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ABSTRACT

Impacts to stock abundance indices due to offshore wind development-driven changes to fishery-
independent survey effort

by Angelia M. Miller

Offshore wind energy development is occurring throughout the Northeast Large Marine
Ecosystem and will interact with many marine use sectors, including fisheries. Wind areas
overlap spatially with the footprint of the National Marine Fisheries Service (NMFS) Northeast
Fisheries Science Center (NEFSC) multispecies bottom trawl survey, which has been conducted
since the 1960s, and provides data that are relied upon for the assessment and management of
many fisheries stocks in the Northeast U.S. This fishery-independent survey is confronted by
potential preclusion of trawl sampling due to the spatial conflict arising from offshore wind
energy development. My thesis quantifies the impacts of preclusion to survey operations and
how changes to species distributions and abundances within wind areas could jointly affect
downstream data products, such as stock abundance indices, and fisheries management advice.
The first phase of my study uses the empirical data to serve as a proxy for expected impacts to
survey data products when the survey is precluded from sampling within offshore wind energy
areas (wind-precluded survey effort). Findings suggest that abundance indices are impacted most
for species where there were larger differences in their catch rates in and outside of wind areas.
The second phase of my study used survey data for summer flounder (Paralichthys dentatus) and
Atlantic mackerel (Scomber scombrus) as case studies to fit spatiotemporal generalized linear
mixed effects models (GLMMs), simulate survey data, calculate indices of abundance and
population trends, and compare survey outcomes with and without preclusion from wind
development areas. The results of the modeling indicate that spatiotemporal models can be used
to simulate new survey data and evaluate impacts to the survey (and survey data products) when
it is precluded from offshore wind energy areas. Further employing the species distribution

operating models, I conducted a simulation study to examine changes in fish density under
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assumed changes in species productivity within wind areas, and their effects on survey catch
rates under wind-precluded survey effort. Findings conclude that estimates of abundance indices
and population trends will be most biased if species experience enhanced productivity and
survey effort is precluded within these areas. Thus, it is important that the losses in survey effort
and data be mitigated to maintain at a minimum the existing understanding of species’ relative
abundance. This study contributes directly to implementation of the Federal Survey Mitigation
Strategy for the Northeast U.S. Region as a part of the Survey Simulation Evaluation and
Experimentation Project, which aims to assess potential impacts to the bottom trawl survey
operations and data products and identify mitigation strategies to maintain data integrity.
Furthermore, this study contributes to the current knowledge surrounding the impacts that
offshore wind energy development can have on fishery-independent surveys, which globally is

scarce.
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1 INTRODUCTION

To ensure the sustainable production of fisheries over time, fisheries management employs a
suite of stock assessment and decision-making tools. Particularly, stock assessments often rely
on indices of abundance, which are assumed proportional to a stock’s size, to reflect changes in a
stock’s trend (Harley et al., 2001; Hilborn & Walters, 1992). Indices of abundance are derived
primarily from data that collects catch numbers and weight. Common types of data collection
include catch-per-unit-effort (CPUE) data from commercial and recreational, or fishery-
dependent, sources, tag and recapture data, cooperative research studies with industry vessels,
and fishery-independent surveys (hereafter “surveys”). Indices of abundance are most often
produced from CPUE data or survey data. Surveys use statistical sampling designs to ensure a
random sampling of a stock’s distribution relative to its population (Cochran, 1977; Kotwicki &
Ono, 2019; Ducharme-Barth et al., 2022), though often at a costly price point. Once indices of
abundance are generated from the data, they can be used within stock assessments to help
provide advice for implementing fishery management plans (FMPs) with specific management

measures for the sustainability of a given stock (Large et al., 2013; Gill et al., 2020).

In the Northeast United States (US), the National Marine Fisheries Service (NMFS) Northeast
Fisheries Science Center (NEFSC) has conducted bi-annual fishery-independent multispecies
bottom trawl surveys since 1963 (fall) and 1968 (spring) along the US’ Continental Shelf Large
Marine Ecosystem (NESLME; Politis et al., 2014). The NESLME is a temperate system that
encompasses an area of approximately 260,000 km? from Cape Hatteras in the south to the Gulf
of Maine in the north (Kleisner et al., 2017). This area was incorporated into the US exclusive
economic zone (EEZ) as part of the Magnuson-Stevens Fishery Conservation and Management
Act of 1976 and is cooperatively managed by two of the eight regional councils established in
the act, the New England Fishery Management Council (NEFMC) and the Mid-Atlantic Fishery
Management Council (MAFMC). Both the New England and Mid-Atlantic regions are
experiencing declines in seafood production and commercial fishery profits, with mixed trends in
ecological stability (i.e., fish diversity, fecundity, decreased length at maturity; Caracappa et al.
2025, Gaichas et al. 2025). There is also evidence of shifting distributions and changes in

migration and spawning times in response to changing climate and oceanography metrics
1



(Caracappa et al. 2025, Gaichas et al. 2025). With potential regime shifts and shifting species
distributions to the northeast (Caracappa et al. 2025, Gaichas et al. 2025), long-running
standardized surveys such as the NEFSC multispecies bottom trawl survey and its data sets are

an invaluable source of fisheries information.

The NEFSC bottom trawl survey employs a stratified random sampling design where strata are
defined by depth and latitude and stations are randomly selected before leaving port and sampled
within each stratum, and is designed to produce relative and unbiased abundance indices (Politis
et al., 2014). Survey stations are allocated proportionally to strata area with a minimum of three
sets conducted in each stratum to ensure the calculation of a stratified variance and coefficient of
variation (CV) which is used to assess the survey’s accuracy and precision in estimating a
stock’s relative abundance. Sometimes, the pre-selected station locations are unable to be
sampled due to the presence of fixed gear or difficult habitats such as rocky or hard-bottom
substrates. In these instances, a different pre-selected station is sampled in its place, effectively

reallocating the survey effort to another location within the same stratum.

Other survey designs include simple random sampling, where each station has an equal
probability of being sampled and is chosen at random, or systematic sampling, where a station is
selected at random and each subsequent station is selected based on another randomly-selected
unit of distance apart from the first (Cochran, 1977). There is extensive research into the
performance of each design and comparison among designs (Simmonds, 1996; Overholtz et al.
2006; Blanchard et al., 2008; Liu et al. 2009, 2011; Yu et al., 2012; Hyun & Seo, 2018; Zhao et
al., 2018; Von Szalay et al., 2023). However, each sampling strategy has its tradeoffs related to
the objective of the survey at hand, and while a function of their chosen sampling strategy and
standardized sampling protocols, surveys are also at the mercy of natural species variability,
composition, and behavior. The size of the survey area and the timing of the survey can impact
observations of trends in a species’ spatial distribution or seasonal migration if the survey area is
too small compared to the actual spatial distribution or the distribution changes over time; if the
survey occurs within a species migration pattern; or if the population is only surveyed during the
day when it is more active at night (Godo, 1994; Hjellvik et al., 2002; Rago, 2005; Henderson et

al., 2017; Nichol et al., 2019). Henderson et al. (2017) found that species distributions and
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biomasses along the northeast shelf were affected by the timing of spring and fall transitions
indicated by chosen thresholds of sea surface temperature. More specifically, they found that
species like Atlantic mackerel and summer flounder were more responsive to extreme spring
transitions and would have a more northward distribution during the fall survey with longer
summers or later fall transitions (Henderson et al., 2017). Henderson et al. (2017) also noted
variable timing of the NEFSC bottom trawl survey over the course of its time series. Earlier
shifts in distribution or prolonged residence time within sampling areas could affect the
availability of fish to the survey and even its ability to detect those changes, thereby affecting the
reliability and robustness of relative abundance indices (Blanchard et al., 2008; Thorson &
Barnett, 2017). When coupled with the logistical constraints of a standardized fishery-
independent survey, sources of uncertainty in stock abundance indices have the potential to be

confounded.

To minimize the effect of uncertainty on survey data products, scientists and researchers
maintain consistency of the survey design and comparability of its data products by sampling the
same spatial coverage in time, employing the same gear to standardize catchability (von Szalay
& Somerton, 2005; Miller et al., 2010), and optimizing the effort allocation and time spent
transiting between stations (Liu et al., 2011; Oyafuso et al., 2021; Rhodes & Jonzén, 2011; Xu et
al., 2015). For this reason, fishery-independent surveys are much more costly than their fishery-
dependent counterparts and are more readily susceptible to effort reduction through various
means such as funding and labor shortages, vessel maintenance and repairs, and no-transit zones
in response to environmental and animal protections, among many others (Dennis et al., 2015).
Reductions in survey effort can increase measures of uncertainty and relative bias in abundance
trends (Zimmermann & Enberg, 2017; Kotwicki & Ono, 2019; ICES, 2020), leading to bias in
stock assessment outcomes, failure to track population changes, and overfishing (Kotwicki et al.,
2014; Kotwicki & Ono, 2019). Ongoing research efforts strive to prepare scientists and surveys
to respond to both planned and unplanned reductions and changes to survey designs and
sampling strategies (ICES, 2020, 2023). For example, Yalcin et al. (2023) found that
spatiotemporal models can make up for survey lost effort. Oyafuso et al. (2021, 2023) developed

an approach to optimize survey designs that included the flexibility to adapt easier in the face of
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unavoidable survey changes, and many others have studied the potential to combine data streams
to derive representative distribution maps and indices of abundance that could be used to

supplement gaps in survey effort (ICES 2020, 2023).

A source of particular interest regarding survey effort reduction is offshore wind energy
development. The offshore wind industry is expected to interact with many marine use sectors
and to impose at least four impacts to fishery-independent surveys associated with sound and
vibration, electromagnetic fields, habitat changes, and fishing practice changes (Lipsky et al.,
2016; BOEM, 2019; Haggett et al., 2020, 2021; Methratta et al., 2020; Hare et al., 2022). In
Europe, offshore wind areas have been in operation since the early 1990s, and changes to
commercial fishing practices as a result of preclusion from wind areas has occurred in Germany
and Belgium (Berkenhagen et al., 2010; Schupp et al., 2021). Government research vessels have
tended to be an exemption from these preclusions (Coates et al., 2016; Gill et al., 2020). Much of
the research on impacts of offshore wind to fisheries has been through the lens of commercial
fishery preclusion, and the resulting socioeconomic and ecological impacts (including
displacement of fishing effort). Due to the forced exclusion of all fishing vessels during
construction or operation in Europe, wind energy areas have become quasi-marine protected
preclusion of fishing operations equated to a 50 percent loss of fishery catch. Large
socioeconomic losses of that magnitude for the fishing industry in a given area could shift the
allocation of that effort to less resilient habitats and populations (Bergstrom et al., 2014), which
would only exacerbate the importance of the fishery-independent surveys to track changes in

population abundances.

Unfortunately, little research has been done to understand impacts to fishery-independent survey
effort within the offshore wind energy development areas despite a demonstrated need to
understand and quantify such impacts. As of August 2023, initial phases of construction began
on over 22 million acres, 10,000 turbines, and 33,000 miles of submarine cables slotted for
development along the NESLME (BOEM, n.d.), which imposes a potential 30-percent spatial
overlap with the NMFS NEFSC bottom trawl survey footprint. The bottom trawl survey, along

with twelve other federal surveys in the region, will experience a spatial conflict driven by the
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potential preclusion of scientific monitoring and trawling efforts from areas designated for
offshore wind energy development. The current survey vessel will be unable to sample in wind
areas. To minimize the impacts felt across the suite of NEFSC surveys, and to sustain consistent
sampling designs that are conducive to predicting species’ abundances and distributions, NMFS
has partnered with the Bureau of Ocean Energy Management (BOEM) to produce the Federal
Survey Mitigation Implementation Strategy for the Northeast Region (hereafter Mitigation
Strategy; Hare et al., 2022).

The first goal and objective of the Mitigation Strategy is to reduce and rectify impacts of
offshore wind on NOAA Fisheries surveys by developing and implementing survey-specific
plans to address four identified impacts: preclusion, impacts to survey design, changes to habitat
and airspace, and reduced sampling productivity (Hare et al., 2022). To achieve this goal,
collaborators between NOAA Fisheries, BOEM, Fishery Applications Consulting Team, and the
University of Massachusetts Dartmouth School for Marine Science and Technology (UMassD
SMAST) initiated a project, Survey Simulation Experimentation and Evaluation Project
(SSEEP), to develop a spatially explicit simulation tool that emulates NMFS’ fishery
independent surveys and assess the statistical performance of alternative survey designs and
sampling scenarios guided by a set of stakeholder workshops (Guyant et al., 2022a, 2022b,
2023).

This thesis contributes to the Mitigation strategy, SSEEP, and the limited studies available for
the impacts to federal surveys around wind energy areas by considering the impacts that the
preclusion of fishery-independent survey effort within the wind areas will have on survey
operations, survey performance, and estimates of stock abundance indices that directly affect
fisheries management advice. More specifically, I developed a general framework to quantify
estimates of annual abundance indices derived from existing federal survey operations and
compared them to estimates of annual abundance indices that were calculated under the
assumption that the survey would be unable to conduct tows within wind energy areas and would
not be able to reallocate the lost effort to other pre-selected stations within the same sampling
unit. I then focused the application of this general framework in the context of the NEFSC

multispecies bottom trawl survey (BTS), and further on two case study species.
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The two case study species considered in this work include summer flounder (Paralichthys
dentatus) and Atlantic mackerel (Scomber scombrus), which were identified in the stakeholder
workshops as two of 11 species of commercial and recreational importance and of key interest
identified by industry, academic, and management stakeholders (Guyant et al., 2022a, 2022b,
2023) to understand impacts of wind preclusion on the multispecies bottom trawl survey. They
were chosen as the case study species, in part due to their commercial importance and
stakeholder interest, but also to compare the variation in impacts between two species with

differing behavioral characteristics and interactions with the bottom trawl survey.

The geographic distribution of both summer flounder and Atlantic mackerel has extended from
North Carolina to the U.S-Canadian border (NEFSC, 2019, 2021), a spatial range that includes
the full extent of the wind area installation space within the mid-Atlantic as of June 2022.
Summer flounder is jointly and cooperatively managed by the MAFMC and the Atlantic States
Marine Fisheries Commission (ASMFC). Although summer flounder does not currently have an
overfished stock status, it is experiencing overfishing (NEFSC, 2023). It is a sandy bottom-
dwelling fish that has historically been found inshore in the late-summer to early-fall and on the
outer shelf in the spring both of which are areas that are proposed for offshore wind

development. Additionally, it is thought to be very well sampled by the fall and spring survey.

Atlantic mackerel is also managed by the MAFMC and has been declared overfished with
overfishing occurring (NEFSC, 2021). In contrast to summer flounder, it is a pelagic fish and has
a much patchier spatial distribution that extends throughout the survey area. The spring survey is
generally much better at sampling Atlantic mackerel than the fall survey. However, recently, the
spring survey has been observing a change in Atlantic mackerel availability due to changes in
habitat availability including a decline in observations on the outer shelf in the mid-Atlantic
Bight (MAB) and an increase in observations on the inner shelf of the MAB, Gulf of Maine, and
Georges Bank (McManus et al., 2018).

An increase in the magnitude of observations of Atlantic mackerel inshore could overlap
spatially with the planned wind areas in the mid-Atlantic. However, their patchier distribution

leads to lower encounter rates which incurs a higher variance around the annual abundance
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indices. Thus, it is expected that the impacts from wind areas for Atlantic mackerel will be
different than those impacts identified for summer flounder when the same impact analysis is
applied to both species. Additionally, because of their interactions with the survey, the analysis is
applied to the fall and spring survey data for summer flounder, and only the spring survey data
for Atlantic mackerel, which also coincides with the seasonal annual NEFSC bottom trawl

survey abundance indices used in their stock assessments.

Both species have experienced distributional shifts poleward related to reduced fishing pressures
or climate pressures (Nye et al., 2009; Overholtz et al., 2011; Bell et al., 2014, 2015; Henderson
et al., 2017; McMahan et al., 2020), and have been the subject of initial studies related to their
interactions and uses within offshore wind farms. It is hypothesized that offshore wind turbines
could act much like an artificial reef due to the scour protection and artificial rocky bottoms
installed around the monopiles, with either increases to fish abundance within these areas
according to the attraction-production hypothesis (Mavraki et al., 2021; Reubens, Braeckman, et
al., 2013; Reubens, Vandendriessche, et al., 2013); or decreases in abundance due to changes in
availability of preferred habitats. Mavraki et al. (2021) found that while present within the wind
areas in the North and Baltic Sea, Atlantic mackerel were not using these areas as feeding
habitats. Wilber et al. (2022) found a reduction in overall fish condition of summer flounder
within areas of the Block Island Wind Farm (BIWF), which could translate to a less preferred
habitat and imply impacts to abundance index calculations if wind energy areas are precluded

from survey monitoring efforts.

My work considers those impacts under scenarios where offshore wind areas could result in local
changes to fish density, like the attraction production hypothesis. My thesis attempts to answer
three questions: (1) what would the effect on previous stock abundance indices have been if wind
areas prevented bottom trawl survey effort, (2) can species distribution models be used to
analyze potential impacts of offshore wind areas on survey operations and changes in abundance,
and (3) how do the impacts to abundance indices as a result of wind-precluded survey effort
change when there are changes in species productivity and fish density due to the presence of

wind turbines.



2 METHODS

The NMFS NEFSC bottom trawl survey actively samples 82 strata encompassing the Gulf of
Maine, the western Scotian Shelf, Georges Bank, and the mid-Atlantic Bight (MAB), has
conducted an average of 350 tows per season, and has observed 488 species since 1963. For the
analyses in this thesis, I focused on data from 2009 to 2021 to allow for the continuity of data
related to vessel, depth and the strata sampled, which has changed throughout the time series
(Sosebee & Cadrin, 2006; Bell et al., 2015). The survey was conducted on the NOAA ship
Albatross IV up until 2008 at which point it was retired and the Henry B. Bigelow was
commissioned for the survey. The data and subsequent analyses focus on the period in which the

Henry B. Bigelow has been in operation.

Incomplete survey years were also removed from the data sets to account for pre-existing survey
effort reduction. For instance, the 2017 fall survey was conducted on the sister NOAA ship
Pisces due to scheduled maintenance of the Henry B. Bigelow and the survey only completed
half of the stations (n = 128 tows) during the season. In 2020, the COVID-19 pandemic placed a
halt on all non-essential operations including the 2020 spring survey such that the spring survey
only completed 132 of its planned 377 tows. While the survey was able to operate by the 2020
fall survey, its efficiency was still significantly impacted by the pandemic and only completed
half of the stations during this season. Thus, the 2017 fall survey and 2020 survey year were

removed from the data.

Wind energy planning areas and leases are updated periodically and are available online through
BOEM as a geographic information systems (GIS) geodatabase or shapefile. For this thesis, I
used the shapefiles of the wind planning and lease areas (hereafter “wind areas”) from June 2022

(https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data) which

was the most recent data available at the start of the project and included the lease areas within

the Mid-Atlantic and the Central Atlantic planning areas (Figure 1).


https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data

Using the trawl survey database and the wind planning area information, I developed a general
framework to assess the impact on survey data and data products used for stock assessments in

the Northeast U.S. in two phases.

2.1 An empirical analysis of potential impacts on survey data

The first phase aimed to identify potential impacts to sample sizes and estimates of seasonal
stratified random mean biomass indices (hereafter “annual abundance indices”) by removing
historical survey tows from data analysis if they were identified as overlapping proposed wind
areas. The wind areas were spatially overlayed with the locations of survey tows from 2009-
2021, and tows intersecting a wind area were denoted as wind-area tows while those that did not
intersect a wind area were denoted as outside tows. The quantified impacts to historical sample
sizes and to annual abundance indices were then used as a proxy for information loss due to

wind-precluded survey effort.

The impacts on sample size were quantified across two groups: (1) each species that was
encountered by the survey, and (2) species identified by stakeholders during two Survey
Simulation Experimentation and Evaluation Project (SSEEP) workshops to be of research
interest (hereafter “stakeholder-selected species™). The impacts on indices of abundance were
quantified across three groups: (1) spatially-filtered species that met minimum catch criteria
(below), (2) stakeholder-selected species, and (3) Atlantic mackerel and summer flounder as the

case study species.

Two participatory workshops were held in January and February 2022 and hosted by the SSEEP
project team with the aim to understand stakeholders’ interests in potential impacts of wind
preclusion on survey operations and data products. During these workshops, industry, academic,
and management stakeholders were asked to identify a set of species that were of regional
importance to evaluate in context of potential impacts from survey preclusion due to offshore
wind (Guyant et al., 2022a, 2022b, 2023). Participants suggested that the focal species should be
selected based on the quantity of existing data, the performance of their stock assessments, and
the variability in efficiency of the bottom trawl survey for each species (Guyant et al., 2022a,

2022b, 2023). From these discussions and guidelines, eleven (11) species were selected that
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spanned regional significance across the three fisheries management bodies, the NEFMC,
MAFMC, and ASFMC, including: a skate complex (barndoor skate, winter skate, clearnose
skate, little skate), Atlantic herring, Atlantic mackerel, black sea bass, butterfish, longfin squid,

silver hake, spiny dogfish, summer flounder, winter flounder, and yellowtail flounder.

