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ABSTRACT 

 

EVALUATING DIGITAL VHF TECHNOLOGY TO MONITOR SHOREBIRD AND 

SEABIRD USE OF OFFSHORE WIND ENERGY AREAS IN THE WESTERN NORTH 

ATLANTIC  

SEPTEMBER 2016 

PAMELA H. LORING, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERISTY OF RHODE ISLAND 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Curtice R. Griffin and Paul R. Sievert 

Information on offshore movements of high priority bird species is needed for monitoring and 

managing adverse effects of offshore wind energy development in the western North Atlantic 

Ocean. This information is particularly important at night and during periods of inclement 

weather when risks of collision with offshore wind turbines may be elevated. For small-bodied 

avian taxa, technologies for monitoring movements of individually-marked birds are limited 

since satellite-based devices are still too heavy (> 5 g) for use on birds weighing < 150 g. In this 

dissertation, I evaluate the use of light-weight (1 to 1.5 g) digital VHF transmitters and a network 

of automated radio telemetry stations for tracking shorebirds and seabirds in offshore areas. In 

Chapter One, I compare digital VHF telemetry with satellite telemetry for tracking a shorebird, 

the American Oystercatcher (Haematopus palliatus), at nesting areas in coastal Massachusetts. 

In Chapter Two, I evaluate possible adverse effects and retention time of using a glue and suture 

method for attaching digital VHF transmitters to the inter-scapular region of Common Terns 
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(Sterna hirundo), a small-bodied seabird. In Chapter Three, I analyze data on the movements of 

digital VHF-tagged Common Terns and Arctic terns (Sterna paradisaea) from four colonies 

throughout the western North Atlantic Ocean to assess the utility of this technology for tracking 

birds at regional scales.  In Chapter Four, I examine movements of digital VHF-tagged Common 

Terns from two colonies in southern New England shelf region of the U.S. Atlantic relative to 

Wind Energy Areas in state and federal waters. The aim of this chapter is to evaluate the use 

digital VHF telemetry for tracking terns across offshore Wind Energy Areas and to relate 

offshore movement events to temporal (time of day, calendar date), atmospheric (wind speed, 

precipitation rate, visibility) and demographic (sex, nesting colony) covariates associated with 

assessments of collision risk. Through these studies, I evaluate the safety and effectiveness of 

using digital VHF transmitter technology on non-Endangered Species Act listed shorebird and 

seabirds with the aim of informing future studies on two species of high conservation concern, 

the federally threatened Piping Plover (Charadrius melodus) and the federally endangered 

Roseate Tern (Sterna dougallii).  
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CHAPTER 1 

 

COMPARING SATELLITE AND DIGITAL RADIO TELEMETRY TO 

ESTIMATE SPACE AND HABITAT USE OF AMERICAN OYSTERCATCHERS 

(HAEMATOPUS PALLIATUS) IN MASSACHUSETTS 

 

Abstract 

The use of digital VHF telemetry is expanding as a relatively light weight alternative to 

satellite-based technologies for tracking bird movements, though few studies have 

compared how they perform. During 2013, satellite telemetry and digital VHF telemetry 

were compared for estimating the length of stay, home ranges, and habitat characteristics 

of American Oystercatchers (Haematopus palliatus) on their breeding grounds in coastal 

Massachusetts, USA. American Oystercatchers (n = 5) were captured at their nest sites 

and tagged with both a 9.5 g solar-powered satellite transmitter, and a 1 g digitally coded 

VHF transmitter, and tracked using the Argos satellite system, an array of eight 

automated radio telemetry stations, and periodic land-based and aerial telemetry surveys. 

Estimates of mean minimum length of stay in the study area were slightly longer for 

satellite telemetry at 118 ± 12 days vs. digital VHF telemetry at 108 ± 11 days. Size 

estimates of mean (± SE) fixed kernel 95% utilization distributions were similar for 

satellite telemetry (22.53 ± 16.87 km2) and VHF telemetry (27.27 ± 21.58 km2), as were 

size estimates of 50% core-use areas (4.14 ± 2.99 km2 for satellite telemetry and 4.80 ± 

4.05 km2 for VHF telemetry). Both satellite and VHF telemetry found tagged individuals 

most frequently occurring on coarse-grained sand beaches (mean proportion: 0.58 to 

0.77), and salt to brackish marshes (mean proportion: 0.06 - 0.29). Despite a small 

sample size, digital VHF telemetry, when combined with automated radio telemetry 

stations and recurrent telemetry surveys, performed similarly to satellite telemetry for 
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estimating timing and home range size of shorebirds on their breeding grounds, although 

spatial distributions of home ranges varied between the two techniques.  

Introduction 

Advances in tracking technologies are expanding opportunities to collect new 

information on the movements and space use of shorebirds with important applications to 

conservation and management efforts (Brown et al. 2001; O'Connell et al. 2011). Various 

types of tracking technologies are used to monitor the movements of shorebirds 

(Warnock and Takekawa 2003; Schwemmer and Garthe 2011; Burger et al. 2012), each 

offering a unique set of tradeoffs in spatial and temporal resolution of location estimates, 

data storage and acquisition, cost per unit, and weight. Satellite-based Global Positioning 

System (GPS) technologies offer high spatial accuracy (< 30 m) and frequent sampling 

rates (one location per sec.; Tomkiewicz et al. 2010). However, the lightest available 

GPS units (currently 1 g) acquire limited numbers of locations (< 100 stored in the unit), 

requiring recovery of the device (M. van den Tillaart, pers. commun.). Other satellite-

based technologies include Platform Transmitter Terminals (PTTs), which estimate 

locations using the Doppler effect, can obtain multiple locations per day with an optimal 

accuracy ranging from 250 to >1,500 m, and relay data in near-real time to an online 

server (Argos 2015). However, the smallest available PTTs are still relatively heavy (2 to 

5 g) for use on small-bodied shorebird species since tags should be restricted to < 3 to 5% 

of body mass (Fair et al. 2010) and are available on a limited production run basis only 

(C. Bykowsky, pers. comm.). Further, at thousands of dollars per unit, the high cost of 

satellite-based tags may preclude robust sample sizes (Hebblewhite and Haydon 2010). 

Other types of tracking technologies used on shorebirds include light-level geolocators 
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that are light-weight (< 1 g), but are limited to estimating two locations per day and 

routinely subject to errors of > 200 km, so are of limited use for studies requiring 

locations with high spatial and temporal resolution (Bridge et al. 2011). As with GPS 

units, geolocators also require that individuals are re-trapped to retrieve the data. 

For small-bodied species (< 100 g), radio telemetry remains one of the sole options 

for collecting frequent, high-accuracy (optimally < 10 m) location data over extended 

durations (Ponchon et al. 2013). Radio transmitters are light-weight (≥ 0.25 g) devices 

with high pulse-rates (tens to hundreds of signals per minute) and relatively long 

operating life (> 4 months for 1-g units), that are tracked using specialized antennas and 

receiving systems (Kenward 1987). Automated radio telemetry stations, consisting of one 

or more antennas elevated on a mast and connected to a data-logging radio receiver, 

allow researchers to track animals continuously within target geographic areas (Cochran 

et al. 1965; Larkin et al. 1996). Automated radio telemetry has been used to examine 

shorebird foraging ecology and movements during the nesting period (Sherfy et al. 

2012.), duration and movements during staging (Verkuil et al. 2010), home ranges and 

local movements on wintering grounds (Leyrer et al. 2006), and long-distance 

movements along migratory corridors (Green et al. 2002).  

