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A B S T R A C T   

We present an integrative statistical approach for estimating the current conditions of marine-bird habitats 
affected by human activities. We first estimated the influence of multiple human offshore activities on the species 
of interest using integrative regression techniques. We then used these models to predict the distribution and 
abundance of the species throughout the study area, in both the current situation, with human activities, and in a 
hypothetical situation without the effects of the studied human activities. We finally developed different mea
sures related to the comparison between these two scenarios. The presented approach allows the integration of 
bird-count data from different sources and sampling schemes, thus maximizing the underlying database. It also 
provides a local metric highlighting critical regions where locally high abundance is co-localized with large 
declines in abundance due to human activities, as well as a global metric quantifying the overall condition of the 
marine-bird habitat in the study area in relation to human disturbance. This approach allows us to assess the 
cumulative influence of several anthropogenic pressures. We exemplarily applied the above approach to four 
different species and two different sea regions, namely European herring gulls and long-tailed ducks in the 
German section of the Baltic Sea, and European herring gulls, red-throated loons, and common murres in the 
German–Dutch–Belgian part of the North Sea. The considered activities were offshore wind farms, bottom- 
trawling fishery, and ship traffic. The results confirmed the avoidance of and attraction to human activities by 
marine bird species found in previous studies. These results show that the methods developed here can be used to 
provide indicators for inclusion in bird assessments under OSPAR and HELCOM conventions, and MSFD Article 
8, criterion D1C5 (habitat for the species). The resulting indicator can be used to inform programmes of measures 
under MSFD Article 13.   

1. Introduction 

The environmental status of European marine waters is gaining 
increasing attention, at least partly due to their increased use for human 
activities. International efforts to achieve or maintain a good environ
mental status for these marine areas is reflected in the European Union 
(EU)’s Marine Strategy Framework Directive (MSFD, European Union, 
2008), the new EU Biodiversity Strategy, and in the conservation stra
tegies of the Regional Sea Conventions (e.g. OSPAR, 2010; State of the 

Baltic Sea, 2018; GES). The environmental status of the marine areas is 
usually assessed using indicators. Marine birds qualify as good in
dicators of changes in marine ecosystems (Paleczny et al., 2015) because 
they play an important role in marine food webs, often as top predators. 
However, thematic assessments of sea birds in Europe have largely been 
restricted to their abundance, distribution, and/or demography (OSPAR, 
2017; UNEP-MAP, 2017; State of the Baltic Sea, 2018), despite MSFD 
and status assessments of the Regional Sea Conventions aiming to build 
assessments on a broader basis (Dierschke et al., 2021). For example, in 
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addition to the above criteria, the MSFD suggests that seabird assess
ments should also address bycatch mortality and habitat quality (Com
mission Decision (EU), 2017); however, indicators for these criteria are 
currently not available or are still under development (ICES, 2018, 
2020). 

The MSFD habitat quality criterion is formulated as “the habitat for 
the species has the necessary extent and condition to support the 
different stages in the life history of the species”. It thus not only con
siders biological features, such as food availability, and structural fea
tures, such as water depth, but can also express the degree of disturbance 
from human activities. Although important sites for breeding, moulting, 
wintering, and migrating birds are often protected by national or in
ternational law, EU marine protected areas provide limited protection in 
practice (European Court of Auditors, 2020) because most disturbing 
activities such as fishing and shipping are not forbidden or are only 
slightly reduced. However, the extent of protection may vary among 
species, because different species react differently towards specific 
human activities, and because the spatial and temporal overlaps be
tween the distributions of birds and these activities varies. Disturbance 
from human activities can range from escape flights caused by passing 
ships, to avoidance of large areas due to the presence of offshore wind 
farms (OWFs) (Dierschke et al., 2016; Fliessbach et al., 2019), while 
activities may also have indirect effects on the birds’ food supply, e.g., 

by damage to the benthic fauna as a result of bottom-trawling fisheries. 
Using the example of wintering marine bird species, we aimed to 

develop a method to assess habitat quality in relation to anthropogenic 
disturbance. By comparing the recently observed distribution with a 
modelled reference distribution based on predictive modelling without 
human activities, we estimated the cumulative influence of several ac
tivities on marine bird species. This effect was evaluated both locally 
(resulting in maps qualifying relative disturbance) and throughout the 
entire study area. The developed method thus allowed the extent and 
intensity of habitat disturbance to be assessed. This information can then 
contribute to status assessments of different species, and subsequently of 
the marine environment. 

Estimates of marine-bird population numbers, trends, and distribu
tions have been obtained using different survey techniques (Gibbons 
et al., 2004; Buckland et al., 2015) and statistical methods (Fewster 
et al., 2000; Paleczny et al., 2015; Schwarz, 2015; Soldaat et al., 2007). 
Offshore marine-bird distribution data are frequently based on different 
survey methods, such as observer-based ship- and aerial surveys, as well 
as digital-based aerial surveys (Mercker et al., 2021). However, all three 
methods have a strongly related sampling design: they generate count 
data (evaluated per unit area) and assess approximately similar spatio- 
temporal scales, so that data integration methods are relatively 
straight forward (Miller et al., 2018). A comprehensive statistical 