2.1.1 Impacts on sample sizes

For each species encountered by the survey, I calculated the percentage of survey tows that
caught each species and that would be precluded if it occurred within a wind area, as well as the
percentage of individuals of that species that were observed by the survey tows designated as a
wind-area tow. The percentage of survey tows expected to be precluded by wind areas, PE; ,, for
a species, j, was calculated by:

PE.. = Z\w//nj,w
A Z;I np,j

* 100 (Equation 1)

where n; ,,, is the total number of positive tows for a given species, j, observed in a wind area, w,
and ny, ; is the total number of positive tows, observed in a wind-overlapped stratum, 4.
Similarly, the percentage of individuals of that species, PQ;, within the wind areas was
calculated as:

w
_ Zw=1Njw N
= TH
Z:h=1Nh.j

PQ; 100 (Equation 2)

where N;,, is the total number of individuals observed within a wind area, w, while Nj, ; is the

total number of individuals observed within a wind-overlapped stratum, 4.

2.1.2 TImpacts on indices of abundance

I estimated and compared the annual abundance index under two survey effort scenarios: (1)
status quo survey effort, where all the historical observations were used in the index calculation;
and (2) wind-precluded survey effort, where wind-area tows were removed in each year of the
dataset representing a reduction in seasonal survey effort. Calculations were performed for all

species that met a minimum set of criteria in a particular season: (1) the species was observed in
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three or more strata, (2) the species was observed in three or more years, and (3) the species was
observed in at least one stratum proposed for overlap with offshore wind development. This
minimum catch selection allowed analyses to focus on the species that would be most impacted

by offshore wind developments rather than species rarely observed by the survey.

For each of the species that met the minimum catch criteria, I created seasonal spatial footprints
and sampling frames such that the annual abundance indices were driven by a species’
distribution and not overly influenced by survey tows that occurred in areas where the species is
never found. For each species, I found the strata that contributed to a threshold of the cumulative
catch (in biomass) observed in the time series and to remove influence of strata where the species

has rarely been observed, with additional adjustments to create a contiguous area.

The thresholds used were either the 95™ or 99™ percentile of the cumulative biomass, depending
on the species of interest. For summer flounder, I adjusted the 95" percentile cumulative biomass
sampling frame for each season to include additional strata that were in a similar depth range or
accounted for the full extent of wind area overlap with their seasonal distributions (Figure 10).
The sampling frame for Atlantic mackerel consisted of the full survey area and all 82 strata due
to minimal differences between the 95" and 99™ percentile cumulative biomass sampling frames,

and the lack of a contiguous area in either case (Figure 16).

The annual abundance indices were estimated according to Cochran (1977) for each survey

effort scenario as:

H _
i _ Zh=1A4nlnjrt

ikt = Say (Equation 3)

where, IAt‘ j k- 18 the stratified random mean per sampling unit for a given species (j), season (k),
and year (). Ay, is the size of stratum, 4, and I, ikt 18 the observed mean biomass observed in the

same stratum. The total survey area is denoted by Y. 4.

With every observed mean biomass calculated in each stratum (I, jkt)> the estimated variance of

observed data (x; j i ;) from the mean in the same stratum was calculated by:
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Yh,i ke Thjke)? .
Vh ikt = S (Equation 4)
I, npjr—1

which was then used to quantify the precision of the estimated abundance by the annual stratified

variance (Cochran, 1977) given by:

2 .
Var (ij kt) = Lh=1 Tt (1- h ) (Equation 5)
” Np,jk Y Ap

where 13, is the relative stratum weight, v,zl‘ ikt 1s the observed variance, ny j i . is the sample

size. Some analyses and stock assessments tend to use a bootstrap resampling method to derive
the variance quantities which has shown to be more precise than the conventional point estimate

in some respects (Magnusson et al., 2013), but similar in others (Anderson et al., 2024).

The precision of the survey was quantified as the coefficient of variation (CV; Cochran, 1977)

and given by:

R Var(ij‘k,t)
CV(ljgt) = ~——

Lkt

(Equation 6)

In addition to quantifying the magnitude of abundance, the index trend for each species over the
time series was estimated by fitting a linear regression model to the point estimates of annual

abundance whose structure is (Zuur et al., 2007):

~

Lige = Qe+ Beti + €jie (Equation 7)
€kt ~ N(0,07)

Where fj,k,t is the estimated annual abundance index for a given species and season in year, t;,
the population slope over time is f;, the population intercept is a; x ¢, and &; j . » denotes the

residuals which are assumed to be normally distributed around 0, with a standard deviation 2.

The bias of survey estimates (e.g., catch rates or trends in catch rates) between survey effort

scenarios was quantified via the mean relative error (MRE) and mean absolute error (MAE) over
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the most recent five years, (7; generally, 2016-2021), while the mean absolute relative error

(MARE) over the most recent five years in the time series was used to quantify the precision:

59

MRE; ) = _Zt— 1% (Equation 8)
Jjkt
1 7 .
MAE; ) = T Z:lllj,k,t 5 ktl and (Equation 9)
1sr |1kt Jg t| .
MARE} ) = 7 Xe= 17 e (Equation 10)

jkt

where I k¢ represents the annual abundance index in the preclusion scenario, and I] ,?t represents

the annual abundance index in the status quo survey.

MRE and MARE were also used to calculate the bias and precision, respectively, of the wind-
precluded survey effort population trend estimates when compared to the trends estimated by the
status quo survey effort scenario, as well as the differences between the survey’s precision under

the two effort scenarios.

Furthermore, I expanded this analysis further for summer flounder and Atlantic mackerel by (1)
comparing the changes to trend estimates when survey effort is precluded due to wind to those
when a similar magnitude of survey effort is reduced at random throughout the survey footprint
due to unforeseen circumstances such as vessel maintenance needs or logistical constraints
(hereafter “general survey effort reduction”); and (2) calculating the change in perceived trend

when the preclusion of the survey within wind areas occurred systematically over time.
2.1.2.1 Comparisons to general survey effort reduction impacts

To compare wind-precluded impacts to general survey effort reduction impacts, I used bootstrap
resampling to create independent and distinct seasonal data sets representing a status quo survey
effort and a reduced survey effort. 1,000 bootstrapped datasets were generated for the status quo
survey effort scenario by sampling with replacement the seasonal time series for the same

number of observations that comprised the status quo survey effort datasets. Each new status quo
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dataset was reduced twice: first by removing the wind-area tows (e.g., those simulated to be in
wind areas) to recreate the wind-precluded survey effort, and second by randomly removing the
same number of observations that constituted the wind-precluded survey effort scenario for a
given species. More specifically, wind-area tows constituted an average of ten (10) percent of the
total survey data for summer flounder in each season and five (5) percent of the total survey data
for Atlantic mackerel in the spring. Thus, three types of datasets were generated: (1) status quo,
where the historical expanded dataset was randomly resampled to generate a new dataset with
the same number of tows; (2) wind-precluded effort, where the bootstrapped datasets under
status quo had the wind-area tows removed; and (3) general effort reduction, where the
bootstrapped datasets were randomly reduced to generate a new dataset with only 90 percent of
survey tows for summer flounder or 95 percent of survey tows for Atlantic mackerel, emulating a
10- and 5-percent removal of survey tows respectively. Each dataset was then used to calculate
annual abundance indices and estimates of the population trend according to Equation 3 through
Equation 7. Using the distribution of the bootstrap estimates of trend, I identified the proportion
of estimates that were larger than the observed wind-precluded estimate of trend from the
original data to quantify the difference between a general survey effort reduction impact and a

wind-precluded survey effort impact:

"Bb,jk

(Equation 11)
Ng,, ik

p:

Where L is the total number of occurrences where the bootstrap estimates of trend were
greater than the observed wind-precluded survey effort population trend and Ng, I is the total

number of bootstrap estimates.
2.1.2.2 Systematic changes in trend over time

To calculate the change in perceived trend when the survey is precluded from wind areas
systematically over time, I first calculated the annual abundance indices and the change in
indices over time under a status quo survey effort assumption for the full time series. Next, I
calculated the annual abundance index in the most recent year of the seasonal dataset under a

wind-precluded survey effort assumption but calculated the annual abundance index for the
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remaining previous years in the time series under a status quo survey effort assumption. This
iteration resulted in one year of a wind-precluded abundance index, and 7-/ years of a status quo
abundance index, where 7-/ is the remaining total number of years in the data set. I then
repeated this process such that an additional annual index was calculated under a wind-precluded
survey effort assumption and one less annual abundance index was calculated under a status quo
survey effort assumption with each repetition, until the last iteration calculated indices under a
wind-precluded survey effort assumption for all the years in the time series (i.e. the same
datasets analyzed in Section 2.1.2). Additionally, with each iteration, the population trend over

the full time series was estimated as above.

2.2 A simulation study of potential impacts on indices of abundance

The second phase employed species distribution modeling and simulation testing to understand
wind preclusion impacts on abundance indices including for survey data simulated under
assumed changes in fish density. This second phase then helped evaluate possible effects on
abundance indices when there are both changes in species productivity and reductions in survey

effort due to the presence of wind turbines.

Species distribution models are an increasingly prevalent set of tools that can incorporate spatial
and temporal non-stationarity to understand changes in species geographic distribution and
density (Anderson et al., 2022; Barnett et al., 2021; Elith et al., 2010; Elith & Leathwick, 2009;
Johnson et al., 2019; Ward et al., 2022). Here I used species distribution models to characterize
changes in the seasonal fish density observed by the NEFSC bottom trawl survey over the time
series for the purposes of simulating data sets for future years under alternative sampling
strategies and scenarios for fish population change. More specifically, I fit geostatistical
generalized linear mixed effects models (GLMMs) to the fall and spring survey data for summer
flounder and spring survey data for Atlantic mackerel given a set of environmental covariates.
From the GLMMs, I simulated future survey time series data sets under scenarios of change in

sampling effort and fish density in areas of offshore wind energy development.
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2.2.1 Species distribution models

Spatiotemporal GLMMs were developed using the R package “sdmTMB” (version 0.5.0.9;
(Anderson et al., 2022)), which employs Template Model Builder (TMB) to perform integrated
nested Laplace approximations (INLA) and provides a user-friendly extension of generalized
linear models for interpretation. A model was fit for each case study species, and estimated
seasonal biomass catch rates and regression coefficients for depth, year, wind energy area as

fixed effects:
Elyst] = use
Hse = (fBjraepen DEPTH;) + BYEAR;
+ BwindAREA; + w;s + €;5¢) (Equation 12)

where the expected survey catch rate, E [y S,t], for each species, at a point in space, s, and year, ¢,
is equal to a mean, yg ., determined by the inverse link f~! and a linear predictor. The linear
predictor in this study was defined where DEPTH;, YEAR;, and AREA; are elements of the
design matrix and represented the main effects for a given observation i; B; geptn, B t» and By ing
are the corresponding effects on catch rate for each main effect; w; s is the spatial random effect
on catch rate that is constant over time; and €; ;. is the spatiotemporal random effect on catch
rate that varies over time. The values for YEAR; and AREA; were either 1 or 0 depending on
whether an observation is in that given year or wind area. The spatial (w; ) and spatiotemporal
random effects (€; s ), were modeled via the stochastic partial differential equation (SPDE)

approximation to Gaussian Markov spatial random fields and spatiotemporal random fields:
Wi,s ~ MVN (Oa 20))7
€5t ~MVN (0, Z,) (Equation 13)

where the annual spatiotemporal random fields were assumed to be independent and identically

distributed.
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Separate fall and spring models for summer flounder were fit to survey catch rates assuming a

Tweedie probability distribution for the observation model:
Vst ~ Tweedie(s ¢, p, ) (Equation 14)

where, p, represents the power parameter and ¢ represents the dispersion parameter. The fall
models were evaluated across a triangular mesh with 723 knots or vertices, while the spring
models were evaluated across 684 knots, using the default assumptions in the make mesh()
function in sdmTMB (Anderson et al., 2022). In total, I fit twelve (12) model configurations for
each season which varied in whether to include spatial and spatiotemporal fields, a categorical
variable indicating whether tows took place inside and/or outside a wind area, and if a depth

effect was modeled through a penalized spline or a second-degree orthogonal polynomial (Table

6).

The models for Atlantic mackerel were fit to survey observations from the spring assuming
either a Tweedie probability distribution according to Equation 12 or a Poisson-link delta gamma
probability distribution (hereafter “delta gamma’). Both the Tweedie and the delta gamma
observation families are adept at handling positive continuous data with zeroes which is
characteristic of the NEFSC survey data (Barnett et al., 2021; Commander et al., 2022; Thorson,
2018; Ward et al., 2022). The difference with the delta gamma models, however, is that the
process is split into two components, a probability of encounter (hereafter “presence-absence”)
component and a positive catch rate component. The presence-absence component, p; g, is

derived by:
Pist =1 —exp(-Nis) (Equation 15)

where N; ¢, is the predicted density of individuals or groups at sample, i, given by a linear

predictor with the same structure as Equation 10 and is distributed according to (Thorson, 2018):

P; 5 ~ Bernoulli(p; s ) (Equation 16)
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The predicted density and probability of encounter is then used to derive the positive catch rate

component, 7; ¢, such that

N. .
Cist = pl's't X bis¢ (Equation 17)

is,t

where b; ; ; is the predicted biomass per group of individuals also given by a linear predictor with

the same structure as Equation 10 but distributed according to:

Cissc ~ Gamma(p, ) (Equation 18)

where ¢ represents the shape of the distribution (Thorson, 2018). Applying the two distribution
families, a total of sixty-nine (69) models were fit to Atlantic mackerel spring survey data which
varied in whether to include spatial and spatiotemporal fields, a categorical variable indicating
whether tows took place inside and/or outside a wind area, and the habitat relationship
assumption associated with the observed biomass at a given average depth. Preliminary model
selection identified better fits to biomass catch rates that were limited to average depths at less
than 200 meters and estimated as a function of a fourth-order polynomial depth relationship,
independent year effects, and spatial and spatiotemporal random effects. Of the 69 models fit,
only four (4) models were chosen as potential candidates for further evaluation. These models
varied in the distribution families and the estimation of the range parameter, or the distance at
which two observations were no longer correlated. More specifically, one model with a Tweedie
distribution estimated independent spatial and spatiotemporal ranges, and three models with the
delta gamma distribution were fit by varying which component, presence-absence and/or positive
catch rate, estimated independent or shared ranges. Table 13 includes the list of candidate model

configurations evaluated for Atlantic mackerel.
Model Selection

Models were compared using Akaike’s information criterion (AIC, Akaike 1974) which
measures the goodness of fit (Barnett et al., 2021), and a cross-validation approach to quantify

the predictive accuracy of each model according to a cross-validation test error rate, and the total
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log-likelihood of each model (Anderson et al., 2022). Additional model diagnostics included
inspecting residuals, such as Empirical Bayes, approximate posterior samples assuming a
multivariate normal distribution, Markov Chain Monte Carlo (MCMC) samples, and simulation-
based Dharma, as well as visualizing marginal and conditional effects of model predictors, and
post-model predictive checking of abundance indices following a similar process to a posterior
predictive check (Conn et al., 2018). For the posterior predictive check, new survey data and
random effects were simulated at the same locations and in the same time period used to fit the
model. Annual abundance indices were derived under the same status quo and wind-driven
preclusion survey effort scenarios as for section 2.1.2 and summarized across years by estimating
the population trend over time, invoking the same process and equations as described above in
section 2.1.2. I repeated this process for 1,000 iterations and contrasted the distribution of the
estimated average biomass catch rates, proportions of zeroes, annual abundance indices, and
population trends from the simulated data to the best estimates from the originally fitted model.
Equation 11 from section 2.1.2 was employed to contrast the distribution to the fitted population

trend such that ng,, i\ Are the simulated population trends.

2.2.2 Scenarios of changing spatial distributions

The fitted models then served to simulate data to analyze the effect of changes in fish density and
the preclusion of survey effort within wind areas on survey data, annual abundance indices, and
estimates of the population trend. Five-year datasets of survey stations were produced by
randomly selecting with replacement five years from the historical survey period and thereby the
previously surveyed locations for a selected year which served as assumed locations of future
survey efforts. New survey biomass catch rates were then simulated at these assumed future tow
locations based on the estimated spatial random fields from the same locations used in the model
fit, the estimated year effects from the respective resampled year of the time series, the estimated
depth effects, and new spatiotemporal random fields that were generated by the simulation.
Biomass catch rates were simulated under three scenarios of wind-driven fish density
assumptions (hereafter “productivity scenarios™): (1) baseline density where the effect of wind
areas on expected survey catch rate was unchanged from the effect predicted by the fitted model,
(2) enhanced density where the effect of wind areas on simulated survey catch rates was doubled
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from the baseline effect assuming that fish density would increase within wind areas once in
place, and (3) reduced density where the effect of wind areas on simulated observations of
biomass was halved from the baseline effect assuming that fish density would decrease within
wind areas. In practice, this was implemented by adjusting the linear predictor for wind-area tow
locations accordingly. Once survey data were simulated under each productivity scenario, annual
abundance indices and estimates of the simulated population trends were calculated and
compared under the survey effort scenarios, status quo or full survey effort, and wind-precluded
survey effort. This was conducted over 1,000 iterations to represent 1,000 instances of different
populations and five years of a randomly stratified survey. The performance of survey effort
scenarios was calculated using the same MRE, MAE, and MARE calculations as discussed in

Section 2.1.2 above.
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3 RESULTS

3.1 An empirical analysis of potential impacts on survey data
3.1.1 Impacts on sample sizes

Analysis of the spatial overlap of actively sampled survey strata with proposed wind areas
showed that inshore strata in the mid-Atlantic will have the highest overlap measured by the
percent of stratum overlapped by wind areas, directly off the coast of southern New Jersey,

south-eastern Maryland, and southern Massachusetts (Figure 2).

Over the time series, 8,102 survey tows caught 488 species. No species was caught in all 8,102
survey tows. Silver hake had the highest capture frequency, occurring in 77% (n = 6,244) of the
tows over the total survey area across the time series. Survey tows in planned and leased wind
areas (‘wind-area tows”) accounted for 5% (n = 431) of the total tows across the full survey
spatial footprint over the time series. Alternatively, wind-area tows accounted for 18% of the
total tows when the sampling frame was restricted to only strata that are overlapped by wind
areas (n = 2,337). Survey tows within strata that overlap with wind areas (n = 2,337) account for

29% of the total tows over the full survey footprint.

Of the 8,102 tows, there were two wind-area tows that caught the only observations of
silverstripe halfbeak and frigate mackerel. Thus, 100% of the tows over the time series for each
of these two species occurred in wind areas (Figure 3b). The same wind-area tow that caught
frigate mackerel was also the only tow that caught silver hatchetfish in strata overlapped by wind
(Figure 3a). However, that wind-area tow was one of a total 11 tows (9%) that caught silver
hatchetfish throughout the survey area (Figure 3b). There were an additional 7 wind-area tows
that each caught the only observation of 7 other species in strata overlapped by wind (Figure 3a).
Each wind-area tow that caught the given species constituted 100% of the total tows in those
strata, but anywhere from 4% to 50% of the total tows that occurred over the survey footprint

(Figure 3b).

Out of the 488 species caught by the survey, 323 were not caught in any wind-area tows (Figure

3b) and 156 were caught across all 431 wind-area tows that occurred in strata overlapped by
21



wind areas (Figure 3a). Of the 156 species, a single fish was caught from 26 species within wind
areas. Those single fish from a wind area made up 0.02% to 4% of the total number of fish
caught for that species across the survey area. Longfin squid was caught the most in wind areas
in terms of the numbers of fish (n = 177,518) totaling 7% of the total numbers of squid caught
across the survey area and the time series. Spiny dogfish were caught the most in wind areas in
terms of biomass (n = 55,968.3 kg) totaling 6% of its total biomass caught across the survey area
and time series. Blotched swimming crab was caught the least in wind areas in terms of biomass

(n=0.001 kg) totaling 0.08% of its total biomass caught across the survey area and times series.
3.1.1.1 SSEEP Workshop Species

The eleven (11) species prioritized in the stakeholder workshops were caught in up to 20% of the
wind-area tows that occurred in strata overlapped by wind energy areas and constituted up to
35% of the total number of fish caught in those areas (Figure 4). Compared to those 11 species,
butterfish and silver hake were caught in a lower percentage of tows occurring in potential wind
areas with 15% (n =200 and n = 240) of the total tows that occurred in survey strata overlapped
by wind areas (Figure 4). Biomass from those tows constituted 15% (2,569 kg), and 7% (2,116
kg), respectively, of the total biomass caught in the strata overlapped by wind areas (Figure 4).
That is equivalent to 15% (n = 81,361), and 9% (n = 47,950), respectively, of the total numbers
of fish caught (Figure 4).