With traditional radio telemetry, each transmitter operates on a unique frequency and 

receiving systems monitor a single transmitter at a time, resulting in a trade-off between 

sample size and sampling frequency (Kenward 1987). Recent advances in the 

development of light-weight, digitally-coded VHF transmitters now make it possible to 

continuously track the movements of hundreds of individuals on a single frequency 

(Mills et al. 2011; Taylor et al. 2011; Woodworth et al. 2014). With some limitations, 
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digital VHF telemetry can thus offer a lightweight alternative to satellite-based tracking 

technologies for monitoring movements of small-bodied species at regional scales. 

In this study, we compared digital VHF telemetry and satellite telemetry for 

estimating length of stay, home range size and distribution, and habitat characteristics of 

a coastal-nesting shorebird, the American Oystercatcher (Haematopus palliatus), on 

breeding grounds within coastal Massachusetts, USA.  

Methods 

We conducted fieldwork in eastern Nantucket Sound, Massachusetts, USA (Fig. 1.1). 

We captured and tagged American Oystercatchers on Monomoy National Wildlife 

Refuge (NWR; 41° 36’ 31.53” N, 69° 59’ 12.86” W), a 30 km2 barrier beach and island 

complex, and on Coskata-Coatue Wildlife Refuge on Nantucket Island, Massachusetts 

(41°19′26.23” N 70°03′49.22” W), a 10 km2 barrier beach system. Monomoy NWR and 

adjacent South Beach in Chatham, Massachusetts, support 30 to 35 breeding pairs of 

American Oystercatchers annually and over 200 individuals during the fall staging period 

(Schulte et al. 2007). Coaskata-Coatue Wildlife Refuge on Nantucket has a high density 

of nesting sites for American Oystercatchers in the Northeast, supporting up to 40 nesting 

pairs annually and flocks of 15 to 20 individuals during the fall staging period (Schulte et 

al. 2007). 

Capture and Transmitter Attachment 

From 16 May to 5 June 2013, we used decoys, playback calls, and whoosh nets to 

capture nesting adult American Oystercatchers during the incubation period. We banded 

each American Oystercatcher with an incoloy U.S. Geological Survey band below the 

tarso-metatarsal joint and duplicate engraved color Darvic bands with a unique alpha-
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numeric combination above each tarso-metatarsal joint. We used a modified version of 

the figure-8 leg loop harness (Sanzenbacher et al. 2000) to attach a combination of a 9.5 

g (38 x 17 x 12 mm) solar-powered PTT (Microwave Telemetry, Inc.) and a 1.0 g (11 x 8 

x 7 mm) digital VHF transmitter ('Avian NanoTag'; Lotek Wireless, Inc.) to a total of five 

American Oystercatchers, two from Monomoy NWR and three from Nantucket. We 

modified the Sanzanbacher design by using Teflon ribbon (4 mm width) as harness 

ligature, and by gluing a 40 x 20 x 2 mm square of Neoprene fabric to the base of the 

satellite transmitter to provide padding at the attachment site. The combined weight of the 

PTT, VHF transmitter, and attachment materials did not exceed 3% of the body mass of 

each tagged individual. Since there was no overlap in the operating frequencies or 

harmonics of the PTT (401.650 MHz) and the digital VHF transmitter (166.380 MHz), 

we assumed that electrical interference between the two devices was not a factor. 

Satellite Telemetry 

PTTs were programmed to transmit locations to Argos satellites on a 10 hr on, 24 hr 

off, duty cycle for an expected operating life of approximately two years. Locations had 

an optimal accuracy of 250 m (Argos Accuracy Classification "L3"; Argos 2015) and 

were relayed to an online server. We used the Douglas-Argos program (Douglas et al. 

2012) in SAS (SAS Institute 2008) to download and process Argos data transmitted by 

the PTTs, and retained all locations with estimated accuracy classifications < 500 m 

(Argos Accuracy Classification "L2") for subsequent analysis.  

Digital VHF Telemetry 

Digital VHF transmitters were programmed to transmit signals on 166.380 MHz 

every 5 - 6 seconds, for a total expected operational life of 163 days. Signals from VHF 
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transmitters were received by a network of six automated radio telemetry towers erected 

at coastal and island sites in eastern Nantucket Sound, Massachusetts (Fig. 1.1). Each 

tower consisted of an array of six Yagi antennas end-mounted in a radial configuration 

atop a 9.2 m mast. Each antenna was separated by 60° with a horizontal plane beam-

width of 35°. The antennas were connected to a solar-powered, automated receiving unit 

(SRX 600; Lotek Wireless, Inc.) that scanned for signals with each antenna for 6.5 

seconds in succession, 24 hrs per day. We also operated a receiving station consisting of 

a SRX-600 receiver equipped with a single omnidirectional (200 W) antenna on a 

passenger ferry that followed a north-south route across Nantucket Sound two to six 

times per day. All receiving units were programmed to automatically log several types of 

data from each antenna, including: transmitter ID number, time stamp (synchronized 

among all receivers in network using GPS clocks), antenna (defined by receiving station 

and bearing), and signal strength (non-linear scale: 0 to 255). We tested detection ranges 

of the radio telemetry stations to ground-level targets by placing a test transmitter at 

known distances and orientations from the receiving antennas. From these tests, we 

determined that the maximum range of the automated radio telemetry towers with Yagi 

antennas was approximately 1 km to targets at ground level. The range of the omni-

directional antenna on the ferry was < 0.5 km to targets at ground level. 

 In addition to tracking American Oystercatchers using automated radio telemetry 

techniques, we also conducted land-based and aerial telemetry surveys to relocate 

individuals that may have moved outside of the range of our automated radio telemetry 

array. From June through September 2013, we used land-based VHF telemetry 

techniques to relocate tagged individuals at nesting, feeding, and roosting sites up to five 
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days per week. During these surveys, we used a hand-held, 3-element Yagi antenna and a 

SRX-600 receiver to scan for VHF transmitters. We followed individuals on foot and 

used a hand-held compass to record the bearing of maximum signal strength of the VHF 

transmitter. When individuals were in view, we estimated their locations using bearings 

of maximum signal strength and distance. When possible we determined their position 

using bi-angulation or triangulation techniques from multiple bearing and distance 

estimates. 

From July through September, 19 aerial VHF telemetry surveys were conducted to 

search for tagged American Oystercatchers along 1,540 km of transects throughout 

Nantucket Sound and adjacent coastal waters. Transects were flown in a fixed-wing 

aircraft at an altitude of 229 m (750 ft) and an air speed of approximately 100 knots. The 

aircraft was equipped with a pair of 4-element, Yagi antennas, mounted at a 45° angle to 

each strut. Each antenna connected to a SRX-600 receiver via a switchbox that was used 

to toggle between antennas so that signals could be isolated on one side of the airplane to 

localize individuals.  

We used a filtering algorithm in the statistical program R (R Development Core Team 

2015) to remove false detections from the raw VHF telemetry data collected by the 

automated radio telemetry stations, and during land and boat-based telemetry surveys, 

based on the following parameters: minimum of three consecutive bursts required to 

comprise a run, a maximum of 20 consecutive missed bursts allowed within each run, and 

a maximum deviation of four milliseconds from a tag's unique burst interval between its 

consecutive bursts (J. Brzustowski, pers. commun.). For aerial telemetry data, we used 

the same criteria as above but allowed a minimum of two consecutive bursts to comprise 
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a run because the relatively high speed (100 knots) of the aircraft resulted in missed 

detections of test beacons using the three consecutive burst criteria (P. Loring, unpubl. 

data). 