Fig. 1. Diagram of the developed approach applied to raw data for offshore bird counts and human pressures, using regression models to produce local and global 
metrics of marine-bird habitat conditions. 
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framework for analysing such data was recently developed (Mercker 
et al., 2021) to overcome the complex interactions among sampling and 
analytical techniques (Gibbons et al., 2004). In particular, here, esti
mates are based on joint-likelihood methods, i.e., multiple data sources 
are integrated into a single estimator (Miller et al., 2018). However, due 
to computational advantages, the applied estimator does not consider 
distance-dependent imperfect detection, which is instead evaluated in a 
separate step prior to the final regression analysis (Mercker et al., 2021) 
rather than modelling a thinned spatial point process within one single 
estimator (Miller et al., 2018). The approach of Ref. Mercker et al. 
(2021) allows the reliable estimation of trends, spatial distribution, and 
total bird numbers. In particular, this approach synchronously accounts 
for different challenges associated with marine-bird count data, building 
on previous regression methods used for trend estimates (e.g., Paleczny 
et al., 2015; Parsons et al., 2006; Robinson et al., 2015; Soldaat et al., 
2007), census estimates (e.g., Clarke et al., 2003; Miller et al., 2013; 
Kazianka and Pilz, 2011; Anderson, 2007), and distance-sampling 
methods (e.g., Thomas et al., 2010; Buckland et al., 2015). 

In the current study, we modified and extended the regression 
approach of Ref. Mercker et al. (2021) in several ways: first, we included 
additional covariates related to human activities, i.e., ship traffic, 
bottom-trawling, and OWFs. This allowed quantification of the partial 
effects of different human activities on species-specific local abun
dances, while simultaneously estimating (and thus distinguishing be
tween) the effects of different natural covariates. Second, we used these 
regression models to assess both current spatial distributions and total 
bird numbers (as in Ref. Mercker et al. (2021)), as well as using the 
model to predict the spatial distribution and total bird numbers in a 
hypothetical situation (‘counterfactual situation’) without human ac
tivities. We then compared the results of both these scenarios to develop 
new metrics assessing local and global impairments of marine-bird 
habitats as a result of human activities. 

2. Materials and methods 

A synopsis of the presented approach is given in Fig. 1. We want to 
point out that several technical details e.g., with respect to imperfect 
detection, data pooling, and regression analyses are only summarized 
below; a more detailed description can be found in Ref. Mercker et al. 
(2021). 

2.1. Count data and processing 

2.1.1. Raw bird-count data 
The following study was based on German offshore data from various 

Seabirds-at-Sea (SAS) projects with respect to the Baltic Sea, and 
German, Dutch, and Belgian offshore data from the European Seabirds at 

Sea Partnership (ESAS) database for the North Sea. All bird-count data 
were based on internationally standardized line transect counts (Cam
phuysen et al., 2004), where birds were counted at high temporal res
olution from aircraft (1 s) or ships (1 min), at various locations and times 
of year. The survey methodology included distance-sampling tech
niques, i.e., classifying counted birds into different distance classes 
perpendicular to the transect line (the number and size of the distance 
classes differed between ship- and aircraft-based counts). This enabled 
us to correct the counts for overlooked birds depending on the distance 
to the observer (Buckland et al., 2001, 2015); the consideration of 
imperfect detection on the transect line in contrast is considered with 
the final regression and prediction analysis (more details are given 
below). The analysis was restricted to winter data obtained in December, 
January, and February. The Baltic Sea data were collected in 2006–2016 
and North Sea data in 2006–2019. 

2.1.2. Raw human-activity data 
Data regarding human activities were obtained from various sources 

(Table 1). 
With respect to the Baltic Sea, data on yearly average ship densities 

and wind turbine locations (and year of commissioning) were obtained 
from HELCOM (link). These data were spatially merged with the bird- 
count data on a yearly basis, given that these variables (particularly 
wind turbine data) may change dramatically from year to year (example 
bird data merged with ship signal data from the Baltic Sea are shown in 
Fig. 8). Here, ship densities represent the density of all International 
Maritime Organization-registered ships crossing a 1 x 1 km grid cell. A 
map of European bottom-trawler Automatic Identification System (AIS) 
data (evaluated from October 2014 until September 2015, presented as 
numbers of AIS signals per km2) was taken from the JRC Big Data 
Platform (JEODPP) (link). These data were only merged spatially 
(instead of spatiotemporally) with the bird-count data because the 
yearly resolution was not given. With respect to ship densities, “all ship 
types” was selected, and the densities thus included fishing vessels, 
particularly bottom-trawling fishery vessels. Notably, bottom-trawling 
only accounts for a small fraction of all ship data, and collinearity be
tween both variables is assumed to be minor; however, both variables 
target qualitatively different types of impact: ship density represents the 
visual interaction between birds and the presence of ships, while “bot
tom-trawling” describes the interaction of that fishery with the sea floor. 

With respect to the North Sea, data on wind turbine locations were 
obtained from OSPAR ODIMS (link) and NGR Nationaal Georegister 
(link) where commission dates for several wind park clusters were 
merged from various online sources (e.g., Wikipedia). Bottom-fishing 
intensity data from OSPAR ODIMS were also included (link). In partic
ular, we used the variable “fishing intensity – subsurface”, which rep
resents the ICES response to an OSPAR request to support the 
development of common and candidate OSPAR biodiversity indicators 
for benthic habitats, given as fishing intensity/pressure per gear type for 
subsurface abrasion (“swept area ratio”; SAR). This “subsurface” cate
gory also includes surface abrasion. We included data from 2016 (only 
spatially merged with bird-count data), but these data are in principle 
available for other years. It was difficult to obtain data on vessel den
sities for the North Sea, and the only free source we were able to find was 
from EMODnet, which only included AIS-based vessel densities (given in 
hours per km2 per month) for 2017 (link). Because of the lack of a 
temporal component, these data were also only merged spatially with 
the bird-count data. These data were not available for the outermost 
south-western corner of the Belgian North Sea, and the value was 
therefore set to zero for this region; however, given that this only ac
counts for small part of the study area and a single human-activity 
predictor, we assumed that the corresponding bias would be small. 

