e.g., 

2009).  

An empirical analysis of potential impacts on survey data  

Using an empirical analysis approach, I evaluated the magnitude of loss and its propagation into 

annual abundance indices by removing observations of catch rates that were identified as having 

occurred within wind energy areas tows (e.g., “wind-area tows”; Section 2.1.1). My findings 

show that under such a worst-case scenario, sample sizes, annual abundance indices or the 

precision of their estimates (CVs) will be impacted. Specifically, the loss of species biomass and 

numbers will vary in magnitude ranging anywhere from 0% to 100% depending on the frequency 

in which the survey catches a given species. On one hand, sample sizes for over 65% of the 

species caught by the survey will be unimpacted by its preclusion. On the other hand, 32% of the 

species caught by the survey will be impacted, with the largest effects on sample sizes occurring 

where survey catch ratios (wind catch rates to total survey catch rates) are the largest. These 

impacts then propagated into estimates of annual abundance indices, population trend, and 

survey precision, such that some species included in Table 2 that were found to have the greatest 
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differences between estimates, were also found to suffer the most losses in terms of percentages 

of tows, biomass, and numbers of fish removed when the survey was precluded. In other words, 

the largest impacts of wind preclusion to sample sizes were seen for species that were less 

available to the survey throughout the area but were caught in larger proportions within wind 

areas when they were encountered. 

However, the survey was not designed for these rare or uncommon species. The survey 

efficiency quickly deteriorates with respect to sampling these species, and many of them are only 

recorded at the family or genus level (i.e., spider crab uncl or entropus uncl in Table 2). Thus, 

evaluating at the species level can make results variable and uncertain. Further iterations of this 

work could perform the empirical analysis at the taxa level rather than the species level to derive 

more certain estimates of impacts in the context of rare or uncommon species. Conversely, 

ongoing analyses or applications could consider either foregoing evaluating impacts on this 

group of species by either including additional spatial and temporal constraints on the data or 

exclude observations and catch rates of species that occur at the tails of the catch rate 

distribution.  

One approach considered in this study included focusing the empirical evaluation on the 

commercially important species for which the survey is principally designed. Input from 

stakeholders during two Survey Simulation Experimentation and Evaluation Project (SSEEP) 

workshops formed the basis of this list of species of interest. The analysis found that sample 

sizes throughout the survey area for the majority of stakeholder-selected species were less 

impacted by wind-precluded survey effort. The minimal spatial overlap within wind areas and 

the high rate in which the survey encounters these species outside of potential wind areas was 

identified as the main driver behind these smaller impacts. Similar findings occurred when 

impacts were evaluated in terms of estimates of annual abundance indices, survey precision, and 

population trends. However, impacts to estimates of population trend amongst skates, Atlantic 

herring, Atlantic mackerel, butterfish, spiny dogfish, and yellowtail flounder were the greatest 

for these species when comparing across the stakeholder-selected species as well as across the 

total group of species encountered by the survey (Table 2 and Table 3).  
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There was further invested interest to evaluate the empirical analysis and the other research 

questions in the context of two stakeholder-selected species: summer flounder and Atlantic 

mackerel, both of which represent classic definitions of species that are well-sampled and poorly 

sampled by the survey, respectively. As illustrated above, wind preclusion will impact all the 

species caught by the multispecies survey. By focusing a more applied evaluation of impacts on 

summer flounder, a demersal fish distributed contiguously across the continental shelf, and 

Atlantic mackerel, a schooling, pelagic fish with a patchier and more variable distribution, results 

can be more readily translated to other species that fit within these definitions.  

Empirical analyses found that the propagation of lower sample sizes of summer flounder resulted 

in lower estimates of annual abundance indices and population trend and increased estimated 

uncertainty. This was most notable for estimates derived from the fall survey where historically 

there have been higher catch rates within potential wind areas. Higher catch rates within 

potential wind areas are due to the increased availability of summer flounder to the survey when 

they are inshore and in their preferred habitat. Similar impacts occurred when the spring survey 

was precluded from wind areas, but to a lesser extent as the seasonal offshore distribution of 

summer flounder will have minimal overlap with areas proposed for installation and 

development.  

Catch rates of Atlantic mackerel have historically been variable over the time series and over 

space, in turn creating high interannual variability in estimates of abundance and population 

trends (NEFSC 2021). As such, with status quo survey effort, the spring survey has been 

imprecise when sampling Atlantic mackerel populations (e.g., high average CV in Table 5). This 

high variability in catch rates and survey imprecision is expected to precipitate through to 

impacts on sample sizes, estimates of annual abundance, and estimates of population trends for 

Atlantic mackerel when the spring survey is precluded from wind areas. That is, high variability 

and imprecision will persist with reduced survey effort, but on average, estimates will effectively 

be unimpacted.  
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Species distribution modeling 

The historical data for summer flounder and Atlantic mackerel were used to fit geostatistical 

GLMMs to evaluate potential impacts of offshore wind areas to survey operations, changes in 

abundance, and hypothetical scenarios of changing spatial fish density distributions. A 

motivating factor to experimenting with species distribution models was their ability to account 

for spatial and temporal non-stationarity (or spatial and temporal changes over time) to 

understand changes in a species geographic distribution and density (Elith & Leathwick, 2009; 

Elith et al., 2010; Johnson et al., 2019; Barnett et al., 2021; Anderson et al., 2022; Ward et al., 

2022).  Between the two species, three separate models were fit: a spatiotemporal Tweedie 

observation model for summer flounder in the fall, a spatiotemporal Tweedie observation model 

for summer flounder in the spring, and a spatiotemporal Delta Gamma with a poisson link 

observation model for Atlantic mackerel in the spring.  

Only the Tweedie model for summer flounder in the spring was able to adequately fit the data 

and generate representative catch rate data based on new spatiotemporal random fields. The fall 

summer flounder model and spring Atlantic mackerel models were able to generate 

representative estimates of annual abundance indices and populations trends but ultimately had 

issues with their fit and simulating raw catch rates of biomass. Three of the main problems with 

the models included residual heteroscedasticity, overdispersion, and the inflating (or lack 

thereof) of zeroes within the two models.  

The fall model for summer flounder and the gamma component of the delta gamma model for 

Atlantic mackerel both showed indications of residual heteroscedasticity and overdispersion that 

was not accounted for through the estimation of the spatial or spatiotemporal random fields 

(Appendix Figure A48-Figure A49 and Figure A59-Figure A60). For summer flounder, this 

could be the result of some additional habitat relationship that should be included as a predictor 

of biomass, especially given the fact that summer flounder has distinct migration patterns, 

spending early spring to late fall inside estuaries and moving offshore to spawn (Buchheister & 

Latour, 2011). The same could be said with respect to the Atlantic mackerel model especially 

given that the gamma component, which represents the encounter rate of the observations, 



 

50 

showed unequal scatter across its residuals and predictors (Figure 40-Figure 41; Appendix Figure 

A59-Figure A60).  

While there were some issues with residual scattering and data fitting, this does not inherently 

indicate that the models were unusable. Fortunately, the models were able to emulate plausible 

scenarios for annual abundance indices and population trends, which were more adequately 

representative when compared to real estimates from the observed data. At a minimum, the 

models fit on this study were deemed worthy to meet the objectives and support the use of 

geostatistical GLMMs to identify impacts on estimates of abundance and population trends.  

Should other objectives be pursued when applying this framework, additional model exploration 

and parameterization will be needed to resolve the residual and diagnostic issues. Additional 

parameterizations could consider incorporating predictors of bottom temperature, which has been 

included in previous summer flounder modeling efforts (Perretti & Thorson, 2019), and 

predictors of sea surface temperature and salinity, which has been included in research 

evaluating distributions of spawning Atlantic mackerel (Mbaye et al., 2020). Additional model 

explorations could also investigate alternative error distributions, particularly for Atlantic 

mackerel.    

Scenarios of changing spatial distributions 

The simulation study assumed a change in fish density in response to the presence of offshore 

wind turbines to emulate hypothesized artificial reef effects or avoidance effects (Mavraki et al., 

2021; Reubens, Braeckman, et al., 2013; Reubens, Vandendriessche, et al., 2013) and how that 

might propagate changes in estimates for abundance and population trends. Across the two case 

study species and both seasonal surveys, increases in fish density and the preclusion of the 

survey within these areas will result in the greatest differences to estimates of annual abundance 

indices and population trends. The preclusion of the survey will result in varied impacts on 

estimates of annual abundance indices and population trends when fish density was reduced 

depending on the season in which it is conducted. For instance, when the fall survey was 

precluded, estimates for summer flounder annual abundance indices would be more biased and 

less precise than the baseline state but would not be as impacted when compared to an enhanced 
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state. The preclusion of the spring survey, on the other hand, would result in estimates of annual 

abundance indices for summer flounder and Atlantic mackerel that are less biased and more 

precise than in the baseline state. It is likely that in this scenario, there would not be a difference 

in catch rates within wind areas and outside wind areas; therefore, wind areas and reduced survey 

efforts in response would be the least impactful. Population trends for both species and in both 

seasons would be mostly unchanged by the preclusion of the respective survey and changes in 

fish density, while the survey’s precision would be higher and less precise when there are 

reductions in survey effort independent of the changes in fish density.  

An empirical study at BIWF concluded that increases in abundance at an area of potential effect 

when compared to a reference site were due to a regional artificial reef effect (Gervelis et al., 

2023) potentially indicating support for the attraction hypothesis. The attraction hypothesis 

proposes that increases in fish density are a result of immigration from the surrounding 

environment rather than an increase in productivity. The assumptions made in the simulation 

study assumed a local increase or decrease in fish density at a given wind area rather than a 

global increase in fish abundance and at previously sampled locations. In doing so, I 

hypothesized that for species like summer flounder that are already observed to have high catch 

rates within proposed wind areas, the attraction to offshore wind turbines will result in a greater 

impact on the estimates of abundance when the survey is precluded and the need to mitigate that 

impact to appropriately track abundance changes. This could also be true for species like Atlantic 

mackerel where their observations are not as consistent in the survey. Conversely, this response 

may not be as strong if fish have an aversion to wind areas and instead avoid these areas, in 

which case the difference in the estimates of abundance when the survey is precluded would be 

smaller (Figure 57 and Figure 64). 