The skate complex, on the other hand, was caught in 20% (n = 411) of the tows from strata that
overlap with wind areas, catching a total of 44,541 kg of skates and 83,141 individual skates
(Figure 4). Although the skate complex was caught in the largest proportion of tows in strata
overlapped by wind areas (Figure 4), those tows did not catch the largest proportion of biomass
or numbers of fish that would be precluded by wind areas. Rather, wind-area tows caught a
higher proportion of Atlantic herring and yellowtail flounder in terms of biomass and numbers of
fish than they did of the skate complex. Wind-area tows caught 37% (n = 85,083) of the total
number of yellowtail flounder and 28% (n = 4,214.5 kg) of its total biomass caught in overlapped
strata, while also catching 34% (n = 1,354) of the total number of Atlantic herring and 35% (n =

456.9 kg) of its total biomass caught in overlapped strata (Figure 4).
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For the stakeholder identified species, up to 10% of positive tows for each species occurred in
wind areas, accounting for up to 13% of the total catch of those species (both by weight and by
numbers) across the full survey footprint (Figure 5). Of the total survey tows, winter flounder,
silver hake, Atlantic mackerel, and Atlantic herring were caught in 4% of the tows that occurred
in wind areas (Figure 5). However, these tows only represented 2% (n = 307.7 kg) of the total
survey biomass and 1% (n = 721) of the total number of winter flounder over the full survey area
and time series (Figure 5). These observations of biomass and numbers of fish were the second
lowest over the 11 species, ahead of silver hake which was caught in tows that made up 1% (n =
2,115.9 kg) of the total biomass and 2% (n = 47,950) of the total numbers of fish that occurred

throughout the survey footprint, within wind areas (Figure 5).
3.1.1.1.1 Summer flounder

Summer flounder was caught in the highest percentage of tows located in wind areas of the 11
species and across tows that occurred in strata overlapped by wind (Figure 4a) as well as the total
survey area (Figure 5a). The positive tows in strata overlapped by wind represented the third
highest percentage of biomass and the fourth highest percentage of total number of fish observed
in wind areas (Figure 4b and Figure 4c). From 2009-2021, 20% of survey tows (n = 256) in
wind-overlapped strata that caught summer flounder were in wind areas (Figure 4a). These wind-
area tows constituted 25% of the total biomass (n = 1,685.9 kg) and 24% of the total number of
summer flounder (n = 2,321) caught in survey strata overlapped by wind (Figure 4b and Figure

4c).

Summer flounder was caught in 30% (n = 2,461) of the total survey tows, catching a total of
13,350 kg or 17,689 fish. Of those tows, 10% (n = 256) were in wind areas, the highest
proportion of the 11 key species. (Figure 5a). These wind-area tows corresponded to 13% of total
weight and numbers of fish caught by the survey, again the highest proportions for the 11 species
(Figure 5b and Figure 5c¢).
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3.1.1.1.2 Atlantic mackerel

Of the eleven species, Atlantic mackerel had the fifth lowest percentage of total biomass and
total number of fish caught in tows located in wind areas out of the tows that occurred in survey
strata proposed for overlap (Figure 4b and Figure 4c). Atlantic mackerel was also caught in the
lowest proportion of total survey tows that occurred in survey strata overlapped by wind areas
(14%; n = 76; Figure 4a) across the eleven species within the time series. Biomass and the
number of Atlantic mackerel in these tows constituted 15% of the total biomass (n = 1,103 kg)
and the total number of Atlantic mackerel (n = 11,206) caught by survey tows in strata

overlapped by wind (Figure 4b and Figure 4c).

Atlantic mackerel was caught in 24% (n = 1,902) of the total survey tows between 2009 and
2021. Of those tows, only 4% (n = 76) were in wind areas, the second lowest proportion of total
survey tows throughout the survey area compared to the other key species (Figure 5a). It was
also found to be the third lowest in terms of percent of total biomass (3%; n =1,102.8 kg) and
sixth lowest (5%; n = 11,206) in terms of percent of total numbers of fish caught throughout the

survey area that occurred in wind areas (Figure 5b and Figure 5c¢.).

3.1.2 Impacts on indices of abundance

A total of 278 species were caught in 3 or more strata within a given year. Of those 278 species,
255 were caught in 3 or more strata within a given year during the fall survey, and 201 were
caught in 3 or more strata within a given year during the spring survey. The fall survey observed
189 species in 3 or more strata in at least 3 survey years, and the spring survey observed 151
species in 3 or more strata in at least 3 survey years. Of these, 149 species were observed in the
fall survey in at least one stratum overlapping with wind areas, and 113 species in the spring
survey (Table 1). Stratified random mean annual abundance indices were calculated for each of
the 149 species caught by the fall survey, and the 113 species caught by the spring survey under

the two survey effort scenarios, status quo and wind preclusion (Table 2, Appendix A).

Precluding the fall survey from wind areas had the largest impact on the annual abundance

indices and the precision of the survey when estimating roughtail stingray with a 60% relative

24



difference between indices (Table 2 and Figure 7a) and a MARE in CVs of 40% (Table 2 and
Figure 8a); it also had the second largest impact in estimating the population trends for roughtail
stingray (MAE = 0.94; Table 2 and Figure 9a). Five percent of the total tows that caught
roughtail stingray overlapped wind areas but caught roughly 30% of the total biomass caught
throughout the survey (7,325.4 kg). On average, wind-area tows caught 16 kg of roughtail
stingray compared to tows occurring outside wind areas which caught a nominal average of 1.5
kg of roughtail stingray. Furthermore, the fall survey had higher catch rates of roughtail stingray
within wind areas in the most recent five years of the times series. Specifically in 2016, 2018,
and 2021, wind catch rates constituted 93%, 81%, and 63% of the total biomass caught in those
years, respectively. In 2019, on the other hand, roughtail stingray was exclusively caught in areas
outside of wind areas and was the highest recorded annual catch of roughtail stingray biomass
during the time series (1,040 kg), though comparatively was still less than the total biomass
caught in wind areas between 2016, 2018 and 2021 (1,742.36 kg). The removal of these large
observations in wind catches in turn results in large differences in the survey precision and
estimates of their population trend. For instance, the average CV of the fall survey under wind
preclusion was 0.70 compared to the status quo CV of 0.59 (Table 2), which represented a 40%
difference and therefore more imprecise survey for roughtail stingray. Population trends were
also less accurate when estimated under the reduced survey effort (MAE = 0.94; Table 2 and
Figure 9a) meaning that the slope estimate under wind preclusion was less than those under
status quo, and the confidence intervals around the estimates were wider and thus more variable

under wind preclusion.

Precluding the spring survey from wind areas had the largest impact on the annual abundance
indices when estimating smallmouth flounder (MARE = 50%; Table 2 and Figure 7b), on the
precision of the survey when estimating horseshoe crab (MARE = 30%; Table 2 and Figure 8b),
and on estimating population trends of smooth dogfish (MAE = 3.27; Table 2 and Figure 9b).
Catch rates of smallmouth flounder were higher in earlier years of the time series, and at stations
outside of wind areas. Of the total tows, 5% occurred in wind areas and caught 7% of the total
smallmouth flounder biomass throughout the time series (7.4 kg). Differences in abundance

indices were calculated for smallmouth flounder based on abundance estimates from 2009 to
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2012 and 2015 due to a lack of observations in the more recent years of the time series (e.g. 2016
to 2021) and were consistent across that timeframe. Between 2016 and 2021, estimates of annual
abundance indices for striped bass were most impacted by wind preclusion of the spring survey
(MARE = 38%; Table 2 and Figure 7b), with consistent differences over the five-year period.
The spring survey rarely caught the species that were highlighted as having the highest impacts
across abundance indices and coefficients of variation in Table 2, apart from striped bass,
clearnose skate, and smooth dogfish. For example, the spring survey on average caught 0.71 kg
of bluefish across the time series, but catch rates were highly variable (SD = 4.4 kg). As a result,
the survey CV for catches of bluefish is high under status quo survey effort conditions (CV =
0.64; Table 2). When survey effort was precluded in wind areas, the survey CV increased to
0.74; because catch rates were variable over time, the CV was also variable over time. Both fall
and spring surveys experienced an increase in CVs across the majority of species caught in Table
2 when effort was precluded from wind areas. Thus, precluding survey effort generated further

imprecision for some species caught by each of the seasonal surveys.

There were marked differences across annual abundance indices, survey precision, and
population estimates for a number of species when the seasonal surveys are precluded from wind
areas (Table 2). However, annual abundance indices were unimpacted or minimally impacted for
less than 60% of the species (approximately 85 species; Figure 7) caught by the seasonal
surveys. Survey precision was unimpacted or minimally impacted for less than 80% of the
species caught by the seasonal surveys (approximately 90 species; Figure 8). Population
estimates were unimpacted of minimally impacted for less than 35% of the species caught by the

seasonal surveys (approximately 40 species; Figure 9).
3.1.2.1 SSEEP Workshop Species

Preclusion of the fall survey from wind areas would have the greatest impact on the estimates of
annual abundance indices for black sea bass (MARE = 23%) and the least impact on estimates of
annual abundance indices for Atlantic mackerel (MARE = 0%; Table 3). Compared to all other
species, impacts to abundance indices for black sea bass were above average (94" percentile)

along with impacts to abundance indices for summer flounder (86™ percentile), butterfish (70™
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percentile), and the skate complex (56" percentile; Figure 7). All other stakeholder species were
below the 50 percentile including Atlantic mackerel which represented the 28" percentile in

terms of impacts to estimates of abundance across all species (Figure 7).

Precision estimates of the fall survey for black sea bass indices were lower on average during the
most recent 5 years when the survey was precluded from wind areas, signaling that estimates of
black sea bass abundance were more certain under wind-precluded effort (Table 3). Furthermore,
these differences between precision estimates under the effort scenarios were the largest across
the stakeholder species (MARE = 20%; Table 3) and represent the 96 percentile of impacts
across all the species caught by the fall survey (Figure 8). Precision estimates of the fall survey
were on average unchanged under the survey effort scenarios for yellowtail flounder, silver hake,
Atlantic herring, and Atlantic mackerel (Table 3) and thus were the least impacted by wind
preclusion when compared to the other stakeholder species. Precision estimates for winter
flounder were also not notably different on average (MARE = 2%; Table 3). However, these
differences were above average when compared to all the species caught by the fall survey (57%
percentile; Figure 8). Yellowtail flounder, silver hake, Atlantic herring, and Atlantic mackerel,
on the other hand, were below the average distribution of differences, representing the 46 4279,

34 and 29" percentiles, respectively (Figure 8).

Population trends of spiny dogfish were most affect by the preclusion of the fall (MAE = 0.68;
Table 3), both across stakeholder species, and all species caught by the fall survey (99
percentile; Figure 9). Population trends for Atlantic mackerel, on the other hand, were again the
least impacted by the preclusion of the fall survey (MAE = 0; Table 3), and this was the only
stakeholder species below the average distribution of population trend impacts for all the species
that were caught by the fall survey (26™ percentile; Figure 9). The 10 other stakeholder species
were above the 50" percentile of the cumulative distribution of impacts to population trends by

precluding the fall survey (Figure 9).

While the preclusion of the fall survey had minimal impacts on abundance estimates, survey
precision, and population trends for Atlantic mackerel, the preclusion of the spring survey from

wind areas had the greatest impact on the estimates of annual abundance for Atlantic mackerel
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(MARE = 8%) and some of the larger effects on estimated population trends (MAE = 0.1; Table
3). Differences between survey effort indices for Atlantic mackerel represented the 82
percentile across all species caught by the spring survey (Figure 7). Of the 11 stakeholder
species, estimates of annual abundance for silver hake and yellowtail flounder were mostly
unchanged by wind preclusion of the spring survey (MARE = 0% and MARE = 0%; Table 3)
and were below the average cumulative distribution of impacts across spring survey species,

representing the 44™ and 43™ percentile, respectively (Figure 7).

Silver hake and yellowtail flounder were also the least impacted stakeholder species in terms of
survey precision estimates (MARE = 0% and MARE = 0%; Table 3). However, yellowtail
flounder was the only stakeholder species below the 50" percentile of the cumulative distribution
of impacts to survey precision across the species caught by the spring survey. All other
stakeholder species were above the 50™ percentile, and silver hake represented the average
impact (Figure 8). Estimates of survey precision and population trends for spiny dogfish were the
most impacted by precluded survey effort. On average, the CVs for spiny dogfish increased
when the survey was precluded from wind areas suggesting greater uncertainty in annual

abundance indices from the spring survey (Table 3).

Population trends for spiny dogfish were more negative when the survey was precluded and
represented the 99" percentile of impacts to population trends across spring survey species
(Figure 9). Population trend estimates of longfin squid were the least impacted across the
stakeholder species by preclusion of the spring survey; though impacts to these estimates were

still a part of the upper 75" quantile of the distribution of all species impacts.
3.1.2.1.1 Summer flounder

The spatial distribution of summer flounder catches varied by season (Figure 11), but the amount
of tows occurring in wind areas was consistent over time between the two seasonal surveys

(Figure 12).

Fall estimates of the annual abundance per tow were lower when survey effort was precluded

from wind areas (Figure 12). This was especially true in 2009, 2011, 2013, and 2016. These
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differences were driven by higher and more variable catch rates in wind areas, on average 9.01 +
22.1 kg/tow, than those in the surrounding outside areas, 2.6 = 5.7 kg/tow on average. These
catch rates notably occurred at the northern end of their range, off the coast of New York and
Massachusetts in these years. For spring, estimates were both lower (5 of 12 years) and higher (6
of 12 years) when wind-area tows were precluded than under the status quo (Figure 13b). The
difference between a status quo survey effort and a wind-precluded survey effort was larger in
the fall than in the spring. A reduction in survey effort due to wind in the fall resulted in a
MARE between annual abundance indices of 14% whereas the spring had a 4% MARE (Table
5). Of the 164 species initially evaluated in terms of impacts to annual abundance indices, 80%
had a lower MARE in the fall and 66% had a lower MARE in the spring compared to summer
flounder (Figure 7).

CVs of annual estimates were similar between the two effort scenarios, except for CVs in the fall
0f 2009, 2011, 2013, and 2016 (Figure 13a). As noted above, the differences in these years were
driven by the higher and more variable catch rates within areas, such that removing these years
resulted in a 30% reduction in nominal average catch rates within wind areas but had little effect
on the nominal average catch rates in surrounding outside areas. Differences in the survey CVs
were similar to the differences in annual abundance indices in each season, with a 15% MARE
and a 6% MARE in the fall and spring, respectively (Table 5). The MARE in survey CVs for
summer flounder was in the upper third quantile of the distribution over species for each season,
such that 89% of species had lower MARE in CVs from the fall survey between the two survey
effort scenarios and 80% of species had lower MARE in CVs from the spring survey (Figure 8).

The linear regression slope estimate represents the average change in abundance index over time
and can be used as an estimate of population trend. A decreasing trend was estimated for both
seasons and effort scenario (Table 4), however under the wind-precluded survey effort the trend
was slightly less negative than trends estimated under status quo effort (Table 4). Estimates of
changes in population trend also had a larger MAE between the two survey effort scenarios in
the fall (MAE = 0.05) than in the spring (MAE = 0.01; Table 5). These errors represented the

83" and 80™ percentiles of the distribution in errors across species between estimates of
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population trend under the survey effort scenarios for the fall and spring survey, respectively

(Figure 9).
3.1.2.1.1.1 Comparisons of general survey effort reduction

The fall and spring estimates of population trend under wind-precluded survey effort (slope = -
0.10 and -0.04 respectively; Table 4) were compared to 1,000 estimates of population trend
under three survey effort scenarios: (1) status quo, (2) wind-preclusion, and (3) general survey
effort reduction using bootstrap resampling methods according to section 2.1.2.1 (Figure 14a-c).
Estimates in trend for summer flounder in the fall under the status quo effort and the general
survey effort reduction scenarios were different than the observed wind-precluded estimate in
trend (Figure 14a and Figure 14¢). The observed wind-precluded estimate in trend occurs at the
upper bounds of the percentile intervals of both distributions and represents the 93™ percentile of
the status quo distribution and the 92" percentile of the general survey effort reduction
distribution (Figure 14a and Figure 14c). Conversely, when comparing the observed estimate in
trend for the wind-precluded survey to the bootstrap resampled estimates under wind preclusion,
the observed estimate resulted in some minor differences but ultimately represented the 83™
percentile of the distribution, such that 17% of the bootstrap estimates were greater than the
observed value (Figure 14b). Thus, the effect of removing wind-area tows in the fall on
population trend estimates under a wind preclusion scenario is different than the effect of

removing survey tows due to some other effort reduction mechanism.

Bootstrapped estimates of spring population trends, on the other hand, were not different from
the observed wind-precluded population trend estimate under any of the three scenarios, status
quo, wind preclusion or general survey effort reduction (Figure 14d-f). The observed estimate
represented the 65 percentile, 61 percentile, and 64™ percentile across the status quo, wind-

preclusion, and general survey effort reduction scenarios, respectively (Figure 14d-f).
3.1.2.1.1.2 Systematic changes in trend over time

Estimating summer flounder population trends when the period of years with wind-preclusion

changed also showed larger changes to trends in the fall than in the spring. The latter
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experienced minimal changes to the estimated trends as the number of years that the survey is
precluded from wind areas was increased (Figure 15b). The most notable change occurred in the
ninth time step (Figure 15b), or when 2011 was added to the suite of years in which the survey
was precluded from wind areas (Figure 13b). The spring survey in 2011 conducted the highest
number of tows that overlapped wind areas throughout the time series (n = 23; Figure 12b),
followed by 2016, which had the same number of tows. However, between those two years, the
2011 survey observed twice the biomass and three times the number of fish than the 2016
survey. Catch rates in the wind areas during the 2011 spring survey were higher than the catch
rates in the wind areas during the 2016 and had a larger negative effect on the annual abundance
index and the survey CV when it was precluded from the survey (Figure 13b). In other words,
the abundance index and CV was lower in 2011 when the wind-area tows were removed because
wind area catch rates were larger than the outside area catch rates. Comparing these estimates to
the abundance index and CV in 2016 which was slightly higher when the wind-area tows are
removed, indicated lower wind area catch rates than outside area catch rates during that survey
year. Furthermore, the difference between the annual abundance index estimates under the two
scenarios in 2011 was larger than the difference between the indices in the years succeeding,

regardless of the direction of change (Figure 13b).

The fall trends became more negative as more years from the survey were precluded from wind
areas until the time series became extremely short (Figure 15a). The notable change for this
survey occurred in the seventh time step, or when 2013 was added to the length of a wind-
precluded survey time series (Figure 15a). Contrary to the spring survey, this survey year was
influential because the status quo abundance index was higher than the succeeding years prior to
the survey being precluded and because the wind-precluded index was of the same magnitude as
the succeeding years when it is added to the wind preclusion time series, not because the
difference between survey effort indices was larger than the years succeeding. Thus, the
estimates of trend are driven by the higher earlier years of the status quo index when the 2014 to
2021 surveys operate under wind-precluded effort, and then driven again by more stabilizing
years of wind-precluded abundance indices when 2009 to 2013 is added to the time series

(Figure 15a). In general, the perceived change in trend over time depended on the length of the
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time series that was precluded to survey effort in wind areas and how much survey effort

overlaps wind areas across years until the time series become extremely short (Figure 15a).
3.1.2.1.2 Atlantic mackerel

Annual abundance indices of Atlantic mackerel were only calculated across the full survey area
using the spring survey data from 2009 to 2021 (Figure 16). Catch rates of Atlantic mackerel
were much more variable over the spatial frame than summer flounder, with high observations of
Atlantic mackerel occurring both in inshore and offshore areas (Figure 17 and Figure 20). Very
few high catch rates of Atlantic mackerel biomass occurred in wind areas (Figure 17), and the
number of tows that were located within wind areas were much lower (n = 209) than the number
of tows that occurred outside the wind areas (n = 3,839; Figure 18), constituting 5% of the tows
that occurred throughout the time series. While in contrast to the proportion of wind-area tows
that observed summer flounder, on a whole Atlantic mackerel was encountered more frequently

in the spring survey than summer flounder.

Estimates of annual abundance indices under the wind-preclusion scenario were more often
unchanged from estimates under the status quo scenario, except for the indices in 2010, 2011,
and 2017, when the wind-precluded abundance index point estimates were lower than the status
quo abundance index (Figure 19). There were two years when the wind-precluded abundance
index was higher than the status quo index, 2016 and 2018 (Figure 19). The MARE between the
status quo abundance indices and the wind-precluded indices was 7% (Table 5), which represents

the 80 percentile of distribution of errors across the full suite of species (Figure 7).