Marine-bird data and data on human activities (as well as on natural 
covariates such as water depth and minimal distance to the coast) were 
merged at the level of raw count data to prevent information loss. 

Table 1 
Human-activity data used in this study.  

Sea Human 
activity 

Units Temporal 
resolution 

Source 

Baltic 
Sea 

ships (all 
types) 

N ships crossing 
1km2 grid cell  

2006–2016 HELCOM 

Baltic 
Sea 

wind 
turbines 

distance to 
operating 
turbine 

2006–2016 HELCOM 

Baltic 
Sea 

bottom- 
trawling 

AIS signals/ km2  2014–2015 JEODPP 

North 
Sea 

wind 
turbines 

distance to 
operating 
turbine 

2006–2019 OSPAR ODIMS and 
NGR Nationaal 
Georegister 

North 
Sea 

bottom- 
trawling 

swept area ratio 
(subsurface) 

2016 OSPAR ODIMS 

North 
Sea 

ships (all 
types) 

hours per km2 

per month  
2017 EMODnet  
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2.1.3. Spatio-temporal data pooling 
Using raw bird-count data directly in complex spatio-temporal 

regression approaches leads to unfeasible computation times due to 
intense spatial and temporal autocorrelation within model residuals. 
Furthermore, this would lead to mean count values close to zero, which 
prohibits the use of Penalized Quasi Likelihood techniques in mixed 
regression models (Bolker et al., 2009) and could require the application 
of more complex models considering zero-inflation (Martin et al., 2005; 
Zuur et al., 2009; Korner-Nievergelt et al., 2015). After applying the 
distance-dependent detection correction (c.f., below), we thus pooled 
the data spatio-temporally based on a pre-defined regular rectangular 
spatial grid of side length k (c.f. Fig. 1) (for more technical details see 
Ref. Mercker et al. (2021)). The optimal grid cell side length k is not 
known a priori and needs to be evaluated during data analysis to find the 
optimal compromise between a high local spatial resolution (favouring 
small cells), and a manageable amount of autocorrelation and data size 
(favouring large cells). We tested k = 30,15,10, and 7 km. 

2.2. Imperfect detection 

The detection of birds by observers is usually imperfect, and the 
detection probability frequently decreases with increasing distance from 
the observer (Buckland et al., 2001; Buckland et al., 2015). We corrected 
for this by distinguishing between distance-dependent and distance- 
independent detection probabilities, as detailed in Mercker et al. (2021). 

2.3. Species distribution models (sdGAMs) 

2.3.1. Temporal covariates 
Trend estimates can be deduced from the appropriate covariates 

during regression analyses (Schwarz, 2015; Fewster et al., 2000; 
Schwarz, 2015; Soldaat et al., 2007). If relatively short time frames are 
considered, population development can often be approximated by a 
simple (log-) linear trend. However, population changes over longer 
periods can be highly nonlinear, and pure (log-) linear regression models 
appear to be inappropriate or may show strong temporal autocorrela
tion. Generalized additive models (GAMs) (Wood, 2017; Fewster et al., 
2000) or techniques based on Kalman-smoothing (Harvey, 1989; Sol
daat et al., 2007) offer possible alternative methods. In the present 
study, we considered long-term trends (at least 10 years), and we 
therefore integrated the variable “year” as a possibly nonlinear term 
s(year) using GAM techniques, where the optimal smoothness was esti
mated based on generalized cross-validation (GCV) methods (Wood, 
2017). 

2.3.2. Environmental/spatial covariates 
We considered smooth terms of the variables dist_land (nearest dis

tance to the mainland excluding the small offshore island of Helgoland) 
and depth (mean water depth) as environmental covariates. The aim was 
to further reduce the unexplained variance and thus increase the power 
and quality of trend estimates and predictions in the final regression 
models. 

2.3.3. Human activities 
We used ships (all vessel types), bottom-trawling fishery (bottom_

trawling), and nearest distance to an operating wind turbine (OWF) as 
human-activity variables. Because significant avoidance effects have 
been found up to a distance of approximately 10 km from OWFs (Mendel 
et al., 2019; Garthe et al., 2018), we restricted the latter variable to 10 
km by setting all values larger than 10 km to 10 km. This allowed a 
better statistical estimation of the effect because the scale of this variable 
was restricted to the scale of its possible influence. All three human 
activity variables were tested using the original scale and on a log-scale 
(e.g., log_OWF=log(1+OWF)) during model selection (c.f., below). The 
log-based transformation weights smaller values of the corresponding 
variable more strongly, and is thus particularly appropriate for small- 

scale reactions, such as species only avoiding the footprints of the 
human activities. Alternatively, dependency on human activities could 
be modelled using smooth terms; however, we omitted this to allow the 
straightforward interpretation of regression coefficients. 

