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Study to Develop Best Practice Recommendations  

for Combining Seabird Study Data Collected  

from Different Platforms 

 

Jason Matthiopoulos, Mark Trinder and Bob Furness 

 

1 Executive summary 

 

Existing frameworks for the statistical analysis of spatial survey data offer a clear 

workflow towards the estimation of absolute and relative abundance of wildlife, in 

association with present and future environmental profiles (whether naturally or 

anthropogenically effected). At the same time, more broadly in applied ecology, there 

is a keen interest in integrated analysis and adaptive resource management. 

Momentum behind these ideas is encouraging the incorporation of different sources 

of spatial information onto a single, joint inference framework, so that statistical 

power can be greatly enhanced, even if the data themselves cannot be directly 

pooled because of their qualitative differences. The present project used systematic 

literature review, expert knowledge on survey methodology, bespoke model 

development and sensitivity analyses on realistic simulation data to derive 

methodological and quantitative guidelines for best practice in conducting such joint 

inference for multi-platform seabird survey data. We subdivide our recommendations 

into six distinct categories. 

 

1.1 Appropriate response and explanatory variables 

 

• Keep the highest-grade form of data. Data collected in aggregated or 

thresholded form can be analysed but these operations should be avoided on 

highly resolved data.  

• Analyse even low-grade data as if originating from abundance. Use of latent 

surfaces of abundance allows us to interface lower-grade data with high 

resolution inference. 

• Avoid inflated error structures until the end of modelling. Modelling with 

covariates will generally explain some of the over-dispersion in the raw data 

and use of spatially and temporally auto-correlated errors will account for 

unexplained hot- and cold-spots in distribution.  

• Partly missing covariates should not necessarily lead to data censoring. This 

may prove necessary in the end of the analysis however, it may be worth 

attempting to reconstruct the covariate either as a separate interpolation step, 

or as part of an integrated analysis with partially missing data.  
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1.2 Treatment of survey design attributes and observation errors  

 

• Use distance sampling. Distance sampling techniques facilitate the pooling of 

surveys with different protocols by reducing them into a common set of 

detectability characteristics. The extensions of distance sampling that deal 

with transect design and the incorporation of covariates facilitate error 

correction. 

• Prioritise cross-calibration between surveys. Joint analysis of multiple surveys 

allows the combination of high detectability and high span. Surveys with 

known detectability errors should be prized highly because they can be used 

within a joint analysis to cross-calibrate less detailed surveys that may have 

happened close in space and time.  

• Consider state-space approaches. Rather than correcting the observations for 

biases, prior to the formal analysis, a statistical observation model is 

combined with the biological model to effect the necessary correction in an 

integrated way. Both the biological and the observation models are tuned with 

regard to each other and uncertainty propagation from the observation model 

to the final predictions happens automatically. 

 

1.3 Treatment of space time 

 

• Use point process models. Point process models allow space-time to be 

modelled jointly and continuously, they subsume all other valid approaches to 

species distribution modelling and are compatible with other features of 

modelling developed to enhance predictive power.  

• Use auto-correlated structures. Spatially and temporally auto-correlated 

structures can account for missing covariates, they can be used to impute 

gaps in covariate layers and, most importantly, they are the best way to 

leverage information sharing between surveys according to their 

spatiotemporal overlap or proximity.  

• Take dynamics into account. If we need to account for multi-survey data that 

include before-and-after control impact, it is important to account for temporal 

non-stationarity.  

 

1.4 Accessibility and density dependence 

 

• Use realistic distance measures. If we are concerned that birds avoid flying 

over land, circumnavigate human structures, or if, due to glide-flight, they rely 

on prevalent wind direction, it is important that we account for these effects in 

the measure of distance.  
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• In the present, use abstracted models for density dependence. Currently, the 

computational demands of a fully spatially explicit model of intra-colony, inter-

colony and interspecific competition are prohibitive. We have provided an 

illustration (in the project vignette), of how a pragmatic model for these 

processes can be developed and incorporated into joint modelling. 

• In the future, consider spatially explicit models for density dependence. As 

computational approaches become more widespread in the field of SDMs, it 

may become possible to model competition in a fully spatially explicit way. 

 

1.5 Inferential Platforms 

 

• Use hierarchical models. These allow us to use features such as cross-

calibration of observation models, covariate imputation and latency, and use 

of spatio-temporal proximity to allow the predictions to borrow strength from 

multiple surveys.  

• Use Bayesian approaches. Computer-intensive Bayesian model-fitting allows 

state-space and hierarchical structures. More importantly, Bayesian inference 

permits the elicitation of expert opinion in the form of parameter priors. 

• Use Data integration. Under joint inference, multiple data sets are analysed 

simultaneously to extract maximum power. These approaches are also 

particularly useful for extending the analyses to non-survey data. 

• Fully propagate uncertainty to the final predictions. There is always a limit to 

how much missing information can be imputed by statistical modelling. The 

multiple sources of uncertainty along data collection and estimation need to 

be translated to aggregate measures of precision in the final spatial 

predictions. 

  

1.6 Computational platforms 

 

• Support open source. As a matter of process, all code developed by 

government funding should be made available to the scientific community.  

• Ensure strong interface with Geographic Information systems. Establishing 

stable protocols for data formatting, and by using the GIS functionality in 

platforms like R would allow data processing on a single platform. 

• Parameterise non-linear model components with exact methods. The 

prototype models presented in the jointSurvey library are computationally 

greedy, but they have the best chance of retrieving the difficult parameters 

pertaining to density dependence and competition.  

• Implement large scale predictions using fast approximate methods. It is 

imperative to move towards efficient methods, such as INLA.  
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In addition, we review future extensions of methods that could facilitate integration of 

single-species, multi-survey data with a variety of other data, including survey data 

from other species, shore-based vantage point data, citizen science data, telemetry 

(tracking) data, mark-recapture data and demographic data.  

 

2 Project brief 

 

2.1 Overview and objective 

 

Established bodies of theory and software address different challenges in answering 

questions of species abundance and distribution from survey data, particularly with 

regard to observation biases (e.g. distance sampling methodologies and frameworks 

for partial detectability), linking species distribution to habitat (e.g. resource selection 

functions) and enhancing the transferability of predictions from these models in 

space and time (e.g. generalised functional responses in resource selection). 

Although these methods are still the subject of very active research and 

development, they offer a clear workflow towards the estimation of absolute and 

relative abundance of wildlife, in association with present and future environmental 

profiles (whether naturally or anthropogenically effected).  

 

At the same time, more broadly in applied ecology, there is a keen interest in 

integrated analysis and adaptive resource management. Momentum behind these 

ideas is encouraging the incorporation of different sources of spatial information onto 

a single, joint inference framework, so that statistical power can be greatly 

enhanced, even if the data themselves cannot be directly pooled because of their 

qualitative differences.  

 

In this project, we used systematic literature review, expert knowledge on survey 

methodology, bespoke model development and sensitivity analyses on realistic 

simulation data to derive methodological and quantitative guidelines for best 

practice in conducting such joint inference for multi-platform seabird survey 

data.  

 

2.2 Adherence to Marine Scotland remit 

 

The aim of this project was to examine how to compare or combine multiple sets of 

seabird survey data collected from different survey platforms and/or with different 

temporal/spatial resolution and coverage to adequately characterise seabird 

distribution and abundances and use this information to develop best practice 

recommendations to use in assessments. 
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We considered boat based visual surveys (ESAS methodology), visual aerial 

surveys, and digital aerial surveys. Regarding data integration we considered 

different platforms, incompletely overlapping spatial extents, different temporal 

coverage (e.g. monthly versus seasonal), different spatial coverage, different survey 

resolution (e.g. swath width and/or transect spacing) and surveys conducted in 

different years. 

 

By implementing different solutions on synthetic data, we have demonstrated the 

most appropriate methods and the key considerations for integrating multiple survey 

datasets. This has involved using existing modelling tools and code and the 

development of bespoke modelling tools and code. 

 

Solutions are applicable across a wide range of marine bird species, and we have 

considered four exemplar species (Northern Gannet, Black-legged Kittiwake, 

Common guillemot, Great black-backed gull). 

 

We have limited our exploration to how best to incorporate survey data from different 

platforms to characterise seabird distribution and abundance. We have not 

commented on how previous assessments have been done, but we have outlined 

those survey design requirements that facilitate data integration. We realise that 

such recommendations were not required under the project brief but they may 

usefully inform Scottish Government policy and project level scoping discussions.   

 

2.3 Challenges addressed 

 

The specific challenges that needed to be addressed in deriving guidelines are: 

 

1. Seabird natural history: Models for abundance and distribution in seabirds 

must account for coloniality. Seabird distributions are not just the result of 

habitat suitability but also of accessibility that varies by colony location, 

species and season. Difficult questions pertaining to density dependence 

within colonies or between colonies of conspecifics and hetero-specifics also 

need to be taken into account.  

2. Survey method characteristics: Different survey methodologies (boat-

based, aerial visual and aerial digital) are affected by different types of biases 

and imprecisions. These need to be explicitly accounted for. 

3. Effort scale characteristics: For a fixed amount of effort, any survey will 

make a decision on the trade-off between spatial/temporal resolution and 

extent. Different surveys may have entirely different designs, and their overall 



6 
 

effort may also differ. These discrepancies offer challenges, but also 

opportunities for complementary use of different surveys. 

4. Habitat data: Similar issues relating to differential resolutions, extents and 

data absence will permeate the habitat data (e.g. bathymetry, primary 

production, seabed sediment, any prey survey data etc.). When habitat data 

are dynamic (e.g. seasonal) these problems are likely to be particularly acute. 

In analysing spatial data, but particularly when trying to analyse multiple 

survey platforms in tandem, it is essential to have guidelines for how to deal 

with missing or incongruent habitat data.  

5. Statistical robustness: Integrated analyses of multiple data sources aim to 

enhance statistical power by greatly increasing the effective sample size (but 

also by using data from different regions, different times and spatial 

resolutions in a complementary way). Achieving this is the main objective of 

this project, but it must be done in a way that does not misleadingly increase 

the apparent precision of the results and model predictions. This could 

threaten the precautionary approach and have adverse implications for 

management and policy decisions. Therefore, uncertainty in the observation 

processes from different surveys and the habitat data must be correctly 

propagated to the end-results, to give a reliable measure of precision.  

 

2.4 Relevance to Marine Scotland 

 

The intended applications of this work will be in monitoring of marine protected 

areas, development of marine planning and the licencing workflow for offshore 

renewables. We identify the following beneficial links to Marine Scotland’s key 

responsibilities: 

 

- Marine planning requires good information about spatial and temporal trends 

in abundance. New human activity needs to be able to avoid critical hotspots 

of species distribution at valuable habitats and we need to be able to 

anticipate future crises before they arrive. Spatial and temporal prediction is 

the core theme of this bid. 

- Integrated planning is best achieved with integrated data analysis, such as 

the frameworks outlined here. 

- Fisheries although the present project focuses on seabirds, the implications 

for Marine Scotland’s broader remit are two-fold. First, it has important 

implications for the management of fish stocks through estimates of seabird 

by-catch or predation pressure on managed stocks. Second, methods on 

multi-survey integration can have direct applicability to taxa beyond seabirds, 

such as fish.  
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- Evidence informing marine development important implications of conflict, 

particularly with offshore development and shipping. See marine planning, 

above. 

- Develop Marine Scotland’s organisational skills and competencies part of 

this project is an extensive workshop to Marine Scotland staff (and partners) on 

the methods of multi-platform analysis.  

-  

3 The state-of-the-art in seabird distribution modelling 

 

3.1 Overview of species distribution modelling 

 

Statistical analyses of spatial survey data aim to address four questions (Aarts et al. 

2008). 1) How many individuals there are within a survey area (abundance 

estimation), 2) Where they are in space (population distribution), 3) Why they are 

there (habitat associations), 4) Where else they might be, and where they might go if 

the environment changes (spatial extrapolation and forecasting).  

 

A puritan taxonomy of SDMs 

 

At first sight, the diversity of methods available for converting spatial data to 

prediction maps can seem overwhelming. However, there is an emerging hierarchy 

in the methodological literature that considerably simplifies our effort to outline 

recommendations for best practice. We can present this as a succession of four 

branchings, leading up to our recommended approach of inhomogeneous point 

process models (Figure 1). 

 

 

Figure 1: An overview of choices leading up to the recommended approach for species 
distribution modelling. 

 

Spatial predictions can be generated by building mechanistic models of animal 

movement and demography from first principles and scaling them up to population 

distributions (Moorcroft et al. 1999, 2006, 2008, Moorcroft 2012). Arguably, models 

Species 
distribution 
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interpolation
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with a high biological detail (e.g. based on principles of physiological tolerance, 

movement behaviour and social interactions) bring greater insights and predictive 

capability (Kearney and Porter 2009, Hefley and Hooten 2016, Robinson et al. 

2017). However, mechanistic modelling can be quite demanding technically and is 

generally more vulnerable to model misspecification and over-parameterisation. 