The simulation study only looked at potential impacts for a period of five years. Some artificial 

reef studies have shown that although there were increases in abundance at a younger four-year 

old artificial reef compared to a natural reef or no reef at all, there was a higher abundance and 

overall diversity at a 41-year old reef indicating that productive environments have the potential 

to become more productive over time (Harrison & Rousseau, 2020). Furthermore, similar work 

by Yalcin et al. (2023) found that geostatistical GLMMs such as the ones employed in this study 
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could mitigate the effects of survey reduction. However, GLMMs may not always be able to 

account for the population processes as they change and particularly after an area has already 

been excluded, and at some level the accuracy of them degrades substantially (Yalcin et al., 

2023). Thus, future iterations of this work could apply the treatments over time and for longer 

durations to identify how the impacts might change with time, if there would be a maximum 

threshold at which point impacts to the abundance index are no longer accrued, and at what point 

within that accrual are the species distribution models unable to make up for the loss. Beyond 

this, future directions could also consider using the impacted estimates of abundance concluded 

from this study or using impacts reassessed at the stock unit resolution as inputs into a stock 

assessment and management strategy evaluation to evaluate how their performance compares to 

an unimpacted input. Currently, there are two projects evaluating the impact of wind preclusion 

on annual abundance indices as inputs for stock assessments. Sun et al. (in prep) found that 

abundance index bias had limited impacts on model-based stock assessments, while index-based 

methods were much more sensitive to these changes. Similarly, the Northeast Fisheries Science 

center is assessing the impacts on index-based assessments when inputs are derived based on 

wind-precluded survey effort; preliminary findings indicate that the impact is dependent on a 

species distribution relative to the wind energy areas and relative to the proportion of stock 

biomass encountered by the survey in the wind energy areas (Cacciapaglia et al., in prep). 

Fishery-independent surveys have proven to be an imperative tool in the fisheries management 

toolbox to track species distributions and changes through a standardized design, even if it is at 

the expense of less resolute data when compared to fishery dependent data such as CPUE. In this 

study I identified potential differences in stock abundance indices when the federal Northeast 

bottom trawl survey is precluded from operating inside wind energy areas. Many of these species 

and stocks that are federally managed depend on average biomass catch rates, estimates of 

abundance, and changes in population trends to derive their management advice, whether 

empirically or analytically. More specifically, biased and imprecise inputs would elicit the need 

for more precautionary management to account for management uncertainty and protect against 

overfishing in pursuit of complying with the National Standard Guidelines in the Magnuson-

Stevens Fishery Conservation and Management Act.  
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As such, it is imperative that those differences can be mitigated. At a minimum, existing 

protocols for the bottom trawl survey should be maintained and upheld, which allow for the 

reallocation of lost effort within the same sampling unit (Politis et al., 2014). However, this study 

demonstrated the impact when large portions of survey strata or whole survey strata are lost from 

the sampling frame due to the inability to sample within wind energy areas. It further showed the 

impact when that loss is coupled with changing species distributions. Should the current 

understanding of species distributions and dynamics remain the same, then it is possible that 

reallocating lost effort will be enough to mitigate impacts of wind preclusion. If, however, the 

changes in species distribution and dynamics simulated in this study are realized, then additional 

sampling efforts will need to supplement the reallocated survey to appropriately estimate relative 

annual abundances and population trends. These efforts could include sampling within the wind 

energy areas and operating according to the same objectives, and temporal and seasonal scales as 

the federal scientific survey; though a smaller vessel may be warranted to safely transit between 

the turbines as well as calibration factors to relate relative abundances between the differing 

vessels. Another option with regards to sampling could implement video sampling protocols and 

co-locating the gear on the wind turbine structures; though this alternative would lose the 

important biological sampling data that also feeds into federal stock assessments.  

Other initiatives and research through the Federal Survey Mitigation Implementation Strategy for 

the Northeast Region (Hare et al., 2022), in addition to the Survey Experimentation and 

Evaluation Project (SSEEP), aim to analyze how the reallocation of effort, supplemental 

sampling strategies, and alternative survey designs can mitigate the findings herein.  For 

instance, the NEFSC has drafted a survey mitigation plan that is currently under reviewed which 

details the evaluation of the existing stratification and station allocation design and its 

performance to potentially adapt the survey’s design to something more spatially-balanced. The 

plan also considers including perimeter sampling around smaller wind energy areas to try to 

capture those higher abundances that would be precluded from survey effort through the 

immigration and emigration of fish between wind energy areas.  

As the marine use environment is becoming more inundated, spatial management of resources 

becomes more imperative, as do standardized and consistent fishery-independent surveys that 
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can meet management objectives and track changes in the distribution and abundance of 

resources. Offshore wind development is at the forefront of many marine spatial use conflicts 

with fisheries, with expected impacts to an additional eleven federal fisheries surveys on the 

eastern coast and various others within the Gulf of Mexico and along the northwest coast, 

regions which are in the beginning stages of development planning.  

This study found an important connection between the magnitude of spatial overlap of wind 

energy areas and bottom trawl survey strata, and the temporal overlap between a species 

distribution and their availability to a given seasonal survey. For example, impacts to estimates 

of annual abundance indices for summer flounder were greater when the fall survey was 

precluded from wind energy areas than when the spring survey was precluded. The proposed 

wind energy areas overlap with the inshore strata of the survey where historically summer 

flounder has been more available to the fall survey whereas in the spring, summer flounder is 

more available to the survey along the outer continental shelf which does not align with proposed 

wind energy area overlap. As the spatial conflict between wind energy areas and the survey 

sampling footprint grows larger with the expansion into the Gulf of Maine 

(https://www.boem.gov/Gulf-of-Maine) and the installation of floating wind turbine structures, it 

is expected that some of the impacts identified in this study would grow alongside those updated 

understandings. For instance, the estimates of population trend for spiny dogfish were identified 

as having some of the largest impacts when compared against all the species encountered by the 

survey, and against other stakeholder-selected species. These estimates were assessed on a 

spatial sampling frame where upwards of 75% of the total biomass caught by the survey over the 

time series occurred in the Gulf of Maine strata. As such, an updated analysis that includes 

proposed wind energy areas within the Gulf of Maine could further exacerbate the impacts 

identified in this study due to an increased loss in sample sizes for spiny dogfish.  

Nonetheless, the underlying framework of this study has been developed in such a way such that 

the analysis can be supplied with any updated understandings of proposed wind energy areas or 

proposed structures and can be applied in the context of any of the other eleven federal surveys 

and species of interest. Further still, because this research uses the spatial footprint of wind 

energy areas to reflect an area of impact, there is the potential to extend this framework into 
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other spatial impact analysis applications such as the impacts of scientific survey preclusion or 

fishery preclusion due to aquaculture or oil and gas development.  

Finally, further work needs to be conducted with regards to impacts from longstanding changes 

to survey design and sampling on these federal surveys but also considering the added 

complexities of tracking species distributions in the face of climate change (Nye et al., 2009). 

Existing research thus far has performed well in identifying distribution shifts, but the work is 

still ongoing to incorporate this information into species stock assessments, with stock assessors 

starting to discuss how to define spatial stock structures, break conventional stock assessment 

structures, and incorporate ecosystem-based fisheries management (EBFM), which is still in the 

realm of innovation. My work aims to contribute a novel approach using time series analysis and 

species distribution modeling to identify potential disruptions, to work towards designing a more 

flexible fishery-independent survey, and in advancement of analyses that consider the full 

management cycle from data collection to analysis and assessment inputs, to reference points and 

total allowable catch advice.  
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5 CONCLUSIONS 

The reduction in survey effort in the presence of offshore wind is expected to be most impactful 

for species that had larger differences in catch rates within wind energy areas compared to catch 

rates outside wind energy areas. With respect to the case study species, the historical analysis 

suggests greater impacts on estimates of summer flounder than Atlantic mackerel, and greater 

impacts still when those estimates were derived based on the fall survey. Additionally, changes 

to data products derived for summer flounder due to wind preclusion of the fall survey were 

different than changes due to general reduction in survey effort. Data products derived for 

Atlantic mackerel or summer flounder from the spring survey were robust to changes in survey 

effort on average regardless of the driver in reductions of survey effort. 

Species distribution modeling was able to assist in meeting the objectives of this study and 

contribute to the evaluation of potential impacts of wind preclusion. With further model 

refinement, impact analysis can be another useful application of SDMs, and particularly 

geostatistical GLMMs.  

Wind preclusion will result in more biased and imprecise stock abundance indices with a 

reduction in survey efforts. This would be especially true under assumptions of increased fish 

density changes within wind areas and the theorized reef effect is actualized.    

The findings in this study reinforce the call to mitigate anticipated disruptions in survey effort 

and conserve the integrity of federal scientific survey data. Without the mitigation, resulting 

biased and imprecise inputs from reduced sample sizes and the failure to account for uncertainty 

from reduced survey effort could lead to more precautionary management or more conservative 

decisions for measures that protect against overfishing. 
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TABLES 

Table 1. Number of species by criteria  

Criteria Total number of species Number in the fall Number in the spring 

1 
Occurs in 3 or more strata within a given year 

278 255  201  

2 
Observed in 3 or more strata for at least 3 years 

199 189 151 

3 
Observed in at least one strata that is proposed for overlap by offshore wind 

164 149 113  
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Table 2. Summary of performance metrics comparing the differences between survey effort scenarios. For each criteria species the 

following information is given: the mean absolute relative differences between abundance indices; the average coefficients of 

variation for each scenario (status quo and wind-precluded) and the mean absolute relative difference between the two scenarios; and 

the trend estimate under status quo survey effort and the mean absolute difference between the two survey effort scenarios. The 

species with the greatest differences between status quo and preclusion based on the quantiles of the distribution are highlighted in 

green (darker green = upper quantile, light green = lower quantile).   