Data Analyses 

We conducted all statistical analyses using the program R (R Development Core 

Team 2015). We tested for differences between PTTs and VHF transmitters in total 

number of detections, number of unique days detected, and estimated length of stay in 

study area using non-parametric Wilcoxon signed-rank tests, since the data were non-

normally distributed. To examine home ranges, we randomly selected datasets consisting 

of 25 locations per individual and transmitter to generate kernel density estimates 

(Worton 1989). For each dataset, we determined the sample size by visually delineating 

asymptotes of area-observation curves (Kernohan et al. 2001), and randomly sampled 

locations that were separated by a minimum of 12-hrs to reduce serial autocorrelation 

(Swihart and Slade 1997). We generated home ranges as kernel density estimates (0.95 

utilization distributions and 0.50 core use areas) with the software Geospatial Modeling 

Environment (Beyer 2011), using a Gaussian kernel and cross-validation bandwidth 

estimator, which outperforms other estimators when estimating kernel density estimates 

from sample sizes < 50 (Horne and Garton 2006), and selected a grid size of 250-m to 

correspond with optimal locational accuracy of the PTTs. We used Wilcoxon signed-rank 

tests to examine differences between VHF and PTT data in the total area of both 0.95 

utilization distributions and 0.50 core-use areas estimated for each bird. We examined 

static interaction of kernel density estimates (0.95 and 0.50, respectively) by quantifying 
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the proportion of overlap among kernel density estimates generated from VHF and PTT 

data for each double-tagged bird (Kernohan et al. 2001).  

We used Environmental Sensitivity Index (ESI) data (National Oceanic and 

Atmospheric Administration 2004) to compare the proportion of shoreline habitat types 

within 0.95 utilization distributions and 0.50 core-use areas generated by PTT versus 

VHF transmitters. ESI habitat types were categorized as coarse-grained sand beaches, 

fine-grained sand beaches, exposed rocky shores, riprap structures, sheltered human-

made structures, salt to brackish marshes, and exposed tidal flats. 

Results 

Location data were collected from two of the American Oystercatchers until 15 to 19 

August, 2013, when the tags were lost as confirmed by band resighting. Locations were 

collected from two additional individuals later into the season (9 September and 25 

October 2013), though PTTs never transmitted locations outside of the study area, 

indicating transmitter loss or malfunction prior to fall migration. The remaining bird 

retained its PTT through migration, departing from the study area on 29 October 2013 to 

wintering areas in the southeastern United States, where it transmitted location data 

through 4 January 2014.  

The mean (± SE) number of locations with estimated accuracy ≤ 500 m recorded per 

tagged individual was 317 (± 42) for PTTs and 375 (± 169) for VHF transmitters, with no 

significant difference among transmitter type (Wilcoxon Signed Rank Test V = 8, P = 1; 

Table 1.1). A higher mean (± SE) proportion of PTT locations per individual were 

obtained within the < 250 m accuracy class (0.61 ± 0.01) than the 250 to 500 m accuracy 

class (0.39 ± 0.01; Table 1.1). For VHF transmitters, the mean (± SE) proportion of 
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locations recorded per bird was similar between those detected by automated radio 

telemetry stations (0.50 ± 0.20) and by manual telemetry surveys (0.50 ± 0.20; Table 1). 

However, the mean (± SE) number of days that each bird was detected was higher 

(Wilcoxon Signed Rank Test V = 0, P = 0.062) for PTTs (61 ± 5 days) than VHF 

transmitters (30 ± 10 days), indicating that PTT locations were more evenly sampled in 

time than VHF locations (Table 1.2). The PTT data also indicated a slightly longer mean 

length of stay in the study area (118 ± 12 days) than did the VHF data (108 days ± 11; 

Wilcoxon Signed Rank Test V = 0, P = 0.063; Table 1.2).  

Three American Oystercatchers provided enough data for comparisons of utilization 

distributions between their PTT and VHF locations (Figs. 1.2 – 1.4). For these three 

individuals, estimates of mean (± SE) fixed kernel 95% utilization distribution and 50% 

core-use areas estimated from PTT locations did not significantly differ (Wilcoxon 

Signed-Rank Test V = 5, P = 0.5 for 95% UD and V = 3, P = 1 for 50% CU) from 

estimates of mean fixed kernel 95% home range and 50% core use areas estimated from 

VHF locations (Table 1.3). Mean (± SE) percent spatial overlap of kernel density 

estimates from satellite telemetry and digital VHF telemetry was 67% (± 6%) for 95% 

utilization distributions and 32% (± 11%) for 50% core use areas. 

The mean (± SE) proportion of shoreline habitat types in the 95% utilization 

distributions was similar between satellite telemetry estimates and VHF telemetry 

estimates, and was predominantly coarse-grained sand beaches (0.58 ± 0.22 and 0.58 ± 

0.21) and salt to brackish marshes (0.29 ± 0.20 and 0.19 ± 0.12), with lesser mean 

proportions (≤ 0.15) of riprap structures, exposed rocky shorelines, sheltered human-

made structures, fine-grained sand beaches, and exposed tidal flats (Fig. 1.5A). Similar to 
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the 95% utilization distributions, mean (± SE) proportion of habitat types within 50% 

core use areas for both satellite and VHF telemetry estimates was predominantly coarse-

grained sand beaches (0.63 ± 0.20 and 0.77 ± 0.18, respectively), and salt to brackish 

marshes (0.24 ± 0.13 and 0.06 ± 0.03, respectively), with lesser proportions (≤ 0.05) of 

the other shoreline habitat types (Fig. 1.5B).  

Discussion 

Our study found that digital VHF telemetry generally performed similarly to satellite 

telemetry for quantifying timing and space-use of American Oystercatchers on their 

breeding grounds, although the scope of inference from our results is limited due to small 

sample sizes and tag loss. Estimates of length of stay and home range size should be 

considered a minimum since the majority of tagged individuals in our study lost their 

back-pack units prior to departing from the study area. However, metrics obtained from 

PTTs could still be directly compared to those obtained from VHF transmitters because 

individual American Oystercatchers dropped their PTT and VHF transmitters 

simultaneously.  

Studies on Black Oystercatcher (Haematopus bachmani) have also reported poor 

retention of dorsal-mounted transmitters attached with similar leg-loop harnesses (e.g., 

Johnson et al. 2010). Double-layered teflon ribbon harnesses may help improve retention, 

however to our knowledge this has not been widely field tested. Other methods of 

attaching transmitters to shorebirds including coelemic implants and epoxy to the leg 

band (Warnock and Takekawa 2003), may also increase retention time. However, injuries 

(Nisbet et al. 2011) and high mortality rates (Johnson et al. 2010) have been associated 

with these techniques. 
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In our study, three of five VHF tags and all five PTTs provided enough data to 

estimate home ranges. Due to the small sample size and high variability, our results 

should be interpreted cautiously (Kernohan et al. 2001). However, the home range sizes 

of American Oystercatchers in our study are consistent with other studies reporting 

individual-based movements of Haematopus oystercatchers on breeding grounds, and 

documented movements between nesting and foraging areas that ranged from < 1 km 

(Ens et al. 1992; Virzi and Lockwood 2010; Schwemmer and Garthe 2011) to over 5 km 

(Schwemmer and Garthe 2011). Within home ranges, American Oystercatchers in our 

study primarily used coarse-grained sand and marsh habitats, a finding similar to several 

other studies (Nol and Humphrey 2012). Aebischer et al. (1993) suggest a minimum 

sample size of 6 individuals were needed to compare habitat use among techniques, 

therefore we did not have enough data to statistically compare habitat use between VHF 

and PTT locations. 

