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Abstract

Sonar performance prediction relies heavily on acoustic propagation models and envi-
ronmental representations of the oceanic area in which the sonar is to operate. The
performance estimate is derived from a predicted acoustic field, which is the output of a
propagation model. Though well developed nowadays, acoustic propagation modeling
is limited in practice by simplifications in the numerical methods, in the environmental
structure to consider (for computational reasons), and even in the knowledge of some
environmental properties. This is complicated by the fact that, in sonar performance
prediction, the environmental properties need to be predicted for a far future, in the
order of hours or days. These limitations imply that the acoustic field at the output of
the acoustic predictor is biased, in current methods. In mathematical terms, the pre-
diction of the acoustic field can be seen as a model parametrization problem, in which
the model is a numerical propagation model, and the parameters are environmental
descriptors which, when fed to the propagation model, best model the future acoustic
field. Since the 1980’s, significant research has been done in the development of pro-
pagation model parametrization, using techniques of the so-called “acoustic inversion”
family. These techniques, having as objective the estimation of environmental prop-
erties of an oceanic area, use observed acoustic fields at the area, to be matched with
candidate fields corresponding to candidate environmental pictures. At the end, the
best acoustic match gives the estimated environment, in other words, the best model
parameters to closely reproduce the measured acoustic field. In the current work, the
technique of acoustic inversion is used in the design of an acoustic predictor, together
with oceanographic forecasts and measures. Synthetic acoustic data generated with
oceanographic measures taken in the MREA’03 sea trial, is used to illustrate the pro-
posed method. The results show that a collection of environments estimated by past
acoustic inversions, can ameliorate the acoustic estimates for future time, as compared
to a conventional method.

Keywords: acoustic inversion, acoustic prediction, Bayesian estimation, oceanogra-
phic forecast, rapid environmental assessment

1 Introduction

The problem of estimating the acoustic field in a given oceanic area at a future time
has triggered research in both areas of oceanography and underwater acoustics[1, 2].
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Taking into account the strong dependence of acoustic propagation on the space-time-
dependent sound speed field, the oceanographic community developed sophisticated
oceanographic prediction tools[3, 4, 5]. These tools combine physics, statistics and data
models, giving estimates of the temperature, salinity and currents fields evolution,
among others[5]. The acoustics community developed acoustic propagation models
based on e.g. normal mode theory, ray theory, fast field program, or the parabolic
equation, which give accurate predictions of the acoustic field[2]. These models take
environmental quantities as input, giving an acoustic field estimate as output.

The fact that the dependence of acoustic signals on environmental conditions is
highly nonlinear prevents for the definition of models of the acoustic field evolution
and consecutive tracking by time-marching algorithms. Thus, it is a common practice
to run a calibrated ocean dynamic model to produce sound speed forecasts for the area
of interest, and use those along with geometric/geoacoustic archival data as input to
an acoustic propagation model[6]. A robust prediction system, including feedback, is
outlined in [7], in which both oceanographic, acoustic data and models are merged to
minimize an ‘heterogeneous’ cost function. Traditionally, the error of the acoustic pre-
diction is dependent on the water column forecast error and the geometric/geoacoustic
parameters accuracy, the latter potentially weak, due to sparsity of bottom data or,
for example, to the merely indicative character of the information found on nautical
charts or historical databases. It is generally claimed that a decrease in the predicted
acoustic signal error is attained only with a decrease in the environmental information
error.