2.3.4. Unexplained spatial inhomogeneities 
We accounted for additional spatial abundance heterogeneities not 

explained by the other considered covariates (such as distribution of 
food availability, which was not considered in the models), by intro
ducing a 2D-spatial smooth predictor in two alternative variants during 
model selection: as a thin plate regression spline, and as a tensor-product 
spline, both depending on longitude and latitude (Wood, 2017). Because 
2D thin plate splines are optimized for variables on the same scale 
(Wood, 2017), we rescaled the geographical coordinates to kilometres 
before the analysis. However, the spatial smooth was a priori restricted 
to a large-scale spatial resolution (by setting the number of knots to 16) 
to prevent collinearity with the relatively small-scale variables of human 
activities. The optimal amount of smoothing for all the above smooth 
terms was determined based on GCV methods (Wood, 2017). 

2.3.5. Detection-related covariates 
Distance-independent detection-related covariates were given by the 

two variables method and sea state. Estimates of population numbers 
strongly depend on these two variables, and their correct and stable 
estimation is thus of great importance. To facilitate a robust estimation, 
we omitted interaction terms between these variables to produce fewer 
but more stable estimated parameters. We also merged the former levels 
0 and 1 for the variable sea state into a single “1”, and merged all levels 
⩾4 into level “4”, such that the final variable sea state did not contain 
levels with sparse data. 

Count data are often spatially and/or temporally strongly auto
correlated (Field et al., 2012; Zuur et al., 2007, 2009; Korner-Nievergelt 
et al., 2015; Zuur et al., 2017). Temporal autocorrelation may occur at 
two different time scales: first, data are probably autocorrelated be
tween subsequent years, especially if a nonlinear population develop
ment is approximated by a log-linear term; and second, subsequent 
sampling units may also be strongly spatiotemporally autocorrelated, 
especially if they consist of subsequent parts of the same transect. We 
appropriately considered both types of temporal autocorrelation, as 
described in Ref. Mercker et al. (2021), and additionally adjusted the 
underlying spatial grid size k to make the spatio-temporal autocorrela
tion manageable. 

2.3.6. General sdGAM structure 
The “most complex” sdGAM (not yet pruned regarding its predictors, 

as described below) is given by 

log(yj) = β0 + methodj + sea statej + s(yearj)

+s(depthj) + s(dist coastj)

+f (shipj) + f (bottom trawlingj) + f (OWFj)

+g(latitudej, longitudej)

+lag1 + lag2 + lag3
+offset(log(areaj)) + ∊j

, (1)  

with ∊j ∼ N(0, σ2) normally and independently distributed. Here, yj is 
the vector of bird numbers, where the index j refers to the sampling unit 
number. β0 is the fixed intercept, and s(.) depicts a cubic regression 
spline (with the optimal number of knots estimated via GCV). f(x) de
picts either the main effect x or the log-transformed value log(1 + x), 
and g() describes either a regression spline s() or a tensor-product spline 
te(). Because survey effort varied per sampling unit, the logarithm of the 
area surveyed was included as an offset (Zuur et al., 2007; Korner- 
Nievergelt et al., 2015). The terms lag1, lag2, lag3 refer to the potential 
autocorrelation on a small temporal scale. The probability distribution 
and optimal subset/formulations of predictors were selected based on 
Akaike Information Criterion (AIC) analysis (Akaike, 1973) (c.f., section 
“Model selection and validation”). 
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2.3.7. Predicted bird distribution and population size 
Trend estimates can be extracted directly from GAM regression re

sults, but the calculation of predicted population distributions and sizes 
is less straightforward. We used the final fitted sdGAM to predict bird 
densities on a prediction map of the investigated area. Prediction-map 
data had a resolution of 1 km2 and included values for all relevant 
environmental and anthropogenic covariates. Detection-related cova
riates (method and sea state) are not given naturally, and have to be 
chosen/set. Here, we determined which method–sea state-combination 
led to the highest predictions, and subsequently used the corresponding 
factor levels within all sdGAM-based predictions. This was based on the 
assumption that, for at least one method–sea state-combination, detected 
bird numbers (after distance-correction) were close to the actual bird 
numbers, i.e., detection on the transect line was assumed to be close to 
100%. Human activity-related covariates were either set to the most 
recent values available (2016 for the Baltic Sea and 2019 for the North 
Sea) to predict the current bird distribution, or to zero (respectively 10 
km for the variable OWF) to predict the human activity-free situation. 

2.4. Model selection and validation 

Different model selection and validation steps were performed 
separately for each species–sea combination to select the most appro
priate probability distribution, choose the most reasonable combination 
and formulations with respect to the fixed-effect predictors, and validate 
the several assumptions (such as linearity, homogeneity, or indepen
dence) underlying a regression model. In particular, we modified the 
selection and validation strategies as described e.g. by Ref. Zuur et al. 
(2010, 2009) and Zuur (2012). Further technical details are given in 
Ref. Mercker et al. (2021). 

2.5. Habitat-quality metrics 

2.5.1. Local habitat-condition metric Dlocal 
This metric aims to define spatial regions where the habitat quality is 

poor as a result of human activity. This is reflected by a high predicted 
local abundance in the absence of the considered human activities, and a 
strong negative effect of the activities on the predicted abundance. It is 
therefore necessary to first define a measure for the (undisturbed) local 
abundance, which is optimally comparable between different species, e. 
g. approximately scaled between 0 and 1. This could easily be achieved 
by predicting the abundance in the undisturbed state and dividing the 
values by the maximal abundance in the entire area; however, this 
would be a non-robust approach, given that the scaling would be 
strongly affected by high abundances in individual cells. A more 
appropriate approach thus involves dividing by the α-percentile of the 
predicted abundance values (in the following we used α = 0.99). If X 
now represents this local (undisturbed) abundance (ranging between 
0 and approximately 1) and Y represents the strength of human- 
pressure-related decline (Y = 1 equals 100% decline, Y = 0.5 equals 
50% decline, Y = 0 equals 0% decline, and Y < 0 equals an increase due 
to human activities), 