 Estimates of timing, home range size, and habitat proportion were generally similar 

between VHF and PTT data. However, because the VHF locations were more clumped in 

time and space than PTTs, the PTTs were detected on twice as many unique days relative 

to VHF transmitters.  The extent of spatial overlap among home range estimates from 

PTTs and VHF locations was also variable. These differences in the spatial and temporal 

resolution between VHF and PTT data likely resulted from the way locations were 

acquired using each tracking technology. The VHF transmitters were programmed to 

emit signals every five to six seconds, but needed to be within range of an automated 

radio telemetry station, or detected during manual telemetry surveys, to be relocated. The 

PTTs, in contrast, transmitted signals every 90 to 200 sec. during a 10-hr transmission 
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period, which occurred every 24 hrs, and needed only to be within range of visibility of 

polar-orbiting satellites to acquire a location. The clear advantage of satellite-based 

tracking technology over VHF technology is that it permits systematic sampling 

anywhere on the globe, so it is an especially suitable tool for studying the long-distance 

movements of wide-ranging species (Hebblewhite and Haydon 2010). However, the 

spatial and temporal resolution of PTT data is relatively coarse, and PTTs require 

prolonged off periods necessary for conserving battery power. In contrast, VHF locations 

can achieve optimal accuracy of < 10 m, and can be monitored nearly continuously 

through targeted geographic areas using automated radio telemetry stations as long as 

tagged individuals are within range of a receiver (Bridge et al. 2011). 

To maximize the quality of location estimates from automated radio telemetry 

stations, it is important to consider the height, spacing, and positioning of antennas, and 

the life histories of target species. Accuracy of position estimates is improved when 

antenna beams from multiple stations detect animals simultaneously (White and Garrott 

1990), so the home range size of target species and detection range of the telemetry 

system should be considered when siting automated radio telemetry stations on the 

landscape. Maximizing detection range also depends largely on maximizing antenna 

height (Cochran 1980), and since VHF waves emitted by transmitters travel within line-

of-sight, factors such as topography, vegetation, and electronic noise can block, reflect, or 

attenuate the signal (Kenward 1987). 

Conducting regular telemetry surveys, by foot, boat, or plane is an effective way to 

supplement locations collected by the automated radio telemetry towers, and relocate 

individuals that may have moved outside the range of automated radio telemetry towers. 



14 
 

Land-based telemetry surveys can be used to search for tags within targeted areas, and 

facilitate direct observations of marked individuals that can be combined with behavioral 

or in situ habitat sampling. By comparison, boat-based and aerial telemetry surveys 

permit systematic searches over larger geographic areas. While conventional telemetry 

surveys are useful for searching for individuals that may have moved outside of the 

detection range of automated radio telemetry stations, these surveys can incur 

considerable effort, personnel, and travel costs. The cost of the tracking VHF transmitters 

is scaled according to the number of VHF transmitters deployed on the shared frequency, 

and may be partially offset by coordinating efforts with complimentary studies, cost 

comparisons of tracking VHF transmitters and PTTs are not straightforward. Ground 

work is useful for supplementing VHF stations but may not be necessary depending on 

the objectives and design of the telemetry study. Conventional telemetry surveys are most 

effective for studies where tagged individuals do not range widely, such as tracking 

American Oystercatchers on their breeding grounds. Remote tracking of satellite-tagged 

individuals is thus more suitable for studies covering a wider geographic extent, such as 

migration.  

Despite the considerable resources required to track VHF transmitters over long-

distances, efforts are underway in the western Hemisphere to coordinate digital VHF 

tracking projects and receiving stations on a shared frequency (e.g., the Motus Wildlife 

Tracking System), allowing for thousands of tagged animals to be detected on an 

expanding network of receiving stations throughout North and South America. Thus, 

with strategic deployment and coordination of receiving equipment, digital VHF 

telemetry can now be used to track land-scape scale movements of birds with relatively 
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high spatial and temporal resolution, something that was recently only possible with 

satellite-based technologies. However, satellite-based technologies remain the sole option 

for global, high-resolution wildlife tracking throughout the annual cycle.   
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Table 1.1. Identification number (ID) and frequency count (n) of locations of American 

Oystercatchers estimated by satellite Platform Transmitter Terminals (PTT) and VHF 

radio transmitters on breeding grounds in coastal Massachusetts in 2013. Proportions are 

shown for PTT locations by estimated accuracy intervals (LC 3: < 250 m and LC 2: 250 

to < 500 m), and for VHF locations by tracking method: automated radio telemetry tower 

(Tower), receiving station on passenger ferry (Ferry), land-based radio telemetry survey 

(Land), and aerial radio telemetry survey (Aerial).  

                   Proportion of locations by type 

 Locations (n)  PTT  VHF 

ID PTT VHF   LC3 LC2   Tower Ferry Land Aerial 

68 240 48  0.65 0.35  0.00 0.00 0.85 0.15 

69 326 950  0.59 0.41  0.13 0.70 0.14 0.03 

70 208 297  0.58 0.42  0.45 0.46 0.08 0.01 

71 386   53  0.63 0.37  0.00 0.00 0.00 1.00 

72 427 529   0.62 0.38   0.75 0.00 0.00 0.25 
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Table 1.2. Identification number (ID), capture site (Coskata-Coatue Wildlife Refuge, 

Nantucket [Nantucket] and Monomoy National Wildlife Refuge [Monomoy]), capture 

date, number of unique days tracked (unique days), estimated length of stay in study area, 

and last date in study area for American Oystercatchers (n=5) fitted with satellite 

Platform Transmitter Terminals (PTTs) and VHF transmitters on breeding grounds in 

coastal Massachusetts in 2013.  

      Unique days    Length of stay   Last date in study area 

ID 

Capture 

site 

Capture 

date PTT VHF   PTT VHF   PTT VHF 

68 Nantucket  05/16/13 52 9  90 83  08/14/13 08/07/13 

69 Nantucket  05/17/13 62 47  115 111  09/09/13 09/05/13 

70 Nantucket  05/16/13 46 28  95 90  08/19/13 08/14/13 

71 Monomoy 6/5/2013 71 10  142 112  10/25/13 09/25/13 

72 Monomoy 6/5/2013 73 57   146 145   10/29/13 10/28/13 
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Table 1.3. Total area (km2) by transmitter type and percent (%) overlap between 

transmitter type of individual core-use areas (50% isopleth) and utilization distributions 

(95% isopleth) for American Oystercatchers (n = 3) fitted with satellite Platform 

Transmitter Terminals (PTTs) and VHF transmitters on breeding grounds in coastal 

Massachusetts in 2013. 

  Area (km2)             

  50%   95%   Overlap (km2)   Overlap (%) 

ID PTT VHF  PTT VHF  50% 95%  50% 95% 

69 10.11 12.89  56.27 70.29  6.85 52.01  53 74 

70  1.02  0.46   5.46   2.79  0.12  1.99   25 71 

72 1.30  1.05    5.87   8.71   0.18  4.85    17 56 
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Figure 1.1. Map of 2013 study area in coastal Massachusetts, USA, showing tagging 

locations (black stars) of American Oystercatchers (n=5) at breeding sites on Monomoy 

National Wildlife Refuge (NWR) and Coskata-Coatue Wildlife Refuge (Nantucket), 

locations of six land-based automated radio telemetry towers (black circles), and the 

route (dashed line) of an automated radio telemetry receiver on a passenger ferry in 

Nantucket Sound. 
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A. 

 
B. 

 

Figure 1.2. Kernel density estimate (KDE) of the core-use areas (dark grey, 50% 

isopleth) and utilization distribution (light grey, 95% isopleth) of a double-tagged 

American Oystercatcher (ID number 69), estimated by locations from a satellite Platform 

Transmitter Terminal (PTT; 3A, top) and a VHF radio transmitter (3B, bottom) on 

breeding grounds in coastal Massachusetts during 2013.  
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B. 