Important in acoustic prediction is that the subspace spanned by the acoustic
signal is dependent on acoustic modeling constraints. These are essentially threefold:
first, computational issues limit the detail of the environmental description; second, the
end-user environmental knowledge is often incomplete for the acoustic grid of interest;
third, physical inaccuracies may take place due to the numeric approximations applied
in solving the acoustic wave equation. From the environmental viewpoint, this implies
that, for a given acoustic data set, the simulated acoustic field closest to the acoustic
data has to be parameterized by an environment slightly shifted from the real environ-
ment, here designated as an ‘equivalent environment’. The structure of the ‘equivalent
environment’ can be determined by means of acoustic inversion, which, by definition,
finds optimal environmental parametrizations for modeling acoustic fields[8]. Another
important issue is that the ocean dynamical model can present biases in its estimates.
At this point, if we have at hand sensed ocean data, and watercolumn forecasts, we can
envisage three subspaces representing aspects of the same ocean: one for ocean water-
column/geoacoustic/geometric measures; one for watercolumn forecasts; and one for
equivalent environments. The estimation of the future acoustic field can be posed as
the estimation of the future equivalent environment. If it is possible to convert quan-
tities from the first two mentioned subspaces into ‘equivalent’ quantities, an optimal
estimate of the future acoustic field can be obtained.

This paper presents an acoustic predictor formulated as a Bayesian estimator,
which takes into account the environmental model ‘equivalence’ in predicting the
acoustic signal, and eventual oceanographic errors/biases. The acoustic signal under
prediction is modeled as the realization of a random variable, function of a random
environment. The initial information consists of water column measures, oceanog-
raphic forecasts, acoustic data and geometric/geoacoustic properties. The posterior
PDF of the acoustic signal conditioned on this information is estimated, allowing the
direct definition of MMSE, MAP and median estimates, derived from acoustic error
cost functions, as implied by the standard Bayesian framework. With realistic acoustic
modeling, taking into account that the environmental model will always suffer from
slight mismatches in the best case, which requires shifting the true environment for
solving the acoustic modeling (forward) problem, the present approach claims that
those shifts can be ‘learned’ by solving an inverse problem.
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The method is supported by simulations run from measurements and forecasts
obtained from the Maritime Rapid Environmental Assessment 2003 (MREA’03) sea
trial[9]. Regarding the paper structure, sec. 2 describes the background, sec. 3
presents simulation results, and sec. 4 concludes.

2 Bayesian acoustic prediction

Let us consider the problem of predicting the acoustic field aF (f) at an hydrophone
array, at frequency f , and time tF > tP , where tP is the present time, associated
to an ocean transect as represented in fig. 1. The environment in fig. 1 is a shallow
water scenario with characteristics similar to real conditions observed in the MREA’03
sea trial[9], here modeled as a 3 layer-acoustic waveguide. The acoustic observation
system is fixed, and composed of an acoustic source and a 6 hydrophone-array.

Fig. 1: Acoustic propagation transect used in the simulation.

Figure 2 shows the underlying timeline of the acoustic prediction process, described
as follows. At a narrow time window centered on tI , an oceanographic model is ini-
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Fig. 2: Acoustic prediction time line. After the initialization of the oceanogra-
phic model at tI , acoustic and oceanographic samples of the oceanog-
raphic area of interest are taken on a regular basis, and the oceanogra-
phic model is run for the area, giving forecasts for instants t0, t1, . . . , tP
(present time) and tF (future time).

tialized and calibrated for the area of interest with extensive meteo-oceanographic
measurements. The model produces forecasts of the water column conditions at
times t0, t1,. . . , tP , tF . Of interest here are compact representations of these forecasts,
namely empirical orthogonal function (EOF) coefficients. To simplify the notation,
the forecasts for t0, t1,. . . , tP are stacked in vector ω, and that for tF is in vector oF .
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Environmental parameter Notation
Water column SSP 1st EOF coefficient mw1

Water column SSP 2nd EOF coefficient mw2

Water column SSP 3rd EOF coefficient mw3

Sediment compressional speed at water-sediment interface mu

Sediment compressional speed at sediment-subbottom interface ml

Sediment thickness mt

Subbottom compressional speed mp

Tab. 1: Equivalent environment structure: parameters which vary during acous-
tic inversion, optimized to model the acoustic data.