Misspecification will result in models that disagree with the data and over-

parameterisation will generate models that cannot be sufficiently informed by the 

available data. For example, the series of papers by Moorcroft et al. cited above, 

which form the state-of-the-art in mechanistic distribution modelling, require specific 

assumptions about animal movement and rely on sufficiently mathematical users 

who can formulate and manipulate partial differential equation models. Alternatively, 

and more readily, the analysis can be done by mimicking observed patterns of 

space-use with the aid of empirical, statistical models (Guisan and Zimmermann 

2000, Guisan and Thuiller 2005, Guisan et al. 2017). The deciding trade-off between 

mechanistic and empirical models is one of realism and predictive capacity against 

the ease of use and robustness to misspecification.  

 

Within this class of empirical models (see review by Matthiopoulos and Aarts 2007), 

we can distinguish between models that merely reconstruct the spatial density of a 

population (such as kernel smoothing, additive smoothing, or geo-statistical 

methods) and regression methods that rely on habitat information as explanatory 

variables. Spatial density estimation methods rely on geographical proximity and the 

existence of spatial autocorrelation (Levin 1992) to interpolate between observation 

points and map density in unobserved space, or alternatively, to smooth a finite data 

set of synoptic observations into a population-level expectation of usage. Density 

estimation methods focus on removing spurious variability from the predictions, but 

aim to stay as close as possible to the observations. Therefore, their ability to 

describe the available data is often better than that of habitat models (Bahn and 

Mcgill 2007). Habitat models, on the other hand, are not by default spatial, since they 

are fitted in environmental (or niche) space (Pearman et al. 2008). Consequently, the 

greater ability of habitat models to interpolate and extrapolate spatially relies on the 

quality and relevance of their underpinning covariates. Nevertheless, the need to 

include such covariates when modelling seabird distributions is not in doubt 

(Camphuysen et al. 2004). The deciding trade-off between density estimation and 

habitat models is one of faithfulness to the particular distributional data collected and 

the ability to extend predictions beyond the spatial and temporal frame of data 

collection.  

 

Within the class of habitat models, we distinguish between two main categories. The 

first, are known as profile methods and they argue that knowledge of where, in niche 
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space, a species occurs is sufficient to understand its fundamental niche and map its 

current and future distribution. Broadly, this category includes methods such as 

climate envelope models and the use of multivariate statistical methods such as PCA 

(Robertson et al. 2001) for the analysis of presence only methods (reviewed in 

Pearce and Boyce 2006). The alternative class of use-availability schemes either 

contain representative information on the distribution of organisms (i.e. presence and 

absence), or they supplement presence data with availability data, allowing the 

models to contrast the habitat choices that organisms made, with the options that 

they had available to choose from. The broad area of use-availability schemes 

includes the vast literatures on resource selection functions (Boyce and McDonald 

1999, Morris et al. 2016) and maximum entropy approaches (Elith et al. 2011, Merow 

et al. 2013). Profile methods have been critiqued extensively in the methodological 

literature (see Pearce and Boyce 2006 for a review), and there is really no sound 

scientific reason for choosing to use a profile method.  

 

The final decision stage is mostly perceptual, relating to how space is conceptualised 

for the purposes of modelling the data. For example, space may be thought of as a 

regular grid (e.g. comprising squares, or other regular forms of tessellation, such as 

hexagons - see Grecian et al. 2016). In that case, the spatial data take the form of 

counts and are modelled by appropriate probability models such as the Poisson. 

Alternatively, space may be thought of as continuous and different spatial locations 

may be characterised by whether a species was present or absent. In that case, 

spatially reference data take the form of zeroes and ones and the most appropriate 

probability model is Bernoulli (Aarts et al. 2008). Yet another approach within the 

continuous space framework is to imagine that observations of organisms appear at 

random locations almost like pin-lights that blink in and out at different time frames of 

observation. This framework, known as the Inhomogeneous Point Process, models 

the occurrence of events within a unit of time and space as originating from a smooth 

intensity surface, describing the instantaneous and infinitesimal rate of the Poisson 

process (Chakraborty et al. 2011, Aarts et al. 2012, Fithian and Hastie 2013, Renner 

et al. 2015, Fletcher et al. 2019, Miller et al. 2019). It is an elegant approach that 

makes an implicit comparison between use and availability, captures heterogeneities 

in the distribution of the population (e.g. due to environmental covariates) but, can 

with equal ease, use the intensity surface to represent heterogeneities in the 

distribution of spatial observation effort (so that, regions that receive no observation 

effort will have a zero intensity when modelling the data). The deciding trade-off 

between count, presence-absence and point process models is in whether the user 

feels comfortable in conceptualising infinitesimal quantities and is happy to relinquish 

the notion of explicitly contrasting use and availability for the advantage of greater 

spatial and temporal precision in model fitting and prediction. 
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Hybridisation of SDMs 

 

Different modelling approaches to species distributions are often presented as non-

overlapping, much as we did in the preceding section. This often gives the 

impression that the only way to deal with multiplicity of approaches is to compare 

their performance and choose the best (e.g. Oppel et al. 2012). However, there is a 

methodological kinship between many of these approaches that is rarely apparent in 

the applied literature. Having so far organised the literature as a sequence of three 

strict dichotomies and a final trichotomy (Figure 1), it is good to take a less clear-cut, 

but more synthetic and conciliatory view on the above decisions. It is, in fact, the 

case that a hybrid approach is possible that retains the best elements of all the 

approaches discussed above.  

 

Specifically, if one starts from a purely empirical model it is possible to move it 

towards a higher mechanistic content. In the simplest case, this can be done by 

carefully considering the biological relevance of the set of covariates that are offered 

to the model (Bell and Schlaepfer 2016). It is also possible to construct more 

sophisticated covariates using mechanistic models to try and increase the 

explanatory power of empirical models (Kearney and Porter 2009, Matthiopoulos et 

al. 2015). More recently, it is becoming possible to fit structurally complex models 

directly to data either by likelihood approaches, but most often, via Bayesian 

approaches. These developments have come mostly from the field of integrated 

population modelling (Matthiopoulos et al. 2014, Zipkin and Saunders 2018, Yen et 

al. 2019). As well as data-integration, the main benefit of integrated models is their 

capability to deal with non-linear features, a feature characterising most biologically 

realistic (i.e. mechanistic) models. We will use this aspect of hybridisation in this 

report when considering density-dependent effects on seabird distribution. 

 

Also, the separation between spatial and habitat-based models can be made less 

strict. Geo-statistical models can accept habitat covariates and habitat models can 

accept spatial autocorrelation structures (Dormann et al. 2007). A considerable 

advantage of these models is that they optimally account for variability in the data 

(but see Hodges and Reich 2010). A perceived limitation of this approach is that 

predictions from hybrid spatial-habitat models are tied to the spatial extent of the 

data collection. We will discuss these issues at length later in the report and use 

them to construct spatial-habitat hybrid models.  

 

The separation between use-only (or, profile) models and use-availability models is 

perhaps the most clear-cut of the branchings in Figure 1. Profile methods are 

problematic because, by ignoring the availability of different habitats, they interpret 
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the habitat choices of organisms as purely the result of preference, not as a 

combination of preference and availability (Matthiopoulos 2003a). Profile models 

also misappropriate the ecological term “niche” because they aspire to define a 

species’ viable hyper-volume in environmental space, and yet make no explicit 

connection between habitat data and population trends representing information on 

viability (Peterson et al. 2011, Matthiopoulos et al. 2015). Therefore, profile methods 

are fundamentally flawed from an ecological perspective. And yet, despite their 

limitations, their aspiration is worthwhile. Using habitat models to make sense of 

population viability should be a key objective in our search for defining critical habitat 

and in driving conservation efforts. Recent publications (Matthiopoulos et al. 2015, 

2019) have shown how this can be achieved in practice by using the more defensible 

option of use-availability methods as a platform to build upon. We will briefly discuss 

how these methods could be used to integrate non-spatial data with spatial models.  

 

Data types commonly used for SDMs are count, presence-absence and presence 

only (Hefley and Hooten 2016). Count data can be divided into point counts (e.g. 

point or line transects) and quadrat counts (comprehensive count in an area) (Hefley 

and Hooten 2016), although the distinctions between those two can be blurred. 

Presence-absence (or occupancy) data may either originate from count data that 

have been converted to binary form, or they may be the result of survey effort units 

that were terminated as soon as the species was detected once (Hefley and Hooten 

2016). Finally, presence only data may include observations from known survey 

effort units (e.g. telemetry), or alternatively unknown effort surveys (such as museum 

records, or some citizen science programmes). Several papers (Warton et al. 2010, 

Aarts et al. 2012, Fithian and Hastie 2013, Hefley and Hooten 2016) have shown 

that the separation between count, presence absence and point process models is 

not substantial. Indeed, all of these methods can be thought of and re-formulated as 

inhomogeneous point processes. Furthermore, widely used spatial modelling 

packages such as MAXENT, can be thought of as point process models (Fithian and 

Hastie 2013, Renner and Warton 2013). Conversely, computational methods used 

for efficiently fitting point process models to data make use of spatial discretisation, 

similar to grid-based methods, but using more efficient schemes tailored to the data 

(Lindgren 2015).  

 

During the rest of this report we will move towards recommending an approach that, 

while based on an empirical, habitat-driven point-process model, is capable of 

incorporating mechanistic (non-linear) features, using explicitly spatial information 

and is able to provide useful results for future assessments of population viability. 

Our approach will be based on the principles previously outlined by work funded by 

Marine Scotland (Oedekoven et al. 2012a, 2012b) and we will expand on these 
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ideas, exploiting the opportunities offered by multiple surveys. Only around 7% of 

peer-reviewed marine SDM publications since 1992 have focused on seabirds, a 

total of 16 papers (Robinson et al. 2017). Although this survey excludes several 

publication-quality reports on seabird SDMs from the grey literature (Burt et al. 2009, 

Bradbury et al. 2011, Petersen and Nielsen 2011, Rexstad and Buckland 2012) it is 

nevertheless an indicator that we need to also look more broadly at the lessons 

learned from marine survey methods in general, as well as the transferrable 

elements of the ensuing analyses. 

 

3.2 Overview of marine survey methods 

 

Historically, and until the 1970s, knowledge of the distribution of seabirds around the 

UK comprised little more than maps of breeding colonies and the expectation that 

seabird numbers were probably high in the waters around them (Camphuysen et al. 

2004). However, the need for risk assessment (and hence, more detailed spatial 

surveys of at-sea distribution) has been driven by the rapid developments in the 

energy industry (initially oil extraction, but then marine renewables and more 

recently, platform decommissioning). Initial efforts focusing on strip-transect designs 

(Tasker et al. 1984), were followed by stratification of distances from the observer 

(into detection bands) and by fully developed line-transect designs (Buckland et al. 

2001, Thomas et al. 2010). Line transects have been undertaken by boat or aircraft 

and current best practice for survey design is summarised in (Camphuysen et al. 

2004, Certain and Bretagnolle 2008, Oedekoven et al. 2012a, 2012b, Webb and 

Nehls 2019). Indeed, (Oedekoven et al. 2012b – based on earlier work by 

Camphuysen et al. 2004) give an excellent overview of the four distinct types of data 

collection in seabird research: boat surveys, visual aerial surveys, digital aerial 

surveys and vantage point surveys. More recent projects have also looked at 

tracking data to describe seabird-at-sea distributions – such as the RSPB 

FAME/STAR analysis and the Norwegian SEATRACK programme – both of which 

aim to describe seasonal spatial distribution patterns from tracking data sets, 

potentially even ignoring all of the other data types. We return briefly to tracking data 

in Section 7.5, 

 

Line transect methodology has prompted the development of distance sampling 

methods (Buckland et al. 2008, Thomas et al. 2010) which deal with imperfections of 

the observation process such as decaying detectability of the subject with increasing 

distance from the observer (Buckland et al. 2001), the overall detectability at zero 

distance (Buckland et al. 2001) and the effect of environmental conditions on 

detectability (Marques and Buckland 2003). Although the original application of these 

methods was in estimating total population size, they have since been extensively 
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applied to the estimation of relative abundance in order to create species distribution 

maps, often in response to habitat covariates (Clarke et al. 2003, Hedley and 

Buckland 2004, Oedekoven et al. 2012a, 2012b, Thiers et al. 2014, Waggitt et al. 

2019).  
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Table 1 
 

The effect of different detectability biases on strip width (effective detection distance) and 
baseline detection (detection probability at zero distance from the observer). 
 

Source of bias Description  Strip 
w. 

Baseline 
pr. 

Distance 
effect 

Detection distance is the main variable in line 
transect analyses. 

✔  

Vantage 

height  

Determined either by the observation deck on a 

ship or the flight altitude of the aircraft. 
✔  

Study species 
morphology  

Smaller animals may be harder to see, and body 
pigmentation may camouflage them against 
background. 

✔ ✔ 

Behaviour of 
species 

Diving birds may be missed, and flocking birds 
may be over- or under-counted. 

 ✔ 

Platform 
effects 

Smaller boats may be more vulnerable to 
movement resulting from wind or waves and noisy 
engines may conceivably repel animals. 
Conversely, animals that have developed vessel-
following behaviours may be attracted by the 
presence of a boat. 

✔ ✔ 

Visibility 
conditions 

Weather and time of day will affect visibility. More 
generally, noise will be a problem for methods that 
use sound attenuation, although this is less 
important for seabirds. Conditions may change 
during a single survey or, even, a single transect, 
affecting the apparent abundance of the species. 