 
Figure 1.3. Kernel density estimate (KDE) of the core-use areas (dark grey, 50% 

isopleth) and utilization distribution (light grey, 95% isopleth) of a double-tagged 

American Oystercatcher (ID number 70), estimated by locations from a satellite Platform 

Transmitter Terminal (PTT; 3A) and a VHF radio transmitter (3B) on breeding grounds 

in coastal Massachusetts during 2013.  
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A. 

 
B. 

 
Figure 1.4. Kernel density estimate (KDE) of the core-use areas (dark grey, 50% 

isopleth) and utilization distribution (light grey, 95% isopleth) of a double-tagged 

American Oystercatcher (ID number 72), estimated by locations from a satellite Platform 

Transmitter Terminal (PTT; 3A) and a VHF radio transmitter (3B) on breeding grounds 

in coastal Massachusetts during 2013.  
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A. 

 

 
B. 

 
Figure 1.5. Mean (± SE) proportion of shoreline habitat type comprising the core-use 

areas (50% isopleth; 6A) and utilization distributions (95% isopleth; 6B) estimated by 

locations from satellite Platform Transmitter Terminals (PTT, black) and VHF radio 

transmitters (grey) fitted to American Oystercatchers (n = 3) on breeding grounds in 

coastal Massachusetts in 2013.  
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CHAPTER 2 

ASSESSING THE EFFECTS OF DIGITAL VHF TRANSMITTERS ON NESTING 

COMMON TERNS 

Abstract 

Recent advances in digital VHF radio transmitters and automated telemetry stations now 

allow biologists to quantify fine-scale movements of seabirds. However, before 

widespread use of this new technology is permitted, particularly on threatened or 

endangered species, it is important to monitor transmitter retention times and potential 

adverse impacts on the behavior of similar species. Digital VHF radio tags (1.5 g, <2% of 

body mass) were attached to one member of 50 pairs of adult Common Terns (Sterna 

hirundo) nesting within a colony of 7,500 Common Terns at Monomoy NWR, MA.  Tags 

were attached to the interscapular region using cyanoacrylate adhesive and subcutaneous 

sutures. An array of eight automated radio telemetry stations within 30 km of the colony 

was used to quantify tag retention through post-fledging dispersal. Productivity of tagged 

and non-tagged (control) pairs was estimated by following chicks through fledging in 20 

productivity plots within the colony. Two tags stopped transmitting immediately, but 

most adult terns (81%, n = 48) retained their tags until their chicks had fledged. Mean (± 

SE) retention time was 48 days (± 2 days, range 22 to 90 days), with females slightly 

more likely to retain their tag until their brood fledged than males. Only one tagged pair 

was unsuccessful in fledging at least one chick, and fledging success did not differ 

between the tagged and control groups. Using cyanoacrylate adhesive and sub-cutaneous 

sutures is a useful technique for attaching lightweight transmitters to Common Terns for 
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studies lasting from one to three months because this technique did not appear to affect 

nesting productivity, and retention rates were high.  

Introduction 

Recent advances in tracking technologies provide invaluable and otherwise 

unattainable information about avian movement ecology, particularity for wide-ranging 

taxa such as seabirds (Burger and Shaffer 2008).  Despite the benefits of information 

gained by telemetry studies, there are inherent risks associated with tracking devices 

(White and Garrott 1990, Murray and Fuller 2000, Wilson and McMahon 2006, Barron et 

al. 2010). Researchers have legal and ethical responsibilities to assess and minimize 

adverse effects to tagged individuals, particularly when working with threatened or 

endangered populations (Fair et al. 2010). Further, minimizing risks to tagged individuals 

is critical for studies designed to draw inferences to the broader non-tagged populations, 

as adverse effects on health, behavior, or movements of tagged individuals may bias 

results (Murray and Fuller 2000).  

One approach for reducing adverse effects of transmitters is to minimize their size 

and limit the combined mass of the transmitter and attachment materials to under 3 to 5% 

of the mass of tagged individuals (White and Garrott 1990, Murray and Fuller 2000, 

Kenward 2001, Fair et al. 2010), although attachments below this threshold may still 

have disproportionate impacts on energy expenditure of some species (Vandenabeele et 

al. 2011).  Where and how the transmitter is attached can also affect study success, as it 

can influence tag retention, bird welfare, and study outcomes (Barron et al. 2010, 

Vandelabeele et al. 2014). For short- and moderate-term studies (lasting a few weeks to a 

few months), a variety of temporary attachment materials have been used including 
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adhesive (Johnson et al. 1991) and tape (Söhle et al. 2000), which allow the tracking 

device to fall off the tagged individual after its battery expires (Hawkins 2004). These 

temporary attachment methods are generally thought to have less impact than long-term 

or permanent alternatives (e.g. mounted to leg-bands, surgical implants; Barron et al. 

2010).  

Selecting an appropriate attachment method for seabirds can be challenging because 

they are wide ranging, occupy marine environments, and employ foraging strategies that 

may stress tag attachment (Burger and Shaffer 2008). For terns of the genus Sterna, 

attaching devices is particularly difficult due to their relatively small body mass 

(generally <150 g), and high-impact foraging strategies (i.e., plunge diving from about 3-

4 m above the water surface; Duffy 1986). Therefore, the tag and attachment 

methodology needs to be lightweight yet robust. Several techniques have been used to 

attach tracking devices to terns, including band-mounts, tail-mounts, and back-mounts 

(Klaassen et al. 1992, Morris and Burness 1992, Sirdevan and Quinn 1997, Perrow et al. 

2006, Mostello et al. 2014). Techniques for long-term attachment, such as gluing 

geolocators to leg bands, have been successful for attaching tracking devices to terns 

throughout the annual cycle, although some negative effects have been reported, 

including leg injuries, reduced body mass, and reduced inter-annual return rates (Nisbet 

et al. 2011, Mostello et al. 2014). Short-term attachments that are designed to fall off, 

such as glue or Tesa tape (Beiersdorf AG, Hamburg, Germany), tend to be associated 

with very short retention times, such as <10 days for tail mounts (Perrow et al. 2006) and 

<12 days for transmitters glued to the back (Massey et al. 1988).  
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Retention time of back-mounted transmitters can be extended by using a combination 

of adhesive and sub-cutaneous sutures (Warnock and Takekawa 2003).  Some biologists 

have successfully used adhesive, in combination with sutures, to attach transmitters to 

Red-winged Blackbirds (Agelaius phoeniceus; (Martin and Bider 1978)), ducks (Anas 

spp.; (Wheeler 1991)), Sage Grouse (Centrocercus urophasianus; [Burkepile et al. 

2002]), Great Shearwaters (Puffinus gravis; L. Welch, pers. comm.), and Forster's Terns 

(Sterna forsteri; (Ackerman et al. 2009)). Thus, this technique appears to be a promising 

attachment method for studies lasting from one to five months, and may represent a safer 

alternative relative to other more permanent attachment techniques (Wheeler 1991).  

To our knowledge, no one has previously assessed the retention time or potential 

adverse effects of the adhesive and suture technique to attach transmitters on a plunge-

diving tern. Using adhesive and sub-cutaneous sutures, we dorsally-mounted Very High 

Frequency (VHF) radio-transmitters on adult Common Terns (Sterna hirundo), a 

relatively abundant species that breeds throughout North America (Nisbet 2002). Our 

specific objectives were to: 1) determine if transmitters attached with cyanoacrylate 

adhesive and sub-cutaneous sutures to the inter-scapular region of nesting adult Common 

Terns affected the fledging success of their chicks; 2) quantify retention time of 

transmitters attached to terns using adhesive and sutures; and 3) compare transmitter 

retention between male versus female adult Common Terns through the post-fledging 

period. 