At time t0, space-time-dense regular oceanographic and acoustic observations start ta-
king place. During a narrow time window centered on each time tk, k = 0, . . . , P , the
acoustic observation process produces a snapshot ak(f), where each snapshot contains
the complex acoustic signals received on the hydrophones —see fig. 1. The correspon-
ding water column conditions wk are assumed time-invariant during the observation
window. The data sets ak and wk are stacked into vectors α and ψ, respectively. All
the bottom properties are range-independent in the transect and known to the user,
forming the vector g. Every acoustic data set ak is inverted for the environmental
properties, by means of standard acoustic inversion techniques.

In the present work, the acoustic modeling mismatch is created by the EOF repre-
sentation of the sound speed profiles. The representation is very common in acoustic
inversion, to regularize the estimation of sound speed at different depths, and minimize
the computation time. The full list of free parameters that describe the environment
is shown in tab. 1. They act as degrees of freedom in modeling the acoustic field, and
condition the accuracy of the acoustic prediction.

The first step in deriving the estimate âFl(f) of the acoustic field is the determi-
nation of the posterior PDF of aFl(f), p(aF l(f)|ω,oF ,g,α), conditioned on all the
available data. This PDF can be written as:

p(aF |c,g,oF ) =
1

n(c, g,oF )

Z
p(aF |mF )p(mF |c,g,oF )dmF . (1)

Notice that the required acoustic field in aF can be generated deterministically with
the realization mF , by resorting to the acoustic propagation model at hand, and hence,
p(aF |mF ) = δ(aF −M(mF )), where δ is the Dirac distribution, and M(·) represents
the environment-to-acoustics transformation carried out by the acoustic propagation
model. With the information carried by the posterior PDF of aF , three Bayesian
acoustic predictors are then derived[10]:

ÂMMSE(l, f) =

Z
AF p(AF |, c,g,ω,oF )dAF ; (2)

ÂMAP (l, f) = arg max
(
AF )p(AF |, c,g,ω,oF ); (3)

ÂMED(l, f) = median of p(aF |, c,g,ω,oF ). (4)

True Bayesian estimates of the complex acoustic field should be defined independently
for the real and imaginary parts, as pointed out in [10]. Thus, the estimates in (4)
are scalar estimates of the field’s real or imaginary part, respectively, at each depth-
frequency point.
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3 Simulation

The prediction of the acoustic field aF (l, f) is illustrated in the following, using syn-
thetic noiseless acoustic data generated with collected CTD data and oceanographic
forecasts produced for the MREA’03 sea trial[9] by the Navy Coastal Ocean Model[1].
The considered acoustic model was the normal-mode model SNAP[11]. The acoustic
system depicted in figure 1 takes observations between Julian day (JD) 151 (June 1st)
and 175 (June 25th) of 2003. The emitted signal is a sum of Nfreq = 10 equally spaced
tones from 540 to 900 Hz. The observations are performed in a regular time grid as
shown in figure 2. The aim of the acoustic predictor is to estimate the acoustic field
in the hydrophone array —as in figure 1.

At time t25, the data acquired upto t25 is considered, to predict the acoustic field
for all the future time samples. The restriction to the first 3 EOFs in the sound speed
profile expansion is the only source of model mismatch. The EOFs were drawn from
the CTD SSP data sequentially acquired in a large 142× 87.9 km area around the Elba
Island, in the period May 28th–June 25th[12]. These 3 EOFs account for 87% of the
SSP variance. The oceanographic forecasts were space-time linearly interpolated to the
CTD casts, and then, both real and predicted SSPs were linearly interpolated to the
regular observation time samples. Figure 3 shows the difference between the projection
of the measured and the forecasted profiles onto the first 3 EOFs. In general, the trends
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Fig. 3: Difference between the projection onto the first 3 empirical orthogonal
functions, of the measured and NCOM predicted sound speed profiles.

of the measured and predicted EOF coefficients coincide. However, the prediction
error is highly non-stationary, with average estimation errors of 2.9, 2.4 and 1.3 m/s
for the 1st, 2nd and 3rd coefficients, respectively, characterizing the time-averaged bias
of the ocean dynamic model. This is not surprising, since NCOM restricts in situ
data to remotely sensed sea surface height and temperature, assimilating this data
and atmospheric data to a dynamic model, and considering historical relationships
between water surface and column properties —being a model suitable for real-time
operation.