✔ ✔ 

Digitisation Although transfer of visual data to digital form is 

likely to be supervised by human technicians, 
processing of digital images may require some 
level of automation. This could result in over, or 
under-counting. 

 ✔ 

Observer 
experience 

Different observers with different levels of skill or 
training may be introducing biases in their visual 
detections. These biases may remain consistent 
within observers, or they may diminish with 
experience. 

✔ ✔ 
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A simplistic but instructive statement about distance sampling is that it uses 

statistical modelling to bring line transect surveys closer to the original assumptions 

of strip transects. The effective detection distance derived from distance sampling 

methods allows us to assume that all event occurrences (i.e. birds) within an 

idealised strip of that width are detected with the same probability while all events 

outside that strip are missed. New field methods using digital photography from 

aerial platforms, yielding a relative density of birds per unit area, (Buckland et al. 

2012, NaturalEngland 2019) are now the only survey method accepted by the 

regulator in some countries (e.g. Germany). These developments bring us full-circle 

to the strip transect as the gold standard. Therefore, counts that have been (or can 

be interpreted to have been) obtained from strip transects are the necessary starting 

point for analyses of population size and population distribution.  

 

There are several aspects of the survey specification that can affect detectability but 

they all reduce to two main effects: the probability of detection at zero distance, and 

the effective detection distance from the observer. We use Table 1 to enumerate a 

variety of survey biases and illustrate that their effects can be entirely captured (i.e. 

corrected for) by modelling these two aspects of strip transects (even if this 

correction may, in some cases, require additional, calibrating data).  

 

In this report, we, therefore, assume that the data correspond to strip transects, an 

assumption that would be correct for the raw data in the case of digital aerial 

surveys, but which implies a distance sampling pre-processing stage for line transect 

data (both ship-borne and aerial). Particularly in the setting of a multi-survey study 

(e.g. for the purposes of synthetic data generation in this project), a computational 

treatment of distinct surveys requires that each survey is concisely and uniquely 

characterised by a set of parameter values. In this report (see for example Section 3 

of the accompanying vignette), the design specification of a survey is reduced to six 

characteristics. We divide those into characteristics of span and detectability. We 

outline them below, and also take the opportunity to collect all of the 

recommendations made by the pivotal report of (Camphuysen et al. 2004) for ship 

and aircraft survey design under each characteristic. 
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Span characteristics 

 

Survey extent. Particularly with regard to marine developments, “it is recommended 

that a high resolution grid should be deployed, covering an area at least 6x the size 

of the proposed wind farm area, including at least 1-2 similar sized reference areas 

(same geographical, oceanographical characteristics), and preferably including 

nearby coastal waters (for nearshore wind farms only)” (Camphuysen et al. 2004). 

As we will discuss in the transferability section of this report (Section 5.5), it is 

important to conduct a cross-sectional sampling of space, but also to achieve as 

much spread of environmental conditions in the data, unaffected by expectations of 

where the species is likely to be.  

Spacing of successive count locations. The spacing of locations will be 

determined by the combination of platform speed and sampling intervals. For ship 

surveys, “time intervals are recommended to be one or five minute intervals (range 

1-10 m, longer time intervals are acceptable when less resolution of data is required; 

short intervals are preferred in small study areas), with mid-positions (Latitude, 

Longitude) to be recorded or calculated for each interval. Preferred ship's speed 

should be ten knots (range 5-15 knots)” (Camphuysen et al. 2004). For visual aerial 

surveys, “speed preferably 185 km h-1 at 80 m altitude. GPS positions should be 

recorded at least every 5 seconds (computer logs flight track)”. Currently 

implemented digital aerial surveys are based on either still images recorded at 

intervals pre-determined to achieve a specific percentage coverage or continuous 

video recording, with image width set to achieve the target coverage.  

Spacing between transects. Ship-based, “survey grid lines are recommended to be 

at least 0.5nmi apart, maximum 2nmi apart”. Aerial “transects should be a minimum 

of 2 km apart to avoid double-counting whilst allowing the densest coverage feasible” 

(Camphuysen et al. 2004). Currently implemented surveys aim for distances of 2 km 

(ship), 2-3 km (aerial visual) and typically 2.5 km (aerial digital), although the latter 

varies depending on the target coverage percentage.  

Transect orientation. Three main considerations enter the determination of the 

orientation of transects: statistical effort (e.g. avoiding overlaps), logistical constraints 

(e.g. need to avoid off-effort segments), geomorphological constraints (e.g. coastline 

and shallow water avoidance in ship surveys). No direct recommendations on this 

issue were provided specifically for seabirds by Camphuysen et al. (2004) but a 

general, concise discussion of automated transect design pertinent to this issue can 

be found in (Strindberg and Buckland 2004). Digital aerial methods, particularly 

those conducted farther offshore where variations in relation to distance to coast are 

expected to be reduced may also be oriented to minimise glare from the sea surface. 
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Detectability characteristics 

 

Effective detection distance (strip width). Ship-based, “line-transect methodology 

is recommended with a strip width of 300 m maximum. Subdivision of survey bands 

is recommended to allow corrections for missed individuals at greater distances 

away from the observation platform. Preferred ship type is a motor vessel with 

forward viewing height possibilities at 10 m above sea level (range 5-25 m), not 

being a commercial or frequently active fishing vessel… Preferred ship-size: stable 

platform, at least 20 m total length, max. 100 m total length”. In practice, current 

visual surveys use banding (ship bands 0-50,50-100,100-200,200-300, aerial visual 

bands are variable but often used are 44-163,163-282,282-426,426-1000. Note that 

unless ‘bubble’ windows are available 0-44 m is missed due to restricted view) and 

truncation distances (ship, 300 m one-sided survey, aerial visual 1 km two-sided) 

and aerial digital surveys use a strip width that will depend on flight height (300 m for 

still and 500 m for video). Other recommendations pertain to potential effects on the 

decay of detectability with distance. For example, it was suggested that, “the grid 

should be surveyed such that time of day is equally distributed over the entire area 

(changing start and end time over the area to fully comprehend effects of diurnal 

rhythms in the area)”, also, to “use an inclinometer to measure declination from the 

horizon” and to avoid “observations in sea states above 3 (small waves with few 

whitecaps)” . 

 

Baseline detection probability (detection at zero distance). Similar 

considerations relate to the baseline detection probability. For ship-based surveys, 

“no observations in sea state 5 or more to be used in data analysis for seabirds. Bird 

detection by naked eye as a default, except in areas with wintering divers Gaviidae. 

Scanning ahead with binoculars is necessary, for example to detect flushed divers. 

Two competent observers are required per observation platform equipped with 

rangefinders, GPS and data sheets; no immediate computerising of data during 

surveys to maximise attention on the actual detection, identification and recording. 

Observers should have adequate identification skills (i.e. all relevant scarce and 

common marine species well known, some knowledge of rarities, full understanding 

of plumages and moults). Observers must be trained by experienced offshore 

ornithologists under contrasting situations and in different seasons”.  

Correspondingly, for visual aerial surveys, it is recommended using, “high-wing 

aircraft with excellent all-round visibility for observers. Two trained observers, one 

covering each side of the aircraft, with all observations recorded continuously on 

Dictaphone. No observations in sea states above three (small waves with few 

whitecaps)” (Camphuysen et al. 2004). 
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Survey particulars for exemplar species 

 

In general, boat platforms are slower than aerial ones. Visual aerial surveys are fast 

but are characterised by lower detection rates than digital ones and fly lower so can 

cause flushing or avoidance in susceptible species. Digital aerial surveys are fast 

and fly higher, hence having lower risk of response behaviour and yield high rates of 

detection and species identification. Nevertheless, the relative accuracy of visual v 

digital methods in marine surveys is situation- and species-dependent (Furness 

2016). More specifically, regarding the relationship of the four exemplar species to 

each of the three platforms: Gannets and great black-backed gulls are likely to be 

attracted to boats, kittiwakes probably not, whereas guillemots will avoid boats and 

be hard to spot (on the sea) as well as having a proportion of the birds underwater 

when the survey passed by. Visual detection from the air is likely to be good for 

gannet and great black-backed gulls but lower for guillemots. Species identification 

may be problematic for kittiwake, as a small gull species. Availability bias (birds 

underwater) may be particularly problematic for guillemots and sun glare may also 

be an issue for all of them. In digital aerial surveys, detection should be good for all 

four species although some kittiwakes may be classed as small gull species and 

great black-backed gulls as large gulls. 

 

4 Approaches to multi-survey modelling 

 

There is an appetite more broadly in applied ecology for integrated analyses and 

adaptive resource management. Such ambitions (and, indeed, the terms “data 

integration” or “data pooling”) are motivated by the statistical community (see Section 

7.1 on extensions) but are also expressed by more descriptive papers (e.g. Perrow 

et al. 2015), indicating that there is an increasing dissatisfaction with piece-wise 

comparisons between surveys and species. Momentum behind these ideas is 

encouraging the incorporation of different sources of spatial information onto a 

single, joint inference framework, greatly enhancing statistical power, even if the data 

themselves cannot be directly pooled because of their qualitative differences. For a 

fixed amount of effort, any survey will make a decision on the trade-off between 

spatial/temporal resolution and extent. Different surveys may have entirely different 

designs, and their overall effort may also differ. These discrepancies offer 

challenges, but also opportunities for complementary use of different surveys. 
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4.1 Indiscriminate pooling 

 

The most naïve but (at 73% of reviewed papers by Fletcher et al. 2019) also, the 

most prevalent approach to dealing with multi-survey data is to pool them without 

considering their particular observation biases and imprecisions. The (rather wishful) 

expectation is that somehow these errors will cancel each-other out to give unbiased 

estimates of distribution and habitat preferences.  

 

4.2 Ad-hoc Comparison 

 

The most obvious approach to using data from multiple sources is to analyse each 

source individually and then compare the outputs of such analyses. In some cases, 

the comparison takes the form of validation and calibration (Munson et al. 2010), but 

this has assumed the existence of a gold standard (i.e. a high-resolution, precise and 

accurate data set), which may not necessarily be available, particularly in the marine 

environment. Nevertheless, the core idea of calibrating one data set based on 

another (as featured in Munson et al. 2010 and elsewhere) need not require that 

either data set is perfect. Indeed, imperfect observations “borrowing strength” from 

each other has been widely applied elsewhere in spatial survey design (see double-

observer methods in Buckland et al. 2010). This is a concept that we will rely on in 

Section 4.3 and beyond.  

 

However, staying, for now, with the idea of map comparisons from different 

(imperfect) data sets, these are carried out either visually (e.g. Bradbury et al. 2014, 

Perrow et al. 2015), or via some ad-hoc quantitative method (Sardà-Palomera et al. 

2012, Sansom et al. 2018). For example, (Sansom et al. 2018) used four distinct 

analyses carried out on data (both survey and telemetry) from four UK seabird 

species. Using as their starting point the utilisation maps generated from each 

analysis, on each species, they performed all possible pairwise comparisons. They 

focused on overlap between each pair of maps measured both as the extent (area) 

and density (utilisation) shared by them at their core areas (defined using varying 

density contours). This allowed them to discuss patterns of similarity in these 

estimated snapshots of distribution. However, they were not in a position to draw 

combined inferences about parameter values relating the patterns of utilisation to 

their underlying covariates. Further, they were not in a position to share statistical 

power between surveys conducted on the same species, possibly at similar times or 

regions.  

 

Overall, therefore, such ad-hoc comparisons are biologically valuable because they 

inform intuition and motivate scientific hypotheses. However, methodologically, they 
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are of limited utility because they do not facilitate the flow of information between 

data sets. 

 

4.3 Post-hoc combination 

 

An improved approach which allows information from one data set to flow into 

another (but not the other way around) is a sequential analysis, which completely 

deals with one data set first and then somehow incorporates the second data set as 

a second stage of fitting. Such approaches are not wide-spread and they seem to be 

specific to the particular analyses at-hand (Yamamoto et al. 2015). However, 

particularly in the context of Bayesian updating, where sequential analyses are 

possible, it is plausible to think of methods that use the results of one analysis 

(based on a single data set) to specify priors for the analysis of the next data set 

(Matthiopoulos 2003b, Talluto et al. 2016). Such ideas have been proposed, but not 

realised in spatial ecology, mainly because they require assigning parametric 

probability distributions (the priors) to space as a whole.  

 

→ An alternative idea, ensemble forecasting, examines a large (infinite, even) 

models of a system (Araújo and New 2007). Instead of picking the best model 

from the ensemble, assuming that each model carries some independent 

information, the combination of forecasts from different models is 

characterised by a lower mean error than individual forecasts. This idea 

generalises on the field of model averaging (Dormann et al. 2018) because 

ensembles can be created by examining different models, different 

parameterisations of the same models, different initial or boundary conditions 

and different stochastic realisations from each model (Fig. 1 in Araújo and 

New 2007). Post-hoc combinations from an ensemble can be unweighted (i.e. 

combination by committee) or weighted according to some measure of quality 

(e.g. based on assessments of data precision). Established model averaging 

methods adopted in ecology have previously used weights derived from 

information criteria (Burnham and Anderson 2004, Burnham et al. 2011), 

hence rewarding parsimony in the weighting. 