Methods 

Study area 
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We conducted fieldwork on South Monomoy Island (41° 36’ 31.53” N, 69° 59’ 

12.86” W), within Monomoy National Wildlife Refuge (NWR), a 30 km2 barrier beach 

and island complex located off of the coast of Cape Cod, Massachusetts, USA (Fig. 1). 

South Monomoy Island is approximately 9 km from north to south, and up to 2 km wide. 

The island supports, one of the largest Common Tern colonies on the Atlantic Coast, with 

over 7,500 nesting pairs in 2013 (USFWS, unpublished data).   

Tag deployments 

During the mid-incubation through early chick-rearing period, we captured 100 adult 

Common Terns, each from a different nest, in 20 productivity plots that were randomly-

located throughout the Monomoy tern colony.  Of the 100 terns that we captured, 50 terns 

were fitted with a digitally-coded VHF transmitter (tagged group) and 50 terns were 

assigned as controls with no VHF transmitter (control group).  Productivity plots were 

designed to estimate fledging rates of Common Tern chicks by retaining chicks near nests 

until they were nearly capable of sustained flight.  Each plot was a hexagon constructed 

from 15.25 m of 0.3 m tall, 6-mm mesh hardware cloth.  We tagged an average of 2.4 (± 

0.2 SE, range = 1 to 5) terns per plot from 4 to 25 June 2013 using walk-in treadle traps. 

We individually marked terns on their tarsometatarsus with an incoloy U.S. Geological 

Survey band on one leg and a wrap-around black plastic field readable band inscribed in 

white with a unique 3-digit alphanumeric code on the opposite leg.  We also collected 

three to five contour feathers from each bird to determine gender by molecular analysis 

(Avian Biotech, Gainesville, FL). 

We attached a digital 1.5 g VHF transmitter ('Avian NanoTag'; Lotek Wireless, Inc., 

Newmarket, Ontario, Canada) to individuals within the tagged group. Digital coding 
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within each transmitter's pulse allowed up to 521 individuals to be uniquely identified on 

a single VHF frequency by receiving units. We programmed transmitters to transmit 

signals on 166.380 MHz every five to six seconds, for a total expected operational life of 

approximately 160 days.  Each transmitter body measured 11 mm x 8 mm x 7 mm, and 

had custom fitted tubes (inner diameter 1 mm) at the anterior and posterior ends for 

attachment materials, and a 15-cm whip antenna.  Total weight of each transmitter and 

attachment materials was < 2% of the body mass of the birds in our study.  We attached 

transmitters to the dorsal inter-scapular region using cyanoacrylate adhesive and two 

sutures (Prolene: 45-cm length, 4.0, BB taper point needle, catalog # 8581H) that we 

inserted subcutaneously and secured to the end-tubes of the transmitter. We captured, 

processed, banded, and released birds from the control group using the same procedures 

as tagged birds. Total handling time, from capture to release, ranged between 20 to 40 

min per individual for both tagged and control individuals. 

Nest monitoring 

From nest initiation through fledging, all chicks within productivity plots were 

monitored every one to three days by U.S. Fish and Wildlife Service biological staff at 

Monomoy NWR.  All chicks were banded within three days of their hatch date with an 

incoloy U.S. Geological Survey Band.  We determined hatch order for each chick within 

a brood based on size and plumage characteristics, where 'A', 'B', and 'C' was used to 

identify the first hatched, second hatched, and third hatched chick, respectively.  We 

classified all chicks that survived to 23 days old as successfully fledging (Nisbet 2002).  

For nests with chicks that did not survive to 23 days, we recorded the nest failure date as 

the date when the last egg or chick was lost. 
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Tracking 

We tracked the movements of tagged terns using a network of automated radio 

telemetry stations (hereafter network) established throughout the eastern Nantucket 

Sound region of Massachusetts (Fig. 2.1).  The network included six automated radio 

telemetry towers, each consisting of an array of six 9-element (11.1 dBd) Yagi antennas 

end-mounted in a radial configuration atop a 9.2 m mast.  The antennas were connected 

to a solar-powered, automated receiving unit (SRX-600, Lotek Wireless, Ontario, 

Canada) that scanned for signals with each antenna for 6.5 seconds in succession, around 

the clock.  

The network also included a receiving station, consisting of a SRX-600 receiver 

equipped with a single omnidirectional (200 W) antenna, located on a passenger ferry 

that followed a north-south route across Nantucket Sound two to six times per day (Fig. 

1).  In addition, we operated a receiving station consisting of a SRX-600 receiver 

equipped with a single omnidirectional (200 W) antenna mounted on a 1.2 m mast that 

was adjacent to the tern nesting colony and configured to monitor nest attendance.  We 

programmed all receiving units to automatically log the following data from each 

antenna: transmitter ID number, time stamp (synchronized among all receivers in the 

array using GPS clocks), antenna (defined by receiving station and bearing), and signal 

strength (non-linear scale: 0 to 255). 

Tag retention 

We were unable to calculate the complete duration of tag retention for each bird 

beyond the post-fledgling period when adults disperse beyond the detection range of our 

network to staging or wintering grounds (Nisbet 2002).  Therefore, we estimated the 
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minimum retention duration as the number of days between the date of tag attachment 

and date of last detection by our network.  We classified transmitters as dropped if we 

detected a consistent, continuous signal from a single antenna over a period of several 

days, indicating that the transmitter was stationary.  When we did not have direct 

evidence of a dropped transmitter from our network, we assumed that an individual had 

dropped their transmitter if they were last detected by our network prior to the estimated 

fledging date of their chick (for successful nests) or the date of nest failure (for 

unsuccessful nests).  Previous research on Common Terns has determined that both 

members of the pair remain in the nesting colony until their chicks fledge (Nisbet 2002). 

Therefore, we assumed that individuals retained their transmitters and successfully 

dispersed from the nesting colony if their last detection from our network occurred after 

the estimated fledging date of their chicks.  

Data Analyses 

We tested for gender-based differences in transmitter retention rates through the 

fledging period using Pearson's Chi-squared test with Yates' continuity correction.  To 

compare minimum retention time (in days) between genders, we used a Mann-Whitney U 

test since our data violated the assumption of equal variance (rejected, P < 0.05).  To 

examine the effects of transmitters on reproductive success, we used a generalized linear 

mixed model with a logit link and binomial error distribution (lme4 package; R 

Development Core Team 2015), with the individual fledge success of each chick as the 

binary response variable (1 = survived to fledge, 0 = did not survive); hatch order, tag 

presence, and their interactions as fixed effects, and plot ID as a random effect.  We 

evaluated the significance of fixed effects in the model using Wald z-statistics, to assess 
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whether transmitter presence, hatch order, and their interactions had a significant 

influence on fledge success of chicks from tagged versus non-tagged nests (Bolker et al. 

2009).  We present mean ± SE unless stated otherwise. 

Results 

Tag retention 

Two transmitters malfunctioned immediately after deployment (i.e., did not transmit 

any data after tag date), and were removed from subsequent analyses. We captured most 

tagged birds during incubation (12.8 d ± 0.9 d before hatching, n = 38), whereas others 

were captured while brooding chicks (2 d ± 0.4 d after hatching, n = 10). Of the 48 

tagged individuals, we determined gender for 47 individuals: 24 females and 23 males. 

Nine tagged individuals (7 males and 2 females) were not detected by our automated 

array up to the estimated fledging date of their chicks, therefore we assumed these tags 

fell off prematurely.  We tracked individuals that dropped their tags for an average of 

30.1 d ± 0.6 d before we lost their signals.  Apparent detachment of tags occurred an 

average of 7.7 d ± 0.7 d before estimated fledge date.  The remainder of the tagged 

individuals (81%; n = 39) were detected by the network through the fledge date of their 

chicks. 