The CV estimates in each year under a wind-precluded survey effort were unchanged when
compared to the CV estimates in each year under a status quo survey effort (Figure 19). Further,
the MARE between survey CVs between efforts was 3% signaling little impact to precision of
the survey when it was precluded from wind areas (Table 5). Though small, the impacts to
survey CVs for Atlantic mackerel represent the upper third quantile of the distribution of impacts
across the species that were caught in the survey, such that across the 113 species caught by the
spring survey, 71% of the survey CVs were less impacted by wind-precluded survey effort than

survey efforts that caught Atlantic mackerel (Figure 8).
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Atlantic mackerel was found to have a slightly declining, almost zero, trend (slope = -0.04) in
population over time under a status quo survey effort scenario and a slightly increasing, almost
zero, trend (slope = 0.01) in population over time under a wind-precluded survey effort scenario
(Table 4). MAE for the change in trend when the survey is precluded from wind areas is 5%,
which is a larger MAE than 93% of the 113 species analyzed, including spring trends of summer

flounder (Figure 9).
3.1.2.1.2.1 Comparisons of general survey effort reduction

The spring estimate of population trend under wind-precluded survey effort (slope =-0.01; Table
4) for Atlantic mackerel was compared to 1,000 estimates of population trends under three
survey effort scenarios: (1) status quo, (2) wind-preclusion, and (3) general survey effort
reduction The observed estimate of trend under a wind preclusion scenario for Atlantic mackerel
was not different from those trends estimated under a general survey effort reduction (Figure
20c). Even more so, the observed wind-precluded estimate represented the same percentile of the
distribution of estimates under a general survey effort reduction as the distribution of estimates
under a status quo survey effort (60%; Figure 20a and Figure 20c). Notably, though, the
variability in the estimates across the three scenarios was wide, ranging from -2 to 2, with some
slope estimates reaching as high as 4 (Figure 20). While the effect of wind-precluded survey
effort in the spring on Atlantic mackerel population trend estimates was similar to some other
general survey effort reduction. This is in part due to the high variability across catch rates in the
observed data used to generate the bootstrap distributions. Less variable catch rates and more
precise population trend estimates under either scenario would be needed to resolve a difference

between efforts.
3.1.2.1.2.2 Systematic changes in trend over time

Estimates of spring Atlantic mackerel population trends were mostly unchanged as the number
of years the survey was precluded increased and had high variability due to the variation in catch

rates between years (Figure 21).
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3.2 A simulation study of potential impacts on indices of abundance
3.2.1 Species distribution modeling and diagnostics

3.2.1.1 Summer flounder

The most parsimonious GLMM for summer flounder fall survey catch rates included a second-
order polynomial relationship with depth, independent year effects, spatial and spatiotemporal
random fields (model 10; Table 6). The final fall model had the lowest AIC and highest deviance
explained of the candidate models (Table 7). Though model 12 (Table 7), can explain the data as
well as model 10, it is a more complex model and is penalized as such with a higher AIC. The
optimal spring survey GLMM estimated catch rates of summer flounder as a function of a
second-order polynomial relationship with depth, year effects, a categorical wind area effect,
spatial and spatiotemporal random fields (model 12; Table 6). The final spring model had the
lowest AIC and most deviance explained of the candidate models (Table 7), indicating this more

complex model better explains spring survey catch rates of summer flounder.

Residuals were returned with 10 samples from a single MCMC chain for both models. The
QQplot of the MCMC-resampled residuals for the fall model is summed over the 10 samples and
indicates some deviation from the assumed distribution around the lower tail of the distribution
(Figure 22a). Of the 10 samples returned, only two resulted in a distribution about the theoretical
quantiles; the remaining 8 produced underestimation to some degree (Appendix A). The greatest
values of predicted biomass were underestimated in link space (Figure 23a). Residuals from the
spring model, on the other hand, did not deviate much from the theoretical quantile distribution
(Figure 22b) and were evenly distributed about 0 when compared to the fitted values in link

space (Figure 23b).

There is some uncertainty around the depth covariate in both the fall and spring models with the
largest uncertainties around the peak expected biomass (Table 8, Figure 24). The fall model
expected biomass catch rates to peak around 0.7 kg at around 38 meters of depth but could vary
as high as 2.1 kg (Figure 24a). The spring model predicted the largest biomass catch rates of 1.3
kg between 133 and 145 meters but could reach as high as 3.4 kg (Figure 24b). The fall model
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predicted higher values of biomass catch rates around 40 meters, but the maximum catch rates
plateaued at differing values each year (Figure 25a). The highest peak biomass catch rate was
predicted around 0.7 kg in 2009, while the lowest peak biomass catch rate was predicted around
0.3 kg in 2015 (Figure 25a). The spring model predicted biomass catch rates peaking at 146
meters but also varied each year. The highest peak biomass catch rate at this depth was 2.4 kg in
2016 while the lowest was 1.1 kg in 2015 (Figure 25b). Similarly, at this depth, the spring model
expected the marginal effect of wind areas to have higher biomass catch rates than in outside
areas, 1.70 kg with 95% confidence intervals (CI)[0.59, 4.91] and 1.3 kg with 95% CI [0.5, 3.4],
respectively (Figure 26). The spring model predicted a similar marginal effect for the year and
area predictors where the larger biomass catch rates were within wind areas, though 2016 was
predicted to have the highest biomass catch rates in both areas (Figure 27). Furthermore, when
evaluating the estimated wind area parameter (Table 8), there was a more positive effect
expected for catch rates within those areas in turn resulting in higher observed biomass within

wind areas (Figure 26b).

Fixed effects from the fall model predicted a strong relationship with the inshore areas of the
continental shelf (Figure 28a). This spatial influence is reinforced by the predictions of the
spatial random effects, noted by the greater amount of constant biological or oceanographic
influence along these same areas in Figure 29a. Predictions of the spatiotemporal fields from the
fall model in Figure 30a demonstrate the expected patchiness over space; though in recent years,
and in years later in the time series (Appendix A), there tended to be large areas in the northern
portion of the fall summer flounder spatial range that recurringly expected high biomass
indicating there might be a potential biological or oceanographic covariate not explicitly
captured in terms of fixed effects influencing catch rates in those years (Figure 30a). In general,
the fall model estimated biomass catch rates to be fairly dispersed with a ¢ parameter of 1.5 but
correlated within a range of 94 km (Table 8), and expected higher catch rates along the inshore

areas in the fall to be driven by the fixed effects and spatial random effects (Figure 31).

The spring model estimated a continuous and strong relationship along the entire length of the
offshore areas of the continental shelf both in terms of the fixed effects and the spatial random

effects (Figure 28b and Figure 29b). The predictions of the spatiotemporal random fields also
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detected some persistent connections with the offshore areas, especially in earlier years of the
time series (Figure 30b and Appendix A). The spring model expected more dispersed
observations of biomass with a ¢ parameter of 1.7 but that catch rates were more similar within a

range of 112 km (Table 8).

Posterior checks of predictive performance show that nominal averages of fall biomass catch
rates (3 kg/tow) did not correspond across the simulations (quantile = 0%; Figure 32a and Table
9); though the fall model was better at generating representative biomass catch rates in some
years over others (Figure 33a and Table 9). The observed average biomass catch rate
corresponded to approximately the interquartile range of the simulated distribution in five out of
the eleven years (Table 9). All other years in the time series were overestimated with more than
80% of the distribution above the observed mean biomass catch rate (Table 9). Conversely, the
distribution of simulated average proportion of zeroes was below the observed proportion of
zeroes, indicating that the fall model is underinflated (Figure 34a and Table 10). When broken
out by yearly proportions, simulated distributions in six out of twelve years were below the
overall average proportion (proportion = 0.51). However, there were four years when the
observed yearly average proportion was above the overall average, three of which corresponded
to the central tendency of the simulated yearly distribution (Figure 35a). In other words, the
observed proportion corresponded to the 76', 48", and 68™ percentile of the simulated
distribution of proportions in 2015, 2016, and 2018, respectively (Figure 35a and Table 10).
Moreover, the simulated distribution in 2019 was centered about the overall average proportion
(proportion = 0.51), but the observed proportion of zeroes in that year (proportion = 0.47) only
corresponded to the 6 percentile of the distribution. Thus, while generally underinflated, the

model was able to adequately capture the proportion of zeroes in some years.

The fall model was much better at estimating seasonal annual abundance indices, and more so
for the wind-precluded index than the status-quo index (Figure 36a, Figure 36b, and Table 11).
Under the wind-precluded survey effort scenario, the model performed well estimating 9 out of
the 12 years in the time series, with the lowest performance occurring for 2012 and the best
performance occurring for 2011 based on the quantile that the observed abundance index

represents of the simulated distribution (Table 11). Further still, the model performed relatively
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well when estimating the population trends under both survey effort scenarios, where the
observed population trend represented the 50" percentile under simulated status quo survey

effort and the 73" percentile under the wind-precluded survey effort (Figure 37 and Table 12).

The observed average spring biomass catch rate corresponded to the extreme 10% of the
simulated distribution of averages from the spring model indicating that the model was
overestimating average biomass catch rates (Figure 32b and Table 9). When examined by year,
observed averages in seven out of the twelve years drove the overall average biomass catch rate
(Figure 33b). Out of those seven, the model was able to simulate average biomass catch rates in
four years that closely corresponded to the observed average biomass catch rate, 2009 (quantile =
63%), 2011 (quantile = 38%), 2013 (quantile = 53%), and 2018 (quantile = 48%) respectively
(Table 9). On the other hand, the model was also able to simulate average proportions of zeroes
that corresponded with the observed proportion of zeroes from the data (proportion = 0.41).
Furthermore, the observed proportion only corresponded to the extreme 4" percentile of the
simulated distribution (Figure 34b and Table 10). When broken down by yearly proportions, the
observed proportions corresponded to the extreme 30" percentiles in eight out of the twelve

years (Figure 35b and Table 10).

The observed annual abundance index under both the status quo survey effort scenario and the
wind-precluded survey effort scenario were well represented by the simulated distribution in the
six years for each scenario (Figure 36¢, Figure 36d, and Table 11). The model performed poorly
in the remaining six years of the time series (Figure 36¢ and Figure 36d), where the observed
abundance index under both scenarios corresponded to the most extreme 15% of the distribution
of the simulated means (Table 11). Lastly, the spring model performed relatively well at generating
distributions of trends in either scenario, such that the observed trend corresponded to the 65™ percentile
of the status quo survey effort distribution and the 80" percentile of the wind-precluded survey effort

scenario (Figure 37 and Table 12).
3.2.1.2 Atlantic mackerel

The most parsimonious model for Atlantic mackerel spring survey catch rates included a fourth-

order polynomial relationship with depth, independent year effects, spatial and spatiotemporal
37



random effects, and assumed a Delta Gamma observation distribution with a Poisson link (model
5; Table 13). This model had the lowest AIC out of the candidate delta gamma models and had
the same amount of deviance explained as model 4 (Table 14). However, Model 4 had a higher
AIC most likely due to the added complexity of spatial random fields estimation in the positive
catch rate component, which was omitted from model 5’s positive catch rate component.
Additionally, a deeper inspection of the three delta gamma models that converged found that the
positive catch rate component was over-parameterized when spatial random effects were

included in the estimation, thereby selecting model 5 as the more optimal model.

According to the QQplots, the presence-absence component of the model indicated a successful
fit (Figure 38). However, the positive catch rate component did not fit the tails of the distribution
well (Figure 39). The comparison of fitted biomass values to the MVN residuals resulted in
similar findings, where the residuals were more normally distributed in the presence-absence
component but deviated at the lower and upper ends of biomass in the positive catch rate
component (Figure 40 and Figure 41). Based on the analysis conducted on the impacts on sample
size (Section 2.1.1), the spring survey of Atlantic mackerel observed a wide range of biomass
that was variable over the time series which could contribute to the overestimation within the
model; on average, positive catch rates from the survey observed 15 + 82 kg of Atlantic
mackerel with a median of 0.7 kg, and a single maximum observation of 1,894 kg. This is further
supported by the QQplot of the simulated Dharma residuals where the middle of the distribution
does not conform to the assumed distribution, suggesting an influence from the positive catch
rate component (Figure 42). Therefore, while the presence-absence component of the model was

able to adequately reflect the data, the positive catch rate component was not.

The model predicted higher values of biomass catch rates around 66 meters, though the value of
which was different in each year (Table 15, Figure 43). The largest peak biomass catch rate was
predicted at 0.5 kg in 2016, and the lowest peak biomass catch rate at 60 meters was predicted in

2009 at 0.2 kg (Figure 43).

Model predictions of the main effects found a strong relationship with depth throughout Georges

Bank the mid-Atlantic, and the inshore areas of the Gulf of Maine (Figure 44). The strongest
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relationships were found at depths ranging from 55 meters to 110 meters, while the weakest
relationships were found at depths greater than 110 meters within the Gulf of Maine. The model
found a similar relationship through the mid-Atlantic in terms of estimated spatial random
effects, but it also expected consistent spatial deviations within the Gulf of Maine (Figure 45)
indicating there are other spatially latent covariates affecting the biomass catch rates of Atlantic
mackerel that were not explicitly accounted for through the fixed effects. The spatiotemporal
random fields generally expected a patchy distribution throughout space and time (Figure 46).
However, in recent years, the model estimated a consistent positive deviation in the

spatiotemporal random field off the coast of Cape Cod (Figure 46).

The presence-absence component estimated a large spatial range (161 £+ 46 km) and a low spatial
standard deviation (1.4+0.3) indicating that a pair of present or absent observations are more
correlated over a wider space (Table 15). More specifically, these estimates correspond with the
spatial correlation of the survey observations rather than the behavior of the species, in that over
time the survey observations over large distances in space are very similar and that the survey
would need to travel farther 161 km before two observations are different (Figure 45). The
spatiotemporal range for this component was estimated as 99 + 12 km and the spatiotemporal
standard deviation was estimated as 1.5 = 0.1 (Table 15). Thus, observations of presence or

absence are more correlated and more similar over space.

The spatial random fields were omitted from the positive catch rate component and thus only a
spatiotemporal range and standard deviation were estimated from the gamma observation model.
The spatiotemporal range was estimated at 27 + 6 km and the standard deviation was estimated
at 2.1 £0.3 (Table 15). However, the phi parameter was relatively low (¢ = 0.83; Table 15).
While observations had a tighter distribution, the values of biomass catch rates were expected to
change quicker over space, and over a larger magnitude of change. Ultimately, the
spatiotemporal fields from the gamma model component were the driving force behind
predictions of biomass catch rates as evidenced by Figure 47, where areas of higher expected

catch rates corresponded with areas estimated to have positive deviations in the spatiotemporal

fields.
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The post-model predictive check was used to further assess the model’s performance. In general,
the model was unable to generate representative distributions of average biomass catch rates or
proportions of zeroes. Simulated average biomass catch rates were greater than the observed
average catch rate (5.1 kg/tow; Figure 48). There were only two years, 2012 and 2019, where the
simulated catch rates moderately represented the observed biomass catch rates in those years
(Figure 49 and Table 16). Simulated proportions of zeroes were less than the observed
proportion of zeroes (proportion = 0.67), both across years and between years (Figure 50, Figure

51, and Table 17).

The model was slightly better at simulating estimates of annual abundance indices, and more
specifically indices under status quo survey effort with seven years where the distributions
corresponded well to the observed respective index (Figure 52 and Table 18). Under wind-
precluded survey effort, the model was able to simulate representative distributions of indices in
six years. Furthermore, between years, the model was able to simulate representative
distributions under status quo effort as well as those under wind-precluded survey effort in the
same three years (Table 18). Lastly, the model performed much better at simulating population
trends than nominal average catch rates, proportions of zeroes, or annual abundance indices.
Across simulations, the observed population trend by status quo survey effort was represented by 65%
of the distribution while the population trend estimated under wind-precluded survey effort was
represented by 80% of the distribution (Figure 53 and Table 19). Therefore, the model is much
better at generating population trends and abundance indices across years within the bounds of

the observed uncertainty but ultimately was unable to adequately represent survey catch rates.

3.2.2 Scenarios of changing spatial distributions

3.2.2.1 Summer flounder

Simulations of the fall survey under a baseline, or unchanged, fish density from what was estimated by
the seasonal model, generated similar estimates of annual abundance of summer flounder regardless of
the survey effort (status quo or wind-precluded effort; Figure 54a and Figure 55). However, when
changes in fish density from the baseline were simulated in response to wind areas, simulated

estimates of annual abundance indices were different when survey effort was precluded from the
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wind areas compared to estimates calculated based on status quo survey effort. Under scenarios
of enhanced fish density, simulated estimates of annual abundance were lower when survey
effort was precluded from wind areas (Figure 54b and Figure 55a), mirroring the findings from
Section 3.1.2.1.1. Whereas, under reduced fish density scenarios, estimates of annual abundance
were higher under wind-precluded survey effort as a result of lower catch rates within wind areas
compared to catch rates outside of wind areas (Figure 54c and Figure 55a). Notably, the
distribution of estimates of abundance when survey effort was precluded under the reduced fish
density scenario was similar to the distribution of estimates of abundance based on status quo

effort under the baseline fish density (Figure 55a).

Across all scenarios, the preclusion of the fall survey resulted in biased stock abundance indices
for summer flounder (Figure 56a). The bias between indices under enhanced and reduced fish
densities was almost twice the bias between indices under baseline fish densities, with the
greatest bias occurring when the survey was precluded from surveying wind areas with enhanced
fish densities overall (Figure 56a). The bias between survey effort scenarios also resulted larger
MARE in the estimates of abundance under the enhanced fish density scenarios when compared
to the baseline and reduced fish density scenarios for fall populations of summer flounder
(Figure 57a). While the bias between indices under reduced fish density was also greater when
the fall survey was precluded compared to under baseline fish densities; the differences were

only about 10% (Figure 57a).

CVs across all simulations and fish density scenarios were about 20% higher when wind areas
were precluded from fall survey effort (Figure 58a). In other words, the fall survey was less
precise in estimating the relative abundance of summer flounder when wind areas were

precluded from survey effort.

Distributions of population trend estimates were similar across survey effort and fish density
scenarios (Figure 59a). The only minor difference occurred under the status quo survey effort
scenario with enhanced fish density where the distribution of population trends was wider at the
tails (Figure 59a). Regardless of their similarity in distribution, there were marked differences

between trends estimated under enhanced fish densities and reduced fish densities inside wind
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areas (Figure 60a). The distribution of differences was greatest when fish density was enhanced
within wind areas indicating that population trends estimated based on status quo survey effort
were more different that estimates based on wind-precluded effort, especially when compared to
the differences in estimates under baseline fish density (Figure 60a). The distribution of
differences when fish density was reduced in wind areas, on the other hand, was lower than
either cases where fish density was enhanced or under baseline fish densities. Thus, wind-
precluded population trend estimates were closer to trends estimated under status quo survey
effort when fish density was reduced compared to the estimates between survey effort scenarios

when fish density was enhanced or unchanged from the baseline.

Simulations of the spring survey and baseline fish densities resulted in minor differences
between annual abundance indices calculated from status quo and wind-precluded survey effort,
such that the wind-precluded estimates were lower than status quo estimates in each year and
across simulations (Figure 54d and Figure 55b). Similarly, wind-precluded abundance indices
were lower than the status quo abundance indices under the enhanced fish density scenario
(Figure 54e and Figure 55b). However, wind-precluded abundance indices were higher than the
status quo abundance indices under the reduced fish density scenario (Figure 54f and Figure

55b).

These differences translated to biased annual abundance indices for summer flounder when the
spring survey was precluded from wind energy areas across all fish density scenarios. The
greatest bias occurred when the survey was precluded from surveying wind areas with enhanced
fish densities in terms of magnitude, which was double the bias quantified under the baseline
scenario (Figure 56b). Further, these differences between survey effort scenarios resulted in
higher MARE in the estimates of abundance when compared to the baseline fish density for

spring populations of summer flounder (Figure 57b).

Under reduced fish densities, bias between annual abundance indices was also greater than the
bias between indices under baseline fish densities, though to a lesser degree than the difference
in bias when comparing enhanced fish densities and baseline fish densities (Figure 56b). As a

result, MARE in the estimates of abundance under reduced fish densities were lower than the
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MARE in estimates of abundance under baseline fish density (Figure 57b). This differs from the
findings for the fall survey under reduced summer flounder densities due to the positive effect of
wind areas on biomass catch rates estimated by the optimal spring model (Table 8). Simulating
reduced fish densities in wind areas effectively removed the effect of wind areas on biomass
catch rates thereby equalizing catch rates regardless of the area in which they occurred and
lessening the difference between survey effort estimates when compared to baseline estimates of

fish density in wind areas (Figure 57b).

Across all simulations and fish density scenarios, the CV of survey estimates when wind was
precluded was higher than the CV of survey estimates under status quo survey effort (Figure
58b). Thus, the spring survey was also less precise in estimating a stocks relative abundance

when survey effort was precluded from wind areas.

Similar to the findings for the fall survey under the fish density scenarios, distributions of spring
population trend estimates were similar across survey effort and fish density scenarios (Figure
59b). Furthermore, differences between survey effort population trends were greater under
enhanced fish densities and lowest under reduced fish densities across simulations when

compared to baseline fish density (Figure 60b).

