How deep does an anchor penetrate the seafloor?

Christian Maushake Federal Waterways Engineering and Research Institute – Coastal Department (BAW-DH) Hamburg, Germany

Contact

Address BAW-DH Wedeler Landstraße 157 D-22559 Hamburg Germany

Website www.baw.de Email christian.maushake@baw.de

How deep does an anchor penetrate the seafloor?

Christian Maushake

Federal Waterways Engineering and Research Institute – Coastal Department (BAW-DH), Hamburg, Germany

"How deep does an anchor penetrate the seafloor?". This question has been explored by a team of scientists and technicians as well as the crews of three involved ships in the German Bight. One HHP AC 14 and one Hall type anchor have been dropped and dragged in a series of 18 trials following an exact specified procedure. The behaviour of the anchor, especially the impact on the seafloor and the maxiumum penetration depth have been documented and surveyed before, during and after the anchor trials. For this different hydroacoustic methods like Sediment Echosounder (SES) and Sonarsystems (MBES, SSS), videodocumentation and the measurement of pressure and pulling forces have been implemented.

Motivation for this large scale fieldwork is the shore connection of wind-energy parks by sea cables in the German Bight. The actual regulations prescribe a burial depth of 3m for sea cables in shipping channels. The reason for these increased requirements is the risk potential which is seen by anchor manouvres in emergency cases and disasters. On the other hand the realization of a burial depth of 3m is very ambitous from a technical point of view as well as very cost intensive.

Therfore the approving authority (Generaldirektion Wasserstraßen und Schifffahrt, GDWS) and the transmission system operator Tennet Offshore GmbH agreed upon this investigations to determine the real penetration depths of anchors into the seafloor. The results of the tests potentially shall support the improvement of the regulations for the burial depth of sea cables in shipping channels.

Next to Tennet the Federal Maritime Hydrographic Agency (BSH) the dutch research institute Deltares and the Federal Waterways Engineering and Research Institute (BAW) have been involved in the field work, the documentation and the scientific evaluation of the results.

Figure above: Offshore support vessel "ESVAGT CONNECTOR" during anchor drag

Figure left: Background: survey vessels "WEGA" (BSH) and "GUARDIAN" Foreground: HHP AC14 anchor on deck "ESVAGT CONNECTOR"

The Northsea ... an undisturbed wideness ?

The seas are moving from traffic routes, fishing and recreational areas to an economic ressource as an energy reserve

Anchor tests German Bight Christian Maushake · November 2013

Grid connection the challenge					
Far behind the targets example: Riffgat starting without grid connection	BorWin HelWin Spha				
 Lacking of a systematic regulatory model → Offshore network plan by BSH (introduced 2012) 	epila alpha ama alpha Nore ergründe Riffgat				
Offshore network plan ⇒ jointly developed with other authorities (e.g. GDWS) and the transmission system operator (TenneT)	UW Hagemarch UW Inteuser UW Emden/Borb. KS Diele NL KS Dörpen West				
some issues					
Environmental					
> Legal					
> Technical					
• Liabillities (e.g. ammunition)					
• Burial depth of seacables					

Bundesanstalt für Wasserbau Federal Waterways Engineering and Research In: Anchor tests German Bight Christian Maushake · November 2013

Baw Bundesanstalt für Wasserbau Federal Waterways Engineering and Research Institute

Anchor tests German Bight Christian Maushake · November 2013

Detection of anchor penetration depth as performed with SES processing software ISE

- Digitize seafloor
 → ISE automatically
- Identify anchor track(s)
- Re-Digitize the level of "un-disturbed seafloor" in the zone influenced by the anchor → ISE manually
- Overwrite seafloor level
 → ISE automatically
- Detect depth of influence (anchor penetration depth) → ISE target picker

Anchor tests German Bight Christian Maushake · November 2013

BSH Nord

VTG

Anchor test Summary of all anchor pulls							
	Position	Ankertyp	tracklength	Max. pull	Max. Δ z		
			[m]	[t]	[m]		
	N1	AC14	67	62	0.65		
	N2	Hall	92	64	0.70		
	N3	AC14	57	82	0.69		
	N5	Hall	87	58	0.88		
UG "BSH SUD"	N6	Hall	92	65	0.78		
	S1	AC14	63	86	0.33		
	S2	AC14	20	95	0.28		
	S3	AC14	102	64	0.34		
	S4	Hall	23	76	0.28		
	S5	Hall	27	72	0.28		
# 1764	S6	Hall	22	80	0.26		
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	V1	AC14	107	73	0.33		
	V2	Hall	27	75	0.34		
OG "VIG	V3	AC14	20	78	0.19		
	V4	Hall	24	79	0.26		
	V5	AC14	31	80	0.67		
A 19 19 19 19 19 19 19 19 19 19 19 19 19	V6	Hall	26	80	0.67		

For all anchor tests a maximum depth of influence of not more then 1.0 m could be reported, accounting for all potential errors . In the (critical) traffic seperation zone (VTG) this value this value does not exceed **0.8 m**.

Anchor tests German Bight Christian Maushake · November 2013

Conclusion

- SES is a powerfull tool to detect small buried structures like anchor tracks
- No anchor penetration deeper than 1m could be observed (accounting for potential errors)
- One of the best documented large scale anchor trials ever have been reported
- Results have been accepted by the approving authorities
- German offshore network plan will be updated based on the results and the expertise of Deltares and BAW → reduction of burial depth
- saving of Millions for electricity consumers

Bundesanstalt für Wasserbau Federal Waterways Engineering and Research Ins