→ The above post-hoc approaches seem to fall naturally into categories of 

parallel and sequential model fitting. The “wisdom of crowds”, a pervasive 

idea represented here by ensemble modelling, achieves a pooling of 

predictions from a collection of parallel models. This leads to robust 

predictions, but the models are not allowed to inform each other. Less 

developed, but perhaps more powerful ideas about sequential model-fitting 

(Matthiopoulos 2003b, Yamamoto et al. 2015) allow later models to be 

informed by earlier ones, but the information flow is unidirectional.  
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Summarising some of the above ideas in their recent review on data integration, 

(Fletcher et al. 2019) identify three distinct cases of ad-hoc combination. 1) 

Ensemble modelling of independent models, 2) Use of the maps produced by one 

model as a covariate participating in the linear predictor of the other model and 3) In 

a Bayesian context, using one model to generate informative priors for the 

parameters or the predicted distributions of the other model. Together, these 

categories take up about 20% of the data-combination literature.  

 

4.4 Spatial data integration 

 

Integrated analyses of multiple data sources aim to enhance statistical power by 

greatly increasing the effective sample size of the data set but, also, by using data 

from different regions, different times and spatial resolutions in a complementary 

way. Developing the fundamentally useful idea of calibration (see Section 4.3), into 

the more general concept of integration, several papers (Fletcher et al. 2016, Pacifici 

et al. 2017, Koshkina et al. 2017, Peel et al. 2019) examined whether using 

presence-only (opportunistic) data in combination with the gold standard of 

presence-absence (survey) data could improve the descriptive and predictive ability 

of species distribution models. This is indeed likely to be the case, but the statistical 

method for achieving it must first be considered, so that the inferential platform, built 

from the perspective of calibration, can be used for integrated analyses that do not 

necessarily contain a gold standard. 

Fletcher et al. (2016) pointed out that the first methodological decision in data 

integration is whether space should be treated as a nested hierarchy of grid 

resolutions (e.g. Keil et al. 2013, 2014) or as a continuous plane of coordinates. The 

former approach is possible by conditioning higher resolution grid cells on the 

observed/estimated contents of lower resolution grids, but this runs the risks of data 

mismatches between scales. The alternative, of treating space as continuous is 

represented by the Inhomogeneous Poisson Process approach, discussed in 

Section 3.1. The key conceptual advantage of IPPs is that they acknowledge that 

spatial processes occur at individual points in space and may remain unobserved 

(see, thinned IPPs), be reported with some spatial error, or be aggregated into 

counts at coarser spatial resolutions. Hence, the IPP paradigm recognises that the 

data will have an underlying common scale, even if they are reported at coarser 

resolutions. The underlying IPP is considered latent or unobserved. Different data 

can then be considered to originate from it, subject to the span and detectability 

limitations of the particular survey scheme (see Section 3.2). This allows us to write 

a joint likelihood for multiple data sets, conditional on the latent IPP. The distinction 

between a latent biological process and the different data-collection processes that 
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can be used to observe it gives us the ability to think more mechanistically about the 

origin of the data (Hefley and Hooten 2016, Fletcher et al. 2019).  

 

Data integration must also be done in a way that does not misleadingly increase the 

apparent precision of the results and model predictions (Miller et al. 2019). For 

example, un-modelled spatial and temporal autocorrelation in the data (see Section 

5.4) may artificially inflate the apparent sample size of the data, despite the prudency 

recommendations made for spacing out observations and transects (see Section 

3.2). These concerns about pseudo-replication apply particularly for multi-survey 

analyses because different surveys may have overlapped in space or in time. 

Alternatively, uncertainty contained in the pre-analysis of transects (e.g. uncertainty 

in the detection function see Section 5.1), if not propagated to the final results, may 

under-represent the uncertainty in distribution. All of these mechanisms could 

threaten the precautionary approach and have adverse implications for management 

and policy decisions. Therefore, uncertainty in the observation processes from 

different surveys and the habitat data must be correctly propagated to the end-

results, to give a reliable measure of precision. The current situation in the literature 

is far from ideal, given that most published marine SDM studies (94%) have failed to 

report the amount of uncertainty derived from data deficiencies and model 

parameters (Robinson et al. 2017). 

 

Fletcher et al. (2016),  Pacifici et al. (2017) and Peel et al. (2019) found that the 

combination of the data gave better explanatory and predictive performance than 

either of the two data sets on their own. Crucially, the use of opportunistic data 

improved the performance of the model based on formal survey data. The authors 

attributed these improvements to the sheer sample size of opportunistic data and 

their broader extent compared to survey data, both spatially, but also in terms of 

environmental variables.   

 

A central theme in integrated SDMs is the idea of complementarity in achieving 

spatial breadth and depth. In most situations of data-collection, logistic and 

budgetary constraints mean that we need to settle on trade-offs between the 

resolution and the extent of surveys. For example, given a fixed amount of ship-time, 

covering a greater area at sea necessarily means using sparser transects (i.e. either 

increasing the distance between successive observation points, or increasing the 

spacing between transect lines). Similar trade-offs exist between different types of 

data. For example, opportunistic data tend to have greater sample sizes but lower 

accuracy and precision, compared to formal survey data. Several authors (Pacifici et 

al. 2017, Nelli et al. 2019) have now pointed out that, by integrating different surveys 

and different data types into one analysis we do not merely achieve an increase in 
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sample size, but a complementary use of the different spatial extents and resolutions 

that characterise these data. Complementarity means that detailed features of 

species distributions can be embedded in big-picture data, even where such details 

have not been directly observed.  

 

Spatial data integration need not only be used with data that inform the same latent 

surface. For example, hurdle approaches that combine abundance conditional on 

occupancy (or occupancy conditional on abundance) have traditionally been 

implemented as two-stage analyses (Waggitt et al. 2019). However, these can be 

easily implemented as integrated analyses, as in Clark et al. (2019). 

 

5 Challenges and opportunities in multi-survey modelling for 

seabirds 

 

Some of the challenges faced in seabird modelling are common to all SDMs. Errors 

in the observation of usage data (Section 5.1) and imprecise, or missing, 

environmental data (Section 5.2) can plague any analysis. Equally common to all 

analyses, although less frequently discussed, is the issue of model transferability 

(Section 5.5), the task of using insights gleaned from one place at one time, in other 

spatiotemporal frames. Beyond these common problems, the natural history of 

seabirds poses unique challenges to distribution modelling that are accentuated 

when trying to analyse multi-survey data. The high mobility of individuals, the 

stochastic nature of their local spatial distribution with ephemeral aggregations of 

large numbers at temporally transient foraging opportunities, combined with their 

association with breeding colonies for parts of the year gives rise to complex 

processes of density dependence between individuals, colonies and species 

(Section 5.3). These processes may manifest spatially, and the detail used to 

describe and estimate them from spatial data generates much of the complexity 

(non-linearity) in seabird SDMs. Model complexity is compounded by the need to 

deal with (and take advantage of) spatial and temporal autocorrelation in multi-

survey data (Section 5.4). Therefore, the key issue in deriving appropriate 

frameworks for seabird multi-survey data is navigating the sources of computational 

complexity to achieve a workflow that makes the most of the data but reaches results 

in plausible times (Section 5.6).  

 

5.1 Imperfect observation and multi-survey modelling 

 

Different survey methodologies (boat-based, visual aerial and digital aerial) are 

affected by different types of biases and imprecisions. The behaviour of seabirds can 

amplify the differences between survey methods. For example, the strong attraction 
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of scavenging seabirds to boats at some times of year but not others, and in some 

regions but possibly not in others can caused strong fluctuations to detectability 

(potentially even boosting it above 100%). These effects need to be explicitly 

accounted for during analysis. In general, observation error types found in survey 

data comprise false negatives, false positives, effort imbalances and location error 

(Miller et al. 2011, 2019, Hefley and Hooten 2016).  

 

False negatives and false positives 

 

False negatives involve errors of omission and misidentification, whereas false 

positives are predominantly due to double-counting or misidentifications of one 

species as another. There is some debate about the relative importance of these two 

types of error. For example, (Tyre et al. 2003) argue that false negatives will be less 

frequent for two reasons: First, misidentifications are conditional on a detection 

happening, and their frequency can therefore be reduced by observer training and 

improvement in survey protocols. Second, it is common practice in several designs 

to not record a detection (or to exclude it from the analysis) if there is any doubt 

about its identity – hence converting a potential false positive into a potential false 

negative. However, it could be argued that observer training could be as beneficial 

for detection as it is for identification. Equally, detections can be recorded and 

analysed in conjunction with a degree of certainty for their correct identification 

(Miller et al. 2011). Therefore, it is perhaps ideal to proceed with the assumption that 

analysis frameworks will need to deal with both false positives and negatives (Miller 

et al. 2011).  

 

In the setting of transect surveys, both false negatives and false positives relate 

clearly to the baseline detection probability (the intercept of the model). Most 

obviously, false negatives give the impression that an organism is less prevalent 

than it actually is. But even false positives can create consistent biases. If two 

species are easily mistaken for each other, then the bias will be positive or negative 

depending on whether the true prevalence of the focal species is respectively 

smaller or larger than the prevalence of the non-focal species. In logistic habitat 

models, focusing purely on occupancy, they have an even greater effect on the slope 

of the relationship with covariates (Tyre et al. 2003). In such studies, it is suggested 

that at least three repeat visits are required to correctly estimate the probability of 

omission. Furthermore, a statistical trade-off between survey extent and survey 

overlap is expressed. Simulated results indicate that when the rate of false negatives 

is low (e.g. <50%), it may be better to increase the extent of the surveys rather than 

the number of visits. As false-negative rates increase, the variance of parameter 

estimates is reduced more by increasing the number of visits, especially when the 
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overall extent is low. There are several reasons for being careful about taking these 

quantitative recommendations immediately on-board in developing best practice for 

seabird surveys. First, the probability of detection will generally not be the same in 

different seabird surveys. Second, these recommendations were based on the 

assumption of near homogeneity in distribution. Third, occupancy data analysed by 

logit or probit models are considerably more vulnerable to observation errors and 

therefore more limited in their inferential abilities than models of abundance. 

Nevertheless, similar effects have been recovered in broader classes of models, 

including the Poisson point process (Lahoz-Monfort et al. 2014). 

Discussion of errors with higher relevance to seabird surveys can be found in 

commissioned reports. For example (Camphuysen et al. 1995), carried out an inter-

calibration exercise for 20 observers on ten ships for ship-based ESAS surveys in 

North Sea. The authors reported major differences in detections from different 

observer teams. For example, team A reported about 6-10 times more kittiwakes 

than teams B, C and F in the same region and time period. Anecdotally of relevance 

is the misidentification of guillemot and razorbill with high variance in the ratio 

reported by different observers. Equally important is the practice of assigning 

detections to group rather than identifying them to species. For example, divers are 

often recorded as ‘diver species’. These can be apportioned to species later, 

according to the ratio of red-throated, black-throated and great northern in the 

sample that were identified to species. However, great northern is easy to ID to 

species whereas many black-throated divers are difficult to separate from red-

throated divers. So, apportioning ‘divers’ to species based on proportions ID to 

species tends to result in overestimating numbers of great northerns. 

 

These are real problems where understanding the natural history might help resolve 

some of the biases, whereas others (especially observer effects) can’t easily be 

taken into account (ESAS has too many individual observers for example so 

quantifying observer effects would not be statistically feasible). 

 

Location errors 

 

Errors in the detection, identification and location of individuals may vary temporally 

(see example of diurnal and seasonal patterns along distance sampling transects in 

(Furnas et al. 2019)), according to environmental conditions (such as weather and 

ambient light) or according to geomorphology (Frair et al. 2010). Note that, contrary 

to some practices (e.g. Oppel et al. 2012) when the detection probability varies with 

environmental conditions, the counts cannot be used as a relative index of 

abundance without a correction to the effective detection distance and the baseline 

probability of detection, or much better, incorporation of these influences as of 
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detection in the distance sampling analysis (Marques and Buckland 2003, Buckland 

et al. 2008). In general, both the probability of detection and the abundance of a 

species will depend on environmental covariates. For example geomorphology (e.g. 

proximity to land) will affect both, bathymetry will affect only abundance and ambient 

light conditions may affect only detection. This gives rise to potential problems of 

identifiability (our ability to pinpoint estimates for coefficients pertaining to both 

detection and species abundance). The statistical requirements for achieving 

identifiability have been examined by (Lele et al. 2012). For occupancy models, 

these authors concluded that if the intersection of the two sets of covariates 

contained a non-categorical variable, and if there was at least one variable that 

belonged to one set but not the other, estimation was identifiable.  

This debate about detection errors is particularly pertinent to the analysis of multi-

survey data. For many situations, it is impossible or logistically unlikely that more 

than one visit to any location will take place, and frameworks must be developed to 

ensure that detection errors can be ameliorated by use of the habitat similarity in 

non-overlapping visits (Lele et al. 2012) . However, in the presence of overlapping 

surveys, progress can be made more directly to account for detection errors as part 

of inference (Bolker 2008). In repeated visits, the target species is recorded as being 

detected or not detected at each visit. At locations where the species is present, 

detection error will occasionally result in species not being detected even though it is 

present at the site. Assuming the true abundance does not change over the duration 

of repeated visits fluctuations in observed abundance at a particular site can be 

attributed to detection error and thus facilitate the estimation of the baseline 

detection probability in a survey. Although not widely available for abundance data, 

analytical expressions have emerged that describe how repeat visits increase the 

statistical power in the estimation of detection probabilities (Guillera-Arroita and 

Lahoz-Monfort 2012). 