Dlocal = XY (2)  

represents a measure that is high (e.g., Dlocal > 0.5) at high local abun
dance, with a strong decline due to co-localized human pressure. For 
example, if X is close to 1 (high local abundances in the undisturbed 
scenario), a value of Dlocal = 0.2 indicates a 20% reduction due to 
pressure from human activities in this area. The same value of Dlocal =

0.2 would be obtained if the natural density was only X = 0.5 (i.e. half- 
maximal) but the reduction due to activities was 40%, or if the natural 
density was small (X = 0.2), but there was a 100% reduction. This 
metric is thus a continuous measure, which is higher where high 

Fig. 2. Example plots of (pooled) raw bird-count data and (possibly log-transformed) raw data for different human activities in the German–Dutch–Belgian part of 
the North Sea. 
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abundance and high human activity-related decline are co-localized, 
and which is zero if either the local abundance or local human 
activity-related decline is zero. Finally, a negative value of Dlocal would 
indicate a local attraction to human activities. Dlocal is comparable be
tween species and can be interpreted directly: as shown in the graphical 
analyses in the Results section, Dlocal (if positive) is approximately pro
portional to the decline in total bird numbers due to human pressures for 
each species (because high total declines can only be achieved if natu
rally high total numbers co-localize with strong declines due to human 
pressures). 

2.5.2. Global habitat-condition metric Dglobal 
This metric aims to define the overall habitat condition (i.e., in the 

entire study area) related to human activities by integrating Dlocal over 
the entire area and rescaling it by the overall abundance. A straight
forward definition of this metric is thus given by 

Dglobal =

∑
i∈A(Xi × max(0, Yi))

∑
i∈AXi

, (3)  

where Dglobal is weighted by the local abundance, i.e., cells with high 
local abundance influence this measure more strongly than areas with 
low abundance. In particular, i is an index referring to all 1 x 1 km grid 
cells throughout the study area A. The metric also confirms the intuition 
that assuming no reduction due to human activities (i.e., Y = 0 every
where), it follows Dglobal = 0 corresponding to 0% reduction in the 
overall population. In contrast, if we consider a 100% reduction 
everywhere (Y = 1), it follows Dglobal = 1 corresponding to 100% 
reduction in the overall population, and for a reduction of 50% every
where, Dglobal = 0.5. Importantly, the above formula means that grid 
cells with zero abundance are not considered, because when X = 0, the 
product also becomes 0. Grid cells with low abundances thus only have a 
minor influence on Dglobal. 

Notably, this metric (in contrast to Dlocal) only considers negative 
effects (i.e. avoidance and not attraction) of human activities. We ac
count for this by considering max(0,Yi) instead of Yi, such that in the 
event of negative Yi-values (i.e. local abundance increase due to human 
activities), 0 is considered instead. If this is not done, Dglobal would reflect 
the overall change in population size with vs. without the considered 
human activities. Based on the above re-definition, Dglobal is equal to or 

larger than the percentage population size change due to these activities 
(because local negative effects are not balanced by local positive effects 
in other parts of the assessment area). Dglobal thus “sums up” or “aver
ages” only the negative local effects of human activities on marine-bird 
abundance. This metric is also comparable between species, since 
Dglobal ∈ [0,1]. 

2.6. Software 

All statistical analyses, validation procedures, and visualizations 
were performed using the statistical software R (R Core Team, 2016) 
with the following packages: sp, raster, and gstat (Pebesma, 2004, 2005) 
for spatial analyses and visualizations; ggplot2 (Wickham, 2009) for all 
other visualisations and plots; Rmisc (Hope, 2013) and matrixStats 
(Bengtsson, 2016) for different functions regarding data analysis and 
utility operations, MASS (Venables and Ripley, 2002), pscl (Jackman 
et al., 2008), and mgcv (Wood, 2017) for regression analyses, and Dis
tance (Thomas et al., 2002; Thomas et al., 2010; Buckland et al., 2015; 
Miller et al., 2013) for distance sampling-related procedures. 

3. Results 

3.1. Validation of implementation of human pressures 

We used several plots to validate the implementation of the different 
human-activity variables, because this step is crucial for the following 
analyses. The plots indicated no problems. Some examples of raw data 
for human activity are given for the North Sea in Fig. 2, and examples of 
human-activity data merged with bird-count data are given for the Baltic 
Sea in the Appendix in Figs. 8 and 9. 

3.2. Species-specific reactions to human activities 

Relative changes in local abundance as a result of different human 
activities can be extracted directly from the regression coefficients of the 
final (species-specific) sdGAMs. An overview is given in Table 2. 
Generally, most human activities had a negative influence on most of the 
species considered: 7 of the 15 sea–species–activity combinations 
showed a significant or highly significant negative influence on local 
abundance, while no significant relationship was detected or the activity 

Table 2 
Summary of positive and negative effects of different human activities on different species–sea combinations. For ship- and bottom-trawling-related variables, a 
negative regression coefficient β indicated avoidance and a positive one indicatedattraction, while the opposite was true for offshore wind farm (OWF)-related var
iables, because distance to the OWF was considered. The choice of which human-activity variables were used in which combination and which manner (e.g., un
transformed vs. log-transformed) was based on AIC-guided model-selection techniques (performed separately for each species–sea combination).  