 

Abundance Indices CV Trend Estimates 

Mean Absolute 
Relative Difference 

With Wind 
Included 

With Wind 
Precluded 

Mean Absolute 
Relative Difference 

With Wind 
Included 

Mean Absolute 
Difference 

Fall 

All skates 4.07% 0.19 0.20 15.29% -3.24 5.33 × 10-1 

Atlantic croaker 13.05% 0.44 0.47 9.06% -7.76 × 10-1 4.47 × 10-1 

Black sea bass 22.77% 0.34 0.31 20.01% 1.89 × 10-1 8.71 × 10-2 

Bluntnose stingray 29.85% 0.71 0.66 11.65% 1.65 5.20 × 10-1 

Bullnose ray 32.48% 0.45 0.49 11.69% -6.18 × 10-1 1.57 

Coarsehand lady crab 15.39% 0.39 0.45 17.65% 4.01 × 10-2 2.56 × 10-3 

Horseshoe crab 35.63% 0.46 0.48 15.56% 1.12 2.96 × 10-1 

Little skate 6.40% 0.17 0.17 20.14% -1.45 2.29 × 10-1 
cont. on next page 
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Table 2 cont. 

 

Abundance Indices CV Trend Estimates 

Mean Absolute 
Relative Difference 

With Wind 
Included 

With Wind 
Precluded 

Mean Absolute 
Relative Difference 

With Wind 
Included 

Mean Absolute 
Difference 

Fall 

Northern searobin 28.65% 0.28 0.26 13.33% 1.25 1.04 × 10-1 

Rough scad 31.15% 0.46 0.50 6.87% -1.34 × 10-1 1.73 × 10-3 

Roughtail stingray 57.99% 0.59 0.70 39.85% 1.28 9.44 × 10-1 

Round herring 15.54% 0.59 0.63 6.45% -7.93 × 10-1 3.23 × 10-1 

Scup 9.15% 0.30 0.39 36.45% 1.36 × 10-1 7.36 × 10-2 

Sea scallop 12.19% 0.33 0.35 8.43% -3.56 × 10-1 4.38 × 10-1 

Shrimp 
(pink,brown,white) 23.69% 0.65 0.65 1.22% -4.86 × 10-2 3.22 × 10-2 

Smallmouth flounder 28.87% 0.70 0.69 19.79% -3.55 × 10-3 2.61 × 10-3 

Spider crab uncl 11.43% 0.42 0.51 22.93% -4.96 × 10-4 6.31 × 10-4 

Spiny butterfly ray 35.06% 0.45 0.55 25.13% 2.40 × 10-1 1.08 × 10-1 

Spiny dogfish 0.97% 0.29 0.31 3.59% -1.09 × 10-1 6.85 × 10-1 

cont. on next page 
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Table 2 cont. 

 

Abundance Indices CV Trend Estimates 

Mean Absolute 
Relative Difference 

With Wind 
Included 

With Wind 
Precluded 

Mean Absolute 
Relative Difference 

With Wind 
Included 

Mean Absolute 
Difference 

Fall 

Spotted hake 15.20% 0.20 0.24 18.81% 5.89 × 10-2 3.05 × 10-2 

Windowpane 10.36% 0.20 0.24 19.74% -9.14 × 10-2 5.38 × 10-3 

Yellowtail flounder 0.46% 0.29 0.29 0.50% -1.16 2.56 × 10-1 

Spring 

All skates 2.74% 0.13 0.14 5.67% -2.94 5.57 × 10-2 

Atlantic herring 5.30% 0.31 0.31 1.21% -1.45 2.84 × 10-1 

Atlantic mackerel 8.58% 0.45 0.45 2.89% -1.02 × 10-1 9.69 × 10-2 

Atlantic seasnail 25.26% 0.60 0.62 3.18% -1.30 × 10-4 4.29 × 10-5 

Atlantic silverside 34.05% 0.46 0.46 18.62% -4.57 × 10-4 4.11 × 10-5 

Atlantic surfclam 18.62% 0.85 0.92 12.88% -3.18 × 10-3 1.32 × 10-5 

Bluefish 20.24% 0.64 0.74 15.98% -6.03 × 10-3 3.33 × 10-3 

Bobtail uncl 18.58% 0.25 0.30 19.15% -9.89 × 10-4 2.04 × 10-5 

Butterfish 6.36% 0.32 0.30 4.62% 3.40 × 10-1 5.59 × 10-2 
cont. on next page  
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Table 2 cont. 

 

Abundance Indices CV Trend Estimates 

Mean Absolute 
Relative Difference 

With Wind 
Included 

With Wind 
Precluded 

Mean Absolute 
Relative Difference 

With Wind 
Included 

Mean Absolute 
Difference 

Spring 

Clearnose skate 13.46% 0.17 0.18 23.78% -6.99 × 10-1 1.51 × 10-1 

Coarsehand lady crab 19.19% 0.36 0.43 17.86% 2.30 × 10-3 2.75 × 10-4 

Etropus uncl 5.71% 0.23 0.24 21.96% 9.06 × 10-5 3.67 × 10-4 

Horseshoe crab 9.49% 0.23 0.29 30.17% 1.28 × 10-1 3.25 × 10-2 

Lady crab 23.99% 0.42 0.52 25.38% 3.89 × 10-3 1.14 × 10-3 

Little skate 7.58% 0.13 0.14 10.45% -2.02 4.76 × 10-2 

Smallmouth flounder 50.31% 0.59 0.67 20.45% -3.86 × 10-3 4.16 × 10-4 

Smooth dogfish 21.19% 0.52 0.57 12.53% 5.80 3.27 

Spider crab uncl 28.42% 0.74 0.77 12.13% -2.66 × 10-4 6.46 × 10-5 

Spiny dogfish 4.89% 0.16 0.17 9.86% -6.65 1.99 

Striped bass 37.59% 0.67 0.74 14.65% -2.26 8.38 × 10^-1 
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Table 3. Summary of performance metrics comparing the differences between survey effort scenarios. For each stakeholder-

identified species the following information is given: the mean absolute relative differences between abundance indices; the average 

coefficients of variation for each scenario (status quo and wind-precluded) and the mean absolute relative difference between the two 

scenarios; and the trend estimate under status quo survey effort and the mean absolute difference between the two survey effort 

scenarios.  

 Abundance Indices CV Trend Estimates 

 Mean Absolute 
Relative Difference 

Status quo 
survey effort 

Wind-precluded 
survey effort  

Mean Absolute 
Relative Difference 

Status quo 
survey effort 

Mean Absolute 
Difference 

Fall 

All skates 2.63% 0.19 0.20 15.29% -3.24 0.53 

Atlantic herring 0.07% 0.33 0.33 0.06% -0.63 0.00 

Atlantic mackerel 0.00% 0.55 0.55 0.00% 4.00 0.00 

Black sea bass 20.94% 0.34 0.31 20.01% 0.19 0.09 

Butterfish 4.97% 0.25 0.25 3.29% 0.06 0.06 

Longfin squid 0.84% 0.09 0.10 13.04% 0.53 0.00 

Silver hake 1.80% 0.12 0.12 0.36% 1.61 0.05 

Spiny dogfish 1.34% 0.29 0.31 3.59% -10.85 0.68 

Summer flounder 15.44% 0.19 0.22 15.89% -0.20 0.06 
cont. on next page 
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Table 3 cont.  

 

Abundance Indices CV Trend Estimates 

Mean Absolute 
Relative Difference 

Status quo 
survey effort 

Wind-precluded 
survey effort  

Mean Absolute 
Relative Difference 

Status quo 
survey effort 

Mean Absolute 
Difference 

Fall 

Winter flounder 1.43% 0.25 0.25 1.50% -0.64 0.04 

Yellowtail flounder 0.46% 0.29 0.29 0.50% -1.16 0.26 

Spring 

All skates 2.74% 0.13 0.14 5.67% -2.94 0.06 

Atlantic herring 5.30% 0.31 0.31 1.21% -1.45 0.28 

Atlantic mackerel 8.58% 0.45 0.45 2.89% -0.10 0.10 

Black sea bass 3.66% 0.53 0.54 2.98% 0.34 0.03 

Butterfish 6.36% 0.32 0.30 4.62% 0.34 0.06 

Longfin squid 6.94% 0.17 0.17 1.37% 0.20 0.01 

Silver hake 0.21% 0.11 0.11 0.18% 1.22 0.02 

Spiny dogfish 4.89% 0.16 0.17 9.86% -6.65 1.99 

Summer flounder 2.42% 0.17 0.18 5.84% -0.06 0.01 

Winter flounder 2.91% 0.26 0.26 1.96% -0.15 0.03 

Yellowtail flounder 0.07% 0.25 0.25 0.05% -0.69 0.01 
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Table 4. Estimates of population trends, and their respective lower and upper confidence 

intervals (CI), under each survey effort scenario for fall and spring summer flounder populations 

and spring populations for Atlantic mackerel. 

 Fall Spring 
 Estimate Lower CI Upper CI Estimate Lower CI Upper CI 

Summer flounder 

With Wind Included -0.15 -0.26 -0.04 -0.05 -0.16 0.07 

With Wind Precluded -0.10 -0.19 -0.02 -0.04 -0.15 0.08 

Atlantic mackerel 

With Wind Included --- --- --- -0.04 -0.69 0.61 

With Wind Precluded --- --- --- 0.01 -0.65 0.67 
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Table 5. Summary of performance metrics comparing the differences between survey effort 

scenarios. For summer flounder and Atlantic mackerel, the following information is given: the 

mean absolute relative differences between abundance indices; the average coefficients of 

variation for each scenario (status quo and wind-precluded) and the mean absolute relative 

difference between the two scenarios; and the trend estimate under status quo survey effort and 

the mean absolute difference between the two survey effort scenarios.  

 

Annual 
Abundance 

Indices 
CV Trend Estimates 

Mean 
Absolute 
Relative 

Difference 

Status quo 
survey 
effort 

Wind-
precluded 

survey 
effort 

Mean 
Absolute 
Relative 

Difference 

Status quo 
survey 
effort 

Mean 
Absolute 

Difference 

Fall 

Summer flounder 14% 0.188 0.211 15% -0.147 0.045 

Spring 

Summer flounder 4% 0.164 0.173 6% -0.048 0.008 

Atlantic mackerel 7% 0.428 0.433 2% -0.041 0.052 
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Table 6. Configurations used to fit fall and spring models predicting summer flounder biomass 

catch rates.  