At a minimum, under baseline fish densities, estimates of annual abundance and population
trends would be biased and less precise when either fall or spring survey is precluded from wind
energy areas. This effect is exacerbated when the surveys are precluded from wind energy areas
and in scenarios where fish density increases within these areas after installation. For the fall
survey, there was also an increased effect on estimates on annual abundance indices when fish
densities declined within wind areas after installation. While the spring survey, on the other
hand, demonstrated a decreased effect on estimates of annual abundance indices when the survey
was precluded and fish densities were reduced from baseline levels, such that the preclusion of
the spring survey had a greater effect on estimates of abundance in scenarios of unchanged fish
density than it did on estimates of abundance in scenarios where fish density declined in wind

areas. Similarly, the preclusion of the fall and spring surveys had a smaller effect on estimates of
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population trends of summer flounder when fish density was reduced within wind areas than

when fish density was unchanged from baseline levels.
3.2.2.2 Atlantic mackerel

Simulations of the spring survey under baseline Atlantic mackerel densities generated estimates
of annual abundance that were similar each year and across simulations regardless of the survey
effort, status quo or wind-precluded (Figure 61a and Figure 62). Simulated estimates of annual
abundance were lower when the survey was precluded from wind areas when enhanced Atlantic
mackerel densities were simulated compared to estimates calculated based on status quo survey
effort (Figure 61b and Figure 62). Under reduced Atlantic mackerel densities, simulated
estimates of annual abundance were slightly higher when the survey was precluded than those

calculated at the status quo survey effort (Figure 61c and Figure 62).

These differences translated to biased annual abundance indices for Atlantic mackerel (Figure
63). Mean relative differences between annual abundance indices under survey effort scenarios
deviated further from zero than the differences at baseline fish densities under both enhanced and
reduced fish density scenarios (Figure 63). The greatest deviation occurred under enhanced fish
densities, indicating that annual abundance indices under enhanced fish density scenarios were
more biased than either indices calculated in the baseline or reduced fish density scenario (Figure
63). This was further reinforced by the higher MARE values under enhanced fish density when

compared to baseline or reduced fish density errors (Figure 64).

When fish densities in wind areas were reduced and the survey was precluded, bias was also
higher than the bias quantified under baseline fish densities (Figure 63). However, when
translated to MARE, the differences between indices were slightly lower compared to a baseline
fish density scenario (Figure 64). Lower MARE under reduced fish density are most likely a
result of the high variability between catch rates used to fit the model (Section 3.1.2.1.2) and the
lack of relationship found by the model between wind areas and expected catch rates (Table 15).
Thus, manipulating catch rates under a reduced fish density assumption forced catch rates to be

more similar to each other across areas thereby resulting in lower differences between indices
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when effort was or was not precluded (Figure 64). In either survey effort or fish density

scenarios, survey precision estimates were unchanged across simulations (Figure 65).

Distributions of population trend estimates were similar across survey effort and fish density
scenarios (Figure 66). Though, there were notable differences between survey effort trends
estimated under enhanced and reduced fish densities (Figure 67). The distribution of differences
was greatest when fish density was enhanced within wind areas, indicating that population trends
estimated based on status quo survey effort were more different that estimates based on wind-
precluded effort, while the distribution of differences when fish density was reduced in wind
areas was lower than either cases where fish density was enhanced or unchanged (Figure 67).
More specifically, wind-precluded population trends estimated under reduced fish densities were
closer to trends estimated based on status quo survey effort compared to the estimates between

survey effort scenarios when fish density was enhanced or unchanged from the baseline.

The preclusion of wind energy areas to the spring survey would have a greater effect on
estimates of Atlantic mackerel annual abundance indices and population trends under a scenario
where fish density increases within these areas after installation. Whereas the reduction of fish
and the preclusion of the survey in these areas would result in a smaller effect to that seen if fish
density was unchanged from existing conditions due to the high variability in catch rates

throughout the spatial footprint.
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4 DISCUSSION

It is expected that the installation of large-scale offshore wind areas will preclude fishery-
independent surveys along the eastern coast. Even though current protocols for the NEFSC
bottom trawl survey dictate the reallocation of pre-selected tows in the case of untrawlable areas,
here I set out to illustrate the impacts to stock abundance indices if the full reallocation of lost

survey tows would not be possible.

In this study, I aimed to address three main research questions: (1) what would the effect on
previous annual abundance indices have been if wind areas prevented bottom trawl survey effort,
(2) can species distribution models be used to analyze potential impacts of offshore wind areas
on survey operations and changes in abundance, and (3) how do the impacts to abundance
indices as a result of wind-precluded survey effort change when there are changes in species
productivity and fish density due to the presence of wind turbines. To address these questions, |
assumed that the understanding of proposed and leased wind energy areas as of June 2022 were
in place and precluding survey efforts at the start of the bottom trawl survey times series (e.g.,

2009).

An empirical analysis of potential impacts on survey data

Using an empirical analysis approach, I evaluated the magnitude of loss and its propagation into
annual abundance indices by removing observations of catch rates that were identified as having
occurred within wind energy areas tows (e.g., “wind-area tows”; Section 2.1.1). My findings
show that under such a worst-case scenario, sample sizes, annual abundance indices or the
precision of their estimates (CVs) will be impacted. Specifically, the loss of species biomass and
numbers will vary in magnitude ranging anywhere from 0% to 100% depending on the frequency
in which the survey catches a given species. On one hand, sample sizes for over 65% of the
species caught by the survey will be unimpacted by its preclusion. On the other hand, 32% of the
species caught by the survey will be impacted, with the largest effects on sample sizes occurring
where survey catch ratios (wind catch rates to total survey catch rates) are the largest. These
impacts then propagated into estimates of annual abundance indices, population trend, and

survey precision, such that some species included in Table 2 that were found to have the greatest
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differences between estimates, were also found to suffer the most losses in terms of percentages
of tows, biomass, and numbers of fish removed when the survey was precluded. In other words,
the largest impacts of wind preclusion to sample sizes were seen for species that were less
available to the survey throughout the area but were caught in larger proportions within wind

areas when they were encountered.

However, the survey was not designed for these rare or uncommon species. The survey
efficiency quickly deteriorates with respect to sampling these species, and many of them are only
recorded at the family or genus level (i.e., spider crab uncl or entropus uncl in Table 2). Thus,
evaluating at the species level can make results variable and uncertain. Further iterations of this
work could perform the empirical analysis at the taxa level rather than the species level to derive
more certain estimates of impacts in the context of rare or uncommon species. Conversely,
ongoing analyses or applications could consider either foregoing evaluating impacts on this
group of species by either including additional spatial and temporal constraints on the data or
exclude observations and catch rates of species that occur at the tails of the catch rate

distribution.

One approach considered in this study included focusing the empirical evaluation on the
commercially important species for which the survey is principally designed. Input from
stakeholders during two Survey Simulation Experimentation and Evaluation Project (SSEEP)
workshops formed the basis of this list of species of interest. The analysis found that sample
sizes throughout the survey area for the majority of stakeholder-selected species were less
impacted by wind-precluded survey effort. The minimal spatial overlap within wind areas and
the high rate in which the survey encounters these species outside of potential wind areas was
identified as the main driver behind these smaller impacts. Similar findings occurred when
impacts were evaluated in terms of estimates of annual abundance indices, survey precision, and
population trends. However, impacts to estimates of population trend amongst skates, Atlantic
herring, Atlantic mackerel, butterfish, spiny dogfish, and yellowtail flounder were the greatest
for these species when comparing across the stakeholder-selected species as well as across the

total group of species encountered by the survey (Table 2 and Table 3).
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There was further invested interest to evaluate the empirical analysis and the other research
questions in the context of two stakeholder-selected species: summer flounder and Atlantic
mackerel, both of which represent classic definitions of species that are well-sampled and poorly
sampled by the survey, respectively. As illustrated above, wind preclusion will impact all the
species caught by the multispecies survey. By focusing a more applied evaluation of impacts on
summer flounder, a demersal fish distributed contiguously across the continental shelf, and
Atlantic mackerel, a schooling, pelagic fish with a patchier and more variable distribution, results

can be more readily translated to other species that fit within these definitions.

Empirical analyses found that the propagation of lower sample sizes of summer flounder resulted
in lower estimates of annual abundance indices and population trend and increased estimated
uncertainty. This was most notable for estimates derived from the fall survey where historically
there have been higher catch rates within potential wind areas. Higher catch rates within
potential wind areas are due to the increased availability of summer flounder to the survey when
they are inshore and in their preferred habitat. Similar impacts occurred when the spring survey
was precluded from wind areas, but to a lesser extent as the seasonal offshore distribution of
summer flounder will have minimal overlap with areas proposed for installation and

development.

Catch rates of Atlantic mackerel have historically been variable over the time series and over
space, in turn creating high interannual variability in estimates of abundance and population
trends (NEFSC 2021). As such, with status quo survey effort, the spring survey has been
imprecise when sampling Atlantic mackerel populations (e.g., high average CV in Table 5). This
high variability in catch rates and survey imprecision is expected to precipitate through to
impacts on sample sizes, estimates of annual abundance, and estimates of population trends for
Atlantic mackerel when the spring survey is precluded from wind areas. That is, high variability
and imprecision will persist with reduced survey effort, but on average, estimates will effectively

be unimpacted.
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Species distribution modeling

The historical data for summer flounder and Atlantic mackerel were used to fit geostatistical
GLMMs to evaluate potential impacts of offshore wind areas to survey operations, changes in
abundance, and hypothetical scenarios of changing spatial fish density distributions. A
motivating factor to experimenting with species distribution models was their ability to account
for spatial and temporal non-stationarity (or spatial and temporal changes over time) to
understand changes in a species geographic distribution and density (Elith & Leathwick, 2009;
Elith et al., 2010; Johnson et al., 2019; Barnett et al., 2021; Anderson et al., 2022; Ward et al.,
2022). Between the two species, three separate models were fit: a spatiotemporal Tweedie
observation model for summer flounder in the fall, a spatiotemporal Tweedie observation model
for summer flounder in the spring, and a spatiotemporal Delta Gamma with a poisson link

observation model for Atlantic mackerel in the spring.

Only the Tweedie model for summer flounder in the spring was able to adequately fit the data
and generate representative catch rate data based on new spatiotemporal random fields. The fall
summer flounder model and spring Atlantic mackerel models were able to generate
representative estimates of annual abundance indices and populations trends but ultimately had
issues with their fit and simulating raw catch rates of biomass. Three of the main problems with
the models included residual heteroscedasticity, overdispersion, and the inflating (or lack

thereof) of zeroes within the two models.

The fall model for summer flounder and the gamma component of the delta gamma model for
Atlantic mackerel both showed indications of residual heteroscedasticity and overdispersion that
was not accounted for through the estimation of the spatial or spatiotemporal random fields
(Appendix Figure A48-Figure A49 and Figure A59-Figure A60). For summer flounder, this
could be the result of some additional habitat relationship that should be included as a predictor
of biomass, especially given the fact that summer flounder has distinct migration patterns,
spending early spring to late fall inside estuaries and moving offshore to spawn (Buchheister &
Latour, 2011). The same could be said with respect to the Atlantic mackerel model especially

given that the gamma component, which represents the encounter rate of the observations,
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showed unequal scatter across its residuals and predictors (Figure 40-Figure 41; Appendix Figure

AS59-Figure A60).

While there were some issues with residual scattering and data fitting, this does not inherently
indicate that the models were unusable. Fortunately, the models were able to emulate plausible
scenarios for annual abundance indices and population trends, which were more adequately
representative when compared to real estimates from the observed data. At a minimum, the
models fit on this study were deemed worthy to meet the objectives and support the use of

geostatistical GLMMs to identify impacts on estimates of abundance and population trends.

Should other objectives be pursued when applying this framework, additional model exploration
and parameterization will be needed to resolve the residual and diagnostic issues. Additional
parameterizations could consider incorporating predictors of bottom temperature, which has been
included in previous summer flounder modeling efforts (Perretti & Thorson, 2019), and
predictors of sea surface temperature and salinity, which has been included in research
evaluating distributions of spawning Atlantic mackerel (Mbaye et al., 2020). Additional model
explorations could also investigate alternative error distributions, particularly for Atlantic

mackerel.

Scenarios of changing spatial distributions

The simulation study assumed a change in fish density in response to the presence of offshore
wind turbines to emulate hypothesized artificial reef effects or avoidance effects (Mavraki et al.,
2021; Reubens, Braecckman, et al., 2013; Reubens, Vandendriessche, et al., 2013) and how that
might propagate changes in estimates for abundance and population trends. Across the two case
study species and both seasonal surveys, increases in fish density and the preclusion of the
survey within these areas will result in the greatest differences to estimates of annual abundance
indices and population trends. The preclusion of the survey will result in varied impacts on
estimates of annual abundance indices and population trends when fish density was reduced
depending on the season in which it is conducted. For instance, when the fall survey was
precluded, estimates for summer flounder annual abundance indices would be more biased and

less precise than the baseline state but would not be as impacted when compared to an enhanced
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state. The preclusion of the spring survey, on the other hand, would result in estimates of annual
abundance indices for summer flounder and Atlantic mackerel that are less biased and more
precise than in the baseline state. It is likely that in this scenario, there would not be a difference
in catch rates within wind areas and outside wind areas; therefore, wind areas and reduced survey
efforts in response would be the least impactful. Population trends for both species and in both
seasons would be mostly unchanged by the preclusion of the respective survey and changes in
fish density, while the survey’s precision would be higher and less precise when there are

reductions in survey effort independent of the changes in fish density.

An empirical study at BIWF concluded that increases in abundance at an area of potential effect
when compared to a reference site were due to a regional artificial reef effect (Gervelis et al.,
2023) potentially indicating support for the attraction hypothesis. The attraction hypothesis
proposes that increases in fish density are a result of immigration from the surrounding
environment rather than an increase in productivity. The assumptions made in the simulation
study assumed a local increase or decrease in fish density at a given wind area rather than a
global increase in fish abundance and at previously sampled locations. In doing so, I
hypothesized that for species like summer flounder that are already observed to have high catch
rates within proposed wind areas, the attraction to offshore wind turbines will result in a greater
impact on the estimates of abundance when the survey is precluded and the need to mitigate that
impact to appropriately track abundance changes. This could also be true for species like Atlantic
mackerel where their observations are not as consistent in the survey. Conversely, this response
may not be as strong if fish have an aversion to wind areas and instead avoid these areas, in
which case the difference in the estimates of abundance when the survey is precluded would be

smaller (Figure 57 and Figure 64).

The simulation study only looked at potential impacts for a period of five years. Some artificial
reef studies have shown that although there were increases in abundance at a younger four-year
old artificial reef compared to a natural reef or no reef at all, there was a higher abundance and

overall diversity at a 41-year old reef indicating that productive environments have the potential
to become more productive over time (Harrison & Rousseau, 2020). Furthermore, similar work

by Yalcin et al. (2023) found that geostatistical GLMMs such as the ones employed in this study
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could mitigate the effects of survey reduction. However, GLMMs may not always be able to
account for the population processes as they change and particularly after an area has already
been excluded, and at some level the accuracy of them degrades substantially (Yalcin et al.,
2023). Thus, future iterations of this work could apply the treatments over time and for longer
durations to identify how the impacts might change with time, if there would be a maximum
threshold at which point impacts to the abundance index are no longer accrued, and at what point
within that accrual are the species distribution models unable to make up for the loss. Beyond
this, future directions could also consider using the impacted estimates of abundance concluded
from this study or using impacts reassessed at the stock unit resolution as inputs into a stock
assessment and management strategy evaluation to evaluate how their performance compares to
an unimpacted input. Currently, there are two projects evaluating the impact of wind preclusion
on annual abundance indices as inputs for stock assessments. Sun et al. (in prep) found that
abundance index bias had limited impacts on model-based stock assessments, while index-based
methods were much more sensitive to these changes. Similarly, the Northeast Fisheries Science
center is assessing the impacts on index-based assessments when inputs are derived based on
wind-precluded survey effort; preliminary findings indicate that the impact is dependent on a
species distribution relative to the wind energy areas and relative to the proportion of stock

biomass encountered by the survey in the wind energy areas (Cacciapaglia et al., in prep).

Fishery-independent surveys have proven to be an imperative tool in the fisheries management
toolbox to track species distributions and changes through a standardized design, even if it is at
the expense of less resolute data when compared to fishery dependent data such as CPUE. In this
study I identified potential differences in stock abundance indices when the federal Northeast
bottom trawl survey is precluded from operating inside wind energy areas. Many of these species
and stocks that are federally managed depend on average biomass catch rates, estimates of
abundance, and changes in population trends to derive their management advice, whether
empirically or analytically. More specifically, biased and imprecise inputs would elicit the need
for more precautionary management to account for management uncertainty and protect against
overfishing in pursuit of complying with the National Standard Guidelines in the Magnuson-

Stevens Fishery Conservation and Management Act.
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As such, it is imperative that those differences can be mitigated. At a minimum, existing
protocols for the bottom trawl survey should be maintained and upheld, which allow for the
reallocation of lost effort within the same sampling unit (Politis et al., 2014). However, this study
demonstrated the impact when large portions of survey strata or whole survey strata are lost from
the sampling frame due to the inability to sample within wind energy areas. It further showed the
impact when that loss is coupled with changing species distributions. Should the current
understanding of species distributions and dynamics remain the same, then it is possible that
reallocating lost effort will be enough to mitigate impacts of wind preclusion. If, however, the
changes in species distribution and dynamics simulated in this study are realized, then additional
sampling efforts will need to supplement the reallocated survey to appropriately estimate relative
annual abundances and population trends. These efforts could include sampling within the wind
energy areas and operating according to the same objectives, and temporal and seasonal scales as
the federal scientific survey; though a smaller vessel may be warranted to safely transit between
the turbines as well as calibration factors to relate relative abundances between the differing
vessels. Another option with regards to sampling could implement video sampling protocols and
co-locating the gear on the wind turbine structures; though this alternative would lose the

important biological sampling data that also feeds into federal stock assessments.

Other initiatives and research through the Federal Survey Mitigation Implementation Strategy for
the Northeast Region (Hare et al., 2022), in addition to the Survey Experimentation and
Evaluation Project (SSEEP), aim to analyze how the reallocation of effort, supplemental
sampling strategies, and alternative survey designs can mitigate the findings herein. For
instance, the NEFSC has drafted a survey mitigation plan that is currently under reviewed which
details the evaluation of the existing stratification and station allocation design and its
performance to potentially adapt the survey’s design to something more spatially-balanced. The
plan also considers including perimeter sampling around smaller wind energy areas to try to
capture those higher abundances that would be precluded from survey effort through the

immigration and emigration of fish between wind energy areas.

As the marine use environment is becoming more inundated, spatial management of resources

becomes more imperative, as do standardized and consistent fishery-independent surveys that
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can meet management objectives and track changes in the distribution and abundance of
resources. Offshore wind development is at the forefront of many marine spatial use conflicts
with fisheries, with expected impacts to an additional eleven federal fisheries surveys on the
eastern coast and various others within the Gulf of Mexico and along the northwest coast,

regions which are in the beginning stages of development planning.

This study found an important connection between the magnitude of spatial overlap of wind
energy areas and bottom trawl survey strata, and the temporal overlap between a species
distribution and their availability to a given seasonal survey. For example, impacts to estimates
of annual abundance indices for summer flounder were greater when the fall survey was
precluded from wind energy areas than when the spring survey was precluded. The proposed
wind energy areas overlap with the inshore strata of the survey where historically summer
flounder has been more available to the fall survey whereas in the spring, summer flounder is
more available to the survey along the outer continental shelf which does not align with proposed
wind energy area overlap. As the spatial conflict between wind energy areas and the survey
sampling footprint grows larger with the expansion into the Gulf of Maine
(https://www.boem.gov/Gulf-of-Maine) and the installation of floating wind turbine structures, it
is expected that some of the impacts identified in this study would grow alongside those updated
understandings. For instance, the estimates of population trend for spiny dogfish were identified
as having some of the largest impacts when compared against all the species encountered by the
survey, and against other stakeholder-selected species. These estimates were assessed on a
spatial sampling frame where upwards of 75% of the total biomass caught by the survey over the
time series occurred in the Gulf of Maine strata. As such, an updated analysis that includes
proposed wind energy areas within the Gulf of Maine could further exacerbate the impacts

identified in this study due to an increased loss in sample sizes for spiny dogfish.

Nonetheless, the underlying framework of this study has been developed in such a way such that
the analysis can be supplied with any updated understandings of proposed wind energy areas or
proposed structures and can be applied in the context of any of the other eleven federal surveys
and species of interest. Further still, because this research uses the spatial footprint of wind

energy areas to reflect an area of impact, there is the potential to extend this framework into
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other spatial impact analysis applications such as the impacts of scientific survey preclusion or

fishery preclusion due to aquaculture or oil and gas development.

Finally, further work needs to be conducted with regards to impacts from longstanding changes
to survey design and sampling on these federal surveys but also considering the added
complexities of tracking species distributions in the face of climate change (Nye et al., 2009).
Existing research thus far has performed well in identifying distribution shifts, but the work is
still ongoing to incorporate this information into species stock assessments, with stock assessors
starting to discuss how to define spatial stock structures, break conventional stock assessment
structures, and incorporate ecosystem-based fisheries management (EBFM), which is still in the
realm of innovation. My work aims to contribute a novel approach using time series analysis and
species distribution modeling to identify potential disruptions, to work towards designing a more
flexible fishery-independent survey, and in advancement of analyses that consider the full
management cycle from data collection to analysis and assessment inputs, to reference points and

total allowable catch advice.
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5 CONCLUSIONS

The reduction in survey effort in the presence of offshore wind is expected to be most impactful
for species that had larger differences in catch rates within wind energy areas compared to catch
rates outside wind energy areas. With respect to the case study species, the historical analysis
suggests greater impacts on estimates of summer flounder than Atlantic mackerel, and greater
impacts still when those estimates were derived based on the fall survey. Additionally, changes
to data products derived for summer flounder due to wind preclusion of the fall survey were
different than changes due to general reduction in survey effort. Data products derived for
Atlantic mackerel or summer flounder from the spring survey were robust to changes in survey

effort on average regardless of the driver in reductions of survey effort.