Sea Species Activity β  p-value Interpretation 

OWFs:      
North Sea red-throated loon log_OWF 0.81 < 0.05  significant avoidance 
North Sea herring gull NA NA NA not selected 
Baltic Sea herring gull OWF 0.08 < 0.001  significant avoidance 
North Sea common murre log_OWF 0.26 0.11  not significant 
Baltic Sea long-tailed duck OWF − 0.03 0.06 not significant  

Ships:      
North Sea red-throated loon log_ships − 0.34 < 0.01  significant avoidance 
North Sea herring gull ships 0.001 0.56 not significant 
Baltic Sea herring gull NA NA NA not selected 
North Sea common murre log_ships − 0.22 < 0.001  significant avoidance 
Baltic Sea long-tailed duck ships − 0.0002 < 0.001  significant avoidance  

Bottom trawling:      
North Sea red-throated loon bottom_trawling − 0.20 < 0.01  significant avoidance 
North Sea herring gull bottom_trawling 0.19 < 0.001  significant attraction 
Baltic Sea herring gull log_bottom_trawling 0.36 < 0.001  significant attraction 
North Sea common murre NA NA NA not selected 
Baltic Sea long-tailed duck bottom_trawling − 0.015 < 0.05  significant avoidance  
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was not selected as an explaining variable in the model for 6 cases. 
European herring gull (herring gull hereafter) was the only species that 
was significantly attracted by human activities (namely bottom-trawling 
in both seas). 

Based on the regression coefficients, it is also possible to extract 
‘critical species-specific values’ for each of the variables (e.g., the dis
tance to OWFs below which the abundance falls below a certain 
threshold - data not shown), while the metrics Dlocal and Dglobal only 
evaluated the joint effect of all considered activities. 

3.3. Predicted abundances, numbers, and metrics 

The summarized results with respect to predicted abundances (with 
vs. without the considered human activities), relative and absolute 
changes due to these activities, corresponding predicted bird numbers, 

and spatial patterns of Dlocal and an estimate for Dglobal for different 
species–sea combination are given in Figs. 3–7. In each case, the metrics 
Dlocal and Dglobal were calculated for the most recent year for which data 
were available (2016 in the Baltic Sea and 2019 in the North Sea). 
However, the entire time series (i.e., from 2006) was used to estimate 
the relationships between human activities and local bird abundance. 

The most strongly affected species was the red-throated loon in the 
North Sea (Fig. 3) (Dglobal = 63%; Fig. 3 H). This suggests that the habitat 
is disturbed for 63% of red-throated loons (modelled for an undisturbed 
scenario) by the cumulative effects of the three activities (all negative 
effects; Table 1), while only 37% of the red-throated loons expected to 
winter in the North Sea from Belgium to Germany were unaffected. As 
explained above, this can also be interpreted as a total population loss of 
63% due to the considered human activities. However, given that loon 
numbers may increase in undisturbed parts of the study area due to 

Fig. 3. Summary results for red-throated loons in the 
Belgian–German–Dutch North Sea. Pooled raw count 
data (A) were used to fit species distribution models 
(sdGAMs) leading to estimated current bird distribu
tions with (B) and without (C) human activities. (D) 
Relative and (E) total differences in bird density due 
to human activities. (F) The distribution of the newly 
developed metric Dlocal was high if local high abun
dance and strong human-related decline co-localized. 
(G) Dlocal discretized using an example threshold of 
30%. (H) Newly developed metric Dglobal summari
zing/averaging Dlocal over the entire study area, but 
considering only human-related activities with a 
negative influence. If only negative pressures exist, 
Dglobal equals the percentage change in total bird 
numbers due to the pressures. The variables LONGI
TUDE_z and LATITUDE_z are centered spatial co
ordinates rescaled to units of kilometers.   
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displacement, or the winter distribution may shift to areas outside the 
study area, the actual decrease in the population size may be less than 
63%. The coastal distribution of this species during winter means that 
coastal areas, mainly restricted to the south-western part of the study 
area, are critical (Fig. 3E–G). 

The second most-negatively affected species was common murres in 
the North Sea (Fig. 4) (Dglobal = 23%; Fig. 4H). The Dglobal value and the 
percentage overall population decline (calculated from relative differ
ence in total numbers with vs. without the considered human activities; 
Fig. 4B–C) matched well, given that this species showed a significant 
negative reaction to shipping and a nearly significant negative reaction 
to OWFs (c.f., Table 2). 

In contrast, although long-tailed ducks in the Baltic Sea avoided 
some areas with ship passages and bottom-trawling (c.f., Table 2), they 

were generally only weakly affected by human activities (Fig. 7). In 
particular, Dglobal was only 6% (Fig. 7 H), indicating only minor changes 
in the overall population size due to human activities (total numbers in 
Fig. 7B–C). Indeed, regions with high abundance (such as the east of the 
study area) were largely unaffected by ship activity and bottom-trawling 
(Fig. 7B,D–F). 

Herring gulls were strongly attracted to human activities in both the 
North Sea (Fig. 5) and the Baltic Sea (Fig. 6). Dglobal was only 1% in the 
Baltic Sea (due to some negative impact of OWFs - c.f., Table 2) and was 
0% in the North Sea; however, the overall numbers in the disturbed 
scenario are distinctly higher in both seas compared to the undisturbed 
scenario (c.f., Fig. 5B–C and Fig. 6B–C). Importantly, the avoidance of 
OWFs by herring gulls may be an artefact, because gulls are often 
observed inside OWFs (Dierschke et al., 2016), but can be drawn away 

Fig. 4. Summary results for common murres in the Belgian–German–Dutch North Sea. For details see Fig. 3.  
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from OWF footprints by fishing vessels, which are not usually allowed to 
enter OWFs (Leopold et al., 2011). 