Models Predictors Spatial Spatiotemporal Time Family 
m1 Depth (spline) 

Year 

Off Off - Tweedie 

m2 Depth (second-order polynomial) 

Year 

Off Off - Tweedie 

m3 Depth (spline) 

Year 

Area 

Off Off - Tweedie 

m4 Depth (second-order polynomial) 

Year 

Area 

Off Off - Tweedie 

m5 Depth (spline) 

Year 

On Off - Tweedie 

m6 Depth (second-order polynomial) 

Year 

On Off - Tweedie 

m7 Depth (spline) 

Year 

Area 

On Off - Tweedie 

m8 Depth (second-order polynomial) 

Year 

Area 

On Off - Tweedie 

m9 Depth (spline) 

Year 

On IID Year Tweedie 

m10 Depth (second-order polynomial) 

Year 

On IID Year Tweedie 

cont. on next page 
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Table 6 cont. 

Models Predictors Spatial Spatiotemporal Time Family 
m11 Depth (spline) 

Year 

Area 

On IID Year Tweedie 

m12 Depth (second-order polynomial) 

Year 

Area 

On IID Year Tweedie 
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Table 7. Diagnostic quantities for the fall and spring models fit for summer flounder. For each of the models, the following 

information is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean squared 

error across the folds of each cross-validation, and the model convergence. The optimal model in each season is highlighted in red. 

Models AIC Deviance Explained Sum log likelihood Mean Squared 
Error Convergence 

Fall 

m1 7,442.52 94.48% -3,748.01 56.31 True 

m2 7,446.88 94.53% -3,770.55 56.93 True 

m3 7,424.88 94.23% -3,733.14 55.83 True 

m4 7,425.62 94.24% -3,737.39 55.38 True 

m5 6,330.89 80.26% -3,299.06 38.33 True 

m6 6,323.95 80.17% -3,277.81 38.55 True 

m7 6,330.41 80.23% -3,272.14 39.92 True 

m8 6,323.60 80.14% -3,294.04 40.33 True 

m9 6,193.75 78.48% -4,172.68 67.44 True 

m10 6,187.25 78.40% -4,188.35 56.84 True 

m11 6,195.49 78.48% -4,141.33 55.67 True 

m12 6,189.04 78.40% -4,116.86 54.56 True 
cont. on next page 
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Table 7 cont. 

Models AIC Deviance Explained Sum log likelihood Mean Squared 
Error Convergence 

Spring 

m1 9,186.74 92.27% -4,601.46 47.07 True 

m2 9,190.69 92.31% -4,604.67 45.22 True 

m3 9,184.48 92.23% -4,593.76 46.14 True 

m4 9,187.94 92.26% -4,606.39 45.84 True 

m5 8,672.89 87.05% -4,327.68 39.80 True 

m6 8,666.36 86.98% -4,342.23 39.28 True 

m7 8,672.28 87.02% -4,320.11 37.75 True 

m8 8,665.47 86.95% -4,346.33 40.85 False 

m9 8,420.82 84.49% -4,635.97 44.44 True 

m10 8,409.22 84.37% -4,636.02 44.06 True 

m11 8,419.56 84.46% -4,794.72 45.81 True 

m12 8,407.41 84.33% -4,666.95 45.28 True 
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Table 8. Main and random effect parameter estimates, and the respective standard error, from the 

chosen optimal fall model (m10) and spring model (m12) for summer flounder.  

Term 

Fall Spring  

Estimate 
Standard 

Error Estimate 
Standard 

Error 
Main effect parameters 
Depth -52.50 9.63 5.22 5.02 
Depth -30.76 5.33 -41.72 3.99 
Year: 2009 -1.27 0.51 -1.02 0.48 
Year: 2010 -1.69 0.51 -1.15 0.48 
Year: 2011 -1.65 0.52 -0.92 0.48 
Year: 2012 -1.34 0.50 -0.53 0.47 
Year: 2013 -1.79 0.52 -0.68 0.47 
Year: 2014 -1.27 0.51 -0.89 0.50 
Year: 2015 -2.08 0.53 -1.17 0.48 
Year: 2016 -1.80 0.51 -0.36 0.46 
Year: 2017 - - -1.06 0.47 
Year: 2018 -1.96 0.52 -0.99 0.48 
Year: 2019 -1.83 0.51 -0.88 0.47 
Year: 2021 -2.04 0.51 -1.13 0.50 
Area: Wind - - 0.31 0.16 
Random effect parameters 
Range 94.47 11.53 111.54 16.50 
Phi 1.54 0.08 1.72 0.08 
Spatial standard deviation (ω) 1.75 0.17 1.34 0.16 
Spatiotemporal standard 
deviation (ϵ) 1.04 0.09 1.02 0.07 

Tweedie power parameter 1.34 0.01 1.40 0.01 
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Table 9. The nominal mean biomass catch rate generated by the optimal seasonal models in each 

year, and the quantile of the distribution that corresponds to the observed average biomass catch 

rate in each year for summer flounder. The average biomass catch rate across years generated in 

each season and the quantile of the distribution that corresponds to the observed average biomass 

catch rate across years for summer flounder is provided at the bottom of the table.  

  

Year 

Fall Spring 

Average Biomass 
(kg/tow) Quantile 

Average Biomass 
(kg/tow) Quantile 

2009 3.19 0.42 2.79 0.63 

2010 2.36 0.04 4.03 0.78 

2011 4.39 0.75 4.26 0.38 

2012 3.67 0.07 3.21 0.19 

2013 3.61 0.14 3.51 0.53 

2014 3.35 0.33 3.42 0.77 

2015 3.56 0.05 3.12 0.93 

2016 2.55 0.02 2.36 0.04 

2017 --- --- 2.17 0.15 

2018 2.22 0.31 2.99 0.48 

2019 2.19 0.86 3.29 0.10 

2021 1.88 0.64 2.64 0.00 

Overall 3.00 0.01 3.16 0.10 
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Table 10. The proportion of zeroes generated by the optimal seasonal models in each year, and 

the quantile of the distribution that corresponds to the observed proportion of zeroes in each year 

for summer flounder. The overall proportion of zeroes generated in each season and the quantile 

of the distribution that corresponds to the overall proportion of zeroes for summer flounder is 

provided at the bottom of the table.  

Year 

Fall Spring 
Average 

Proportion of 
Zeroes Quantile 

Average 
Proportion of 

Zeroes Quantile 

2009 0.48 0.56 0.42 0.51 

2010 0.49 0.51 0.44 0.84 

2011 0.49 0.47 0.45 0.91 

2012 0.45 0.83 0.36 0.80 

2013 0.56 1.00 0.38 0.72 

2014 0.47 0.91 0.40 0.84 

2015 0.57 0.76 0.44 0.41 

2016 0.52 0.48 0.35 0.81 

2017 --- --- 0.41 0.41 

2018 0.55 0.68 0.42 0.48 

2019 0.47 0.06 0.37 0.32 

2021 0.58 0.97 0.43 1.00 

Overall 0.51 0.95 0.41 0.96 
  



 

88 

Table 11. The annual stratified mean biomass generated by the optimal seasonal models in each 

year, and the quantile of the distribution that corresponds to the observed annual abundance 

index for summer flounder.  

Year 

Status quo survey effort Wind-precluded survey effort 

Stratified Mean 
(kg/tow) Quantile 

Stratified Mean 
(kg/tow) Quantile 

Fall 

2009 3.53 0.88 2.59 0.55 
2010 2.25 0.11 2.11 0.22 
2011 4.22 0.73 3.05 0.50 
2012 3.06 0.12 3.05 0.18 
2013 2.66 0.24 1.92 0.12 
2014 3.38 0.39 3.15 0.34 
2015 2.55 0.35 2.17 0.21 
2016 2.96 0.07 2.00 0.04 
2017 --- --- --- --- 
2018 1.95 0.16 1.77 0.42 
2019 1.69 0.59 1.59 0.51 
2021 1.78 0.90 1.60 0.79 

Spring 

2009 3.05 0.54 3.25 0.79 
2010 3.96 0.64 3.85 0.56 
2011 4.08 0.11 3.71 0.09 
2012 4.33 0.31 4.49 0.40 
2013 3.79 0.38 3.91 0.41 
2014 3.23 0.34 3.28 0.37 
2015 3.96 0.98 3.57 0.91 
2016 2.85 0.10 2.99 0.22 
2017 2.18 0.12 2.21 0.12 
2018 4.07 0.78 4.42 0.81 
2019 3.78 0.18 3.69 0.22 
2021 3.11 0.03 3.17 0.08 
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Table 12. The estimates of population trend generated by the optimal seasonal models, and the 

quantile of the distribution that corresponds to the observed estimate of population trend for 

summer flounder.  

 
Fall Spring 

Population 
Trend Estimate Quantile Population 

Trend Estimate Quantile 

Status quo survey effort -0.15 0.50 -0.05 0.19 

Wind-precluded survey 
effort -0.10 0.73 -0.04 0.21 
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Table 13. Configurations used to fit spring models predicting Atlantic mackerel biomass catch rates. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Delta gamma 

m1 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m2 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year No 

Gamma 
(Component 2) On IID Year No 

m3 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) 

On IID Year Yes 

Gamma 
(Component 2) On IID Year No 

m4 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year No 

Gamma 
(Component 2) On IID Year Yes 

m5 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year No 

Gamma 
(Component 2) - IID Year - 

cont. on next page 
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Table 13 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Tweedie 

m6 Depth (fourth-order polynomial) 
Year Tweedie On IID Year Yes 

m7 Depth (fourth-order polynomial) 
Year Tweedie On IID Year No 
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Table 14. Diagnostic quantities for the final set of spring models fit for Atlantic mackerel. For each model, the following information 

is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean squared error across 

the folds of each cross-validation, the model convergence and the cross-validation convergence. The optimal model is highlighted in 

red. 

Models AIC Deviance 
Explained Sum log likelihood Mean Squared 

Error 
Model 

Convergence 
Cross Validation 

Convergence 

Delta Gamma 

m1 8,802.19 82.31% -8,286.17 2,330.05 True True 

m2 8,803.62 82.29% -8,690.88 2,311.10 False False 

m3 8,804.19 82.31% -8,441.83 2,310.69 False False 

m4 8,801.62 82.29% -8,092.74 2,324.47 True True 

m5 8,799.62 82.29% -8,305.95 2,216.04 True True 

Tweedie 

m6 8,930.46 83.28% -11,711.63 2,501.87 True True 

m7 8,912.83 83.10% - - True - 
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Table 15. Main and random effect parameter estimates, and their respective standard errors, for 

each of the model components (binomial and gamma) of the chosen optimal spring model (m5) 

for Atlantic mackerel.  

