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Abstract—Underwater noise generated by offshore industrial 

activities poses significant risks to marine life, especially cetaceans. 
This paper presents an innovative real-time monitoring system 
combining embedded passive acoustic monitoring, marine mammal 
detection based on AI, and acoustic modelling to assess and manage 
underwater noise pollution. The modular system, deployed on 
autonomous buoys, is equipped with various recorder-hydrophone 
configurations and supports both real-time analysis and remote 
human validation. Beyond local measurement, the integration of 
propagation models allows extrapolation to unmonitored areas, 
enhancing spatial coverage. Field validations, including live 
offshore operations, demonstrate the system’s reliability, 
responsiveness, and compliance-readiness under European 
regulatory frameworks such as the EIA Directive and the Marine 
Strategy Framework Directive (MSFD). This solution offers a 
scalable and effective tool to support mitigation actions and timely 
decision-making to mitigate the acoustic impact of offshore 
activities. 
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INTRODUCTION  
The rapid expansion of offshore industrial activities has 

raised critical concerns about underwater noise pollution and 
its effects on marine life [1]. Many marine species, especially 
cetaceans, rely on acoustic cues for vital functions including 
navigation, foraging, and social interaction. Chronic or acute 
anthropogenic noise can interfere with these behaviours or 
even cause physical harm. International regulatory 
frameworks like the EIA Directive and the Marine Strategy 
Framework Directive (MSFD) in Europe, ACCOBAMS, and 
various national guidelines have mandated the monitoring, 
reporting, and mitigation of underwater noise emissions as 
part of broader environmental impact control efforts. 

To address this, Passive Acoustic Monitoring (PAM) has 
emerged as the principal method for tracking both ambient 
underwater noise and biologically significant sounds such as 
cetacean vocalizations [2]. Modern PAM systems now 
support real-time monitoring and alerting, leveraging 
advances in communication, embedded computing, and signal 
processing. However, despite these advances, several 
technological and operational challenges remain. 

Among the most pressing is the development and 
integration of embedded AI algorithms capable of detecting 
and classifying a wide range of cetacean vocalizations in real 
time, across diverse acoustic environments. Power supply 
supporting embedded data processing and overall system 
solidity and stability in harsh weather conditions remain open 
problems. Additionally, acoustic modelling techniques that 
can extrapolate from measured data to unmonitored areas are 
needed to provide full spatial coverage and enhance risk 
management, especially in large offshore operations. 

Furthermore, it is worth noting that existing infrastructures 
such as cabled ocean observatories has been successfully 
employed to monitor underwater noise and biological activity 
in deep marine environments. For example, the EMSO 
(European Multidisciplinary Seafloor and water-column 
Observatory) network exemplifies this approach, providing 
long-term datasets from instrumented nodes on the seafloor 
[3]. These observatories enable high-resolution, multi-
parameter data acquisition—including acoustic arrays—for 
scientific research and continuous environmental assessment. 

In parallel, several EU Member States have established or 
are planning fixed PAM stations deployed on the sea bottom 
as part of national strategies to fulfil the MSFD Descriptor 11 
requirements. These coastal and offshore acoustic stations are 
intended to characterize baseline ambient noise and track 
long-term trends in anthropogenic soundscapes across 
European waters. 

However, such fixed infrastructures, whether cabled 
observatories or national MSFD monitoring nodes, are not 
designed for the operational constraints of temporary offshore 
industry activities. Their static deployment, limited 
geographic coverage, and focus on long-term ecological 
trends make them less suitable for dynamic, high-risk 
construction environments. Temporary industrial operations 
require mobile, scalable, and autonomous systems that can be 
rapidly deployed and repositioned based on project phases, 
environmental risk, or operational feedback. 

The system presented in this work addresses these 
constraints through a hybrid solution that combines real-time 
PAM, autonomous energy management, and model-informed 
noise extrapolation. 



SYSTEM ARCHITECTURE AND TECHNICAL APPROACH 
The system is conceived as a modular, autonomous, and 

real-time platform for passive acoustic monitoring (PAM) 
during offshore industrial activities. It is specifically designed 
to meet the temporary, mobile, and compliance-driven nature 
of operations such as marine constructions or geophysical 
surveys, i.e., contexts in which rapid deployment, real-time 
feedback, and operational integration are essential. 