4. Discussion 

In this study, we assessed the influence of human activities on marine 
birds in the North Sea and Baltic Sea using a novel statistical approach, 
by comparing observed distribution patterns with what-if scenarios in 
the absence of human activities. This method was shown to provide a 
useful tool for assessing the status of marine birds and deriving appro
priate measures for their protection. 

4.1. Assessing habitat quality for marine birds 

The results of our exemplary application of the novel approach 
supported the results of previous studies of the reactions of marine birds 
to human activities. Red-throated loons and common murres were 
previously shown to avoid the footprints of OWFs (Dierschke et al., 
2016; Heinaenen et al., 2020; Peschko et al., 2020). Although the results 
for common murres were not significant in the current study, for this 
species, the second strongest OWF avoidance was measured, and the p- 
value of p = 0.11 nevertheless strongly suggests an existing influence. 
Furthermore, it must be taken into account that there is an additional 
negative effect from OWF-associated ships for this species, which would 
have to be added in order to consider all effects associated with the 
OWFs (Mendel et al., 2019). The derived order of magnitude for red- 

Fig. 5. Summary results for herring gulls in the Belgian–German–Dutch North Sea. For details see Fig. 3.  
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throated loons (which can be estimated based on regression coefficients) 
matched the disturbance effects estimated e.g. by Ref. Garthe et al. 
(2018). Recent studies demonstrated that red-throated loons concen
trated locally in the North Sea as a result of spatial constraints imposed 
by OWFs (Mendel et al., 2019; Garthe et al., 2018), possibly leading to 
higher local abundances than those observed without these constraints. 
This may have introduced some bias in our model by predicting higher 
bird densities in the undisturbed scenario. However, given that the 
considered non-OWF areas were much larger than the OWF-impacted 
areas, we assumed that this bias would only be minor. 

Although previous studies showed avoidance by long-tailed ducks 
elsewhere (Petersen et al., 2011), this was not confirmed by the cur
rent study, probably because only one small wind farm is currently 
operating close to the wintering sites for that species in the German 
Baltic Sea. With respect to herring gulls, the avoidance of wind farms 
shown in our study was assumed to be an artefact, and the gulls did not 
avoid wind farm structures (in fact they have been shown to use them 
for roosting, Vanermen and Stienen (2019)), but were distracted away 
from the wind farm footprint to follow fishing vessels, which are not 
allowed to operate between the turbines (Leopold et al., 2011). 

In accordance with our results, shipping has previously been shown 
to disturb wintering long-tailed ducks, red-throated loons, and common 
murres (Schwemmer et al., 2011; Burger et al., 2019; Fliessbach et al., 
2019). In contrast, our results suggest that herring gulls do not avoid 
ships (Camphuysen et al., 1999), and are even attracted to ships in areas 
used for bottom-trawling, corresponding to their frequent aggregations 

around fishing vessels associated with the feeding opportunities offered 
by bycatch discards (Garthe and Hüppop, 1994). Disturbance from these 
vessels alone was apparently not enough to significantly displace com
mon murres from bottom-trawled areas. In contrast, long-tailed ducks, 
as the only benthic feeders in this study, were significantly and nega
tively affected by bottom-trawling, possibly due to a combined effect of 
disturbance from the vessels and reduced food availability caused by 
physical damage to the seafloor and its benthic fauna (Schröder et al., 
2008). The negative response of red-throated loons to bottom-trawling 
was most likely caused by the presence of the fishing vessels. 

The additive value of this study was the ability to assess the cumu
lative effects of different human activities, rather than just considering 
the effects of individual activities. Our approach showed the total impact 
of the considered human activities as stressors, regardless of whether 
their effects were additive, antagonistic, or synergistic (Folt et al., 1999). 
However, it is still possible to identify which individual activities 
contributed to the disturbance of a species, and this could be further 
improved if the metric Dglobal is broken down into contributions by the 
individual activities in future studies. The results thus indicate where 
management measures might be needed (e.g., with respect to MSFD Art. 
13), and which human activities need to be addressed by these mea
sures. This habitat quality-assessment tool and resulting indicator not 
only support the status assessments of marine bird species (MSFD Art. 
8), but can also help to achieve good environmental status (MSFD Art. 9) 
and the environmental targets (MSFD Art. 10). However, the reliable 
assessment of the contribution of individual stressors is a complex task 

Fig. 6. Summary results for herring gulls in the German Baltic Sea. For details see Fig. 3.  
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and further work has to be done, e.g., integrating additional natural and 
anthropogenic covariates, as well as a thorough evaluation of appro
priate predictor formulations (e.g., considering nonlinear dependencies 
or appropriate spatio-temporal scales). 

Importantly, the reference (what-if) scenario used in the current 
study did not reflect a purely natural state because the marine areas 
considered have been used by humans for centuries, and the birds have 
thus had to compromise between their optimal and available habitat 
requirements. Nevertheless, for important wintering areas such as the 
Pomeranian Bay, it was possible to show how important it is that certain 
activities such as shipping take place here only on a small scale. In these 
areas, activities should not further increase. The disturbed areas will 
thus continue to be used by the affected species without our knowing the 
biological population consequences. For example, the disturbances 
could lead to higher mortality or lower reproduction of the affected 
individuals due to reduced body condition. A similar problem exists for 
species that change their large-scale distribution patterns by moving to 
sub-optimal but less-disturbed areas, which cannot be assessed by the 
presented approach. These factors suggest that the provided estimates of 
disturbance are likely to be conservative. 