 Binomial Component Gamma Component 

Term Estimate 
Standard 

Error Estimate 
Standard 

Error 

Main effect parameters 

Depth -4.13 6.68 -15.01 4.16 

Depth -7.24 4.55 -16.39 4.02 

Depth 8.32 3.62 5.03 3.69 

Depth -8.70 3.00 6.34 3.43 

Year: 2009 -2.08 0.54 -0.39 0.30 

Year: 2010 -1.98 0.53 -0.18 0.26 

Year: 2011 -2.14 0.54 0.23 0.28 

Year: 2012 -1.55 0.53 -0.30 0.26 

Year: 2013 -1.44 0.52 -0.17 0.23 

Year: 2014 -2.33 0.55 -0.14 0.28 

Year: 2015 -2.06 0.53 -0.01 0.26 

Year: 2016 -1.35 0.52 -0.10 0.23 

Year: 2017 -2.01 0.53 0.27 0.26 

Year: 2018 -1.75 0.54 0.06 0.28 

Year: 2019 -1.66 0.53 -0.34 0.25 

Year: 2021 -2.18 0.54 0.03 0.27 

Random effect parameters 
Spatial range 161.20 46.01 - - 
Spatiotemporal range 99.71 11.89 27.37 5.71 
Spatial standard deviation (ω) 1.44 0.26 - - 
Spatiotemporal standard 
deviation (ϵ) 1.48 0.10 2.10 0.26 

Dispersion - - 0.83 0.04 
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Table 16. The nominal mean biomass catch rate generated by the optimal spring model in each 

year, and the quantile of the distribution that corresponds to the observed average biomass catch 

rate in each year for Atlantic mackerel. The overall average biomass catch rate across years 

generated by the spring model and the quantile of the distribution that corresponds to the 

observed average catch rate across years for Atlantic mackerel is provided at the bottom of the 

table.  

Year Average Biomass (kg/tow) Quantile 

2009 6.58 0.01 

2010 4.79 0.00 

2011 5.34 0.09 

2012 4.34 0.26 

2013 5.41 0.02 

2014 0.58 0.00 

2015 10.49 0.03 

2016 2.58 0.09 

2017 6.82 0.01 

2018 2.18 0.06 

2019 4.08 0.30 

2021 5.76 0.00 

Overall 5.06 0.00 
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Table 17. The average proportion of zeroes generated by the optimal spring model in each year, 

and the quantile of the distribution that corresponds to the observed proportion of zero in each 

year for Atlantic mackerel. The average proportion of zeroes across years generated by the 

spring model and the quantile of the distribution that corresponds to that observed average 

proportion of zeroes across years for Atlantic mackerel is provided at the bottom of the table.  

Year Average Proportion of Zeroes Quantile 

2009 0.70 1.00 

2010 0.69 1.00 

2011 0.71 1.00 

2012 0.61 1.00 

2013 0.60 1.00 

2014 0.76 1.00 

2015 0.71 1.00 

2016 0.57 0.99 

2017 0.67 1.00 

2018 0.68 1.00 

2019 0.62 1.00 

2021 0.71 1.00 

Overall 0.67 1.00 
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Table 18. The annual stratified mean biomass generated by the optimal spring model in each year and 

each survey effort, and the quantile of the distribution that corresponds to the observed annual abundance 

index under the respective survey effort for Atlantic mackerel.  

Year 

Status Quo Survey Effort Wind-Precluded Survey Effort 

Stratified Mean 

(kg/tow) Quantile 

Stratified Mean 

(kg/tow) Quantile 

2009 9.50 0.50 9.80 0.57 

2010 4.38 0.00 3.37 0.00 

2011 6.88 0.48 5.88 0.23 

2012 3.31 0.06 3.32 0.08 

2013 2.82 0.00 2.70 0.00 

2014 0.62 0.01 0.65 0.01 

2015 16.68 0.72 16.90 0.77 

2016 3.51 0.67 4.03 0.86 

2017 9.59 0.21 8.08 0.06 

2018 3.72 0.64 4.11 0.76 

2019 4.41 0.39 4.36 0.40 

2021 7.76 0.11 8.60 0.23 
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Table 19. The estimates of population trend generated by the optimal seasonal models, and the 

quantile of the distribution that corresponds to the observed estimate of population trend for 

Atlantic mackerel.  

 Population Trend 
Estimate Quantile 

Status quo survey effort 0.04 0.65 

Wind-precluded survey effort 0.10 0.80 
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FIGURES 

 
Figure 1. A map of the actively sampled NEFSC bottom trawl survey strata (white polygons) 

overlapped by leased wind areas (dark purple), and the planned wind areas (purple). 
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Figure 2. A map of the actively sampled NEFSC bottom trawl survey strata and the percentage 

of area impacted and subject to survey preclusion by offshore wind area overlap. 
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Figure 3. The percentage of (A) tows conducted in strata proposed for overlap by wind and (B) 

tows conducted over the full survey area that would be removed from positive survey 

observations due to wind-precluded effort.  
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Figure 4. The percentage of (A) tows, (B) total biomass, and (C) total number of fish observed in 

strata that are proposed for overlap by wind that would be removed from positive survey 

observations due to wind-precluded effort for a set of stakeholder-identified species. 
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Figure 5. The percentage of (A) tows, (B) total biomass, and (C) total number of fish observed 

over the full survey area that would be removed from positive survey observations due to wind-

precluded effort for a set of stakeholder-identified species. 
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Figure 6. The percentage of (A) tows, (B) total biomass, and (C) total number of fish observed 

over the full survey area that would be removed from positive survey observations due to wind-

precluded effort for a set of stakeholder-identified species.  
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Figure 7. The distribution of mean absolute relative differences between survey effort scenarios 

for all species observed in the A) fall survey data and B) spring survey data (dark blue bars). The 

mean absolute relative differences between status quo and wind-precluded indices for summer 

flounder and Atlantic mackerel are denoted by the red and purple dotted lines, respectively. 

  



 

105 

 
Figure 8.  The distribution of mean absolute relative differences between survey effort scenarios 

for all species observed in the A) fall survey data and B) spring survey data (light blue bars). The 

mean absolute relative differences between status quo and wind-precluded CVs for summer 

flounder and Atlantic mackerel are denoted by the red and purple dotted lines, respectively. 
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Figure 9. The distribution of mean absolute relative differences between survey effort scenarios 

for all species observed in the A) fall survey data and B) spring survey data (light blue bars). The 

mean absolute relative differences between status quo and wind-precluded population trends for 

summer flounder and Atlantic mackerel are denoted by the orange and dark blue dotted lines, 

respectively. 
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Figure 10. The A) fall and B) spring sampling frames for summer flounder (light blue) 

comprised of the 95% total cumulative biomass observed by the historical time series overlapped 

by the leased wind areas (dark purple), and the planned wind areas (light purple). 
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Figure 11. Summer flounder biomass observations based on whether the biomass was observed 

inside or outside of planned and leased wind energy areas.  
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Figure 12. The number of survey tows that caught summer flounder that would have occurred 

inside and outside wind energy areas in each year during the A) fall survey and B) spring survey.  
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Figure 13. The seasonal annual abundance indices for summer flounder under a status quo 

survey effort assumption (green) and a wind-precluded survey effort assumption (orange). The 

bars on each of the points represent the standard error around the stratified mean. 
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Figure 14. The distribution of estimated fall (left column) and spring (right column) population 

trends for summer flounder when the observed data is randomly resampled with replacement to 

emulate a status quo survey effort for each season (green), when wind-area tows are precluded 

from trend estimation (orange), and when the status quo effort data is randomly reduced by the 

same proportions as the potential wind-precluded effort to emulate a general reduction in survey 

effort (purple). The 95% confidence intervals of each distribution are represented by the dark 

blue shaded rectangle in each panel, and the estimated population trend from the observed data 

under the wind-precluded survey effort scenario is presented by the black dotted line and 

annotated with the representative quantile of the distribution. 
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Figure 15. The change in estimates of population trend for summer flounder from the A) fall and 

B) spring survey as the number of years the survey is precluded from wind areas increases. The 

bars represent the 95% confidence intervals around the trend estimate. 
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Figure 16. The seasonal sampling frame for Atlantic mackerel (light blue) overlapped by the 

leased wind areas (dark purple), and the planned wind areas (purple). 
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Figure 17. A map of spring Atlantic mackerel biomass observations based on whether the 

biomass was observed inside or outside of planned and leased wind energy areas. 
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Figure 18. The number of survey tows that observed Atlantic mackerel that would have occurred 

inside and outside wind energy areas in each year. 
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Figure 19. The spring annual abundance indices for Atlantic mackerel under a status quo survey 

effort assumption (green points) and a wind-precluded survey effort assumption (orange points). 

The bars on each of the points represent the standard error around the stratified mean. 
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Figure 20. The distribution of estimated spring population trends for Atlantic mackerel when the 

observed data is randomly resampled with replacement to emulate a status quo survey effort (top 

panel), when wind-area tows are precluded from trend estimation (middle panel), and when the 

status quo effort data is randomly reduced by the same proportions as the potential wind-

precluded effort to emulate a general reduction in survey effort (bottom panel). The 95% 

confidence intervals of each distribution are represented by the dark blue shaded rectangle in 

each panel, and the estimated population trend from the observed data under the wind-precluded 

survey effort scenario is presented by the black dotted line annotated with the representative 

quantile of the distribution. 
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Figure 21. The change in estimates of population trend for Atlantic mackerel as the number of 

years the survey is precluded from wind areas increases. The bars represent the 95% confidence 

intervals around the trend estimate. 
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Figure 22. A quantile-quantile plot of observed quantiles of MCMC-resampled residuals 

compared to the theoretical quantiles of residuals from the models fit to A) fall summer flounder 

survey data, and B) spring summer flounder survey data.  
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Figure 23. The distribution of MCMC-resampled residuals predicted over 10 simulations for 

summer flounder compared to the observed values of biomass in link space fit to A) fall summer 

flounder survey data, and B) spring summer flounder survey data.  