There was a tendency for females (92% retention, n = 24) to be more likely to retain 

their tags until their chicks' fledged than males (70% retention n = 23; χ-squared = 2.4, df 

= 1, P = 0.07, Fig. 2.2).  For all birds, mean retention time was 48.1 d ± 2.2 d (range 22 d 

to 90 d, n = 48), and for individuals that retained their tags to the post-fledging period the 

mean retention time was 52.3 d (± 2.2 d, n = 39).  There was no difference between 

genders in retention times for individuals that retained their tags until after their chick(s) 



39 
 

fledged (Mann-Whitney U-Test 170.5, P = 0.65; Fig. 2.3).  For adults tracked during the 

interval beginning with fledging of their chicks, and ending with their own departure 

from the study area, there was no difference between males and females in minimum 

retention times (Mann-Whitney U-Test 181.5, P = 0.89; Fig. 2.3). 

Tag effects 

Of the 48 broods associated with our tagged birds, only one brood did not have at 

least one chick fledge. There was no evidence of a difference in the fledge success of 

chicks from nests from tagged nests (1.68 ± 0.09 chicks fledged per brood) versus non-

tagged control nests (1.63 ± 0.11 chicks fledged per brood) and no significant interactions 

between tag presence and hatch order (Table 2.1).  Across both tagged and non-tagged 

control nests, probability of fledge was highest for A chicks and decreased with hatch 

order (Fig. 2.4). 

Discussion 

Retention 

Using the glue and suture technique, the majority (81%) of individuals in our study 

retained their transmitters until they departed from the nesting colony. This estimate is 

conservative because we assumed that birds that were not detected through the fledge or 

fail date of their nests dropped their transmitters, but the tags could have malfunctioned, 

as occurred with two tags shortly after deployment.  We did not recover any dropped tags 

near our network of land-based telemetry stations, indicating that transmitters may have 

fallen off while the birds were away from the colony.  We found slightly lower tag 

retention of males relative to females, which may result from male Common Terns 

spending more time foraging during the breeding period than females (Wiggins and 
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Morris 1987). Thus, transmitters on males may have been subjected to increased levels of 

stress and impact associated with plunge diving compared to females who spent more 

time during the chick-rearing period within the nesting colony.  

Retention time of transmitters in our study was similar to estimates reported by 

Ackerman et al. (2009), who used sutures to back-mount VHF transmitters to fledgling 

Forster's Terns and tracked their movements for up to 44 days.  Conversely, studies using 

different types of temporary attachment methods on terns, such as attaching transmitters 

to the central rectrices (Black 2006), or back-mounting transmitters with adhesive and/or 

tape (Perrow et al. 2006), reported considerably lower retention times (i.e., less than two 

weeks), indicating that these other attachment techniques are more suitable for short-term 

deployments.  Therefore, researchers requiring transmitter retention for one to three 

months, such as during the breeding period, should consider using glue in combination 

with sutures as it appears to be a more reliable method of tag attachment. 

Influence of tags on productivity  

During the breeding period, radio transmitters can reduce foraging efficiency and 

chick provisioning rates, leading to reduced chick growth and productivity (Whidden et 

al. 2007).  A reduction in chick provisioning may have had disproportionate influence on 

younger chicks, as typically the older, larger chicks often outcompete younger and 

smaller chicks for prey items that adults bring back to the nest (Nisbet 2002). Although 

we did document an inverse relationship between fledge success and hatch order across 

all nests in the study, we did not detect any differences among fledge success of chicks 

between tagged and control nests. 
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Several studies also examined effects of different types of back-mounted transmitters 

on terns during the breeding period (Massey et al. 1988, Hill and Talent 1990, Becker et 

al. 1993, Perrow et al. 2006). Although an early study on Least Terns (Sternula 

antillarum) reported abnormal behavior of four birds with radio-tags glued to the inter-

scapular region, the behavior was temporary and did not affect nest success or chick 

provisioning (Massey et al. 1988).  In a subsequent study of Least Terns, transmitters 

weighing 6 to 7% of body weight, and glued over the bird's center of gravity did not 

affect behavior, nest survival, nest predation, or nest desertion (Hill and Talent 1990). 

Additionally, transmitters glued to the back of Least Tern chicks did not influence their 

growth rate or movement, despite being 5 to 8% of a chick's weight (Whittier and Leslie 

2005).  Perrow et al. (2006) found no apparent adverse effects of back-mounted 

transmitters on the behavior and nesting success of Little Terns (Sternula albifrons) and 

suggested that the back-mounting attachment technique was "a relatively benign 

procedure".  During the breeding period, Common Terns carrying relatively heavy 

transmitters (8 g) glued to the skin between their wings, displayed similar behavior, food 

intake, energy expenditure, and body mass relative to controls (Klaassen et al. 1992, 

Becker et al. 1993).  

The glue and suture technique we used for this study appears to be a suitable 

technique for attaching transmitters to terns for medium-duration studies, such as during 

the breeding period, in regards to both transmitter retention and bird welfare.  However, 

because we were not able to track terns after they departed from our study area, the 

retention times reported herein should be considered minimum estimates.  Additional 

coordinated automated telemetry stations are currently being established throughout the 
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western Hemisphere (www.motus-wts.org), making it possible to track tagged birds over 

longer distances and thus will enable improved estimates of transmitter retention on 

Common Terns and other species after they depart from the breeding grounds.   

Although we did not observe adverse effects on the reproductive metrics that we 

examined, we suggest that researchers employing the glue and suture attachment 

technique in future studies examine additional effects that are specific to their study 

period. For studies during the breeding period, additional metrics could include foraging 

efficiency, physiological stress, chick growth and survival, and colony attendance 

(Burger and Shaffer 2008, Barron et al. 2010). For studies spanning the annual cycle, 

additional research on the effects of transmitters on energetics and return rates of tagged 

individuals may be warranted (Vandenabeele et al. 2011). 
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Table 2.1. Parameter estimates of a Generalized Linear Mixed Model of the effects of 

VHF transmitters on fledge success of nesting Common Terns, where fledge success is a 

binomial response variable, and fixed effects are: Group (where 'Tagged' indicates that 

nesting pair had one VHF tagged adult and 'Control' indicates that both adults in nesting 

pair were not VHF-tagged); Hatch Order (where A, B, and C indicate the first hatched, 

second hatched, and third hatched chicks, respectively) and their interactions. The 

'Tagged' Group and 'A' chick are the reference classes.  

 

Estimate SE z-value p-value 

(Intercept) 3.31 0.75 4.42 < 0.001 

Control Group -1.02 0.87 -1.18 0.238 

B Chick -2.22 0.81 -2.76 0.006 

C Chick -5.80 1.10 -5.28 < 0.001 

Control Group:B Chick 1.27 1.01 1.25 0.210 

Control Group:C Chick 2.04 1.34 1.52 0.129 

 

\  
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Figure 2.1. Study area in Nantucket Sound, Massachusetts, USA where Common Terns 

were monitored at a colony on Monomoy National Wildlife Refuge in 2013 (NWR; black 

star), seven land-based Automated Radio Telemetry Stations (ARTS; black circles), and 

the route of a passenger ferry with an ARTS (dashed line).  
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Figure 2.2. Cumulative distributions of minimum retention time (days) of VHF 

transmitters attached to adult male (n = 23) and female (n = 24) Common Terns tracked 

at Monomoy NWR in 2013. 
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Figure 2.3. Gender differences in minimum retention time (in days) of VHF-transmitters 

back-mounted on adult Common Terns and tracked by a network of automated radio 

telemetry stations after initial capture (upper panel), and after their chicks had fledged 