In the present study, two acoustic predictors are applied. The first is stated as
the standard predictor. It feeds the acoustic model with the oceanographic forecast
of the first 3 EOF coefficients, oF . The second predictor assumes the form of the
Bayesian estimators in (4), feeding the model with the ‘equivalent’ environment. The
essential difference between the two predictors resides in the statistical assimilation of
acoustically inverted data in the estimation process.

The acoustic data was inverted for the parameters in table 1, using the depth-
coherent, frequency-incoherent Bartlett processor

P (mk) = 1−
NfreqX

i=1

w̃H(mk)R̂iw̃(mk), (5)
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Equivalent parameter Search bounds Resolution
mw1 -20, 15 0.097 m/s
mw2 -10, 15 0.097 m/s
mw3 -8.9, 10 0.097 m/s
mu 1460, 2133 0.37 m/s
ml 1500, 2000 0.37 m/s
mt 1, 8.2 0.061 m
mp 1530, 1800 0.37 m/s

Tab. 2: Characteristics of the search space used in acoustic inversion.

where w̃ is an unitary norm acoustic field candidate along the hydrophone array, and
R̂i is an estimate of the correlation matrix of ai. During the acoustic inversion, the
considered search bounds and resolution for the parameters, are shown in table 2. Both
in acoustic inversion and prediction, all the environmental parameters representing
geometrical and other geoacoustic properties are fixed to the assumed known values
in figure 1.

The statistical processing in the Bayesian estimator is briefly described in the fol-
lowing. As stated by (1), it is required to estimate the future ‘environment’ mF ,
whose information is contained in the posterior PDF p(mF |c,g,oF ). In the general
acoustic prediction problem, each vector mF and oF contains the coefficients of all
the EOFs considered relevant for representing the water column variability, which
are unconditionally statistically dependent, though uncorrelated. It is expected that
the coefficients in mF are also conditionally dependent, with the underlying PDF
p(mF |c,g,oF ). Nevertheless, as a preliminary study, their statistical dependence was
neglected here, the same applying to the remaining parameters, allowing the approxi-
mation

p(mF |c,g,oF ) ≈ p(mw1|c,g,oF )p(mw2|c,g,oF )p(mw3|c,g,oF )p(mp|c,g,oF )

×p(mu|c,g,oF )p(ml|c,g,oF )p(mt|c,g,oF ). (6)

In estimating the PDF in equation (6), special attention is required for the variables
in mF . The primary source of information about this variable is the acoustic inversion
process. It is very likely that, in the case in which there is some environmental mis-
match, it will be impossible that there exists a vector of equivalent properties that can
be used to generate an acoustic field coincident with the measured one. It is expected
to exist always some residual ‘acoustic error’, hence rendering impossible the definition
of a true equivalent value for mk. Additionally, some environmental properties may
not influence the acoustic field observed at particular frequencies (e.g. bottom deep
layers properties, at frequencies above 10 kHz). This implies a characterization of the
transformation environment-to-acoustics as a many-to-one relation. Also, for compu-
tational reasons, the equivalent properties values have to be determined by random
search algorithms, which have a probability less than one of finding the environmental
values that correspond to the best acoustic fit, for not exploring all the possible envi-
ronmental combinations, and for working with a discretization that may not consider
the best environment in the search space. At last, the acoustic data in real scenarios
is noisy, which implies a minimum uncertainty in the estimation process. For these
reasons, the environmental outcome from acoustic inversion is described here by only
the posterior PDF p(mp|ap). To arrive at the estimate p̂(mF |c,g,oF ) of the PDF in
(6), it is necessary to estimate each term on the right-hand of eq. (6). These terms
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can be approximated as follows:

p(mw1|c,g,oF ) ≈ p(mw1|o1)

p(mw2|c,g,oF ) ≈ p(mw2|o2)

p(mw3|c,g,oF ) ≈ p(mw3|o3)

p(mp|c,g,oF ) ≈ p(mp|c) (7)

p(mu|c,g,oF ) ≈ p(mu|c)

p(ml|c,g,oF ) ≈ p(ml|c)

p(mt|c,g,oF ) ≈ p(mt|c)