 

 

 



 

121 

 

Figure 24. The marginal effect of depth on summer flounder biomass catch rates predicted by the 

A) fall summer flounder model, and B) spring summer flounder model. Gray shaded area 

represents the 95% confidence intervals around the predictions.   
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Figure 25. The marginal effect of depth and year on summer flounder biomass catch rates 

predicted by the A) fall summer flounder model, and B) spring summer flounder model. 
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Figure 26. The marginal effect of depth and area on summer flounder biomass catch rates within 

areas A) outside wind areas and B) inside wind areas predicted by the spring model. 
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Figure 27. The marginal effect of year and area on summer flounder biomass catch rates within 

areas A) outside wind areas and B) inside wind areas predicted by the spring model. 
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Figure 28. Fall (top four panels) and spring (bottom four panels) estimates of the fixed effects for 

the most recent four years of the time series from the respective models for summer flounder. 
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Figure 29. Fall (top four panels) and spring (bottom four panels) estimates of the spatial random 

effects from the respective models for summer flounder. 
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Figure 30. Fall (top four panels) and spring (bottom four panels) estimates of the spatiotemporal 

random effects for the most recent four years of the time series from the respective models for 

summer flounder. 
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Figure 31. Fall (top four panels) and spring (bottom four panels) predictions of summer flounder 

biomass extrapolated from the model across the sampling frame and within respective survey 

strata.  
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Figure 32. The distribution of simulated average biomass catch rates generated by the A) fall 

summer flounder model, and B) spring summer flounder model. The observed average survey 

biomass catch rate is represented by the orange dotted line.  
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Figure 33. The distribution of simulated average biomass catch rates in each year generated by 

the A) fall summer flounder model, and B) spring summer flounder model. The observed 

average survey biomass catch rate in each year and season from the data is represented by the 

orange diamond. The annual nominal averages of biomass catch rates is represented by the black 

dotted line. The effect of outliers has been removed from the distribution. 
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Figure 34. The distribution of simulated average proportion of zeroes generated by the A) fall 

summer flounder model, and B) spring summer flounder model. The observed average 

proportion of zeroes is represented by the orange dotted line. 
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Figure 35. The distribution of simulated average proportions of zeroes in each year generated by 

the A) fall summer flounder model, and B) spring summer flounder model. The observed 

average proportion of zeroes in each year and season from the data is represented by the orange 

diamond. The overall observed average proportion of zeroes in each year is represented by the 

black dotted line. The effect of outliers has been removed from the distribution. 
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Figure 36. The distribution of simulated abundance indices in each year and under each survey 

effort scenario generated by the A) fall summer flounder model, and B) spring summer flounder 

model. The observed survey annual abundance indices in each year, season, and survey effort 

scenario from the data is represented by the orange diamond. The effect of outliers has been 

removed from the distribution. 
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Figure 37. The distribution of estimates of population trend calculated with survey data 

simulated from A) the fall model fit for summer flounder and B) the spring model fit for summer 

flounder under status quo survey effort or under wind-precluded survey effort. The observed 

population trend by the survey under the respective survey effort scenarios and seasons are 

presented by the dark purple diamond, respectively. The effect of outliers has been removed 

from the distribution.  
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Figure 38. A quantile-quantile plot of observed quantiles of MVN residuals compared to the 

theoretical quantiles of residuals for the presence-absence component of the model fit to spring 

Atlantic mackerel survey data. 

 



 

136 

 

 

Figure 39. A quantile-quantile plot of observed quantiles of MVN residuals compared to the 

theoretical quantiles of residuals for the positive catch rate component of the model fit to spring 

Atlantic mackerel survey data. 
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Figure 40. The distribution of MVN residuals predicted by the binomial (presence-absence) 

component of the spring model for Atlantic mackerel compared to the observed values of 

biomass in link space used to fit the model. 
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Figure 41. The distribution of MVN residuals predicted by the gamma (positive catch rate) 

component of the spring model for Atlantic mackerel compared to the observed values of 

biomass in link space used to fit the model. 
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Figure 42. The quantile-quantile plot of DHARMa-simulated residuals (left plot) and the 

distribution of residuals plotted against the predicted values (right plot) from the optimal Atlantic 

mackerel model.  
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Figure 43. The marginal effect of depth and year on Atlantic mackerel biomass catch rates 

predicted by the spring combined Delta Gamma model (model 5;Table 14). 
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Figure 44. Spring estimates of the fixed effects for the most recent four years in the time series 

from the model for Atlantic mackerel. 
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Figure 45. Spring estimates of the spatial random effects from the model for Atlantic mackerel.  
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Figure 46. Spring estimates of the spatiotemporal random effects for the most recent four years 

in the time series from the model for Atlantic mackerel. 
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Figure 47. Spring predictions of Atlantic mackerel biomass extrapolated from the model across 

the sampling frame for the most recent four years in the time series. 
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Figure 48. The distribution of simulated average biomass catch rates generated by the spring 

Atlantic mackerel model. The observed average survey biomass catch rate is represented by the 

orange dotted line. 
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Figure 49. The distribution of simulated average biomass catch rates in each year generated by 

the optimal Atlantic mackerel model. The observed spring survey biomass catch rate in each year 

from the data is represented by the orange diamond. The overall nominal average of biomass 

catch rate is represented by the black dotted line. The effect of outliers has been removed from 

the distribution. 
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Figure 50. The distribution of simulated proportions of zeroes generated by the spring Atlantic 

mackerel model. The observed proportion of zeroes is represented by the orange dotted line. 
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Figure 51. The distribution of simulated proportions of zeroes in each year generated by the 

optimal Atlantic mackerel model. The observed proportion of zeroes in each year from the data 

is represented by the orange diamond. The overall proportion of zeroes is represented by the 

black dotted line. The effect of outliers has been removed from the distribution. 
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Figure 52. The distribution of simulated annual abundance indices in each year and under each 

survey effort scenario generated by the optimal Atlantic mackerel model. The observed spring 

annual abundance indices in each year from the data and under the respective survey effort 

scenario is represented by the orange diamond. The effect of outliers has been removed from the 

distribution. 
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Figure 53. The distribution of estimates of population trend calculated with survey data 

simulated from the spring model fit for Atlantic mackerel under status quo survey effort (green 

boxplot) or under wind-precluded survey effort (orange boxplot). The observed population trend 

by the survey under the respective survey effort scenarios is presented by the dark purple 

diamond, respectively. The effect of outliers has been removed from the distribution. 
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Figure 54. The distribution of simulated annual abundance indices in each year for A-C) fall 

summer flounder populations and D-F) spring summer flounder populations under status quo 

survey effort (green boxplots) and wind-precluded survey effort (orange boxplots) in each of the 

productivity treatments: baseline fish density (left panels), enhanced fish density (middle panels), 

and reduced fish density (right panels). The effect of outliers has been removed from the 

distribution. 
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Figure 55. The distribution of annual abundance indices calculated for A) fall summer flounder 

populations and B) spring summer flounder populations under status quo survey effort (green 

boxplots) and wind-precluded survey effort (orange boxplots) over the simulated five-year time 

series across the productivity treatments: baseline, enhanced, and reduced fish density. The effect 

of outliers has been removed from the distribution. 
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Figure 56. The distribution of relative differences between annual abundance indices calculated 

for A) fall summer flounder populations and B) spring summer flounder populations under status 

quo and wind-precluded survey effort averaged over the simulated five-year time series across 

the productivity treatments: baseline, enhanced, and reduced fish density. The effect of outliers 

has been removed from the distribution. 
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Figure 57. The distribution of absolute relative differences between annual abundance indices 

calculated for A) fall summer flounder populations and B) spring summer flounder populations 

under status quo and wind-precluded survey effort averaged over the simulated five-year time 

series across the productivity treatments: baseline, enhanced, and reduced fish density. The effect 

of outliers has been removed from the distribution. 
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Figure 58. The distribution of coefficient of variations (CVs) of A) fall summer flounder 

abundance indices and B) spring summer flounder abundance indices calculated under status quo 

survey effort (green boxplots) and wind-precluded survey effort (orange boxplots) over the 

simulated five-year time series across the productivity treatments: baseline, enhanced, and 

reduced fish density. The effect of outliers has been removed from the distribution. 
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Figure 59. The distribution of changes in A) fall summer flounder population trends and B) 

spring summer flounder population trends calculated under status quo survey effort (green 

boxplots) and wind-precluded survey effort (orange boxplots) over the simulated five-year time 

series across the productivity treatments: baseline, enhanced, and reduced fish density. The effect 

of outliers has been removed from the distribution. 
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Figure 60. The distribution of absolute differences between A) fall summer flounder population 

trends and B) spring summer flounder population trends calculated under status quo survey effort 

and wind-precluded survey effort over the simulated five-year time series across the productivity 

treatments: baseline, enhanced, and reduced fish density.  The effect of outliers has been 

removed from the distribution. 

 

 

  



 

158 

 

Figure 61. The distribution of simulated annual abundance indices in each year for spring 

Atlantic mackerel populations under status quo survey effort (green boxplots) and wind-

precluded survey effort (orange boxplots) in each of the productivity treatments: A) baseline fish 

density, B) enhanced fish density, and C) reduced fish density. The effect of outliers has been 

removed from the distribution. 
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Figure 62. The distribution of Atlantic mackerel abundance indices calculated under status quo 

survey effort (green boxplots) and wind-precluded survey effort (orange boxplots) over the 

simulated five-year time series across the productivity treatments: baseline, enhanced, and 

reduced fish density. Y-axis has been modified to remove the effect of outliers on the 

distribution. The effect of outliers has been removed from the distribution. 
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Figure 63. The distribution of relative differences between annual abundance indices calculated 

for spring Atlantic mackerel populations under status quo and wind-precluded survey effort 

averaged over the simulated five-year time series across the productivity treatments: baseline, 

enhanced, and reduced fish density. The effect of outliers has been removed from the 

distribution. 
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Figure 64. The distribution of absolute relative differences between annual abundance indices for Atlantic 

mackerel calculated under status quo and wind-precluded survey effort averaged over the simulated five-

year time series across the productivity treatments: baseline, enhanced, and reduced fish density. The 

effect of outliers has been removed from the distribution. 
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Figure 65. The distribution of coefficient of variations (CVs) of Atlantic mackerel abundance 

indices calculated under status quo survey effort (green boxplots) and wind-precluded survey 

effort (orange boxplots) over the simulated five-year time series across the productivity 

treatments: baseline, enhanced, and reduced fish density. The effect of outliers has been removed 

from the distribution. 
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Figure 66. The distribution of changes in population trends for Atlantic mackerel calculated 

under status quo survey effort (green boxplots) and wind-precluded survey effort (orange 

boxplots) over the simulated five-year time series across the productivity treatments: baseline, 

enhanced, and reduced fish density. Y-axis has been modified to remove the effect of outliers on 

the distribution. The effect of outliers has been removed from the distribution. 
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Figure 67. The distribution of absolute differences between population trends for Atlantic 

mackerel calculated under status quo and wind-precluded survey effort averaged over the 

simulated five-year time series across the productivity treatments: baseline, enhanced, and 

reduced fish density. Y-axis has been modified to remove the effect of outliers on the 

distribution. The effect of outliers has been removed from the distribution. 
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APPENDIX A: FIGURES 

A1. Species with the highest observed differences between survey effort indices  

Time series of annual abundance indices from the seasonal bottom trawl survey under a status 

quo survey effort assumption (green) and a wind-precluded survey effort assumption (orange) for 

each of the species identified as having the highest observed differences between effort scenarios 

in terms of annual abundance indices, coefficients of variation, and/or estimates of population 

trend (Table 2). The bars on each of the points represent the standard error around the stratified 

mean. 