Species distribution modeling was able to assist in meeting the objectives of this study and
contribute to the evaluation of potential impacts of wind preclusion. With further model
refinement, impact analysis can be another useful application of SDMs, and particularly

geostatistical GLMMs.

Wind preclusion will result in more biased and imprecise stock abundance indices with a
reduction in survey efforts. This would be especially true under assumptions of increased fish

density changes within wind areas and the theorized reef effect is actualized.

The findings in this study reinforce the call to mitigate anticipated disruptions in survey effort
and conserve the integrity of federal scientific survey data. Without the mitigation, resulting
biased and imprecise inputs from reduced sample sizes and the failure to account for uncertainty
from reduced survey effort could lead to more precautionary management or more conservative

decisions for measures that protect against overfishing.
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TABLES

Table 1. Number of species by criteria

Criteria

1

Total number of species Number in the fall Number in the spring
Occurs in 3 or more strata within a given year
278 255 201
Observed in 3 or more strata for at least 3 years
199 189 151
Observed in at least one strata that is proposed for overlap by offshore wind
164 149 113
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Table 2. Summary of performance metrics comparing the differences between survey effort scenarios. For each criteria species the

following information is given: the mean absolute relative differences between abundance indices; the average coefficients of

variation for each scenario (status quo and wind-precluded) and the mean absolute relative difference between the two scenarios; and

the trend estimate under status quo survey effort and the mean absolute difference between the two survey effort scenarios. The

species with the greatest differences between status quo and preclusion based on the quantiles of the distribution are highlighted in

green (darker green = upper quantile, light green = lower quantile).

Fall

All skates

Atlantic croaker
Black sea bass
Bluntnose stingray
Bullnose ray
Coarsehand lady crab
Horseshoe crab

Little skate

Abundance Indices

Mean Absolute
Relative Difference

4.07%
13.05%
22.77%
29.85%
32.48%
15.39%

35.63%

6.40%

With Wind
Included

0.19
0.44
0.34
0.71
0.45
0.39
0.46
0.17

crv

With Wind

73

Precluded

0.20
0.47
0.31
0.66
0.49
0.45
0.48
0.17

Mean Absolute
Relative Difference

15.29%

9.06%
20.01%
11.65%
11.69%
17.65%
15.56%
20.14%

Trend Estimates

With Wind Mean Absolute

Included Difference
-3.24 5.33 x 107!

-7.76 x 107! 4.47 x 107!
1.89 x 107! 8.71 x 107
1.65 5.20 x 107!

4.01 x 10 2.56 x 1073
1.12 2.96 x 107!

-1.45 2.29 x 107!

cont. on next page



Table 2 cont.

Fall
Northern searobin

Rough scad
Roughtail stingray
Round herring
Scup

Sea scallop

Shrimp
(pink,brown,white)

Smallmouth flounder
Spider crab uncl
Spiny butterfly ray

Spiny dogfish

Abundance Indices

Mean Absolute With Wind

Relative Difference

28.65%
57.99%
15.54%

9.15%
12.19%

23.69%

28.87%

11.43%

35.06%

0.97%

Included

0.28

0.46
0.59
0.59
0.30
0.33

0.65

0.70

0.42

0.45

0.29

With Wind
Precluded Relative Difference

74

crv

Mean Absolute

0.26 13.33%
0.50 6.87%
0.70 39.85%
0.63 6.45%
0.39 36.45%
0.35 8.43%
0.65 1.22%
0.69 19.79%

0.51

0.55 25.13%

0.31 3.59%

Trend Estimates

With Wind Mean Absolute

Included Difference
1.25 1.04 x 10!

-1.34 x 10! 1.73 x 1073
1.28 9.44 x 107!

-7.93 x 10! 3.23 x 10!
1.36 x 10! 7.36 x 1072
-3.56 x 107! 438 x 107!
-4.86 x 102 3.22 x 1072
-3.55x 1073 2.61 x 103
-4.96 x 10 6.31 x 10
2.40 x 10! 1.08 x 10!

-1.09 x 107! 6.85 x 10!

cont. on next page



Table 2 cont.

Fall

Spotted hake
Windowpane
Yellowtail flounder
Spring

All skates
Atlantic herring
Atlantic mackerel
Atlantic seasnail
Atlantic silverside
Atlantic surfclam
Bluefish

Bobtail uncl

Butterfish

Abundance Indices

Mean Absolute
Relative Difference

15.20%
10.36%
0.46%

2.74%
5.30%
8.58%
25.26%

34.05%

18.62%
20.24%
18.58%

6.36%

With Wind
Included

0.20
0.20
0.29

0.13
0.31
0.45
0.60
0.46
0.85
0.64
0.25

0.32

cr

With Wind
Precluded

0.24
0.24
0.29

0.14
0.31
0.45
0.62
0.46
0.92
0.74
0.30
0.30

75

Mean Absolute
Relative Difference

18.81%
19.74%
0.50%

5.67%
1.21%
2.89%
3.18%
18.62%
12.88%
15.98%
19.15%

4.62%

Trend Estimates
With Wind Mean Absolute
Included Difference
5.89 x 102 3.05 x 102
-9.14 x 107 5.38 x10°
-1.16 2.56 x 10!
-2.94 5.57 x 102
-1.45 2.84 x 10!
-1.02 x 10" 9.69 x 102
-1.30 x 10+ 429 x 10°
-4.57 x 10+ 4.11 x 10°
-3.18 x 1073 1.32 x 107
-6.03 x 1073 3.33 %103
-9.89 x 10 2.04 x 10°
3.40 x 10" 5.59 x 102

cont. on next page



Table 2 cont.

Spring

Clearnose skate
Coarsehand lady crab
Etropus uncl
Horseshoe crab

Lady crab

Little skate
Smallmouth flounder
Smooth dogtfish
Spider crab uncl
Spiny dogfish
Striped bass

Abundance Indices

Mean Absolute
Relative Difference

13.46%
19.19%
5.71%
9.49%

7.58%
50.31%
21.19%

4.89%
37.59%

With Wind
Included

0.17
0.36
0.23
0.23
0.42
0.13
0.59
0.52
0.74
0.16
0.67

With Wind

76

crv

Mean Absolute
Precluded Relative Difference

0.18 23.78%
0.43 17.86%
0.24

0.29 30.17%
0.52 25.38%
0.14 10.45%
0.57 12.53%
0.77 12.13%
0.17 9.86%
0.74 14.65%

Trend Estimates

With Wind Mean Absolute

Included

Difference

2.30 x 107
9.06 x 10”
1.28 x 10!
3.89 x 107

-2.02
-3.86 x 107

2.75 x 10"
3.67 x 10*
3.25 %102
1.14 x 10°
4.76 x 107
4.16 x 10*

-2.66 x 10
-6.65
-2.26

6.46 x 10°

1.99

8.38 x 107-1



Table 3. Summary of performance metrics comparing the differences between survey effort scenarios. For each stakeholder-

identified species the following information is given: the mean absolute relative differences between abundance indices; the average

coefficients of variation for each scenario (status quo and wind-precluded) and the mean absolute relative difference between the two

scenarios; and the trend estimate under status quo survey effort and the mean absolute difference between the two survey effort

scenarios.

Fall

All skates
Atlantic herring
Atlantic mackerel
Black sea bass
Butterfish
Longfin squid
Silver hake

Spiny dogfish

Summer flounder

Abundance Indices

Mean Absolute
Relative Difference

2.63%
0.07%
0.00%
20.94%
4.97%
0.84%
1.80%
1.34%
15.44%

crv

Status quo Wind-precluded
survey effort

survey effort

0.19
0.33
0.55
0.34
0.25
0.09
0.12
0.29
0.19

77

0.20
0.33
0.55
0.31
0.25
0.10
0.12
0.31
0.22

Mean Absolute

Relative Difference

15.29%
0.06%
0.00%

20.01%
3.29%

13.04%
0.36%
3.59%

15.89%

Trend Estimates
Status quo Mean Absolute
survey effort Difference
-3.24 0.53
-0.63 0.00
4.00 0.00
0.19 0.09
0.06 0.06
0.53 0.00
1.61 0.05
-10.85 0.68
-0.20 0.06

cont. on next page



Table 3 cont.

Abundance Indices cr Trend Estimates
Mean Absolute Status quo Wind-precluded Mean Absolute  Status quo Mean Absolute

Relative Difference survey effort survey effort Relative Difference survey effort Difference
Fall
Winter flounder 1.43% 0.25 0.25 1.50% -0.64 0.04
Yellowtail flounder 0.46% 0.29 0.29 0.50% -1.16 0.26
Spring
All skates 2.74% 0.13 0.14 5.67% -2.94 0.06
Atlantic herring 5.30% 0.31 0.31 1.21% -1.45 0.28
Atlantic mackerel 8.58% 0.45 0.45 2.89% -0.10 0.10
Black sea bass 3.66% 0.53 0.54 2.98% 0.34 0.03
Butterfish 6.36% 0.32 0.30 4.62% 0.34 0.06
Longfin squid 6.94% 0.17 0.17 1.37% 0.20 0.01
Silver hake 0.21% 0.11 0.11 0.18% 1.22 0.02
Spiny dogfish 4.89% 0.16 0.17 9.86% -6.65 1.99
Summer flounder 2.42% 0.17 0.18 5.84% -0.06 0.01
Winter flounder 2.91% 0.26 0.26 1.96% -0.15 0.03
Yellowtail flounder 0.07% 0.25 0.25 0.05% -0.69 0.01
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Table 4. Estimates of population trends, and their respective lower and upper confidence
intervals (CI), under each survey effort scenario for fall and spring summer flounder populations

and spring populations for Atlantic mackerel.

Fall Spring

Estimate Lower CI Upper ClI Estimate Lower CI Upper CI

Summer flounder
With Wind Included -0.15 -0.26 -0.04 -0.05 -0.16 0.07
With Wind Precluded -0.10 -0.19 -0.02 -0.04 -0.15 0.08

Atlantic mackerel

With Wind Included - - - -0.04 -0.69 0.61
With Wind Precluded -— -— - 0.01 -0.65 0.67
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Table 5. Summary of performance metrics comparing the differences between survey effort

scenarios. For summer flounder and Atlantic mackerel, the following information is given: the

mean absolute relative differences between abundance indices; the average coefficients of

variation for each scenario (status quo and wind-precluded) and the mean absolute relative

difference between the two scenarios; and the trend estimate under status quo survey effort and

the mean absolute difference between the two survey effort scenarios.

Fall

Summer flounder
Spring

Summer flounder

Atlantic mackerel

Annual
Abundance
Indices

Mean
Absolute
Relative
Difference

14%

4%

7%

Status quo
survey
effort

0.188

0.164

0.428

cr

Wind-

precluded

80

survey
effort

0.211

0.173

0.433

Mean
Absolute
Relative
Difference

15%

6%

2%

Status quo

Trend Estimates

Mean
survey  Absolute
effort Difference

-0.147 0.045
-0.048 0.008
-0.041 0.052



Table 6. Configurations used to fit fall and spring models predicting summer flounder biomass

catch rates.

Models Predictors Spatial Spatiotemporal  Time Family

ml Depth (spline) Off Off - Tweedie
Year

m2 Depth (second-order polynomial)  Off Off - Tweedie
Year

m3 Depth (spline) Off Off - Tweedie
Year
Area

m4 Depth (second-order polynomial)  Off Off - Tweedie
Year
Area

m5 Depth (spline) On Off - Tweedie
Year

mo6 Depth (second-order polynomial) On Off - Tweedie
Year

m7 Depth (spline) On Off - Tweedie
Year
Area

m8 Depth (second-order polynomial) On Off - Tweedie
Year
Area

m9 Depth (spline) On 11D Year Tweedie
Year

ml0 Depth (second-order polynomial)  On 11D Year Tweedie
Year

cont. on next page
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Table 6 cont.

Models Predictors Spatial Spatiotemporal  Time Family
mll Depth (spline) On 11D Year Tweedie
Year
Area
ml2 Depth (second-order polynomial) On 11D Year Tweedie
Year
Area
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Table 7. Diagnostic quantities for the fall and spring models fit for summer flounder. For each of the models, the following

information is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean squared

error across the folds of each cross-validation, and the model convergence. The optimal model in each season is highlighted in red.

Models

Fall

ml
m2
m3
m4
mS5
m6
m7
m§
m9
ml10
mll

ml2

AIC

7,442.52
7,446.88
7,424.88
7,425.62
6,330.89
6,323.95
6,330.41
6,323.60
6,193.75
6,187.25
6,195.49
6,189.04

Deviance Explained

94.48%
94.53%
94.23%
94.24%
80.26%
80.17%
80.23%
80.14%
78.48%
78.40%
78.48%
78.40%

Sum log likelihood

-3,748.01
-3,770.55
-3,733.14
-3,737.39
-3,299.06
-3,277.81
-3,272.14
-3,294.04
-4,172.68
-4,188.35
-4,141.33
-4,116.86
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Mean Squared
Error

56.31
56.93
55.83
55.38
38.33
38.55
39.92
40.33
67.44
56.84
55.67
54.56

Convergence

True
True
True
True
True
True
True
True
True
True
True

True

cont. on next page



Table 7 cont.

Models

Spring
ml
m2
m3
m4
mS5
m6
m7
m8
m9
ml0
mll

ml2

AIC

9,186.74
9,190.69
9,184.48
9,187.94
8,672.89
8,666.36
8,672.28
8,665.47
8,420.82
8,409.22
8,419.56
8,407.41

Deviance Explained

92.27%
92.31%
92.23%
92.26%
87.05%
86.98%
87.02%
86.95%
84.49%
84.37%
84.46%
84.33%

Sum log likelihood

-4,601.46
-4,604.67
-4,593.76
-4,606.39
-4,327.68
-4,342.23
-4,320.11
-4,346.33
-4,635.97
-4,636.02
-4,794.72
-4,666.95

84

Mean Squared
Error

47.07
45.22
46.14
45.84
39.80
39.28
37.75
40.85
44.44
44.06
45.81
45.28

Convergence

True
True
True
True
True
True
True
False
True
True
True

True



Table 8. Main and random effect parameter estimates, and the respective standard error, from the

chosen optimal fall model (m10) and spring model (m12) for summer flounder.

Fall Spring
Standard Standard

Term Estimate Error Estimate Error
Main effect parameters
Depth -52.50 9.63 5.22 5.02
Depth -30.76 5.33 -41.72 3.99
Year: 2009 -1.27 0.51 -1.02 0.48
Year: 2010 -1.69 0.51 -1.15 0.48
Year: 2011 -1.65 0.52 -0.92 0.48
Year: 2012 -1.34 0.50 -0.53 0.47
Year: 2013 -1.79 0.52 -0.68 0.47
Year: 2014 -1.27 0.51 -0.89 0.50
Year: 2015 -2.08 0.53 -1.17 0.48
Year: 2016 -1.80 0.51 -0.36 0.46
Year: 2017 - - -1.06 0.47
Year: 2018 -1.96 0.52 -0.99 0.48
Year: 2019 -1.83 0.51 -0.88 0.47
Year: 2021 -2.04 0.51 -1.13 0.50
Area: Wind - - 0.31 0.16
Random effect parameters
Range 94.47 11.53 111.54 16.50
Phi 1.54 0.08 1.72 0.08
Spatial standard deviation (®) 1.75 0.17 1.34 0.16
i:j;;;j?gral standard 1.04 0.09 1.02 0.07
Tweedie power parameter 1.34 0.01 1.40 0.01
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Table 9. The nominal mean biomass catch rate generated by the optimal seasonal models in each
year, and the quantile of the distribution that corresponds to the observed average biomass catch
rate in each year for summer flounder. The average biomass catch rate across years generated in
each season and the quantile of the distribution that corresponds to the observed average biomass

catch rate across years for summer flounder is provided at the bottom of the table.

Fall Spring
Average Biomass Average Biomass

Year (kg/tow) Quantile (kg/tow) Quantile
2009 3.19 0.42 2.79 0.63
2010 2.36 0.04 4.03 0.78
2011 4.39 0.75 4.26 0.38
2012 3.67 0.07 3.21 0.19
2013 3.61 0.14 3.51 0.53
2014 3.35 0.33 342 0.77
2015 3.56 0.05 3.12 0.93
2016 2.55 0.02 2.36 0.04
2017 - - 2.17 0.15
2018 2.22 0.31 2.99 0.48
2019 2.19 0.86 3.29 0.10
2021 1.88 0.64 2.64 0.00

Overall 3.00 0.01 3.16 0.10
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Table 10. The proportion of zeroes generated by the optimal seasonal models in each year, and
the quantile of the distribution that corresponds to the observed proportion of zeroes in each year
for summer flounder. The overall proportion of zeroes generated in each season and the quantile
of the distribution that corresponds to the overall proportion of zeroes for summer flounder is

provided at the bottom of the table.

Fall Spring
Average Average
Proportion of Proportion of

Year Zeroes Quantile Zeroes Quantile
2009 0.48 0.56 0.42 0.51
2010 0.49 0.51 0.44 0.84
2011 0.49 0.47 0.45 0.91
2012 0.45 0.83 0.36 0.80
2013 0.56 1.00 0.38 0.72
2014 0.47 0.91 0.40 0.84
2015 0.57 0.76 0.44 0.41
2016 0.52 0.48 0.35 0.81
2017 0.41 0.41
2018 0.55 0.68 0.42 0.48
2019 0.47 0.06 0.37 0.32
2021 0.58 0.97 0.43 1.00

Overall 0.51 0.95 0.41 0.96
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Table 11. The annual stratified mean biomass generated by the optimal seasonal models in each

year, and the quantile of the distribution that corresponds to the observed annual abundance

index for summer flounder.

Year

Fall

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2021
Spring
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2021

Status quo survey effort

Stratified Mean

(kg/tow)

3.53
2.25
4.22
3.06
2.66
3.38
2.55
2.96

1.95
1.69
1.78

3.05
3.96
4.08
4.33
3.79
3.23
3.96
2.85
2.18
4.07
3.78
3.11

Quantile

0.88
0.11
0.73
0.12
0.24
0.39
0.35
0.07

0.16
0.59
0.90

0.54
0.64
0.11
0.31
0.38
0.34
0.98
0.10
0.12
0.78
0.18
0.03

88

Wind-precluded survey effort

Stratified Mean

(kg/tow)

2.59
2.11
3.05
3.05
1.92
3.15
2.17
2.00

1.77
1.59
1.60

3.25
3.85
3.71
4.49
3.91
3.28
3.57
2.99
2.21
4.42
3.69
3.17

Quantile

0.55
0.22
0.50
0.18
0.12
0.34
0.21
0.04

0.42
0.51
0.79

0.79
0.56
0.09
0.40
0.41
0.37
0.91
0.22
0.12
0.81
0.22
0.08



Table 12. The estimates of population trend generated by the optimal seasonal models, and the
quantile of the distribution that corresponds to the observed estimate of population trend for

summer flounder.

Fall Spring

Population
Trend Estimate

Population

til
Quantile Trend Estimate

Quantile

Status quo survey effort -0.15 0.50 -0.05 0.19

Wind-precluded survey

-0.10 0.73 -0.04 0.21
effort

&9



Table 13. Configurations used to fit spring models predicting Atlantic mackerel biomass catch rates.

Models Predictors Family Spatial Spatiotemporal Time Shared range

Delta gamma

Bi ial
ml Eepth (fourth-order polynomial) (Cor:;l?(::elzt 1) On 11D Year Yes
Bi ial
m Eepth (fourth-order polynomial) (Cor:;l?(::elzt 1) On 11D Year No
" (COZ;?;ZZ y Om 1D Year No
Bi ial
m3 gepth (fourth-order polynomial) (Conliic())r:elia;t 1) On 11D Year Yes
" (COS;I:;ZZ 2) On 1D Year No
Bi ial
md Depth (fourth-order polynomial) (Conliizr;elia;t 1) On IID Year No
- (COS;)I;:;; 2) On 1D Year Yes
Bi ial
m5 Bepth (fourth-order polynomial) (Conliz(())rzl;elit 1) On D Year No
" (COS;T;ZZ 2) ) 1D Year -

cont. on next page
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Table 13 cont.

Models Predictors
Tweedie

Depth (fourth-order polynomial)

6
m Year

Depth (fourth-order polynomial)

7
m Year

Family

Tweedie

Tweedie

91

Spatial

On

Spatiotemporal

11D

11D

Time

Year

Year

Shared range

Yes

No



Table 14. Diagnostic quantities for the final set of spring models fit for Atlantic mackerel. For each model, the following information
is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean squared error across

the folds of each cross-validation, the model convergence and the cross-validation convergence. The optimal model is highlighted in
red.