 

Variable observation effort 

 

Heterogeneity in observation effort is a crucial driver of the point patterns presented 

by the raw data (Manly 2003, Miller et al. 2019). In particular, (Chakraborty et al. 

2011) propose a distinction between the potential intensity surface (representing the 

biological process generating occurrences of a species in space) and the realised 

intensity surface (which is curtailed by the distribution of observation effort). This is 

more widely known as a thinned Poisson point process because it incorporates an 

observation model into the intensity function (Hefley and Hooten 2016), so that the 

point patterns recorded are sparser than what would be seen if observation effort 

saturated the whole of space. Such combinations of the observation model with the 

underlying biological model offer the potential of fully integrated inference, the idea of 
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conducting the estimation of detection functions simultaneously with the habitat 

analysis. This would allow the forward and back propagation of errors as discussed 

in the previous sections, so that the estimation of detection distances would benefit 

from the information on habitat. A key assumption in distance sampling is that the 

distribution of the species in the detectible vicinity of the transect is uniform. 

Violations of this assumption could be prevented by modelling the distribution of the 

species (as driven by covariates) jointly with the detection function associated with 

the transect (along with its own covariates). This approach was taken by (Nelli et al. 

2019) in their study of malaria incidence patterns. In that paper, a modification of 

point transect distance sampling (appropriately tailored to epidemiological data) was 

embedded in a model for the covariates of incidence, hence improving inference for 

both the observation and biological model. 

 

5.2 Imperfect habitat data and multi-survey modelling 

 

Imperfections in the covariate data can arise in different forms. The resolution of 

different variables or different regions of the same variable may be mismatched. 

Covariate data may be partly, or wholly missing. Alternatively, the values of known 

covariates may be measured with uncertainty, or be temporally fluctuating. The idea 

of data integration from multiple surveys and data types has a crucial role to play in 

using such imperfect data.  

 

Mismatched scales 

 

Mismatches between explanatory variables are informally addressed by some 

process of alignment, whereby a common reference grid is applied to all the 

covariates, usually involving a process of linear interpolation to shift the centre-points 

of existing cells to the new grid nodes, and also a process of coarsening of the 

resolution of maps to the lowest resolution available in the data (Kent et al. 2006). 

We will call this the lowest common denominator approach to mismatched scales. 

None of these steps are necessary if the data generating mechanism is modelled as 

a point process. In this case, covariate values are extracted from the available maps, 

in their native resolution, at the location of each point in the response data. Without a 

doubt, different scales will have characteristic impacts on the results of the SDM 

(Levin 1992, Paton and Matthiopoulos 2018, Pacifici et al. 2019), but at least in this 

way, explanatory data are used at the finest resolution available and in a minimally 

processed form.  

 

Mismatches in different geographic regions for the same explanatory variable are a 

problem that requires treatment because it affects the consistency with which a 
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variable is allowed to affect the response in the model. The key decision is between 

downgrading the high-quality areas (an easy but somewhat destructive solution), or 

upgrading the low-quality areas. Upgrading could be approached by geo-statistical 

interpolation, as a pre-modelling stage of the analysis. Specifically, a method like 

kriging could be used for the coarse resolution regions (e.g. (Monestiez et al. 2006)). 

Kriging relies on an estimated object (the semi-variogram) which captures the 

characteristic spatial autocorrelation in a variable. By estimating the semi-variogram 

in the fine resolution regions and applying it across space, the coarse scale region 

could be resolved. This will crucially depend on whether the coarse scale readings 

are localised (albeit sparse) measurements, or averages over coarse scale cells. 

The latter scenario would preclude the geo-statistical interpolation approach.  

 

A much more general and flexible approach to scale mismatches involves the use of 

hierarchical Bayesian approaches to resolve coarser regions into finer scales (Keil et 

al. 2013). Such approaches could also be used to increase precision when multiple 

layers of information exist at different scales for the same environmental variable. 

 

Partially missing covariates 

 

There will be situations where the desired spatial extent of the region to be used for 

modelling is not spanned by available covariate layers. Similarly, cloud cover or 

other obscuring influences will result in gaps in remotely sensed layers. Once again, 

the most direct approach (the lowest common denominator approach for partially 

missing covariates) is to retain a minimal data set that comprises only cells with 

complete covariate entries. This invariably leads to heavy censoring of the data 

either via cells being dropped, or via covariates being judiciously removed to try and 

retain more cells. It is possible to formalise this process of censoring by starting with 

a reduced set of cells and a full set of covariates, begin model fitting and drop some 

variables through formal model selection. As the set of covariates in the model is 

reduced, the hope is that more cells will be able to be once again included in the 

analysis. This pragmatic approach is not ideal because it involves information loss 

through censoring, the degree of which is not entirely in the analyst’s control. 

Instead, interpolation methods (i.e. density estimation methods, see Section 3.1 or 

geo-statistical methods, see previous subsection) can be used to reconstruct the 

expanses of missing data. 

 

A particularly relevant problem in this category arises from Camphuysen et al. (2004) 

recommendation that to enhance the cost-effectiveness of ship-based surveys, 

vessels should be equipped with an Aquaflow (logging surface water characteristics 

including temperature, fluorescence (chlorophyll), and salinity information 
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simultaneously with species abundance). The idea of contemporaneous recording of 

environmental variables at high resolution is certainly appealing and can lead to 

models of high explanatory power. However, this approach is limited when spatial 

predictions are required for areas not visited by the boats, because high-resolution 

environmental data are unlikely to be available for the whole of space. Interpolation 

of the environmental variables between transect lines can solve this problem, 

assuming that the spatial autocorrelation in the relevant environmental data does not 

decay rapidly compared to the separating distance between the transects. If that is 

not the case, then it may be necessary to combine the measurements of variables 

along the transects with synoptic raster data at coarser resolutions. That brings the 

problem back to the class of scale mismatches (see previous subsection), whereby 

integration of environmental data that differ in resolution and extent is used to 

reconstruct uninterrupted layers of explanatory variables. A key consideration in this 

is the ability to predict from such models. If the Aquaflow variables are dynamic, then 

these data will not be available outside the temporal window of measurement. In 

such cases, forecasts will be impossible (see subsection on Variability and Errors in 

Measurements, below).  

 

Once again, all of these processing steps can be incorporated into the main 

inferential framework via hierarchical Bayesian approaches to resolve scale 

mismatches and data absence (Keil et al. 2013, Nelli et al. 2019).  

 

Unknown covariates 

 

Missing covariates is a widely recognised and difficult to diagnose source of 

estimation bias (Barry and Elith 2006, Fieberg et al. 2018). Although it may not be 

possible to reconstruct multiple missing covariates (such a data vacuum is beyond 

the reach of even the best statistical model), it is possible to capture the collective 

effect of missing covariates in the residual autocorrelation of the fitted model as in 

(Beale et al. 2014, Nelli et al. 2019), and also see discussion in Section 5.4. 

 

Variability and errors in measurements 

 

Dynamic explanatory variables may follow seasonal (e.g. monthly average 

temperature), diurnal (e.g. tide) or less predictable (e.g. weather) fluctuations. 

Although there is certainly a biological appetite to include such variables to explain 

the distribution of a species, data availability can be a constraining factor in this. At 

the model fitting stage, inclusion of dynamic variables means that each observation 

of species abundance must be synchronised with contemporaneous environmental 

data. This can be difficult because data absence becomes more pronounced as data 
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are subdivided into smaller time frames. However, problems are more pronounced at 

the prediction stage. Forecasting species distribution into the future requires us to 

have complete layers of explanatory maps, which must also be forecasted, if they 

refer to dynamic variables. This calls for some consideration on which variables to 

include in a dynamic format. If the spatio-temporal availability of data for an 

explanatory variable (either from historical data or from available forecasts) is low, 

then even if there is biological confidence about their importance, it may still be 

necessary to exclude them from the analysis.  

Explanatory variable data may contain measurement biases and imprecisions which 

may also be spatially correlated (Barry and Elith 2006). Known, consistent biases are 

often corrected at the stage of pre-processing of covariates. Imprecisions, especially 

if these vary across space, should be propagated through the analysis so that they 

are reflected in the final confidence intervals of the SDM parameters and spatial 

predictions on the distribution of the species (Barry and Elith 2006). This idea has its 

roots in type II linear regression (Sokal and Rohlf 1995), but can be considerably 

updated by using the flexible modelling structures of hierarchical Bayesian models. 

Spatially correlated errors can arise from reconstruction methods (see interpolation 

methods mentioned earlier) that are often used to generate complete layers of 

covariate information. Theoretically, the approach for propagating such errors to the 

final results is similar to the approach of propagating un-correlated uncertainty, with 

covariance structure for neighbouring locations. However, this is, as yet rarely done 

for computational reasons.  

 

All these suggestions about uncertainty quantification eventually need to be 

visualised in conjunction with median predictions. Informatively mapping uncertainty 

is not straightforward however and communicating uncertainty to policy makers can 

cause confusion. Interesting approaches to using uncertainty in SDMs for informing 

policy decisions are actively developed in the field of ecological reserve design 

(Tulloch et al. 2013). 

 

5.3 Accessibility and density dependence in seabird distribution modelling

  

For at least some parts of the year, species of seabirds are central place foragers. 

Their use of different marine locations is therefore likely to be affected by how 

accessible these locations are from the breeding colony. Accessibility might vary by 

species and season. The effects of accessibility on distribution have been 

anticipated theoretically (Matthiopoulos 2003a, 2003b) and found empirically in 

marine central place foragers such as seabirds (Lewis et al. 2001, Wakefield et al. 

2011, Grecian et al. 2012, Thaxter et al. 2012, Waggitt et al. 2019) and pinnipeds 

(Matthiopoulos et al. 2004, Aarts et al. 2008, Jones et al. 2015). In addition, the 
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coloniality of seabirds leads to foraging aggregations and potential resource 

depletion in the regions surrounding the colonies (Lewis et al. 2001). Ultimately, the 

use of particular locations at sea will be determined by the trade-off between 

commuting costs (as shaped by accessibility) and foraging benefits (as shaped by 

environmental resources and depletion).  

 

Both accessibility and depletion/interference may be thought of as functions of 

distance from the colony, but they are complex, highly non-linear processes for 

distinct reasons. Accessibility is mainly complicated by the fact that different colonies 

will be placed in locations that are variably affected by the coastline. Hence, colonies 

on a small island are likely to be unconstrained in every direction, colonies on a 

relatively straight coastline will only have a semicircle of marine directions available 

for departure, while colonies in an inlet may be limited to a single water body route 

into the sea. To capture declines in accessibility with distance, it is possible, as a first 

approximation, to introduce a distance-decay function, parameterised identically for 

different colonies (Matthiopoulos et al. 2004, Grecian et al. 2012). However, the fact 

that the available area of water around each colony will depend on coastal 

morphology, means that the resulting marine distribution from such a function would 

not allocate equal numbers of birds at units of area that are the same distance from 

different colonies. 

 

These behaviours will not be independent of age structure. Seabird populations 

include a high proportion of immatures that are less competitive than adults so may 

tend to distribute at sea in areas away from colonies (at least until they start to seek 

to recruit into a colony themselves). So, we can expect some ‘infilling’ of marine 

areas away from large colonies by immatures, especially younger age classes of 

immatures. 

 

Density dependence is complicated initially by resource competition between colony 

members (Lewis et al. 2001). As the size of the colony grows, individuals need to 

travel further to escape the density dependent effects of depletion or interference. At 

the same time, there is evidence that usage from neighbouring colonies can saturate 

space leading to the appearance of home ranging behaviour at the colony level 

(Wakefield et al. 2013). This implies that even without the constraints of commuting 

costs, a colony might not extend its foraging range (and, consequently, its population 

size) indefinitely. In addition to inter-colony competition with conspecifics, it is 

possible that individuals from a colony are experiencing competition from 

neighbouring colonies of other species. In this case, the resulting asymmetries in 

range will not only be due to relative colony sizes, but also due to trophic niche 

overlap and competitive dominance between species. All of the above aspects of 
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biology will interact with each other and with environmental productivity. For 

example, for a given colony size, colonies that are obscured by coastline formations 

may tend to have greater ranges than island colonies because density dependence 

is acting over smaller areas close to the obscured colonies.  

 

Non-linearity in the relationship between abundance and its covariates is widely 

recognised in the statistical literature as well as in the seabird-related literature (e.g. 

Section 1.1.2 in Oedekoven et al. 2012b) and has prompted the development of 

semi-parametric, non-linear models based on splines or additive basis functions. 