The first three densities on the right-hand side of eqs. (7) were approximated as

p(mw1|o1) ≈ p(mw1|ap)

p(mw2|o2) ≈ p(mw2|ap)

p(mw2|o3) ≈ p(mw3|ap)

For the four last densities in eqs. (7), since the geographical coordinates c do not
change in time, their estimate, computed at time tP , was obtained as a weighted
average of previously obtained densities, conditioned on the acoustic data, written for
mp:

p(mp|c) ≈ r

PX
p=0

(1− Pp(ewPi))pp(mp|ap),

where Pp(ewPi) and pp(mp|ap) are the acoustic cost functions and corresponding pos-
terior densities from acoustic inversion, at time tp, and r is a normalizing term. For
the other parameters, the procedure was similar.

The determination of the densities p(mwk |o1), k = 1, 2, 3, was done in two steps:
(1) density shape estimation and (2) density mean value estimation. For the shape
estimation, the two closest forecasts for the past time are identified, and the correspon-
ding posterior densities from acoustic inversion aligned according to their estimated
expected value. Their average defines the shape estimate. For the mean value estima-
tion, an interpolation/extrapolation of the mean values as a function of ok, k = 1, 2 or
3, was done, for the point oFk, k = 1, 2 or 3.

Once p(mF |c,g,oF ) is estimated, the acoustic signal corresponding to each out-
come of mF is computed by forward modeling. Afterwards, this ensemble of acoustic
signals is binned, and each bin weighted according to p(mF |c,g,oF ), to produce an
histogram which is the estimate of p(AF |, c,g,ω,oF ). At the end, the predicted acous-
tic field emerges as a trivial application of (4) to the obtained p(AF |, c,g,ω,oF ).

3.1 Results

This section presents the results of acoustic prediction obtained with the Bayesian and
the standard acoustic predictors. It starts by illustrating the steps of the Bayesian
predictor. In the first step, acoustic inversion, the obtained results, using the acoustic
inversion software SAGA[13], are shown in fig. 4. As we can see, the equivalent
environment mp differs from the true one, θ. An environmental error measure ε was
defined, in order to characterize the impact of the environmental mismatch in the
determination of the equivalent environment, as follows:

ε = acos(θT mp),

and is plotted in fig. 5. From this figure, we can infer that: 1) low acoustic misfits are in
general associated to low environmental misfits. This happens when the environmental
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Fig. 4: Acoustic inversion results for the seven parameters in tab. 1: true (green)
and estimated (blue) environmental parameters.
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Fig. 5: Environmental (red) and acoustic (blue) misfits, at each inversion step
(a) and acoustic vs. environmental misfit (b).

mismatch present in the inversion process is low, and is an indicator of the unicity of the
acoustic field with respect to the environmental properties associated to the measured
field. 2) The exceptions to the trend, like the one verified for the points 0.06 and 0.08
for the acoustic misfit, and 0.02 and 0.01 for the environmental misfit, indicate that
the relation between the misfits is not a direct relation, which is also a consequence of
the non-direct relation between environmental properties and acoustic field properties.