Delta Gamma

ml 8,802.19 82.31% -8,286.17 2,330.05 True True
m2 8,803.62 82.29% -8,690.88 2,311.10 False False
m3 8,804.19 82.31% -8,441.83 2,310.69 False False
m4 8,801.62 82.29% -8,092.74 2,324.47 True True
m5 8,799.62 82.29% -8,305.95 2,216.04 True True
Tweedie

moé6 8,930.46 83.28% -11,711.63 2,501.87 True True
m?7 8,912.83 83.10% - - True -
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Table 15. Main and random effect parameter estimates, and their respective standard errors, for

each of the model components (binomial and gamma) of the chosen optimal spring model (m5)

for Atlantic mackerel.

Term

Main effect parameters

Depth
Depth
Depth
Depth
Year:
Year:
Year:
Year:
Year:
Year:
Year:
Year:
Year:
Year:
Year:

Year:

Random effect parameters
Spatial range

Spatiotemporal range

Spatial standard deviation (®)

Spatiotemporal standard
deviation (€)

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2021

Dispersion

Binomial Component

Estimate

-4.13
-7.24

8.32
-8.70
-2.08
-1.98
-2.14
-1.55
-1.44
-2.33
-2.06
-1.35
-2.01
-1.75
-1.66
-2.18

161.20
99.71
1.44

1.48

93

Standard
Error

6.68
4.55
3.62
3.00
0.54
0.53
0.54
0.53
0.52
0.55
0.53
0.52
0.53
0.54
0.53
0.54

46.01
11.89
0.26

0.10

Gamma Component

Estimate

-15.01
-16.39
5.03
6.34
-0.39
-0.18
0.23
-0.30
-0.17
-0.14
-0.01
-0.10
0.27
0.06
-0.34
0.03

27.37

2.10

0.83

Standard
Error

4.16
4.02
3.69
3.43
0.30
0.26
0.28
0.26
0.23
0.28
0.26
0.23
0.26
0.28
0.25
0.27

5.71

0.26

0.04



Table 16. The nominal mean biomass catch rate generated by the optimal spring model in each
year, and the quantile of the distribution that corresponds to the observed average biomass catch
rate in each year for Atlantic mackerel. The overall average biomass catch rate across years
generated by the spring model and the quantile of the distribution that corresponds to the
observed average catch rate across years for Atlantic mackerel is provided at the bottom of the

table.

Year Average Biomass (kg/tow) Quantile
2009 6.58 0.01
2010 4.79 0.00
2011 5.34 0.09
2012 4.34 0.26
2013 541 0.02
2014 0.58 0.00
2015 10.49 0.03
2016 2.58 0.09
2017 6.82 0.01
2018 2.18 0.06
2019 4.08 0.30
2021 5.76 0.00
Overall 5.06 0.00
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Table 17. The average proportion of zeroes generated by the optimal spring model in each year,
and the quantile of the distribution that corresponds to the observed proportion of zero in each
year for Atlantic mackerel. The average proportion of zeroes across years generated by the
spring model and the quantile of the distribution that corresponds to that observed average

proportion of zeroes across years for Atlantic mackerel is provided at the bottom of the table.

Year Average Proportion of Zeroes Quantile

2009 0.70 1.00
2010 0.69 1.00
2011 0.71 1.00
2012 0.61 1.00
2013 0.60 1.00
2014 0.76 1.00
2015 0.71 1.00
2016 0.57 0.99
2017 0.67 1.00
2018 0.68 1.00
2019 0.62 1.00
2021 0.71 1.00

Overall 0.67 1.00
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Table 18. The annual stratified mean biomass generated by the optimal spring model in each year and

each survey effort, and the quantile of the distribution that corresponds to the observed annual abundance

index under the respective survey effort for Atlantic mackerel.

Year

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2021

Status Quo Survey Effort

Stratified Mean

(kg/tow)

9.50

4.38

6.88

3.31

2.82

0.62

16.68

3.51

9.59

3.72

4.41

7.76

Quantile

96

0.50

0.00

0.48

0.06

0.00

0.01

0.72

0.67

0.21

0.64

0.39

0.11

Wind-Precluded Survey Effort

Stratified Mean

(kg/tow)

9.80

3.37

5.88

3.32

2.70

0.65

16.90

4.03

8.08

4.11

4.36

8.60

Quantile

0.57

0.00

0.23

0.08

0.00

0.01

0.77

0.86

0.06

0.76

0.40

0.23



Table 19. The estimates of population trend generated by the optimal seasonal models, and the
quantile of the distribution that corresponds to the observed estimate of population trend for

Atlantic mackerel.

Population Trend

Estimate Quantile
Status quo survey effort 0.04 0.65
Wind-precluded survey effort 0.10 0.80
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Figure 1. A map of the actively sampled NEFSC bottom trawl survey strata (white polygons)

overlapped by leased wind areas (dark purple), and the planned wind areas (purple).
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Figure 2. A map of the actively sampled NEFSC bottom trawl survey strata and the percentage

of area impacted and subject to survey preclusion by offshore wind area overlap.

99



100 91 1

75 1

25 1

Percentage of survey tows
removed
()]
o
1

O 4
0 100 200 300
Number of species
B
100 4 =
4]
=
8 75
>
2
3 O
>

”Sg 50 1 =m
& 0
8
c
S 25 -
0]
o

O 4

0 100 200 300
Number of species

Figure 3. The percentage of (A) tows conducted in strata proposed for overlap by wind and (B)
tows conducted over the full survey area that would be removed from positive survey

observations due to wind-precluded effort.
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Figure 4. The percentage of (A) tows, (B) total biomass, and (C) total number of fish observed in
strata that are proposed for overlap by wind that would be removed from positive survey

observations due to wind-precluded effort for a set of stakeholder-identified species.
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Figure 5. The percentage of (A) tows, (B) total biomass, and (C) total number of fish observed
over the full survey area that would be removed from positive survey observations due to wind-

precluded effort for a set of stakeholder-identified species.
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over the full survey area that would be removed from positive survey observations due to wind-

precluded effort for a set of stakeholder-identified species.
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Figure 7. The distribution of mean absolute relative differences between survey effort scenarios
for all species observed in the A) fall survey data and B) spring survey data (dark blue bars). The
mean absolute relative differences between status quo and wind-precluded indices for summer

flounder and Atlantic mackerel are denoted by the red and purple dotted lines, respectively.
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Figure 8. The distribution of mean absolute relative differences between survey effort scenarios
for all species observed in the A) fall survey data and B) spring survey data (light blue bars). The
mean absolute relative differences between status quo and wind-precluded CVs for summer

flounder and Atlantic mackerel are denoted by the red and purple dotted lines, respectively.
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Figure 9. The distribution of mean absolute relative differences between survey effort scenarios
for all species observed in the A) fall survey data and B) spring survey data (light blue bars). The
mean absolute relative differences between status quo and wind-precluded population trends for
summer flounder and Atlantic mackerel are denoted by the orange and dark blue dotted lines,

respectively.
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Figure 10. The A) fall and B) spring sampling frames for summer flounder (light blue)

comprised of the 95% total cumulative biomass observed by the historical time series overlapped

by the leased wind areas (dark purple), and the planned wind areas (light purple).
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Figure 11. Summer flounder biomass observations based on whether the biomass was observed

inside or outside of planned and leased wind energy areas.
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Figure 12. The number of survey tows that caught summer flounder that would have occurred

inside and outside wind energy areas in each year during the A) fall survey and B) spring survey.
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Figure 13. The seasonal annual abundance indices for summer flounder under a status quo
survey effort assumption (green) and a wind-precluded survey effort assumption (orange). The

bars on each of the points represent the standard error around the stratified mean.
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Figure 14. The distribution of estimated fall (left column) and spring (right column) population
trends for summer flounder when the observed data is randomly resampled with replacement to
emulate a status quo survey effort for each season (green), when wind-area tows are precluded
from trend estimation (orange), and when the status quo effort data is randomly reduced by the
same proportions as the potential wind-precluded effort to emulate a general reduction in survey
effort (purple). The 95% confidence intervals of each distribution are represented by the dark
blue shaded rectangle in each panel, and the estimated population trend from the observed data
under the wind-precluded survey effort scenario is presented by the black dotted line and

annotated with the representative quantile of the distribution.
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Figure 15. The change in estimates of population trend for summer flounder from the A) fall and

B) spring survey as the number of years the survey is precluded from wind areas increases. The

bars represent the 95% confidence intervals around the trend estimate.
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Figure 16. The seasonal sampling frame for Atlantic mackerel (light blue) overlapped by the

leased wind areas (dark purple), and the planned wind areas (purple).
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Figure 17. A map of spring Atlantic mackerel biomass observations based on whether the

biomass was observed inside or outside of planned and leased wind energy areas.
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Figure 18. The number of survey tows that observed Atlantic mackerel that would have occurred

inside and outside wind energy areas in each year.
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Figure 19. The spring annual abundance indices for Atlantic mackerel under a status quo survey

effort assumption (green points) and a wind-precluded survey effort assumption (orange points).

The bars on each of the points represent the standard error around the stratified mean.
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Figure 20. The distribution of estimated spring population trends for Atlantic mackerel when the
observed data is randomly resampled with replacement to emulate a status quo survey effort (top
panel), when wind-area tows are precluded from trend estimation (middle panel), and when the
status quo effort data is randomly reduced by the same proportions as the potential wind-
precluded effort to emulate a general reduction in survey effort (bottom panel). The 95%
confidence intervals of each distribution are represented by the dark blue shaded rectangle in
each panel, and the estimated population trend from the observed data under the wind-precluded
survey effort scenario is presented by the black dotted line annotated with the representative

quantile of the distribution.
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Figure 21. The change in estimates of population trend for Atlantic mackerel as the number of
years the survey is precluded from wind areas increases. The bars represent the 95% confidence

intervals around the trend estimate.
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Figure 22. A quantile-quantile plot of observed quantiles of MCMC-resampled residuals
compared to the theoretical quantiles of residuals from the models fit to A) fall summer flounder

survey data, and B) spring summer flounder survey data.
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Figure 23. The distribution of MCMC-resampled residuals predicted over 10 simulations for

summer flounder compared to the observed values of biomass in link space fit to A) fall summer

flounder survey data, and B) spring summer flounder survey data.
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Figure 24. The marginal effect of depth on summer flounder biomass catch rates predicted by the

A) fall summer flounder model, and B) spring summer flounder model. Gray shaded area

represents the 95% confidence intervals around the predictions.
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Figure 25. The marginal effect of depth and year on summer flounder biomass catch rates

predicted by the A) fall summer flounder model, and B) spring summer flounder model.
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Figure 26. The marginal effect of depth and area on summer flounder biomass catch rates within

areas A) outside wind areas and B) inside wind areas predicted by the spring model.
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Figure 27. The marginal effect of year and area on summer flounder biomass catch rates within

areas A) outside wind areas and B) inside wind areas predicted by the spring model.
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Figure 28. Fall (top four panels) and spring (bottom four panels) estimates of the fixed effects for

the most recent four years of the time series from the respective models for summer flounder.
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Figure 29. Fall (top four panels) and spring (bottom four panels) estimates of the spatial random

effects from the respective models for summer flounder.
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Figure 30. Fall (top four panels) and spring (bottom four panels) estimates of the spatiotemporal
random effects for the most recent four years of the time series from the respective models for

summer flounder.
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Figure 31. Fall (top four panels) and spring (bottom four panels) predictions of summer flounder

biomass extrapolated from the model across the sampling frame and within respective survey

strata.
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Figure 32. The distribution of simulated average biomass catch rates generated by the A) fall
summer flounder model, and B) spring summer flounder model. The observed average survey

biomass catch rate is represented by the orange dotted line.
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Figure 33. The distribution of simulated average biomass catch rates in each year generated by

the A) fall summer flounder model, and B) spring summer flounder model. The observed

average survey biomass catch rate in each year and season from the data is represented by the

orange diamond. The annual nominal averages of biomass catch rates is represented by the black

dotted line. The effect of outliers has been removed from the distribution.
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Figure 34. The distribution of simulated average proportion of zeroes generated by the A) fall
summer flounder model, and B) spring summer flounder model. The observed average

proportion of zeroes is represented by the orange dotted line.
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Figure 35. The distribution of simulated average proportions of zeroes in each year generated by
the A) fall summer flounder model, and B) spring summer flounder model. The observed
average proportion of zeroes in each year and season from the data is represented by the orange
diamond. The overall observed average proportion of zeroes in each year is represented by the

black dotted line. The effect of outliers has been removed from the distribution.
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Figure 36. The distribution of simulated abundance indices in each year and under each survey
effort scenario generated by the A) fall summer flounder model, and B) spring summer flounder
model. The observed survey annual abundance indices in each year, season, and survey effort
scenario from the data is represented by the orange diamond. The effect of outliers has been

removed from the distribution.

133



Fall Spring
-0.05
0.05 A
el =]
C | ==
£ 010 - S
c * c
5 2 0.00 A
o ©
> 3
Q. o
[e] [e]
o a
5 _ s
g -0.15 4 v b *
.E _g -0.05 A
7 @
w ul
-0.20
-0.10 A
Status quo Wind-pr‘ecluded Status quo Wind-prlecluded
survey effort survey effort survey effort survey effort
Survey effort scenario Survey effort scenario

¥ Observed population trend

Figure 37. The distribution of estimates of population trend calculated with survey data
simulated from A) the fall model fit for summer flounder and B) the spring model fit for summer
flounder under status quo survey effort or under wind-precluded survey effort. The observed
population trend by the survey under the respective survey effort scenarios and seasons are
presented by the dark purple diamond, respectively. The effect of outliers has been removed

from the distribution.
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Figure 38. A quantile-quantile plot of observed quantiles of MVN residuals compared to the
theoretical quantiles of residuals for the presence-absence component of the model fit to spring

Atlantic mackerel survey data.
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Figure 39. A quantile-quantile plot of observed quantiles of MVN residuals compared to the
theoretical quantiles of residuals for the positive catch rate component of the model fit to spring

Atlantic mackerel survey data.
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Figure 40. The distribution of MVN residuals predicted by the binomial (presence-absence)
component of the spring model for Atlantic mackerel compared to the observed values of

biomass in link space used to fit the model.
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Figure 41. The distribution of MVN residuals predicted by the gamma (positive catch rate)
component of the spring model for Atlantic mackerel compared to the observed values of

biomass in link space used to fit the model.
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Figure 42. The quantile-quantile plot of DHARMa-simulated residuals (left plot) and the
distribution of residuals plotted against the predicted values (right plot) from the optimal Atlantic

mackerel model.

139



Spring

0.54

0.4+

0.14

Biomass (kg)
3 ¢
I B

(=

50 100 150 2
Average Depth

0

Figure 43. The marginal effect of depth and year on Atlantic mackerel biomass catch rates

predicted by the spring combined Delta Gamma model (model 5;Table 14).
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Figure 44. Spring estimates of the fixed effects for the most recent four years in the time series

from the model for Atlantic mackerel.
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Figure 45. Spring estimates of the spatial random effects from the model for Atlantic mackerel.
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Figure 46. Spring estimates of the spatiotemporal random effects for the most recent four years

in the time series from the model for Atlantic mackerel.
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Figure 47. Spring predictions of Atlantic mackerel biomass extrapolated from the model across

the sampling frame for the most recent four years in the time series.
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Figure 48. The distribution of simulated average biomass catch rates generated by the spring
Atlantic mackerel model. The observed average survey biomass catch rate is represented by the

orange dotted line.
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Figure 49. The distribution of simulated average biomass catch rates in each year generated by
the optimal Atlantic mackerel model. The observed spring survey biomass catch rate in each year
from the data is represented by the orange diamond. The overall nominal average of biomass
catch rate is represented by the black dotted line. The effect of outliers has been removed from

the distribution.
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Figure 50. The distribution of simulated proportions of zeroes generated by the spring Atlantic

mackerel model. The observed proportion of zeroes is represented by the orange dotted line.
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Figure 51. The distribution of simulated proportions of zeroes in each year generated by the
optimal Atlantic mackerel model. The observed proportion of zeroes in each year from the data
is represented by the orange diamond. The overall proportion of zeroes is represented by the

black dotted line. The effect of outliers has been removed from the distribution.
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Figure 52. The distribution of simulated annual abundance indices in each year and under each

survey effort scenario generated by the optimal Atlantic mackerel model. The observed spring

annual abundance indices in each year from the data and under the respective survey effort

scenario is represented by the orange diamond. The effect of outliers has been removed from the

distribution.
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Figure 53. The distribution of estimates of population trend calculated with survey data
simulated from the spring model fit for Atlantic mackerel under status quo survey effort (green
boxplot) or under wind-precluded survey effort (orange boxplot). The observed population trend
by the survey under the respective survey effort scenarios is presented by the dark purple

diamond, respectively. The effect of outliers has been removed from the distribution.
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Figure 54. The distribution of simulated annual abundance indices in each year for A-C) fall
summer flounder populations and D-F) spring summer flounder populations under status quo
survey effort (green boxplots) and wind-precluded survey effort (orange boxplots) in each of the
productivity treatments: baseline fish density (left panels), enhanced fish density (middle panels),
and reduced fish density (right panels). The effect of outliers has been removed from the

distribution.
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Figure 55. The distribution of annual abundance indices calculated for A) fall summer flounder
populations and B) spring summer flounder populations under status quo survey effort (green
boxplots) and wind-precluded survey effort (orange boxplots) over the simulated five-year time
series across the productivity treatments: baseline, enhanced, and reduced fish density. The effect

of outliers has been removed from the distribution.
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Figure 56. The distribution of relative differences between annual abundance indices calculated
for A) fall summer flounder populations and B) spring summer flounder populations under status
quo and wind-precluded survey effort averaged over the simulated five-year time series across
the productivity treatments: baseline, enhanced, and reduced fish density. The effect of outliers

has been removed from the distribution.
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Figure 57. The distribution of absolute relative differences between annual abundance indices
calculated for A) fall summer flounder populations and B) spring summer flounder populations
under status quo and wind-precluded survey effort averaged over the simulated five-year time
series across the productivity treatments: baseline, enhanced, and reduced fish density. The effect

of outliers has been removed from the distribution.
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Figure 58. The distribution of coefficient of variations (CVs) of A) fall summer flounder
abundance indices and B) spring summer flounder abundance indices calculated under status quo
survey effort (green boxplots) and wind-precluded survey effort (orange boxplots) over the
simulated five-year time series across the productivity treatments: baseline, enhanced, and

reduced fish density. The effect of outliers has been removed from the distribution.
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Figure 59. The distribution of changes in A) fall summer flounder population trends and B)
spring summer flounder population trends calculated under status quo survey effort (green
boxplots) and wind-precluded survey effort (orange boxplots) over the simulated five-year time
series across the productivity treatments: baseline, enhanced, and reduced fish density. The effect

of outliers has been removed from the distribution.
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Figure 60. The distribution of absolute differences between A) fall summer flounder population
trends and B) spring summer flounder population trends calculated under status quo survey effort
and wind-precluded survey effort over the simulated five-year time series across the productivity
treatments: baseline, enhanced, and reduced fish density. The effect of outliers has been

removed from the distribution.
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Figure 61. The distribution of simulated annual abundance indices in each year for spring
Atlantic mackerel populations under status quo survey effort (green boxplots) and wind-
precluded survey effort (orange boxplots) in each of the productivity treatments: A) baseline fish
density, B) enhanced fish density, and C) reduced fish density. The effect of outliers has been

removed from the distribution.
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Figure 62. The distribution of Atlantic mackerel abundance indices calculated under status quo
survey effort (green boxplots) and wind-precluded survey effort (orange boxplots) over the
simulated five-year time series across the productivity treatments: baseline, enhanced, and
reduced fish density. Y-axis has been modified to remove the effect of outliers on the

distribution. The effect of outliers has been removed from the distribution.
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Figure 63. The distribution of relative differences between annual abundance indices calculated
for spring Atlantic mackerel populations under status quo and wind-precluded survey effort
averaged over the simulated five-year time series across the productivity treatments: baseline,
enhanced, and reduced fish density. The effect of outliers has been removed from the

distribution.
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Figure 64. The distribution of absolute relative differences between annual abundance indices for Atlantic
mackerel calculated under status quo and wind-precluded survey effort averaged over the simulated five-
year time series across the productivity treatments: baseline, enhanced, and reduced fish density. The

effect of outliers has been removed from the distribution.
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Figure 65. The distribution of coefficient of variations (CVs) of Atlantic mackerel abundance
indices calculated under status quo survey effort (green boxplots) and wind-precluded survey
effort (orange boxplots) over the simulated five-year time series across the productivity
treatments: baseline, enhanced, and reduced fish density. The effect of outliers has been removed

from the distribution.
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Figure 66. The distribution of changes in population trends for Atlantic mackerel calculated
under status quo survey effort (green boxplots) and wind-precluded survey effort (orange
boxplots) over the simulated five-year time series across the productivity treatments: baseline,
enhanced, and reduced fish density. Y-axis has been modified to remove the effect of outliers on

the distribution. The effect of outliers has been removed from the distribution.
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Figure 67. The distribution of absolute differences between population trends for Atlantic

mackerel calculated under status quo and wind-precluded survey effort averaged over the

simulated five-year time series across the productivity treatments: baseline, enhanced, and
reduced fish density. Y-axis has been modified to remove the effect of outliers on the

distribution. The effect of outliers has been removed from the distribution.
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APPENDIX A: FIGURES

Al. Species with the highest observed differences between survey effort indices

Time series of annual abundance indices from the seasonal bottom trawl survey under a status
quo survey effort assumption (green) and a wind-precluded survey effort assumption (orange) for
each of the species identified as having the highest observed differences between effort scenarios
in terms of annual abundance indices, coefficients of variation, and/or estimates of population
trend (Table 2). The bars on each of the points represent the standard error around the stratified

mean.
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Figure A1. Fall and spring estimates of annual abundance for the skate complex.
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Figure A2. Fall estimates of annual abundance for Atlantic croaker.
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Spring estimates of annual abundance for Atlantic herring.
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Figure A4. Spring estimates of annual abundance for Atlantic mackerel.
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Figure A5. Spring estimates of annual abundance for Atlantic seasnail.
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Figure A6. Spring estimates of annual abundance for Atlantic silverside.
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Figure A7. Spring estimates of annual abundance for Atlantic surfclam.
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Fall estimates of annual abundance for black sea bass.