These models, broadly known as Generalised Additive Models (Wood 2006) allow 

the data to “speak for themselves”, i.e. to inform the shape of the relationship with 

explanatory variables. The greatest advantage of GAMs and their extensions (such 

as mixed-effects GAMS, or GAMMs), is that their estimation remains embedded in 

the frameworks of the linear model. Their greatest disadvantage is that they can 

result in spurious relationships via overfitting. Instead, in some cases we can argue 

for the derivation of a functional form from biological first principles (see discussion 

on mechanistic models in Section 3.1). The sophistication that is used for modelling 

accessibility and density dependence will determine the computational feasibility of 

the approach (see Section 5.6 below), but we can outline here an idealised approach 

that would correctly account for both effects. This hypothetical approach would have 

the following features: 

 

1) Accessibility is treated as a distance-based function only. Simpler 

approaches would use Euclidean distance, but improved approaches would 

consider distance measures based on at-sea travel (see biological distance in 

(Matthiopoulos 2003a)). These distances would need to be calculated as 

spatial layers, specific to each colony. More elaborate measures of 

accessibility, incorporating landscape resistance (e.g. due to prevailing wind 

fields) could be calculated (Zeller et al. 2012, 2017). For any given marine 

location, these metrics could result in asymmetric outward and homeward 

distances. 

2) Intra-colony competition may be treated by including seabird density as an 

auto-covariate (Augustin et al. 1996) in the model, effectively using the 

response variable in the neighbourhood of a point as an explanatory variable 

for the response variable at the location of the point. The apparent circularity 

of this step requires careful consideration of the model fitting stage, but it is 

mechanistically equivalent to density dependence (i.e. the feedback effect of a 

population onto its own distribution). An alternative approach is to introduce 

an explicit autocorrelation term in the response, but this would need to be 

made colony-specific (and ideally, colony-size specific).  
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3) Inter-colony competition may be accounted for via simultaneously using the 

expected usage of one colony as an explanatory variable (possibly with a 

negative coefficient) for the expected usage of another colony, and vice-

versa. The need to couple the usage of different colonies, gives rise to 

another point of apparent circularity, which can be addressed via 

simultaneous regression techniques (i.e. modelling multiple response 

variables at the same time, to allow the use of each response variable as an 

explanatory variable for the others). The coefficients of these simultaneous 

regressions would need to be asymmetric, based on the size of each colony 

(so that large colonies have stronger negative effects on the marine use of 

smaller colonies).  

4) Inter-colony, interspecific competition could be dealt with in exactly the 

same way as intraspecific competition between colonies (see 3, above), 

allowing for asymmetric effects due to differences in species, as well as 

differences in colony size.  

 

As we will also discuss in Section 5.6, a model with the above specifications is just 

about possible to write and simulate from, but not computationally feasible for fitting 

to data. Instead, a more pragmatic approach would involve the following 

simplifications: 

 

1) Accessibility: Write accessibility as a distance-decay function. Any measure 

of distance can be used (e.g. Euclidean, travel-time, landscape resistance), 

because these calculations are not part of model fitting. 

2) Intra-colony competition: Expand the decay parameter of the previous step, 

so that it is larger for smaller colonies and vice-versa. This means that as 

colony size increases, the decay of expected usage with distance from the 

colony slows down, hence extending the range of the colony to take account 

of intra-colony density dependence. The function may be allowed to be non-

monotonic, so that total usage initially increases with distance, and then 

eventually starts to decay. 

3) Inter-colony competition: The formulation from the previous step, can be 

extended to account for the effects of other colonies but in this case, the effect 

on a the usage of a given marine point by a focal colony will depend on the 

distance of that point from the competing colony (as well as the competing 

colony’s size).  

4) Inter-colony, interspecific competition: Although biologically, the 

differences between species are important, from a mathematical point of view, 

all that is required to capture these effects is a re-parameterization of the 

model from Step 3, above. 
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In Section 2.2 of the Vignette that accompanies this report, we develop, graphically 

explore and spatially simulate from such a model. The resulting model is non-linear 

but it has modest parameter requirements. For example, for a four-species system, 

where each species is represented by several colonies, a total of 40 parameters 

would need to be estimated for all species. If the focus was on a single species with 

three competing species, then ten parameters would be required. If no inter-specific 

competition was considered, only four parameters are needed to capture effects of 

accessibility and density dependence (i.e. Steps 1-3, above). The important benefit 

from such an approach is that we can learn from the data about the strength of 

accessibility and density dependence for a particular species. Fitting this model 

simultaneously with environmental covariates allows us to account for the 

confounding between intrinsic and environmental regulation of spatial usage. 

 

5.4 Autocorrelation and multi-survey modelling 

 

Informally, residual autocorrelation (RAC) is the spatial or temporal similarity in the 

direction and magnitude of discrepancies between model and data. The assumption 

of all statistical regression models (including SDMs) is that all sources of 

autocorrelation (AC) in the data are the result of autocorrelation in the available 

explanatory variables1, and, therefore, that conditional on the covariates included in 

the model, the residuals of the model are independent. This assumption, however, is 

often violated and the existence of spatial and temporal AC in the residuals casts 

doubts over the results of inference (Segurado et al. 2006, Dormann et al. 2007). 

Several methods exist for dealing with the problem (Dormann et al. 2007), but they 

differ in one crucial aspect: whether they correct the consequences of AC on model 

dispersion and parameter standard errors, or whether they model AC explicitly. In 

this section, we will argue that modelling AC explicitly can lead to capital information 

gains in the analysis of data from multiple surveys. 

 

Spatial autocorrelation 

 

RAC can result from three routes. First, if an influential covariate is missing from the 

analysis, the fitted values will under-/over-estimate true usage in a spatially 

aggregated way. Second, even if all relevant covariates are included, they may be 

misrepresented in the analysis. For example, covariates that have been created by 

interpolation may inherit over- or under- smoothing to the model’s estimates. Over-

                                                             
1 More complex approaches, such as state-space models (Buckland et al. 2004, Patterson et 
al. 2008, Newman et al. 2014), capture additional dependencies by conditioning multiple 
response variable to each-other. 



35 
 

smoothing is equivalent to using coarse level environmental data to explain 

responses that are happening at finer spatial scales (de Knegt et al. 2010). 

Alternatively, it may be that animals are responding to the broader context rather 

than the finely resolved environmental data offered as explanatory variables (Paton 

and Matthiopoulos 2018). Third, even if all relevant covariates have been included at 

the most appropriate scale, there is still the possibility that clustering in usage is 

caused by intrinsic processes, such as individual memory (Van Moorter et al. 2009), 

limitations in movement speed (Aarts et al. 2008), or social cues (Riotte-Lambert and 

Matthiopoulos 2019). In the broadest sense (Beale et al. 2010), spatial AC can be 

captured either as a covariate , or by introducing a spatially auto-correlated structure 

in the model’s error. Including AC as a covariate could be done by introducing 

flexible functions of latitude and longitude (Mendel et al. 2019), or by using density 

as a local auto-covariate (Augustin et al. 1996). Including AC as an auto-correlated 

error can be one of several components of the error structure of a hierarchical 

model.  

 

Often, one of the symptoms of un-modelled heterogeneity generated by RAC is over-

dispersion in the residuals. For example, omission of influential covariates is a well-

known source of over-dispersion. In seabird analyses, this is frequently addressed 

by use of over-dispersed distributions (e.g. Lieske et al. 2014) or zero-inflated 

mixture models (e.g. Oppel et al. 2012, Waggitt et al. 2019). Such approaches, 

however, assume that the residuals in nearby locations are independent, an 

assumption that is unlikely to hold. There are therefore arguments for the use of 

flexible spatial functions in capturing residual spatial complexity (e.g. Sections 1.1.3-

4 in Oedekoven et al. 2012b) and, given that formal tests for autocorrelation in 

residuals can be weak, there is a view that modelling autocorrelation by one of the 

methods outlined in (Dormann et al. 2007, Beale et al. 2010) should be carried out 

pre-emptively to avoid biasing the estimated coefficients of available covariates 

(Fletcher et al. 2016).  

 

However, although in most cases we can be certain that one or more sources of 

spatial autocorrelation are operating, it is not clear how to interpret the results of 

explicitly spatial models, and indeed it is not certain that the inclusion of such terms 

exactly counteracts the causes of the problem. Interpretation of autocorrelation terms 

is challenging because the processes generating autocorrelation operate at different 

characteristic scales (Levin 1992) and the observed residual autocorrelation in a 

species distribution model is the result of all of these influences acting together. It is, 

therefore, not always easy to interpret autocorrelation patterns biologically or to 

attribute them to estimation artefacts. The bias-correcting effect of AC terms is also 

in doubt, because they can be shown to be confounded (and hence, potentially in 
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competition) with fixed-effects terms (Hodges and Reich 2010). In some cases, 

incorrect specification of spatial errors can lead to severe biases in parameter 

estimates for fixed effects, even if all the relevant covariates have been included in 

the model (Beale et al. 2010, Sinclair et al. 2010).The outcome of this competition 

between spatially structured random effects and covariates, depends on the penalty 

imposed on the flexibility of random effects. Low penalties encourage over-

parameterised spatial terms that diminish (i.e. negatively bias) the coefficient 

estimates for covariates. This underlines the need for out-of-data validation of fitted 

models.  

 

Temporal autocorrelation 

 

Temporal autocorrelation causes residual similarity due to temporal proximity 

between observations, essentially two successive snapshots of a system are not 

very different from each other because the system has not had enough time to 

diverge from its original state. This is considered an important violation of the 

independence assumption, particularly for telemetry studies (Fieberg et al. 2010), but 

it is less of a concern for surveys, assuming that design recommendations are 

adhered to, to avoid double counting (see Section 3.2). However, temporal 

dependence offers us valuable opportunities for exploiting multi-survey data that 

have been collected at different times. Currently, investigation of multiannual trends 

and relative changes in usage is usually considered to lie beyond the scope of 

seabird distribution analyses (Perrow et al. 2015), but such features would be 

essential if multiannual survey data were to be correctly integrated. Assuming 

stationary values for the covariates, the counts from two surveys conducted over the 

same region at different points of time should be expected to be more similar, the 

closer the surveys were in time. We can add temporal autocorrelation via the fixed 

effects of a model (as flexible functions of time), or we can assume an 

autoregressive model (e.g. a random walk in the measurements of residuals). More 

complex error structures spanning several time lags or continuous time are also 

possible (Wood 2006). 

 

Spatiotemporal autocorrelation for multi-survey data 

 

In the setting of multiple surveys spatial and temporal autocorrelation can be a real 

asset. Although habitat and species distribution models are predominantly visualised 

as maps, most of these models are fitted in environmental space, and are, therefore, 

neither explicitly spatial nor temporal (Chakraborty et al. 2011). Hence, a classic 

SDM is unable to recognise the fact that two contemporary surveys that overlapped 

spatially share more than just the same values for the covariates. Furthermore, 
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within the range of autocorrelation, a model should be able to acquire additional 

support from the fact that even when two surveys do not exactly coincide in time and 

space, they can share similar information depending on their spatiotemporal 

proximity. Therefore, particularly for multi-survey studies it is important to allow 

environmental, spatial, temporal and spatiotemporal dependencies (Hothorn et al. 

2011). However, it should also be recognised that these will not be able to bridge 

over large distances and intervals. For this, we require transferrable models that can 

address the non-stationarity of animal responses to different environmental 

compositions. 

 

5.5 Model transferability 

 

SDMs based on survey models could be asked to perform one of three predictive 

tasks, presented below in increasing order of difficulty. 

 

Spatial and temporal Interpolation 

 

The most reliable type of SDM prediction deals with the spatial and temporal frames 

within which the survey data were collected (a task we will call spatio-temporal 

interpolation). These applications make two, relatively easily satisfied assumptions. 

First, that the resolution of the surveys is finer than the scales of all autocorrelations 

used to describe spatial and temporal dependencies in the model. Second, that the 

coefficients estimated by the models are stationary in space and time. When 

stationarity is in the temporal dimension, this later assumption is often called the 

pseudo-equilibrium assumption (Guisan and Zimmermann 2000). If the windows of 

observation are small and sufficiently densely surveyed, these assumptions are 

satisfied and the SDM can provide an accurate representation of density at any point 

in space and any instant in time within the observation ranges (Isojunno et al. 2012).  

 

Environmental interpolation 

 

The SDM models recommended in this report are empirical in nature (albeit with 

elements of mechanistic modelling – see Section 5.3). Robustness (i.e. precision 

and accuracy) of such models under prediction is subject to the dangers of 

extrapolation, particularly when regression is equipped with high functional flexibility 

(Bell and Schlaepfer 2016). Non-stationarity in environmental responses is a 

recognised source of variability (Hothorn et al. 2011) and a safe route to 

unsuccessful model predictions. The difference between explanatory and predictive 

models is a key area of interest in an discipline such as ecology, which focuses on 

the consequences of spatial non-stationarity and change over time (Yates et al. 



38 
 

2018). However, for habitat models, spatio-temporal extrapolation need not 

necessarily be equivalent to environmental extrapolation. A high priority for empirical 

modelling in general is that sampling effort covers as wide a range of covariate 

values, and combinations thereof (Oedekoven et al. 2012b). Conceivably, this can 

be achieved in a single survey, but may be difficult given the logistical constraints on 

spatial extent (i.e. it may be difficult to survey highly contrasting environments 

without covering prohibitively large distances). Nevertheless, it may be possible to 

achieve by pooling multiple surveys together. Matthiopoulos et al. (2011) discuss 

how a survey can be considered as a single sampling instance in a pooled data set. 