A. Multisensor architecture 

At the core of the system is a network of multi-channel and 
buoy-mounted acoustic modules designed to work 
autonomously: they can record, process, and transmit data 
without relying on external support. The approach has been 
tested with different types of underwater recording equipment, 
which makes it adaptable to a wide range of projects. For 
instance, RTsys RESEA units combined with HTI-99 or 
COLMAR1195 hydrophones have been used successfully; 
these sensors typically cover frequencies from about 5 Hz up 
to 180 kHz and higher. Such bandwidth is well suited both to 
tracking cetacean vocalizations and to monitoring the acoustic 
footprint of human activities. Depending on the purpose, 
hydrophones are configured identically or differently: 
sensitivities around –170 dB re 1 V/µPa are typically chosen 
for marine mammal detection, while lower values, down to –
210 dB re 1 V/µPa, are applied when measuring louder 
sources so as to prevent saturation and capture reliable levels. 
Each acoustic unit may host between one and four 
hydrophones indeed, giving flexibility in the way the array is 
set up. The data streams are handled in real time, while the 
raw wav files are systematically archived on local disks to 
ensure long-term backup. In parallel, the system also supports 
Ocean Sonics IC-Listen smart hydrophones, which integrate 
the sensor, the acquisition electronics, and onboard processing 
in a single device, reducing the amount of hardware needed 
during field operations. 

B. Underwater sound measurement 
Each buoy houses an industrial-grade embedded computer 

(ModBerry), which runs Python-based acoustic analysis 
software. This software performs local signal processing at 
ten-second intervals, including broadband noise level 
measurements (SPL, SEL). as well as third-octave band 
analyses, or the calculation of power spectral density (PSD). 
It is also possible to apply bandpass, lowpass or highpass 
filters, as needed, or to avoid certain ones depending on the 
use case. 

C. AI-Based Cetacean Detection and Classification 
A distinguishing feature of the system is its use of 

embedded artificial intelligence algorithms initially developed 
thanks to collaboration efforts between Sinay and the 
University of Caen [4] that perform detection and 
classification of cetacean vocalizations onboard the buoy. 
Presently, the AI data processing is based on a ResNet neural 
network architecture applied to spectrogram analysis. This 
kind of models simultaneously capture the spatial and 
temporal patterns of signals to detect delphinid clicks, whistles 
and whale songs. Each detection is automatically recorded 
with its type, timestamp, and performance metrics. Overall, 
Detection Probability has reached 96% with a False Positive 
rate at approximately 0.005%. The models were verified on a 
dataset of 7,762 signals, including 762 signals per detection 

type verified by experts. The 4% of signals that the model fails 
to detect (false negatives) correspond to very weak signals or 
signals masked by ambient noise in the area. 

D. Detection verification and validation protocol 
Despite the deployment of onboard AI, the system 

architecture maintains a human-in-the-loop verification 
protocol, which ensures regulatory robustness and operational 
confidence. For every vocalization event flagged by the AI, an 
audio sample (.wav) of 2 seconds containing the detection is 
automatically forwarded either to a remote control centre 
through the mobile network or to other platforms (e.g. a 
support vessel nearby the PAM buoys, typically through Wi-
Fi connection), where trained operators inspect the data using 
PAMGuard, a reference software tool widely accepted in the 
marine bioacoustics community. This approach enables fast 
alerting while preserving the interpretability and traceability 
required for environmental compliance and decision-making, 
such as activating mitigation procedures or delaying noisy 
operations. 

E. Combining measures and propagation models to 
extrapolate to unmonitored areas 
In scenarios where noise source locations are known, it 

becomes possible to leverage acoustic propagation models to 
estimate noise levels beyond the locations directly monitored 
by the system. This is particularly important because 
underwater noise does not decay uniformly with distance: due 
to complex propagation effects, such as refraction, reflections, 
and bathymetric influences, noise levels may rise and fall as 
one moves radially from the source. As a result, resurgences 
of high acoustic energy may occur at distances beyond the 
monitored perimeter, potentially exposing marine mammals 
to harmful sound levels without detection. 

To address this risk, the system supports a hybrid approach 
in which in-situ acoustic measurements are used to back-
calculate the source level of the emission after estimating the 
attenuations along the path connecting the noise sources to the 
hydrophone. These source levels then serve as inputs for 
acoustic modeling, allowing for the spatial extrapolation of 
noise fields across the broader area of influence (Fig. 1).  

 
Fig. 1; Monitoring of noise resurgences behind the monitored area: in this 
example, red areas indicate where noise exceeds a generic impact threshold 
and the black dashed circle indicates the monitoring zone established at a 
given distance encompassing most areas of threshold exceedance. The 
predictive modeling allow monitoring potential exceedance of noise 
threshold behind the monitoring zone. 