The second step in the acoustic prediction method, the estimation of the densities
in eq. (7), is illustrated by the results shown in figs. 6, 7 and 8. Finally, and taking
into account eq. (6), for the third step, the acoustic field is computed for each non-
zero of a thresholded version of p̂(mF |c,g,oF ), binned in a histogram, and each bin
weighted according to the corresponding environmental value in p̂(mF |c,g,oF ). This
procedure was done for the real and imaginary parts, individually, of the field at each
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Fig. 6: Future environmental posterior densities mean estimates, for the EOF
coefficients: true (square) and estimated (blue circle) means, by a 7th-
order polynomial fit. The fit considered the oceanographic forecast EOF
coefficients as abscissae (black circles).
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Fig. 7: Future environmental posterior densities estimates, for the EOF coeffi-
cients: true (green) and estimated PDFs, with the shape estimated as an
average shape of neighbor (associated to the 2 oceanographic forecasts
closest to the oceanographic forecast for tF ) densities, and the means
taken as the estimates shown on fig. 6.

hydrophone depth and frequency. In fig. 9, we can see the acoustic estimates obtained
by the Bayesian procedure, along with the true values and the estimates obtained by
the standard approach. The average error of the standard and Bayesian approaches
are 4.6e-4 and 3.9e-4 (median-estimate), respectively, for the real part, and 4.3e-4 and
3.1e-4 (MAP-estimate), respectively, for the imaginary part.

The estimates errors for the standard and Bayesian approaches, corresponding to
the fields predicted for Julian time ≥ 164 are plotted in fig. 10. As we can see in
the figure, the present Bayesian method is a fair alternative to the standard approach,
with a comparable estimation error. In the presented results, the scenario is in fact
highly favorable to the standard approach, in that all the environmental parameters
apart from the water column coincide in the generation of the acoustic signals, and in
the forecast of the acoustic field.
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Fig. 8: Future environmental posterior densities estimates for bottom parame-
ters: true (green) and estimated PDFs, with the shape estimated as a
weighted average of all the past posterior densitites from acoustic inver-
sion.

4 Conclusions

A Bayesian approach for the prediction of the acoustic field has been presented, in
which the acoustic model is calibrated with acoustic observations at past and present
time. This calibration, necessary to compensate for modeling mismatches, was used
to compensate for the modeling error of the water column sound speed, which uses
only 3 empirical orthogonal functions in its representation. In the scenario supporting
the numerical results, an ocean transect with a fixed acoustic system, the acoustic in-
version results show that the environmental model, outcome from acoustic inversion,
is fairly variable, even for the bottom parameters, which are constant in time. The
acoustic inversion step allows to track this variability, and use it in the prediction of
the future acoustic fields. The results are still comparable to the ones obtained by
using a standard predictor, in which the acoustic forecast is the output of an acous-
tic propagation model parameterized by a water column forecast and the remaining
parameters coincident with the ones used to generate the synthetic acoustic ‘data’.
In this point, we can envisage an extreme sensitivy of the standard approach to the
environmental knowledge respecting non-water column properties, by comparison to
the present approach, which estimates the relevant unknown properties, and will be
studied in the future.

Acknowledgements

This work was partially supported by the project WEAM (PTDC/ENR/70452/2006),
the scholarship SFRH/BD/9032/2002, from FCT, Portugal, and the EU OAEx Marie
Curie FP7 230855 Program. Thanks are due to all the people involved in the MREA’03
Sea Trial, with Dr. Emanuel Coelho as scientist in charge.

References

[1] P.J. Martin. Description of the Navy Coastal Ocean Model version 1.0. report
NRL/FR/7322-00-9962, Naval Research Laboratory, 2000.

[2] F.B. Jensen, W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational
Ocean Acoustics. American Institute of Physics, 1993.

[3] A.R. Robinson and the LOOPS Group. Realtime forecasting of the multidisci-
plinary coastal ocean with the Littoral Ocean Observing and Predicting System

10



(a)

Frequency [Hz]

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80

Frequency [Hz]

D
ep

th
 [m

]
 

 

600 700 800 900

20

40

60

80

Frequency [Hz]

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80 D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80
−1

0

1
x 10

−3

−1

0

1
x 10

−3

−1

0

1
x 10

−3

−1

0

1
x 10

−3

−1

0

1
x 10

−3

(b)

Frequency [Hz]

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80

Frequency [Hz]