 

Figure A1. Fall and spring estimates of annual abundance for the skate complex. 
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Figure A2. Fall estimates of annual abundance for Atlantic croaker. 
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Figure A3. Spring estimates of annual abundance for Atlantic herring. 
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Figure A4. Spring estimates of annual abundance for Atlantic mackerel. 

 



 

169 

 

Figure A5. Spring estimates of annual abundance for Atlantic seasnail. 
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Figure A6. Spring estimates of annual abundance for Atlantic silverside. 
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Figure A7. Spring estimates of annual abundance for Atlantic surfclam. 
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Figure A8. Fall estimates of annual abundance for black sea bass. 
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Figure A9. Spring estimates of annual abundance for bluefish. 

  



 

174 

 

Figure A10. Fall estimates of annual abundance for bluntnose stingray. 
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Figure A11. Spring estimates of annual abundance for unclassified bobtail species. 
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Figure A12. Fall estimates of annual abundance for bullnose ray. 
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Figure A13. Spring estimates of annual abundance for butterfish. 
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Figure A14. Spring estimates of annual abundance for clearnose skate. 

 

 



 

179 

 

Figure A15. Fall and spring estimates of annual abundance for coarsehand lady crab. 

 

Figure A16. Spring estimates of annual abundance for unclassified etropus. 
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Figure A17. Fall and spring estimates of annual abundance for horseshoe crab. 

 

Figure A18. Spring estimates of annual abundance for lady crab. 
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Figure A19. Fall and spring estimates of annual abundance for little skate. 
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Figure A20. Fall estimates of annual abundance for northern searobin. 
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Figure A21. Fall estimates of annual abundance for rough scad. 
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Figure A22. Fall estimates of annual abundance for roughtail stingray. 
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Figure A23. Fall estimates of annual abundance for round herring. 
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Figure A24. Fall estimates of annual abundance for scup. 

 
Figure A25. Fall estimates of annual abundance for sea scallop. 
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Figure A26. Fall estimates of annual abundance for pink, brown, and white shrimp. 
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Figure A27. Fall and spring estimates of annual abundance for smallmouth flounder. 

 

Figure A28. Spring estimates of annual abundance for smooth dogfish. 



 

189 

 

 

Figure A29. Fall and spring estimates of annual abundance for unclassified spider crabs. 
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Figure A30. Fall estimates of annual abundance for spiny butterfly ray. 
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Figure A31. Fall and spring estimates of annual abundance for spiny dogfish. 
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Figure A32. Fall estimates of annual abundance for spotted hake. 
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Figure A33. Spring estimates of annual abundance for striped bass. 
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Figure A34. Fall estimates of annual abundance for windowpane flounder. 
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Figure A35. Fall estimates of annual abundance for yellowtail flounder. 
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A2. Stakeholder-selected Species 

Seasonal annual abundance indices for each of the stakeholder-identified species from the 

SSEEP workshops under a status quo survey effort assumption (green) and a wind-precluded 

survey effort assumption (orange). The bars on each of the points represent the standard error 

around the stratified mean. 

 
Figure A36. Fall and spring estimates of annual abundance for the skate complex. 
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Figure A37. Spring estimates of annual abundance for Atlantic herring. 
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Figure A38. Spring estimates of annual abundance for Atlantic mackerel. 

 

Figure A39. Fall estimates of annual abundance for black sea bass. 



 

199 

 

 
Figure A40. Spring estimates of annual abundance for butterfish. 
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Figure A41. Fall and spring estimates of annual abundance for longfin squid. 

 

 
Figure A42. Fall and spring estimates of annual abundance for silver hake. 
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Figure A43. Fall and spring estimates of annual abundance for spiny dogfish. 

 

 
Figure A44. Fall and spring estimates of annual abundance for summer flounder. 
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Figure A45. Fall and spring estimates of annual abundance for winter flounder. 

 

 
Figure A46. Fall estimates of annual abundance for yellowtail flounder. 
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A3. Species Distribution Models 

Additional diagnostic plots for the fall and spring summer flounder models as well as the spring 

Atlantic mackerel model.  

 

Figure A47. Quantile-quantile plots of observed quantiles across each simulation of MCMC-

resampled residuals compared to the theoretical quantiles of residuals from the model fit to fall 

summer flounder survey data. 
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Figure A48. The distribution of MCMC-resampled residuals predicted over 10 simulations for 

summer flounder compared to the observed values of average depth fit to fall summer flounder 

survey data. 
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Figure A49. The quantile-quantile plot of DHARMa-simulated residuals (left plot) and the 

distribution of residuals plotted against the predicted values (right plot) from the optimal fall 

summer flounder model. 
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Figure A50. Quantile-quantile plots of observed quantiles across each simulation of MCMC-

resampled residuals compared to the theoretical quantiles of residuals from the model fit to 

spring summer flounder survey data. 
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Figure A51. Estimates of the fixed effects across the full time series from the optimal fall model 

for summer flounder. 
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Figure A52. Estimates of the spatial random effects across the full time series from the optimal 

fall model for summer flounder. 
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Figure A53. Estimates of the spatiotemporal random effects across the full time series from the 

optimal fall model for summer flounder. 
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Figure A54. Estimates of biomass across the full time series from the optimal fall model for 

summer flounder. 
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Figure A55. Estimates of the fixed effects across the full time series from the optimal spring 

model for summer flounder. 
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Figure A56. Estimates of the spatial random effects across the full time series from the optimal 

spring model for summer flounder. 
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Figure A57. Estimates of the spatiotemporal random effects across the full time series from the 

optimal spring model for summer flounder. 
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Figure A58. Estimates of biomass across the full time series from the optimal spring model for 

summer flounder.  
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Figure A59. The distribution of MCMC-resampled residuals predicted from the presence-

absence model component compared to the observed values of average depth fit to spring 

Atlantic mackerel survey data. 
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Figure A60. The distribution of MCMC-resampled residuals predicted from the positive 

encounter model component compared to the observed values of average depth fit to spring 

Atlantic mackerel survey data. 
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Figure A61. DHARMa zero-inflation test via comparison to expected zeros with simulation 

under the fitted model for spring Atlantic mackerel. 
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Figure A62. DHARMa Moran’s I test for spatial autocorrelation for the spring Atlantic mackerel 

model. 
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Figure A63. Estimates of fixed effects across the full time series from the optimal spring model 

for Atlantic mackerel. 
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Figure A64. Estimates of spatial random effects across the full time series from the optimal 

spring model for Atlantic mackerel. 
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Figure A65. Estimates of spatiotemporal random effects across the full time series from the 

optimal spring model for Atlantic mackerel. 
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Figure A66. Estimates of biomass across the full time series from the optimal spring model for 

Atlantic mackerel.  
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APPENDIX B: TABLES 

Table B1. Configurations used to fit the Tweedie observation models predicting Atlantic mackerel biomass catch rates. The 

candidate models are highlighted in red. 

Models Predictors Spatial Spatiotemporal Time Shared Range 
All data present 

m1 Depth (Penalized spline) 
Year - - - Yes 

m2 Depth (second-order polynomial) 
Year 

- - - Yes 

m3 
Depth (Penalized spline) 
Year 
Area 

- - - Yes 

m4 
Depth (second-order polynomial) 
Year 
Area 

- - - Yes 

m5 Depth (Penalized spline) 
Year On - - Yes 

m6 
Depth (second-order polynomial) 
Year On - - Yes 

m7 
Depth (Penalized spline) 
Year 
Area 

On - - Yes 

cont. on next page 
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Table B1 cont. 

Models Predictors Spatial Spatiotemporal Time Shared Range 
All data present 

m8 
Depth (second-order polynomial) 
Year 
Area 

On - - Yes 

m9 Depth (Penalized spline) 
Year On IID Year Yes 

m10 Depth (second-order polynomial) 
Year On IID Year Yes 

m11 
Depth (Penalized spline) 
Year 
Area 

On IID Year Yes 

m12 
Depth (second-order polynomial) 
Year 
Area 

On IID Year Yes 

m13 Depth (third-order polynomial) 
Year On IID Year Yes 

m14 Depth (fourth-order polynomial) 
Year On IID Year Yes 

Biomass outliers >99th percentile removed 

m15 Depth (Penalized spline) 
Year - - - Yes 

cont. on next page 
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Table B1 cont. 

Models Predictors Spatial Spatiotemporal Time Shared Range 
Biomass outliers >99th percentile removed 

m16 Depth (second-order polynomial) 
Year - - - Yes 

m17 
Depth (Penalized spline) 
Year 
Area 

- - - Yes 

m18 
Depth (second-order polynomial) 
Year 
Area 

- - - Yes 

m19 Depth (Penalized spline) 
Year On - - Yes 

m20 Depth (second-order polynomial) 
Year 

On - - Yes 

m21 
Depth (Penalized spline) 
Year 
Area 

On - - Yes 

m22 
Depth (second-order polynomial) 
Year 
Area 

On - - Yes 

m23 Depth (Penalized spline) 
Year On IID Year Yes 

m24 
Depth (second-order polynomial) 
Year On IID Year Yes 

cont. on next page 



 

226 

 

Table B1 cont. 