 



The modeling technology is currently based on solving the 
parabolic equation [5] using the RAM model, recognized as a 
benchmark for studying low-frequency noise in complex 
marine environments [6]. The model integrates environmental 
parameters such as bathymetry, sediment geoacoustic 
properties, wind speed, and sound velocity profiles to 
accurately simulate acoustic wave propagation. Simulations 
are performed in one-third octave bands, and the total signal 
sound level is obtained by summing the total sound pressures 
of all bands. 

If the model reveals that noise thresholds are exceeded in 
locations where no sensors are deployed, even though the 
monitored points remain below threshold, the system can be 
configured to trigger alerts preemptively, based on modeled 
exceedance conditions. 

Since modeling acoustic propagation in a marine 
environment requires advanced expertise in physical 
modeling and appropriate computational resources, this 
modeling step is presently conducted manually outside the 
system, requiring expert intervention to adjust thresholds and 
interpret results. Automating this loop (integrating real-time 
measurements with adaptive modeling), remains a key 
challenge for future development and a critical step toward 
more intelligent, predictive monitoring systems. 

F. Data transmission and use for decision making 
Communication between the acoustic buoys and the back-

end server is handled via a redundant wireless strategy, 
combining Wi-Fi point-to-point transmission and 4G/LTE 
fallback. This ensures continuous data transfer even under 
variable environmental and connectivity conditions. Once 
received, data are ingested by a SpringBoot-based API and 
stored in a MongoDB NoSQL database. A dedicated Angular 
dashboard allows stakeholders—including operators, 
environmental officers, and decision-makers—to access real-
time visualizations of underwater noise levels, marine 
mammal detections, and regulatory thresholds through a web 
interface. 

The system’s architecture is designed for ease of 
configuration, allowing changes to detection thresholds, 
recording intervals, or AI parameters via remotely managed 
JSON files. This configurability, together with its hardware-
agnostic sensor layer and modular data pipeline, ensures the 
system can adapt across multiple operational contexts while 
maintaining the scientific rigor and technical reliability 
demanded by marine environmental regulations. 

RESULTS, OPERATIONAL VALIDATION 
The system underwent a comprehensive series of 

validation exercises to assess its performance under real-
world operational and environmental conditions. These tests 
aimed to verify not only the technical functionality of the 
components: data acquisition, real-time processing, and 
transmission; but also the overall reliability of marine 
mammal detection workflows and their integration with 
offshore decision-making protocols. 

One key stage of validation involved controlled field 
experiments simulating cetacean vocalizations. Acoustic 
signal play-back, specifically dolphin whistles and click 
trains, was carried out using underwater speakers (Lubell-916 
cc)  at various distances from the deployed buoys. The system 
consistently detected the simulated signals at distances 
ranging from 300 to 1,000 meters (Fig. 2), with minimal 

latency between the acoustic event and its registration on the 
web dashboard. These trials confirmed the sensitivity of the 
detection algorithms, as well as the effectiveness of the 
wireless communication pathways. 

 
Fig. 2. Dolphin whistle (blue smoothed curves in the spectrogram) detected 
at 300 (top), 500 (center) and 1 000 m (bottom) from the position of the 
underwater speaker. (Source: Sinay) 

In parallel, several full-scale deployments were carried out 
during offshore construction activities in France. These 
operational tests involved up to six acoustic buoys (Fig. 3) 
arranged radially around an active noise source, 
simultaneously.

Fig. 3. Simultaneous deployment of 6 PAM buoys around an active noise 

 
 

 
 

 

 



source, each at 850-m distance from the source to meet specific project 
requirements (Source: Sinay). 

The system ran continuously over several days and 
demonstrated its ability to: 

• Log ambient noise and calculate SEL in real time; 

• Automatically trigger alerts when noise levels 
exceeded regulatory thresholds which depend on national 
specifications as well as recommendations contained in the 
associated EIAs ; 

• Detect and classify cetacean vocalizations using 
onboard Sinay’s AI, with further human verification through 
PAMGuard; 

• Support Go/No-Go decisions and mitigation 
protocols by the environmental officer, such as delaying or 
interrupting pile driving when marine mammals were detected 
within exclusion zones. 

The end-to-end system, including the AI classifiers, 
operator workflow, and automated reporting, proved stable 
and effective throughout the deployment. The data generated 
were used not only for compliance reporting but also for post-
operational acoustic mapping and feedback to contractors and 
regulators. The system’s performance under both controlled 
and industrial conditions validated its relevance for offshore 
monitoring missions, where mobility, responsiveness, and 
reliability are essential. 