That paper first formalised a generalised model for functional responses in habitat 

selection (known as a Generalised Functional Response - GFR). Functional 

responses broadly describe changes in use of an environmental variable as a 

function of the value of that and other environmental variables (Arthur et al. 1996, 

Mysterud and Ims 1998, Boyce et al. 1999, Holbrook et al. 2019). For example, in 

trophic ecology, a functional response describes the consumption of prey by a single 

predator, as a function of the prey’s abundance (Holling 1959). Generalisations of 

the Holling concept of functional responses to multiple prey give rise to multispecies 

functional responses (Asseburg et al. 2009, Smout et al. 2010). In a similar way, a 

GFR describes how preference for a particular habitat changes in response to the 

availability of all habitats in the environment of an individual, or a subpopulation (e.g. 

a seabird colony). Such models have been shown to bring considerable gains in 

predictive power for environmental scenarios that are within the range of 

environmental values recorded in the pooled data (Matthiopoulos et al. 2011, Paton 

and Matthiopoulos 2018, Holbrook et al. 2019). 

 

Environmental extrapolation 

 

As soon as we require predictions for scenarios found outside the previously 

observed spatiotemporal and environmental frames of reference (i.e. the 

environmental profiles used for model-training), several processes begin to interfere 

with our predictive ability. Sinclair et al. (2010) identify no fewer than ten major 

biological and methodological obstacles to the success of such predictions. 

Examples include the appearance of unprecedented environmental domains and 

concurrent alterations in the community context in which the focal species is 

embedded.  

 

Although functional response frameworks have been found to increase the 

robustness of predictions outside the extremes of observed scenarios (Matthiopoulos 

et al. 2011), it is nevertheless not clear how far they can be pushed. Indeed, there is 
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currently no formal method for measuring the degree to which a particular prediction 

scenario is one of environmental interpolation or extrapolation. 

 

The challenge of environmental extrapolation is particularly serious for forecasting 

(Sinclair et al. 2010, Tuanmu et al. 2011), which happens to be the main objective of 

anticipatory modelling in modern ecology. Considering even more challenging 

problems such as evolution and adaptation makes it clear just how under-equipped 

statistical SDMs are in dealing with extrapolation. Arguably, increasing the 

mechanistic content of SDMs (see Section 3.1) increases predictive ability (at the 

risk of model misspecification). Hence, there is now a clear tendency in the literature 

to consider species distributions in the backdrop of the population dynamics of a 

species (McLoughlin et al. 2010, Ehrlén and Morris 2015a, Matthiopoulos et al. 2015, 

Turlure et al. 2019), and also in the context of whole ecological communities 

(Ovaskainen et al. 2010, Calabrese et al. 2014, Distler et al. 2015). 

 

5.6 Computational efficiency 

 

Non-linear and spatial effects 

 

The use of spatially autoregressive models, particularly in combination with non-

linear predictors in an MCMC context, is computationally very expensive and 

shortcuts are necessary (e.g. the “covariate” model in Pacifici et al. (2017), or the list 

of four methods cited in Section 5.1 of Chakraborty et al. (2011)). For the particular 

approaches discussed in this report the key challenge lies in estimating biologically 

interesting and important parameters (pertaining to density dependence, inter-colony 

effects and inter-specific interactions in distribution – see Section 5.3) at the same 

time as dealing with spatially and temporally structured residuals. The 

methodological literature on models with spatiotemporal structure has been 

revolutionised by approximate Bayesian methods that either deal with fully non-linear 

models (as is the case with Approximate Bayesian Computation - ABC - Beaumont 

2010, Csilléry et al. 2010) or deal with linearised versions of these models (as is the 

case with Integrated Nested Laplace Approximation – INLA - Martino and Chopin 

2007, Rue et al. 2009, Lindgren 2015, Bachl et al. 2019). ABC methods have yet to 

meet with broad application in SDMs, so there is limited understanding of how to 

implement them in that setting. On the other hand, INLA methodology was 

developed initially for spatial point process modelling, so it is ideal for the purposes 

of SDMs. The question therefore is how best to linearise the models for combined 

seabird surveys. 
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The models implemented in the joint survey R library accompanying this report 

illustrate the MCMC implementation of both of these features but are very difficult to 

use for extensive spatio-temporal predictions. Nevertheless, the ability to fit these 

models implies that we can get good posterior estimates for the parameters 

participating in the non-linear parts of the models, while correctly accounting for 

spatiotemporal autocorrelation. This suggests three steps forward, in terms of 

computation: First, a pilot model-fitting exercise can be used within a limited spatial 

range to obtain posteriors for parameters in the non-linear components of the model 

(Section 5.3). This would follow the protocol of model SPATIAL in the attached 

JointSurvey R package and described in the accompanying vignette. Second, having 

obtained the posteriors for their parameters, these non-linear functions can then be 

considered as constructed covariates in a linear model (see further details in 

package vignette). Third, this linearised model can be fitted in INLA to enable wider 

inference for non-stationary processes (e.g. under a GFR framework) but, most 

importantly, to allow the treatment of spatial and temporal structures for inference 

and prediction. 

 

An interesting development in this area is the ongoing extension of INLA under the 

INLABRU library (Bachl et al. 2019) to enable users to fit non-linear responses very 

similar to the ones outlined in this report. Pending computational evaluation of this 

facility, it would allow the workflow, in its entirety, to be ported into INLA.  

 

Model selection 

 

Models with high computational demands become particularly cumbersome if they 

need to be fitted repeatedly for the purposes of model selection (e.g. in order to 

derive likelihood ratios or information criteria). A particularly computationally 

expedient approach recently suggested by Renner et al. (2019) combines i) 

likelihood maximisation with ii) localised models of spatial effects (such as area-

interaction models) and iii) shrinkage methods in-lieu of model selection. Likelihood 

maximisation is generally faster than Bayesian methods because its task is to find 

optimal parameter values, rather than to describe full posterior distributions for the 

parameters. Of course, this goes counter to the requirement for uncertainty 

propagation to the final results, but approximate measures of uncertainty can be 

obtained. Localised models of spatial effects capture the spatial dependencies that 

matter most, and therefore avoid calculations pertaining to negligible long-distance 

effects. Finally, shrinkage estimators reduce the value of parameters for non-

influential explanatory variables to zero, hence performing the task of model 

selection without stepwise forward addition or backward elimination of variables.  
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6 Best practice for multi-survey analyses of seabird distributions 

 

Ideally, the data used for robust spatial prediction of species distributions should be 

both high-resolution and spatially expansive. However, logistical trade-offs between 

spatiotemporal extent and resolution mean that such in-depth and geographically 

broad data are rarely available in practice. Instead, researchers need to piece 

together data from different places, times, or survey methods. Such integration 

presents several challenges (see Section 5, above), but it also offers remarkable 

opportunities. For example, data from different places and times, can allow us to 

increase the spatial extent of our maps, and our historical reconstructions, but 

importantly, they allow us to model the focal species under distinct and different 

circumstances, hence increasing the transferability of our model predictions. Also, if 

the survey designs are different (e.g. different resolutions and different field 

methodologies), simultaneous analysis has the potential to allow different surveys to 

effectively ground-truth (i.e. calibrate) each-other. We will approach the objective of 

this project in four stages.  

 

The following recommendations build upon the closing section of Fletcher et al. 

(2019). We have arrived at these based on our literature review (see above), but 

also practical experimentation with realistic simulated data (see accompanying R 

library, manual and vignette).  

 

6.1 Appropriate response and explanatory variables 

 

Keep the highest-grade form of data 

 

Even if occasionally true, the notion that occupancy models are more robust than 

models based on abundance can be misleading, since occupancy represents lower-

grade information. Intentionally thresholding abundance data into presence and 

absence represents considerable information loss, precludes predictions of spatial 

distribution (instead, yielding surfaces for the probability of presence) and is 

therefore best avoided. If individual detections are available, these may be used in 

preference to aggregated counts (Section 5.1). Similar arguments apply to 

downgrading explanatory data (Section 5.2). 

 

Analyse even low-grade data as if originating from abundance 

 

Many data types may be curtailed at the stage of data collection. Citizen scientists 

may record species presence only once and transect surveys may aggregate counts 

of birds in each transect segment. Therefore, we may not have the option to analyse 
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high-grade data, but this should not preclude us from modelling the underlying data-

generating process as an intensity surface, referring to expected abundance. 

Treating this surface as latent, but common to all surveys in the pooled data set, 

enables the integration of multiple surveys and data types into a common statistical 

platform, a pre-requisite for pooled analyses.  

 

Avoid inflated error structures until the end of modelling 

 

Zero-inflated and over-dispersed data are the norm in spatial ecology. Often, this 

leads to hurdle analyses (e.g. modelling spatial occupancy first and conditional 

abundance second) or use of over-dispersed likelihood models (such as the negative 

binomial). However, the decision of whether this is an issue with a particular data set 

should not be taken a-priori. Modelling with covariates will generally explain some of 

that variability and use of spatially and temporally auto-correlated errors will account 

for unexplained hot- and cold-spots in distribution.  

 

Partly missing covariates should not necessarily lead to data censoring 

 

When parts of a spatial covariate layer are missing, the tendency is to curtail the 

data set, either by removing the covariate or by reducing the number of points to a 

subset for which complete covariate data exist. This may prove necessary in the 

end, however, it may be worth attempting to reconstruct the covariate either as a 

separate interpolation step, or as part of an integrated analysis with partially missing 

data (Section 5.2).  

 

6.2 Treatment of survey design attributes and observation errors  

 

Use distance sampling 

 

Distance sampling techniques have a long pedigree in ecological surveys and 

facilitate the pooling of surveys with different protocols by reducing them into a 

common (if, numerically different) set of detectability characteristics (Section 3.2). 

The extensions of distance sampling that deal with transect design and the 

incorporation of covariates facilitate the correction of errors intrinsic in the 

observation process (Section 5.1). 

 

Prioritise cross-calibration between surveys 

 

Different surveys may rank differently in terms of their detectability 

(accuracy/precision) and spatiotemporal span. These qualities must often be traded-
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off at the design stage. However, the joint analysis of multiple surveys, allows the 

combination of high detectability and high span (Section 5.1). Surveys for which the 

detectability errors have been quantified (e.g. by multiple observer platforms), should 

be prized highly in this process because they can be used within a joint analysis to 

cross-calibrate other, less detailed surveys that may have happened close in space 

and time. Such calibration may be shared hierarchically by all the surveys in the 

data, stepping-stone-fashion, depending on proximity to each other.   

 

Consider state-space approaches 

 

State-space approaches acknowledge both the dynamic nature of marine distribution 

data (Section 5.4), but also the importance of modelling complex observation 

processes explicitly (Sections 5.1 & 5.2). In this way, rather than “correcting” the 

observations for biases, prior to the formal analysis, a statistical observation model is 

included in the model likelihood to effect the necessary correction in an integrated 

way (i.e. together with parameter estimation). This has the advantages that both the 

biological and the observation models are tuned with regard to each other, and that 

uncertainty propagation from the observation model to the final predictions happens 

automatically. Although we have not reviewed this option extensively in this report, it 

will be worth considering as available software becomes optimised and the 

computation times of multi-survey models decline. 

 

6.3 Treatment of space time 

 

Use point process models 

 

Point process models allow space-time to be modelled jointly and continuously. They 

can also subsume all other valid approaches to species distribution modelling 

(Section 3.1). Finally, they are compatible with other features of modelling developed 

to enhance predictive power (Section 5.5). Heterogeneous point process approaches 

are fast becoming the gold standard for spatiotemporal analyses, and their 

implementation in speed-optimised frameworks such as INLA has attracted a lot of 

interest from management practitioners. 

 

Use autocorrelated structures 

 

Spatially and temporally autocorrelated structures can perform a multiplicity of tasks. 

They can account for missing covariates (hence explaining residual over-dispersion 

– Section 5.4). They can also be used to impute gaps in covariate values (Section 

5.2). However, most importantly, they can be used to communicate to models of 
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pooled survey data information about the spatiotemporal proximity between 

abundance observations. In this way, even if exact replication is not part of the 

survey design, an indirect form of replication can be achieved. There are caveats 

associated with the implementation and interpretation of auto-correlated structures, 

and their use is far from automatic (Section 5.4). However, the rewards, particularly 

for multi-survey data sets are very high. 

 

Take dynamics into account 

 

The pseudo-equilibrium assumption for SDMs is difficult to justify in applications that 

require more than spatial interpolation in the time-frame of data collection (Section 

5.5). For example, if we need to account for multi-survey data that include before-

and-after control impact, it is important to account for temporal non-stationarity. In 

some cases, non-linearity in the habitat responses of a species can be captured by 

simple extensions such as statistical interaction terms in the linear predictors of 

models. In other cases, a more explicitly biological model may be required. Temporal 

autocorrelation structures (see above) are also helpful in this respect. 

 

6.4 Accessibility and density dependence 

 

Use realistic distance measures 

 

For colonial species, accessibility and density dependence in spatial usage are most 

often represented as non-linear transformations of distance of points at sea from 

colony locations. Therefore, using appropriate distance measures is essential, if 

birds don’t transit between locations in straight lines. Depending on the species, if we 

are concerned that they avoid flying over land, or if due to glide-flight they rely on 

prevalent wind direction, it is important that we account for these effects in the 

measure of distance. This is particularly relevant for behaviours such as avoidance 

of anthropogenic structures, where birds need to circumnavigate. The distribution of 

usage may alter in the vicinity of structure but an SDM will be unable to capture the 

changes without an appropriate measure of distance.  