Models Predictors Spatial Spatiotemporal Time Shared Range 
Biomass outliers >99th percentile removed 

m25 
Depth (Penalized spline) 
Year 
Area 

On IID Year Yes 

m26 
Depth (second-order polynomial) 
Year 
Area 

On IID Year Yes 

m27 
Depth (third-order polynomial) 
Year On IID Year Yes 

m28 Depth (fourth-order polynomial) 
Year On IID Year Yes 

Biomass at depths >200m removed 

m29 Depth (Penalized spline) 
Year On IID Year Yes 

m30 Depth (second-order polynomial) 
Year On IID Year Yes 

m31 Depth (third-order polynomial) 
Year On IID Year Yes 

m32 Depth (fourth-order polynomial) 
Year On IID Year Yes 

cont on next page. 
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Table B1 cont. 

Models Predictors Spatial Spatiotemporal Time Shared Range 

Biomass at depths >200m removed 

m33 
Depth (fourth-order polynomial) 
Year On IID Year No 

  



 

228 

Table B2. Diagnostic quantities for the spring Tweedie observation models fit for Atlantic mackerel. For each of the models, the 

following information is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean 

squared error across the folds of each cross-validation, and the model convergence. The final candidate models are highlighted in 

red. 

Models AIC Deviance 
Explained Sum log likelihood Mean Squared 

Error 
Model 

Convergence 
Cross Validation 

Convergence 
All data present 
m1 11,517.19 97.00% -5,888.84 1,995.88 True True 
m2 11,663.04 98.23% -5,936.78 1,945.46 True True 
m3 11,519.16 97.00% -5,909.85 1,946.49 True True 
m4 11,664.85 98.23% -5,940.14 1,969.45 True True 
m5 10,861.05 91.42% -6,959.42 2,129.19 True True 
m6 10,860.20 91.42% -7,080.82 2,118.72 True True 
m7 10,862.40 91.42% -6,907.58 2,204.69 True True 
m8 10,861.64 91.41% -6,974.92 2,170.60 True True 
m9 9,845.20 82.83% -12,042.42 2,466.68 True True 
m10 9,852.66 82.89% -12,835.69 2,235.19 True True 
m11 9,845.70 82.81% -12,093.76 2,196.50 True True 
m12 9,853.19 82.88% -13,845.91 2,167.77 True True 
m13 9,833.31 82.71% -12,249.59 2,048.80 True True 
m14 9,833.47 82.69% -12,083.44 2,114.91 True True 
Biomass outliers >99th percentile removed 
m15 9,858.75 97.76% -4,942.90 36.07 True True 
m16 9,955.71 98.72% -5,012.92 36.18 True True 

cont. on next page 
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Table B2 cont. 

Models AIC Deviance 
Explained Sum log likelihood Mean Squared 

Error 
Model 

Convergence 
Cross Validation 

Convergence 
Biomass outliers >99th percentile removed 
m17 9,859.63 97.75% -4,942.15 35.71 True True 
m18 9,952.77 98.67% -4,994.10 36.43 True True 
m19 9,384.16 93.00% -5,031.67 37.27 True True 
m20 9,383.65 92.99% -5,005.25 37.32 True True 
m21 9,385.22 92.99% -4,955.16 36.97 True True 
m22 9,384.81 92.98% -4,973.61 37.22 True True 
m23 8,607.62 85.25% -7,073.02 56.22 True True 
m24 8,611.95 85.30% -7,277.47 52.17 True True 
m25 8,615.95 85.32% -7,070.21 42.35 False False 
m26 8,613.69 85.29% -7,263.21 49.80 True True 
m27 8,597.89 85.14% -7,038.54 46.81 True True 
m28 8,599.09 85.13% -7,232.99 47.14 True True 
Biomass at depths >200m removed 
m29 8,942.61 83.43% -11,557.58 2,696.41 True True 
m30 8,943.20 83.44% -11,120.87 2,536.75 True True 
m31 8,933.66 83.33% -11,031.87 2,371.88 True True 
m32 8,930.46 83.28% -11,711.63 2,501.87 True True 
m33 8,912.83 83.10% - - True - 
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Table B3. Configurations used to fit the Delta gamma observation models predicting Atlantic mackerel biomass catch rates. The 

candidate models are highlighted in red. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

All data present 

m1 Depth (Penalized spline) 
Year 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m2 Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m3 
Depth (Penalized spline) 
Year 
Area 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m4 
Depth (second-order polynomial) 
Year 
Area 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m5 
Depth (Penalized spline) 
Year 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

All data present 

m6 Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

m7 
Depth (Penalized spline) 
Year 
Area 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

m8 
Depth (second-order polynomial) 
Year 
Area 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

m9 
Depth (Penalized spline) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m10 Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) 

On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

All data present 

m11 
Depth (Penalized spline) 
Year 
Area 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m12 
Depth (second-order polynomial) 
Year 
Area 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m13 Depth (third-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m14 
Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Biomass outliers >99th percentile removed 

m15 Depth (Penalized spline) 
Year 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m16 Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m17 
Depth (Penalized spline) 
Year 
Area 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m18 
Depth (second-order polynomial) 
Year 
Area 

Binomial 
(Component 1) - - - - 

Gamma 
(Component 2) - - - - 

m19 Depth (Penalized spline) 
Year 

Binomial 
(Component 1) 

On - - - 

Gamma 
(Component 2) On - - - 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Biomass outliers >99th percentile removed 

m20 Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

m21 
Depth (Penalized spline) 
Year 
Area 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

m22 
Depth (second-order polynomial) 
Year 
Area 

Binomial 
(Component 1) On - - - 

Gamma 
(Component 2) On - - - 

m23 Depth (Penalized spline) 
Year 

Binomial 
(Component 1) 

On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m24 Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) 

On IID Year Yes 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Biomass outliers >99th percentile removed 

m25 
Depth (Penalized spline) 
Year 
Area 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m26 
Depth (second-order polynomial) 
Year 
Area 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m27 Depth (third-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m28 
Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

Biomass at depths >200m removed 

m29 Depth (Penalized spline) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Biomass at depths >200m removed 

m30 

Depth (second-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m31 Depth (third-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m32 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year Yes 

Gamma 
(Component 2) On IID Year Yes 

m33 
Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year No 

Gamma 
(Component 2) On IID Year No 

m34 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) 

On IID Year Yes 

Gamma 
(Component 2) On IID Year No 

cont. on the next page 
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Table B3 cont. 

Models Predictors Family Spatial Spatiotemporal Time Shared range 

Biomass at depths >200m removed 

m35 
Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) On IID Year No 

Gamma 
(Component 2) On IID Year Yes 

m36 Depth (fourth-order polynomial) 
Year 

Binomial 
(Component 1) 

On IID Year No 

Gamma 
(Component 2) - IID Year - 
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Table B4. Diagnostic quantities for the spring Delta gamma observation models fit for Atlantic mackerel. For each of the models, the 

following information is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean 

squared error across the folds of each cross-validation, and the model convergence. The final candidate models are highlighted in 

red. 

Models AIC Deviance 
Explained Sum log likelihood Mean Squared 

Error 
Model 

Convergence 
Cross Validation 

Convergence 
All data present 
m1 11,278.55 95.43% -5,730.74 1,956.96 True True 
m2 11,479.75 97.15% -5,846.20 2,006.75 True True 
m3 11,281.93 95.43% -5,768.61 2,056.36 True True 
m4 11,478.66 97.10% -5,868.22 2,003.53 True True 
m5 10,438.92 88.22% -7,178.20 2,088.47 True True 
m6 10,439.39 88.23% -7,400.34 2,216.34 True True 
m7 10,442.09 88.22% -7,080.00 2,170.32 True True 
m8 10,442.42 88.22% -7,148.29 2,151.45 True True 
m9 9,660.76 81.57% -10,457.93 1,999.92 True True 
m10 9,670.35 81.65% -11,227.74 2,038.89 True True 
m11 - - - - - - 
m12 9,673.30 81.64% -11,607.08 1,967.02 True True 
m13 9,647.24 81.42% -10,838.71 2,045.53 True True 
m14 9,640.44 81.33% -10,434.19 1,986.94 True True 
Biomass outliers >99th percentile removed 
m15 9,714.55 96.59% -4,858.68 36.33 True True 
m16 9,827.79 97.73% -4,941.02 36.50 True True 

cont. on the next page 
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Table B4 cont. 

Models AIC Deviance 
Explained Sum log likelihood Mean Squared 

Error 
Model 

Convergence 
Cross Validation 

Convergence 
Biomass outliers >99th percentile removed 
m17 9,714.54 96.55% -4,854.76 35.80 True True 
m18 9,819.34 97.60% -4,934.96 36.38 True True 
m19 9,073.31 90.10% -4,827.97 36.17 True True 
m20 9,075.19 90.12% -4,958.22 36.91 True True 
m21 9,073.55 90.06% -4,880.65 36.58 True True 
m22 9,074.70 90.07% -4,913.54 36.74 True True 
m23 8,480.28 84.13% -5,882.63 36.33 True True 
m24 8,484.46 84.17% -6,054.02 38.60 True True 
m25 8,483.98 84.12% -5,827.27 37.89 True True 
m26 8,487.77 84.16% -6,094.83 38.66 True True 
m27 8,467.82 83.96% -5,852.50 38.49 True True 
m28 8,464.18 83.89% -5,845.95 38.23 True True 
Biomass at depths >200m removed 
m29 8,818.24 82.54% -9,211.70 2,251.81 True True 
m30 8,811.24 82.47% -8,423.96 2,248.19 True True 
m31 8,808.24 82.40% -8,344.62 2,213.10 True True 
m32 8,802.19 82.31% -8,286.17 2,330.05 True True 
m33 8,803.62 82.29% -8,690.88 2,311.10 False False 
m34 8,804.19 82.31% -8,441.83 2,310.69 False False 
m35 8,801.62 82.29% -8,092.74 2,324.47 True True 
m36 8,799.62 82.29% -8,305.95 2,216.04 True True 
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