Furthermore, the embedded power management and 
ergonomic design of the buoys allowed for long-term fully 
autonomous operation, with minimal human intervention. 
This level of autonomy is crucial for offshore projects with 
limited access windows or constrained logistic support. 

These validation efforts confirm the technological 
readiness of the system and its ability to bridge the gap 
between static scientific observatories and operational 
offshore monitoring needs. 

APPLICATIONS, PERSPECTIVES 
The development of such PAM systems combining 

measures and predictive models for underwater noise 
propagation and the identification of possible ranges of impact 
on sensitive fauna, have direct applications in offshore and 
nearshore projects, including those focussed on 
decarbonisation and energy transition, a strategic objective in 
the international geopolitical context, as well as port 
developments and further maritime infrastructure 
constructions. 

As an example, offshore wind farm development is a fast 
developing sector worldwide and entail various anthropogenic 
activities that act as sources of underwater noise, particularly 
during the installation phase (e.g., impact pile driving, vessel 
operations, seabed preparation) and, to a lesser extent, during 
the exploitation phase of the turbines. As widely 
acknowledged, these acoustic emissions may lead to 
behavioural disturbance, temporary or permanent auditory 
threshold shifts (TTS/PTS), or spatial displacement of marine 
mammals, depending on species sensitivity, received sound 
levels, and duration of exposure [7],[8]. 

Given the ecological and regulatory importance of marine 
mammals in offshore environments, assessing and verifying 
the occurrence of the impacts of underwater noise is a key 
requirement in project permitting and environmental 

compliance processes. The proposed technique presents a 
significant advancement by introducing a novel, field-
validated system that seamlessly combines real-time acoustic 
monitoring, embedded AI, propagation modelling and a 
flexible decision-support interface. Unlike traditional 
systems, this approach leverages mobile, modular buoys with 
human-in-the-loop validation of cetacean detections and 
propagation modeling to extend situational awareness beyond 
the immediate monitoring zone. Especially, integrating 
propagation models appears as a crucial point. Their 
application in a mitigation protocol requires to compare the 
spatial outputs of these models against species-specific 
auditory thresholds and regulatory criteria such as those 
defined by organizations NOAA [9], ACCOBAMS [10] and 
ICES [11], amongst others. Since this comparison allows for 
the identification of the areas of potential behavioural 
disturbance and/or injury, the accuracy of propagation 
modelling is paramount for effective mitigation. The system 
described in this paper supports the Parabolic Equation (PE), 
however further models could be included in the future such 
as Normal Mode (NM) and Ray Tracing methods depending 
on the bathymetric complexity and acoustic frequency range 
involved [6]. 

Through successful field deployments and simulated 
trials, the framework demonstrates its ability to adapt to 
dynamic offshore environments, offering a scalable solution 
for mitigation and regulatory compliance. By bridging the gap 
between passive observation and proactive management, this 
contribution lays the foundation for a new generation of 
intelligent and responsive PAM technologies. 

FUTURE DEVELOPMENTS 
The increasing deployment of offshore infrastructure, 

including wind farms, energy exploration platforms, as well 
as shipping, has intensified the need for robust systems 
capable of real-time underwater noise monitoring and marine 
mammal detection. These systems are critical for assessing 
anthropogenic impacts, ensuring regulatory compliance and 
sustainability, and supporting dynamic conservation 
strategies. Future advancements must address integration with 
multi-modal sensors, scalability across diverse marine 
environments, and enhanced automation through data 
analytics and artificial intelligence. 

A. Integration with Environmental and Oceanographic 
Sensors 

One of the most promising directions for future 
development lies in the integration of acoustic monitoring 
platforms with a broader suite of environmental and 
oceanographic sensors. 

This multi-modal approach enhances the interpretability 
of acoustic data by providing contextual information about the 
physical and biological environment. For instance, 
temperature and salinity profiles influence sound speed and 
propagation, while current velocity and turbidity affect the 
transmission and attenuation of acoustic signals [12], [13]. 
Meteorological variables such as wind speed and atmospheric 
pressure also modulate surface noise levels, particularly in 
shallow coastal regions [14]. The integration with 
biogeochemical sensors can help correlate acoustic activity 
with biological productivity, offering insights into species 
presence and behaviour. Also, the integration of visual and 
infrared imaging via surface cameras, thermal sensors, or 
remotely operated vehicles may add a layer of validation to 



acoustic detections, enabling researchers to cross-reference 
vocalizations with observed animal movements [15].  

This sensor fusion not only improves detection accuracy 
but also supports adaptive monitoring strategies that respond 
dynamically to environmental changes, a capability 
increasingly vital in the context of climate-driven shifts in 
marine ecosystems. 