 

In the present, Use abstracted models for density dependence 

 

We consider that, currently, the computational demands of a fully spatially explicit 

model of intra-colony, inter-colony and interspecific competition are prohibitive for the 

purposes of applied SDMs. We have therefore provided an illustration (in the project 

vignette), of how a pragmatic model for these processes can be developed and 

incorporated into the linear predictor of an SDM. We recognise that such models are 
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crude approximations of the truth, but even such relatively simple formulations are 

currently missing from most seabird SDM approaches.  

 

In the future, consider spatially explicit models for density dependence 

 

As computational approaches (particularly in the area of Approximate Bayesian 

Computation and Integrated Nested Laplace Approximation) become more 

widespread in the field of SDMs, it may become possible to model competition in a 

fully spatially explicit way. For example, INLA is already capable of modelling 

multiple, coupled response variables. This would allow the spatial interactions of 

different colonies to be captured as part of simultaneous regression where the 

distribution of animals from any given colony is allowed to affect and be affected by 

the distributions of members of other colonies and species.  

 

6.5 Inferential Platforms 

 

Use hierarchical models 

 

Three important features of multi-survey models described above rely on hierarchical 

models. Specifically, cross-calibration of observation models, covariate imputation 

and latency and use of spatio-temporal proximity to allow the predictions to borrow 

strength from multiple surveys.  

 

Use Bayesian approaches 

 

Computer-intensive Bayesian model-fitting deserves attention because it is 

implemented in flexible software frameworks (such as JAGS or Stan), that allow 

state-space and hierarchical structures. More importantly, Bayesian inference 

permits the elicitation of expert opinion in the form of parameter priors. The expert 

knowledge on the attributes of field survey practices will prove invaluable at this 

stage for specifying parameter priors for the observation models.  

 

Use Data integration 

 

Although approaches for using multiple data sources could take the form of a 

comparison (e.g. so that predictions derived from an expansive data set are 

validated by use of a localised, high resolution set of data), this is a relatively weak 

approach that does not make best use of the combined data. The alternative 

approach of joint inference, whereby both data sets are analysed simultaneously to 
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extract maximum power. These approaches are also particularly useful for extending 

the analyses to non-survey data (Section 7). 

 

Fully propagate uncertainty to the final predictions 

 

We have outlined methods that can usefully reconstruct or account for biases, 

imprecisions and autocorrelations in explanatory and response data, as well as 

coarse, misaligned, partly or wholly missing covariates. Such methods can go a 

considerable way towards 1) correcting predictions, 2) realistically representing 

inherent uncertainties and 3) increasing the spatial extent of model fitting regions, by 

allowing more of the data to be retained in (i.e. not censored out of) the analysis. 

However, there is always a limit to how much missing information can be statistically 

imputed and therefore some prudence may be needed in determining which 

variables to include in the analysis. This is best illustrated in the case of SDM 

forecasts that are based on dynamic environmental variables. It may be biologically 

known that a particular environmental variable is shaping the distribution of a 

species, but if that variable is not available for future predictions, then it will either 

need to be excluded from the original analysis, or its effect integrated out of the final 

predictions.  

 

6.6 Computational platforms 

 

Support open source 

 

As a matter of process, all code developed by government funding should be made 

available to the scientific community. We have used R (R Core Team 2019) to 

develop the demo libraries for this project. It is a good idea to keep all functions 

within a single environment and push for the standardisation and quality control of 

these libraries. 

 

Ensure strong interface with Geographic Information systems 

 

Much of the effort in preparing for modelling goes into interfacing the analysis 

framework with the raw data. This would greatly be assisted by establishing stable 

protocols for data formatting, and by using the GIS functionality in R to keep all data 

processing on a single platform. 
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Parameterise non-linear model components with exact methods 

 

We have used a flexible MCMC approach to implement autocorrelation structures 

and non-linear features of biology within statistical models for inference. The 

prototype models presented in the jointSurvey library are computationally greedy, but 

they have the best chance of retrieving the difficult parameters pertaining to density 

dependence and competition. The JAGS environment used here interfaces 

seamlessly with R, and therefore keeps model usage (if not model development) to 

the same platform. 

 

Implement large scale predictions using fast approximate methods 

 

To generate large scale predictions with the spatio-temporal autocorrelation features 

stipulated above, it will be imperative to move towards efficient methods, such as 

INLA. These can be deployed from within R and are therefore the next logical step 

for real-world applications. In addition, exchange of information between the JAGS 

models already enclosed in the jointSurvey library and the more efficient INLA 

models used for large-scale predictions would be both necessary and efficient under 

the proposed scheme. 

 

7 Future extensions 

 

7.1 The promise of integrated hierarchical models  

 

The use of hierarchical approaches in SDMs (Keil et al. 2013, Hefley and Hooten 

2016, Pacifici et al. 2017, Fletcher et al. 2019) follows the principles set out in 

previous sections of this report. In particular, it assumes a true but unknown 

underlying distribution (usually, the continuous intensity surface of the 

heterogeneous Poisson process), which is observed by one or more methods that 

may be incomplete or imbalanced in their spatiotemporal coverage, biased in 

consistent ways and imprecise in other ways. This separation between the biology 

(which forms the objective of statistical inference) and the observation processes 

that generate data from it, allows us to do two useful things: first, to allocate 

proportionate modelling effort to the formulation of the methodological imbalances, 

biases and imprecisions. This leads to error models that separate natural 

stochasticity (a biological source of uncertainty) from methodological artefacts. 

Second, it allows the use of multiple observation models for a single underlying truth. 

We have seen in this report that such complementary use of different surveys and, 

possibly different methods, can lead to benefits such as the cross-calibration of 
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methodologies, the combination of high spatiotemporal extent and resolution, and 

the ability to reinforce predictions that are explicitly spatial and temporal.  

 

From the perspective of seabird SDMs, hierarchical models can perform three types 

of integration. They can bring together data from multiple line transect surveys (as 

explored in this report and the accompanying vignette), they can combine survey 

data with distribution data of fundamentally different types , such as occupancy data 

from citizen science records (e.g. Keil et al. 2013, Hefley and Hooten 2016, Pacifici 

et al. 2017, Fletcher et al. 2019), but they can also combine distribution data with 

supporting information that underpins the analysis with more mechanistic principles. 

Such precedents of multi-data integration are considerably more developed in the 

area of population dynamics (Buckland et al. 2004, 2007, Newman et al. 2014, 

Zipkin and Saunders 2018). In this section, we briefly explore possibilities for data 

integration beyond the multi-survey context. 

 

7.2 Multi-species surveys 

 

Surveys at sea offer the opportunity to track multiple species. This is an alternative 

interpretation of the multi-survey idea, in the sense that the same platform provides 

multiple datasets. Interest in hotspots of biodiversity has led to the idea of stacking 

single-species SDM models (Calabrese et al. 2014, D’Amen et al. 2015, Distler et al. 

2015). Although stacking is not an integrated analysis in the sense outlined in this 

report, it has been useful in demonstrating the magnitude and duration of seabird 

aggregations or partitioning in the open sea from both survey (Nur et al. 2011) and 

tracking (Jones et al. 2015, Grecian et al. 2016) data. However, an interesting 

research direction lies in allowing data sets from multiple species to gain strength 

from each-other. We outlined earlier how spatiotemporal proximity can be used to 

borrow strength by jointly analysing a collection of surveys that have been carried 

out within a defined geographic region and time window. The same idea could be 

extended to develop hierarchical models using taxonomic or functional proximity 

(Kindsvater et al. 2018) . Multispecies SDMs could be developed to quantify the 

(apparent) associations between species (Guisan and Zimmermann 2000, 

Ovaskainen et al. 2016, Thorson et al. 2016), and then these could be used to 

reconstruct and predict the distribution for any-and-all of the species participating in 

the model. This approach can also have potential as a cross-calibration method in 

correcting for errors due to detectability, or unknown observation effort (Chambert et 

al. 2018, Peel et al. 2019). 
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7.3 Combination with vantage point data 

 

Several data types could come under this category. The most important is derived 

from on-shore observation stations (e.g. by use of total station comprising theodolite 

and distancer). These could be important sources of information for near-shore 

distribution. Their combination with line transect survey data is relatively 

straightforward since both data types belong to the broader class of transect 

methods (Buckland et al. 2001). Terrestrial habitat preferences for seabirds are a 

considerably less studied aspect of their biology, but one that is particularly pertinent 

for determining the placement of potential new colonies and for examining nest 

placement within colonies. For example, (Clark et al. 2019) used integrated 

modelling of transect and burrow occupancy data to map out the distribution of a 

cryptic seabird on the colony. Of particular relevance for studying human-seabird 

interactions is the terrestrial distribution of scavenging species such as gulls, as it 

shifts away from marine foraging.  

 

Other data could come from methods of detection/non detection such as acoustic 

stations or camera trapping (Ngoprasert et al. 2019). Their integration with survey 

data is equivalent to the combination between occupancy and abundance (Keil et al. 

2013, Hefley and Hooten 2016, Pacifici et al. 2017, Fletcher et al. 2019). 

 

7.4 Combination with citizen science data 

 

Methods for coordination of citizen science programmes are flourishing in ecology 

(Bonney et al. 2009, Amano et al. 2014, Chase and Levine 2016, Giraud et al. 2016, 

Kosmala et al. 2016, Wald et al. 2016, La Sorte et al. 2018) and so is the 

development of statistical methodologies for dealing with the fundamental restrictions 

in the quality of such opportunistic data (Hochachka et al. 2012, Bird et al. 2014). 

The main issue with citizen scientist data isn’t so much the higher level of bias or 

imprecision in species identification that might arise in some cases, but rather, the 

heterogeneity in those across individual observers, through space and time. 

Although it is possible in principle to account for such heterogeneities in analysis 

frameworks, the task is made difficult by the frequent absence of information on 

effort, precision and accuracy. Such gaps in knowledge then need to be 

supplemented by proxies (such as plausible assumptions about the behaviour and 

distribution of citizen observers or more detailed models of these). It is also possible 

that integrated analysis of multispecies surveys (see Section 7.2) may help by 

allowing the collective detections of all species to act as an approximation of the 

effort distribution. The combination of citizen science data with survey data may 

happen either by using the opportunistic data to fine-tune the design of surveys 
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(Reich et al. 2018) or by analysing them together in an integrated platform using 

different observation models (Nelli et al. 2019). 

 

7.5 Combination with telemetry data 

 

The idea of combining survey with tracking data is as old as the early days of 

satellite telemetry. This combination however has proved particularly challenging. 

There is a fundamental difference between those two data types: Surveys focus on 

particular regions of space and can (in principle) observe any individual animal in the 

population. Telemetry studies focus on particular individuals and can (in principle) 

observe any region in space. Therefore, we have a situation of incompatibility, which 

(like many of the data-pooling problems discussed in this report) could be turned into 

a situation of complementarity, although as yet that has not been achieved. Studies 

that have attempted this marriage in the seabird literature have often tended to inflict 

heavy censoring on the data. For example, (Louzao et al. 2009) found it necessary 

to convert survey data into occupancy and to select a single foraging trip from each 

tagged bird, achieving a form of indiscriminate pooling (see Section 4.1). There are 

papers (e.g. Carroll et al. 2019) that have taken an ad-hoc comparative approach 

(see Section 4.2) and papers (e.g. Yamamoto et al. 2015, Zipkin and Saunders 

2018) that have followed more powerful approaches of post-hoc combination (see 

Section 4.3). However, none of the current approaches have achieved fully 

integrated inference. A major obstacle to joint inference is the incongruence between 

frameworks used for these two data types. Telemetry data are most conveniently 

analysed via step selection functions (SSFs), while resource selection functions 

(RSFs) are most appropriate for survey data. A fundamental problem with these 

approaches is that they do not, by default, lead to the same results. Specifically, 

scaling up by simulation the microscopic model obtained via SSFs does not yield the 

same expected distribution generated by an RSF (Signer et al. 2017). A promising 

development in this area is the convergence between the frameworks of resource 

selection and step selection analyses (Michelot et al. 2019b, 2019c). This work has 

established the conditions under which SSF and RSF frameworks agree, and has 

derived methods for joint inference (Michelot et al. 2019a).  

 

7.6 Combination with mark-recapture data 

 

Mark-recapture data have rarely been used to map seabird distributions and fit 

habitat models (Camphuysen et al. 2004), however, they are a potentially valuable 

repository of spatial data that are also individually referenced. In a sense therefore, 

mark-recapture data carry intermediate information between point transects and 
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telemetry tracking and could, in the longer-term benefit from current developments in 

the integration between these two (see Section 7.5).  

 

7.7 Combination with non-spatial data 

 

Integration into SDMs of non-spatial data can nevertheless be valuable for spatial 

prediction. We have argued at several points above that SDMs can benefit by being 

embedded in the dynamics of the population and community that they refer to. There 

is now a consistent move to think more mechanistically about the constraints of 

species distributions by connecting them to those other aspects of ecology (Morales 

et al. 2010, Ehrlén and Morris 2015b, Matthiopoulos et al. 2015, Mcloughlin et al. 

2018, Zipkin and Saunders 2018, Yen et al. 2019). 
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