172

20217




Spring

Stratified Mean (kg/tow)

b

(e
-—
20107 »——
] ——
2015 »—
—
_._
{

201371 »
2016 ]
20177 »—

2011
20127
20187 »—

201971 »

Year

¢ Status quo survey effort 4 Wind-precluded survey effort

Figure A9. Spring estimates of annual abundance for bluefish.
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Figure A10. Fall estimates of annual abundance for bluntnose stingray.
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Figure A11. Spring estimates of annual abundance for unclassified bobtail species.
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Figure A12. Fall estimates of annual abundance for bullnose ray.
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Figure A13. Spring estimates of annual abundance for butterfish.
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Figure A14. Spring estimates of annual abundance for clearnose skate.
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Figure A15. Fall and spring estimates of annual abundance for coarsehand lady crab.
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Figure A16. Spring estimates of annual abundance for unclassified etropus.
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Figure A17. Fall and spring estimates of annual abundance for horseshoe crab.
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Figure A18. Spring estimates of annual abundance for lady crab.
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Figure A19. Fall and spring estimates of annual abundance for little skate.
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Figure A21. Fall estimates of annual abundance for rough scad.
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Figure A22. Fall estimates of annual abundance for roughtail stingray.
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Figure A23. Fall estimates of annual abundance for round herring.
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Figure A24. Fall estimates of annual abundance for scup.
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Figure A25. Fall estimates of annual abundance for sea scallop.
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Figure A26. Fall estimates of annual abundance for pink, brown, and white shrimp.
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Figure A27. Fall and spring estimates of annual abundance for smallmouth flounder.
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Figure A28. Spring estimates of annual abundance for smooth dogfish.
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Figure A29. Fall and spring estimates of annual abundance for unclassified spider crabs.
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Figure A30. Fall estimates of annual abundance for spiny butterfly ray.
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Figure A31. Fall and spring estimates of annual abundance for spiny dogfish.
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Figure A32. Fall estimates of annual abundance for spotted hake.
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Figure A33. Spring estimates of annual abundance for striped bass.
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. Fall estimates of annual abundance for yellowtail flounder.
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A2. Stakeholder-selected Species

Seasonal annual abundance indices for each of the stakeholder-identified species from the

SSEEP workshops under a status quo survey effort assumption (green) and a wind-precluded

survey effort assumption (orange). The bars on each of the points represent the standard error

around the stratified mean.
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Figure A36. Fall and spring estimates of annual abundance for the skate complex.
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Figure A37. Spring estimates of annual abundance for Atlantic herring.
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Figure A40. Spring estimates of annual abundance for butterfish.

199

20217




Spring

L 120¢
L610C
1 810¢C
L2102
1910¢
16102
L¥10C
L €10¢
L¢log
L L10¢
L 0lL0¢
| 600¢C

Fall

==

L 120¢
L 610¢
1 81L0¢C
L 210¢
1910¢
LS10¢
L¥10C
L €102
L¢l0C
L 110C
1010¢
L 6002

o
<

o o o
™ N ~

(moy/B) ues|y payiens

Year

¢ Status quo survey effort ¢ Wind-precluded survey effort

Figure A41. Fall and spring estimates of annual abundance for longfin squid.

Spring

L 120¢
1610¢
1 810¢
L210¢
1910¢
LG10C
L¥10¢
L€10¢
L¢l0¢
4
L0l0¢
L 600¢

Fall

L 1c0e
L610¢
1 81L0¢
L 210¢
1 910¢
L G10¢
L¥10¢
L€L0C
Lcl0e
L1102
L01L0¢C
L 600¢

L o ‘el
M~ o 3]

(moy/By) ues|y payens

Year

¢ Status quo survey effort ¢ Wind-precluded survey effort

Figure A42. Fall and spring estimates of annual abundance for silver hake.
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Figure A43. Fall and spring estimates of annual abundance for spiny dogfish.
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Figure A44. Fall and spring estimates of annual abundance for summer flounder.
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Figure A45. Fall and spring estimates of annual abundance for winter flounder.
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Figure A46. Fall estimates of annual abundance for yellowtail flounder.
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A3.

Species Distribution Models

Additional diagnostic plots for the fall and spring summer flounder models as well as the spring

Atlantic mackerel model.
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Figure A47. Quantile-quantile plots of observed quantiles across each simulation of MCMC-

resampled residuals compared to the theoretical quantiles of residuals from the model fit to fall

summer flounder survey data.
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Fall summer flounder model residuals versus depth
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Figure A48. The distribution of MCMC-resampled residuals predicted over 10 simulations for

summer flounder compared to the observed values of average depth fit to fall summer flounder

survey data.
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Figure A49. The quantile-quantile plot of DHARMa-simulated residuals (left plot) and the
distribution of residuals plotted against the predicted values (right plot) from the optimal fall

summer flounder model.
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Figure A50. Quantile-quantile plots of observed quantiles across each simulation of MCMC-

resampled residuals compared to the theoretical quantiles of residuals from the model fit to

spring summer flounder survey data.
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Figure A51. Estimates of the fixed effects across the full time series from the optimal fall model

for summer flounder.
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Figure A52. Estimates of the spatial random effects across the full time series from the optimal

fall model for summer flounder.
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Figure A53. Estimates of the spatiotemporal random effects across the full time series from the

optimal fall model for summer flounder.
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Figure A54. Estimates of biomass across the full time series from the optimal fall model for

summer flounder.
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Figure A5S5. Estimates of the fixed effects across the full time series from the optimal spring

model for summer flounder.
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Figure A56. Estimates of the spatial random effects across the full time series from the optimal

spring model for summer flounder.
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Figure A57. Estimates of the spatiotemporal random effects across the full time series from the

optimal spring model for summer flounder.
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Figure A58. Estimates of biomass across the full time series from the optimal spring model for

summer flounder.
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Figure A59. The distribution of MCMC-resampled residuals predicted from the presence-

Atlantic mackerel survey data.
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Atlantic mackerel model 2 residuals versus depth
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Figure A60. The distribution of MCMC-resampled residuals predicted from the positive
encounter model component compared to the observed values of average depth fit to spring

Atlantic mackerel survey data.
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Figure A61. DHARMa zero-inflation test via comparison to expected zeros with simulation

under the fitted model for spring Atlantic mackerel.
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Figure A62. DHARMa Moran’s I test for spatial autocorrelation for the spring Atlantic mackerel

model.
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Figure A63. Estimates of fixed effects across the full time series from the optimal spring model

for Atlantic mackerel.
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Figure A64. Estimates of spatial random effects across the full time series from the optimal

spring model for Atlantic mackerel.
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Figure A65. Estimates of spatiotemporal random effects across the full time series from the

optimal spring model for Atlantic mackerel.
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Figure A66. Estimates of biomass across the full time series from the optimal spring model for

Atlantic mackerel.
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APPENDIX B: TABLES

Table B1. Configurations used to fit the Tweedie observation models predicting Atlantic mackerel biomass catch rates. The

candidate models are highlighted in red.

Models Predictors
All data present
ml Depth (Penalized spline)
Year
m Depth (second-order polynomial)
Year
Depth (Penalized spline)
m3 Year
Area
Depth (second-order polynomial)
m4 Year
Area
Depth (Penalized spline)
m5
Year
m6 Depth (second-order polynomial)
Year
Depth (Penalized spline)
m7 Year
Area

Spatial

On

On

On
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Spatiotemporal

Time

Shared Range

Yes

Yes

Yes

Yes

Yes

Yes

Yes

cont. on next page



Table B1 cont.

Models Predictors
All data present
Depth (second-order polynomial)
m8 Year
Area
mo Depth (Penalized spline)
Year
m10 Depth (second-order polynomial)
Year
Depth (Penalized spline)
mll Year
Area
Depth (second-order polynomial)
m1l2 Year
Area
mi3 Depth (third-order polynomial)
Year
mld Depth (fourth-order polynomial)

Year

Biomass outliers >99" percentile removed

ml5

Depth (Penalized spline)
Year

Spatial

On

On

On

On

On

On

On

224

Spatiotemporal

11D

11D

11D

11D

11D

11D

Time

Year

Year

Year

Year

Year

Year

Shared Range

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

cont. on next page



Table B1 cont.

Models

Predictors

Biomass outliers >99" percentile removed

mlé

ml7

ml8

ml9

m20

m21

m22

m23

m24

Depth (second-order polynomial)
Year

Depth (Penalized spline)

Year

Area

Depth (second-order polynomial)
Year

Area

Depth (Penalized spline)

Year

Depth (second-order polynomial)
Year

Depth (Penalized spline)

Year

Area

Depth (second-order polynomial)
Year

Area

Depth (Penalized spline)

Year

Depth (second-order polynomial)
Year

Spatial

On

On

On

On

On

On

225

Spatiotemporal

11D

11D

Time

Year

Year

Shared Range

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

cont. on next page



Table B1 cont.

Models

Predictors

Biomass outliers >99" percentile removed

m25

m26

m27

m28

Depth (Penalized spline)

Year

Area

Depth (second-order polynomial)
Year

Area

Depth (third-order polynomial)
Year

Depth (fourth-order polynomial)
Year

Biomass at depths >200m removed

m29

m30

m31

m32

Depth (Penalized spline)

Year

Depth (second-order polynomial)
Year

Depth (third-order polynomial)
Year

Depth (fourth-order polynomial)
Year

Spatial

On

On

On

On

On
On
On

On

226

Spatiotemporal

11D

11D

11D

11D

11D
11D
11D

D

Time

Year

Year

Year

Year

Year

Year

Year

Year

Shared Range

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

cont on next page.



Table B1 cont.

Models Predictors Spatial Spatiotemporal Time Shared Range
Biomass at depths >200m removed

Depth (fourth-order polynomial)

m33 On 11D Year No

Year
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Table B2. Diagnostic quantities for the spring Tweedie observation models fit for Atlantic mackerel. For each of the models, the

following information is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean

squared error across the folds of each cross-validation, and the model convergence. The final candidate models are highlighted in

red.
Deviance

Models AIC Explained
All data present

ml 11,517.19 97.00%
m2 11,663.04 98.23%
m3 11,519.16 97.00%
m4 11,664.85 98.23%
m5 10,861.05 91.42%
mo6 10,860.20 91.42%
m7 10,862.40 91.42%
m8 10,861.64 91.41%
m9 9,845.20 82.83%
ml0 9,852.66 82.89%
mll 9,845.70 82.81%
ml2 9,853.19 82.88%
ml3 9,833.31 82.71%
ml4 9,833.47 82.69%
Biomass outliers >99" percentile removed
ml5 9,858.75 97.76%
ml6 9,955.71 98.72%

Sum log likelihood

-5,888.84
-5,936.78
-5,909.85
-5,940.14
-6,959.42
-7,080.82
-6,907.58
-6,974.92
12,042.42
12,835.69
12,093.76
13,845.91
12,249.59
12,083.44

-4,942.90
-5,012.92
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Mean Squared
Error

1,995.88
1,945.46
1,946.49
1,969.45
2,129.19
2,118.72
2,204.69
2,170.60
2,466.68
2,235.19
2,196.50
2,167.77
2,048.80
2,114.91

36.07
36.18

Convergence

True
True
True
True
True
True
True
True
True
True
True
True
True
True

True
True

Cross Validation

Convergence

True
True
True
True
True
True
True
True
True
True
True
True
True
True

True
True
cont. on next page



Table B2 cont.

Devi M Model o
Models AIC VIC® Sum log likelihood can Squared odel  Cross Validation

Explained Error Convergence Convergence

Biomass outliers >99" percentile removed

ml7 9,859.63 97.75% -4,942.15 35.71 True True
ml8 9,952.77 98.67% -4,994.10 36.43 True True
ml9 9,384.16 93.00% -5,031.67 37.27 True True
m20 9,383.65 92.99% -5,005.25 37.32 True True
m21 9,385.22 92.99% -4,955.16 36.97 True True
m22 9,384.81 92.98% -4,973.61 37.22 True True
m23 8,607.62 85.25% -7,073.02 56.22 True True
m24 8,611.95 85.30% -7,277.47 52.17 True True
m25 8,615.95 85.32% -7,070.21 42.35 False False
m26 8,613.69 85.29% -7,263.21 49.80 True True
m27 8,597.89 85.14% -7,038.54 46.81 True True
m28 8,599.09 85.13% -7,232.99 47.14 True True
Biomass at depths >200m removed

m29 8,942.61 83.43% -11,557.58 2,696.41 True True
m30 8,943.20 83.44% -11,120.87 2,536.75 True True
m31 8,933.66 83.33% -11,031.87 2,371.88 True True
m32 8,930.46 83.28% -11,711.63 2,501.87 True True
m33 8,912.83 83.10% - - True -
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Table B3. Configurations used to fit the Delta gamma observation models predicting Atlantic mackerel biomass catch rates. The

candidate models are highlighted in red.

Models

Predictors

All data present

ml

m?2

m3

m4

m5

Depth (Penalized spline)
Year

Depth (second-order polynomial)
Year

Depth (Penalized spline)
Year
Area

Depth (second-order polynomial)
Year
Area

Depth (Penalized spline)
Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

On

On

Spatiotemporal

Time

Shared range

cont. on the next page



Table B3 cont.

Models

Predictors

All data present

mo6

m?7

m8

m9

ml0

Depth (second-order polynomial)
Year

Depth (Penalized spline)
Year
Area

Depth (second-order polynomial)
Year
Area

Depth (Penalized spline)
Year

Depth (second-order polynomial)
Year

Family Spatial Spatiotemporal
Binomial
On -
(Component 1)
Gamma
0 -
(Component 2) "
Binomial
On -
(Component 1)
Gamma On ]
(Component 2)
Binomial
On -
(Component 1)
G
amma On ]
(Component 2)
Binomial
O 11D)
(Component 1) "
Gamma
O 11D
(Component 2) n
Binomial On 1D
(Component 1)
Gamma
O 11D)
(Component 2) n
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Time

Year

Year

Year

Year

Shared range

Yes
Yes
Yes

Yes

cont. on the next page



Table B3 cont.

Models Predictors

All data present

Depth (Penalized spline)
mll Year
Area

Depth (second-order polynomial)
ml2 Year
Area

Depth (third-order polynomial)

13
m Year

Depth (fourth-order polynomial)

14
m Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

On
On
On
On
On
On
On

On

Spatiotemporal

11D
11D
11D
11D
11D
11D
11D

11D

Time

Year

Year

Year

Year

Year

Year

Year

Year

Shared range

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

cont. on the next page



Table B3 cont.

Models

Predictors

Biomass outliers >99" percentile removed

ml5

mlé6

ml7

ml&

ml9

Depth (Penalized spline)
Year

Depth (second-order polynomial)
Year

Depth (Penalized spline)
Year
Area

Depth (second-order polynomial)
Year
Area

Depth (Penalized spline)
Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

Spatiotemporal

Time

Shared range

cont. on the next page
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Models

Predictors

Biomass outliers >99" percentile removed

m20

m21

m22

m23

m24

Depth (second-order polynomial)
Year

Depth (Penalized spline)
Year
Area

Depth (second-order polynomial)
Year
Area

Depth (Penalized spline)
Year

Depth (second-order polynomial)
Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

On

On

On

On

On

Spatiotemporal

11D

11D

11D

11D

Time

Year

Year

Year

Year

Shared range

Yes
Yes
Yes

Yes

cont. on the next page
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Models Predictors

Biomass outliers >99" percentile removed

Depth (Penalized spline)
m25 Year
Area

Depth (second-order polynomial)
m26 Year
Area

Depth (third-order polynomial)

27
m Year

Depth (fourth-order polynomial)

28
m Year

Biomass at depths >200m removed

Depth (Penalized spline)

2
m29 Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)

Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

On

On

On

Spatiotemporal

11D
11D
11D
11D
11D
11D
11D

11D

11D

11D

Time

Year

Year

Year

Year

Year

Year

Year

Year

Year

Year

Shared range

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

cont. on the next page
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Models

Predictors

Biomass at depths >200m removed

m30

m31

m32

m33

m34

Depth (second-order polynomial)
Year

Depth (third-order polynomial)
Year

Depth (fourth-order polynomial)
Year

Depth (fourth-order polynomial)
Year

Depth (fourth-order polynomial)
Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

On

Spatiotemporal

11D

11D

11D

11D

11D

11D

11D

11D

11D

11D

Time

Year

Year

Year

Year

Year

Year

Year

Year

Year

Year

Shared range

Yes
Yes
Yes
Yes
Yes

Yes

No
Yes

No

cont. on the next page
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Models Predictors

Biomass at depths >200m removed

Depth (fourth-order polynomial)

m3> Year

Depth (fourth-order polynomial)

36
m Year

Family

Binomial
(Component 1)
Gamma
(Component 2)
Binomial
(Component 1)
Gamma
(Component 2)
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Spatial

On

On

Spatiotemporal

11D

11D

11D

11D

Time

Year

Year

Year

Year

Shared range

No
Yes

No



Table B4. Diagnostic quantities for the spring Delta gamma observation models fit for Atlantic mackerel. For each of the models, the

following information is given: Akaike’s Information Criterion (AIC), percent deviance explained, the total log-likelihood, the mean

squared error across the folds of each cross-validation, and the model convergence. The final candidate models are highlighted in

red.
Deviance

Models AIC Explained
All data present

ml 11,278.55 95.43%
m2 11,479.75 97.15%
m3 11,281.93 95.43%
m4 11,478.66 97.10%
m5 10,438.92 88.22%
mo6 10,439.39 88.23%
m7 10,442.09 88.22%
m8 10,442.42 88.22%
m9 9,660.76 81.57%
ml0 9,670.35 81.65%
mll - -
ml2 9,673.30 81.64%
ml3 9,647.24 81.42%
ml4 9,640.44 81.33%
Biomass outliers >99th percentile removed
ml5 9,714.55 96.59%
ml6 9,827.79 97.73%

Sum log likelihood

-5,730.74
-5,846.20
-5,768.61
-5,868.22
-7,178.20
-7,400.34
-7,080.00
-7,148.29
10,457.93
11,227.74
11,607.08
10,838.71
10,434.19

-4,858.68
-4,941.02
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Mean Squared
Error

1,956.96
2,006.75
2,056.36
2,003.53
2,088.47
2,216.34
2,170.32
2,151.45
1,999.92
2,038.89
1,967.02
2,045.53
1,986.94

36.33
36.50

Convergence

True
True
True
True
True
True
True
True
True
True
True
True
True

True
True

Cross Validation
Convergence

True
True
True
True
True
True
True
True
True
True
True
True
True

True
True
cont. on the next page



Table B4 cont.

Deviance Mean Squared Model Cross Validation

Model Al log likelih
odels ¢ Explained Sum log likelihood Error Convergence Convergence

Biomass outliers >99th percentile removed

ml7 9,714.54 96.55% -4,854.76 35.80 True True
ml8 9,819.34 97.60% -4,934.96 36.38 True True
ml9 9,073.31 90.10% -4,827.97 36.17 True True
m20 9,075.19 90.12% -4,958.22 36.91 True True
m21 9,073.55 90.06% -4,880.65 36.58 True True
m22 9,074.70 90.07% -4,913.54 36.74 True True
m23 8,480.28 84.13% -5,882.63 36.33 True True
m24 8,484.46 84.17% -6,054.02 38.60 True True
m25 8,483.98 84.12% -5,827.27 37.89 True True
m26 8,487.77 84.16% -6,094.83 38.66 True True
m27 8,467.82 83.96% -5,852.50 38.49 True True
m28 8,464.18 83.89% -5,845.95 38.23 True True
Biomass at depths >200m removed

m29 8,818.24 82.54% -9,211.70 2,251.81 True True
m30 8,811.24 82.47% -8,423.96 2,248.19 True True
m31 8,808.24 82.40% -8,344.62 2,213.10 True True
m32 8,802.19 82.31% -8,286.17 2,330.05 True True
m33 8,803.62 82.29% -8,690.88 2,311.10 False False
m34 8,804.19 82.31% -8,441.83 2,310.69 False False
m35 8,801.62 82.29% -8,092.74 2,324.47 True True
m36 8,799.62 82.29% -8,305.95 2,216.04 True True
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