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80

Frequency [Hz]

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80

D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80 D
ep

th
 [m

]

 

 

600 700 800 900

20

40

60

80
−1

0

1
x 10

−3

−1

0

1
x 10

−3

−1

0

1
x 10

−3

−1

0

1
x 10

−3

−1

0

1
x 10

−3

Fig. 9: Real (a) and imaginary (b) parts of the predicted acoustic pressure at
the hydrophone depths and frequencies used in the acoustic inversion.
The true acoustic pressure is in the top left figures in (a) and (b), the
estimate by the standard approach, in the top right figures in (a) and
(b), and the one by the present Bayesian approach, in the bottom figures
in (a) and (b), for MAP, MMSE and MED estimates, from left to right,
respectively.

(LOOPS). In preprint volume of the Third Conference on Coastal Atmospheric
and Oceanic Prediction and Processes, 3–5 November 1999, New Orleans, LA.
American Meteorological Society, Boston, MA, 1999.

[4] A.R. Robinson. Forecasting and Simulating Coastal Ocean Processes and Vari-
abilities with the Harvard Ocean Prediction System, pages 77–100. AGU Coastal
and Estuarine Studies Series. American Geophysical Union, 1999.

[5] A.R. Robinson and P.F.J. Lermusiaux. Prediction systems with data assimilation
for coupled ocean science and ocean acoustics. In Sixth International Conference
on Theoretical and Computational Acoustics (ICTCA), pages 325–342, Honolulu,
HI, 11 August, 2003.

[6] P.F.J. Lermusiaux, C.-S. Chiu, G.G. Gawarkiewicz, P. Abbot, A.R. Robinson,
R.N. Miller, P.J. Haley, W.G. Leslie, S.J. Majumdar, A. Pang, and F. Lekien.
Quantifying uncertainities in ocean predictions. Oceanography, Special issue on

11



160 165 170 175 180
3

3.5

4

4.5

5

5.5
x 10

−4

Time [JD]

A
ve

ra
ge

 e
rr

or

(a)

 

 

160 165 170 175 180

3

4

5

6
x 10

−4

Time [JD]

A
ve

ra
ge

 e
rr

or

(b)

 

 

Standard
MAP
Mean
Median

Standard
MAP
Mean
Median

Fig. 10: Acoustic field estimate error at times ≥ Julian day 164, obtained by the
standard and Bayesian approaches: real (a) and imaginary (b) parts of
the acoustic pressure.

“Advances in Computational Oceanography”, T. Paluszkiewicz and S. Harper,
Eds., 19(1):92–105, 2006.

[7] P.F.J. Lermusiaux. Uncertainty estimation and prediction for interdisciplinary
ocean dynamics. J. Computational Physics, Special issue on “Uncertainty Quan-
tification”, J. Glimm and G. Karniadakis, Eds., 2006.

[8] Y.H. Goh, P. Gerstoft, and W.S. Hodgkiss. Statistical estimation of transmission
loss from geoacoustic inversion using a towed array. J. Acoust. Soc. America,
122:2571–2579, 2007.

[9] S.M. Jesus, C. Soares, and A.J. Silva. Acoustic Oceanographic Buoy testing
during the Maritime Rapid Environmental Assessment 2003 sea trial. Report
04/03, SiPLAB, University of Algarve, Faro, 2003.

[10] Steven M. Kay. Fundamentals of statistical signal processing: estimation theory.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[11] F.B. Jensen and M.C. Ferla. Snap: The saclantcen normal-mode acoustic propa-
gation model. Technical Report SM-121, SACLANT Undersea Research Centre,
La Spezia, Italy, 1979.

[12] N. Martins, C. Soares, and S. Jesus. Environmental and acoustic assessment: The
aob concept. Journal of Marine Systems, 69:114–125, 2008.

[13] Peter Gerstoft. Saga user manual 5.4:, 2007.

12


	Introduction
	Bayesian acoustic prediction
	Simulation
	Results

	Conclusions