B. Scalability Across Marine Environments 
Scalability is essential for deploying acoustic monitoring 

systems across diverse marine habitats, from shallow estuaries 
to deep pelagic zones. Modular platforms such as moored 
buoys, autonomous underwater vehicles (AUVs), and gliders 
offer flexibility to tailor deployments to specific 
environmental conditions [16]. These platforms can be 
equipped with adaptive sensor arrays and configured for 
varying depths, seabed compositions, and hydrodynamic 
regimes. 

To support real-time monitoring in remote or bandwidth-
limited areas, systems must incorporate edge computing 
capabilities that allow for local data processing and decision-
making [17]. Detection algorithms should be calibrated to 
local acoustic baselines, accounting for the unique mix of 
biological, geological, and anthropogenic sounds in each 
region [18]. Interoperability with existing data infrastructures, 
such as the European Marine Observation and Data Network 
(EMODnet) and the Ocean Biodiversity Information System 
(OBIS), may finally facilitate broader ecological assessments 
and ensure alignment with marine conservation policies and 
directives. 

C. Enhanced Automation and Data Analytics 
Enhanced automation and data analytics represent a key 

pathway to overcoming engineering constraints of PAM 
buoys, particularly regarding power autonomy, robustness, 
and compactness. Edge computing is especially promising: by 
processing acoustic data locally rather than transmitting or 
handling large uncompressed datasets, it may dramatically 
reduce both energy demands and bandwidth requirements 
[19]. Coupled with adaptive sampling and task scheduling, 
this approach optimizes resource use and mitigates trade-offs 
between buoy size, endurance, and stability. 

Recent advances in machine learning further support this 
trend. Trained on extensive annotated datasets, machine 
learning models can now identify species-specific 
vocalizations and behavioural patterns with high precision 
[20]. Techniques such as transfer learning and semi-
supervised training allow faster reconfiguration of detection 
algorithms across species and acoustic environments [21]. 
There is growing evidence in the literature that fully 
autonomous monitoring systems, capable of onboard real-
time detection and reporting without immediate human 
oversight, are technically feasible and increasingly mature, 
thanks to advances in edge computing and embedded signal 
processing. Nonetheless, for regulatory robustness and 
scientific credibility, maintaining a degree of human-in-the-
loop validation remains advisable. 

Finally, automating acoustic propagation modeling 
remains a crucial frontier. Integrating adaptive models directly 
into the monitoring loop would extend risk assessment beyond 
sensor coverage, providing early warnings of potential 
exceedances in exclusion zones or sensitive habitats. 

Together, these innovations pave the way for adaptive 
monitoring systems capable of dynamically adjusting 
parameters such as sampling rate, detection thresholds, and 
model updates—essential for ensuring ecological relevance 
and operational efficiency in complex offshore environments. 

CONCLUSIONS 
This work presents a novel, field-validated system for real-

time underwater noise monitoring and marine mammal 
detection, specifically designed to meet the operational and 
regulatory challenges of offshore industrial activities. By 
combining embedded acoustic analysis, AI-driven cetacean 
vocalization detection, and real-time wireless data 
transmission, the system enables proactive management of 
acoustic risks in dynamic environments such as wind farm 
construction and other maritime noise-producing activities. 

A key strength of the platform lies in its modularity and 
adaptability. The architecture accommodates various types of 
hydrophones and recorders ranging from compact integrated 
systems to high-sensitivity combinations, allowing tailored 
configurations to suit specific environmental and regulatory 
contexts. In addition, the inclusion of PAMGuard-based 
human verification workflows ensures robustness while 
maintaining operational responsiveness. 

Field validation has demonstrated the system’s solidity, 
autonomy, and detection reliability under both controlled and 
live offshore conditions. Its seamless integration into Go/No-
Go decision-making procedures reinforces its role as an 
operational tool, rather than a post-hoc scientific instrument. 

Beyond its current implementation, the system 
architecture offers a foundation for future enhancements, and 
especially dynamic acoustic modeling to estimate propagation 
beyond sensor coverage, and deeper integration with project-
level decision support tools and dashboards. Additional work 
could also explore energy optimization and miniaturization to 
support longer-term autonomous deployments in remote or 
harsh environments. 

In a policy landscape increasingly shaped by the Marine 
Strategy Framework Directive (MSFD) and international 
biodiversity commitments, tools that bridge regulatory 
compliance and technical feasibility are vital. The system 
described here contributes directly to this objective, offering a 
flexible, field-proven solution for the responsible 
management of underwater noise in offshore industrial 
operations. 
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