The extent of disturbed habitat or the proportion of individuals 
disturbed in their habitat is reflected in our indicator by the Dglobal-value. 
But at which numerical value is Good Environmental Status (GES) 
achieved? In other words, at which Dglobal-value is the objective of the 
MSFD criterion “the habitat for the species has the necessary extent and 
condition to support the different stages in the life history of the species” no 

longer met? In contrast to indicators that directly assess population sizes 
or their change through increased mortality or reduced reproduction, 
the extent of disturbed habitat cannot be directly translated into con
sequences for the development of population size. This is due to complex 
relationships in the density dependence of resource use and carry-over 
effects, which are not sufficiently known in the case of marine birds. A 
threshold might therefore only be set artificially. For example, there 
could be an egreement among experts on which value of Dglobal repre
sents GES. It is also conceivable that GES is related to the confidence 
limits of the estimate, e.g., GES could be achieved when the confidence 
interval contains the value zero, i.e., when it is within the realm of 
possible that no habitat disturbance occurs at all. It needs to apply the 
indicator on a broader basis in order to arrive at a reasonable and 
applicable result here, taking into account further bird species, more 
marine regions and additional human activities. 

4.2. Extending the power and scope of the tool 

The basic approach presented here can be extended in various ways. 
First, the analytic power of the tool could be enhanced by the in

clusion of more or spatio-temporally better-resolved variables influ
encing the distribution of marine birds, particularly variables that better 
explain the spatial heterogeneities in abundance. For example, further 
information on trawler and ship densities (particularly with respect to 
the North Sea) should be used. Further, additional information on more 
human activities suspected or proven to cause disturbances could also be 

Fig. 7. Summary results for long-tailed ducks in the German Baltic Sea. For details see Fig. 3.  
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included, such as aggregate extraction, drilling platforms, and recrea
tional activities. Moreover, the robustness of the results would be 
increased by considering more environmental variables, including 
general variables such as productivity (e.g., chlorophyll A content of the 

water, likelihood of frontal structures), and environmental characteris
tics closely related to the individual species. For example, the avail
ability of benthic prey species or harvestable, ingestible, and digestible 
size classes (Kube and Skov, 1996) could be entered into the analyses if 
the data are available. In contrast to variables better explaining spatial 
distribution patterns, additional covariates explaining the observed 
year-to-year fluctuations and trends of the birds (such as yearly varying 
prey availability) would most probably not distinctly increase the pre
cision of the estimated metrics. The reason is that they would not 
contribute to a better spatial prediction of the birds, and temporal het
erogeneities are already covered by a (possibly nonlinear) phenome
nological trend within the applied model. Further, Dlocal and Dglobal are 
calculated based on predicted spatial patterns for only the most recent 
year in the data, and thus do not directly depend on total yearly bird 
numbers (because abundance is rescaled for each species). 

Second, seasons other than the wintering period for marine birds 
need to be considered to provide a more comprehensive picture of 
habitat quality. Possible important seasons could be the moulting period 
for seaducks in the summer, or the spring staging of various species 
before their long-distance migratory flights to Arctic breeding grounds; 
e.g., the German North Sea is much more important for red-throated 
loons as a spring staging site than in the winter (Mendel et al., 2019), 
and moulting seaducks are prone to disturbance from leisure activities 
(Petersen et al., 2017). However, to demonstrate the tool, we limited the 
current analysis to a single season and a small number of species. 

Third, this study was tailored to marine birds that linger offshore, 
and the indicator could potentially be extended to birds living in coastal 
waters, either during the non-breeding period (e.g. some species of 
ducks and grebes) or when foraging during the breeding season. 

Fourth, statistical methods for data integration and spatio-temporal 
ecological data are rapidely evolving (Miller et al., 2018; Zuur et al., 
2017) and the presented approach could possibly benifit from these de
velopments. For example, instead of applying a two-step-procedure (similar 
to Ref. Mercker et al. (2021)), a thinned point process model could be used 
instead to simultaneously analyse all detection and abundance related 
processes (Miller et al., 2018). Furthermore, survey data from other sources 
(such as bird counts from the shoreline) could possibly also be integrated; 
corresponding methods are e.g. presented in Mercker et al. (2021) and 
Miller et al. (2018). Finally, the recently developed integrated nested Lap
lace approximation (INLA) makes it possible to fit complex hierarchical 
Bayesian models within feasible computation times (Zuur et al., 2017). 
These approaches may provide a more straight forward separation between 
observation methods and the (latent) abundance process common across the 
different datasets. 

4.3. Conclusion 

The statistical approach developed here was able to integrate and 
assess the cumulative effects of different human activities on marine- 
bird habitat quality in terms of disturbance. This tool may therefore 
contribute to status assessments of marine birds in their environment. In 
conjunction with other indicators of bird abundance and reproductive 
rate (and possibly mortality in the future), this novel habitat indicator 
can help to identify problems in the marine environment and thus 
support measures to remedy them. This habitat indicator may thus be a 
valuable component of marine-assessment frameworks, such as those 
carried out in relation to Regional Sea Conventions or the MSFD. 
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