(lower panel). Horizontal lines of the boxes represent 25th, 50th and 75th percentiles, 

whiskers represent 5th and the 95th percentiles, and points represent outliers.  
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Figure 2.4. Probability that a Common Tern chick fledged as a function of hatch order in 

broods where one adult had a VHF-transmitter (Group: Tagged, n = 50) and neither adult 

had a transmitter (Group: Control, n = 50), where 'A', 'B', and 'C' identifies the first 

hatched, second hatched, and third hatched chick, respectively. 
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CHAPTER 3 

POST-BREEDING DISPERSAL AND STAGING OF COMMON AND ARCTIC 

TERNS THROUGHOUT THE WESTERN NORTH ATLANTIC  

Abstract 

In the western North Atlantic, Common (Sterna hirundo) and Arctic (S. paradisaea) terns 

are sympatric at breeding colonies but show divergent migration strategies to coastal 

areas of South America and pelagic regions of the Antarctic, respectively.  During 2013, 

we studied post-breeding movements of adult Common (n = 130) and Arctic (n = 52) 

terns from four breeding colonies in the eastern USA and Canada using digital VHF 

transmitters and an array of 62 automated radio telemetry towers. Common Terns were 

detected during the post-breeding period by coastal towers upwards of 850 km south of 

their original nesting sites. Our array detected post-breeding movements of Arctic Terns 

from the Petit Manan Island colony in the Gulf of Maine as they traveled eastward past 

Nova Scotia, Canada.  Nantucket Sound, Massachusetts, USA was identified as an 

important staging area for Common Terns from all colonies, whereby 26% (n = 53) of 

tagged Common Terns from colonies in the Gulf of Maine and Canada were detected for 

up to three weeks.  Common Terns were detected in Nantucket Sound within two to ten 

days after their last detection at Gulf of Maine and Canadian colonies suggesting rapid 

post-breeding dispersal.  Post-breeding dispersal of Arctic Terns was poorly documented 

with the array of receivers suggesting that this species uses offshore areas after departing 

their colonies prior to long-distance migrations.  Arrival times of both species at staging 

areas occurred at night and during early morning hours and departures followed at dawn. 

We conclude that digital VHF telemetry is a useful method for monitoring regional 
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movements of Common Terns, but additional offshore receiving stations are needed to 

effectively monitor movements of Arctic Terns away from their nesting colonies. 

Introduction 

During the post-breeding period, seabirds use various dispersal and staging strategies 

to build energy reserves for migration (Huettmann and Diamond 2000, Klaassen et al. 

2011, Montevecchi et al. 2012).  High-quality staging areas provide sufficient space for 

roosting aggregations, abundant prey, and minimal disturbance by humans and predators 

(Warnock 2010).  Species that disperse along the coast may use persistent staging areas 

with reliable roosting and foraging habitats (Trull et al. 1999), whereas species that roost 

and feed offshore may use dynamic staging areas in response to patchy prey distributions 

(Suryan et al. 2006, Guilford et al. 2009, Hedd et al. 2012).  Advances in tracking 

technologies are increasing our understanding of the connectivity between nesting 

populations and staging areas of seabirds (Mosbech et al. 2012, Gilg et al. 2013, van der 

Winden et al. 2014).  However, detailed information on post-breeding dispersal and 

staging movements is lacking for many species of seabirds, such as the small-bodied 

terns, due to limitations of the spatial and temporal resolution of lightweight tracking 

devices (Bridge et al. 2011).  In this study, we used digital Very High Frequency (VHF) 

radio transmitters and an array of coordinated automated radio telemetry stations 

('telemetry array') to track the post-breeding movements of small-bodied seabirds at a 

regional scale. 

In the western North Atlantic, from southern Labrador, Canada (52° N) to Cape Cod, 

Massachusetts, USA (41° N), the breeding ranges of Common (Sterna hirundo) and 

Arctic (S. paradisaea) terns overlap and the two species nest sympatrically on nearshore 
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and offshore islands (Gaston et al. 2009, Kress et al. 1983).  Common and Arctic terns 

target similar species of prey fish and invertebrates (Rock et al. 2007).  However, 

differences in the proportions of prey types consumed by each species, and differences in 

habitat use, where Common Terns generally feed inshore and Arctic Terns tend to feed 

more offshore, suggests some degree of resource partitioning (Braune and Gaskin 1982, 

Hall et al. 2000, Hatch 2002).  The wintering ranges of these populations are 

geographically separated, with Common Terns wintering along the coasts of Central and 

South America (Hays et al. 1997, Nisbet et al. 2011a), and Arctic Terns wintering along 

the Antarctic pack ice (Hatch 2002).  

Little is known about the fall migratory routes of terns that breed in the western North 

Atlantic; although recent studies using archival light-level loggers (geolocators) have 

revealed that Common Terns migrate directly south across western North Atlantic 

(Nisbet et al. 2011a), and Arctic Terns depart east across the north Atlantic (L. Welch, 

unpublished data).  Prior to migration, mixed flocks of terns (primarily Common and 

Roseate (S. dougallii) terns) stage at sites along the U.S. Atlantic coast from Maine 

through New Jersey (Shealer and Kress 1994, Nisbet 2002), with large flocks of over 

>10,000 terns reported on Cape Cod, Massachusetts (Trull et al. 1999). However, there 

are few quantitative data regarding the post-breeding movements of terns nesting in the 

western North Atlantic.   

In 2013, we conducted a regional study of the post-breeding movements of Common 

and Arctic terns from four nesting colonies using digital VHF transmitters and telemetry 

array that extended from Nova Scotia, Canada to Cape Cod, MA, USA. The specific 

objectives of our study were to quantify: 1) length of stay at nesting colonies, 2) timing 
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and length of stay at staging sites, 3) timing of departure from the study area, and 4) diel 

variation in staging and departure movements. 

Methods 

Study area  

During 2013, we conducted telemetry studies at four breeding colonies ranging from 

north-eastern Nova Scotia, Canada to Cape Cod, MA, USA (Fig. 3.1). Petit Manan Island 

(44°21' N, 67°52' W) is a 6.5-ha island located approximately 4 km off the coast of 

Maine, USA and supports a mixed colony of about 1,370 pairs of Common and Arctic 

terns (Gulf of Maine Working Seabird Group (GOMSWG) 2013). Country Island (45°06' 

N, 61°32' W), is a 19-ha island located approximately 5 km off the east coast of Nova 

Scotia, Canada and contains a mixed colony of about 1,300 pairs of Common and Arctic 

terns (GOMSWG 2013). Sable Island (43°55' N, 60°00' W) is a crescent-shaped, 3,400-

ha island located approximately 180 km offshore from mainland Nova Scotia, Canada. 

Approximately 4,200 pairs of Common and Arctic terns nested on Sable Island during 

recent surveys in 2013 (Ronconi et al. in press). Monomoy National Wildlife Refuge 

(NWR; 41°37' N, 69°59' W) is a 2,800-ha barrier beach and island complex located in the 

eastern Nantucket Sound region of Massachusetts, USA, approximately 400 to 800 km 

south of the northern tern colonies included in this analysis. Located within Monomoy 

NWR and < 5 km from the mainland coast of Cape Cod, South Monomoy Island supports 

one of the largest Common Tern colonies on the Atlantic coast, with over 7,500 nesting 

pairs in 2013 (GOMSWG 2013). Small numbers (< 18 pairs) of Arctic Terns historically 

nested on the islands of Monomoy NWR, but have not since 1990 (USFWS, unpublished 

data). 
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Automated radio telemetry 

In 2013, a telemetry array (www.motus-wts.org) was established at the four colony 

study sites and an additional 62 coastal and island sites spanning nearly 1,000 km of 

coastline from north-eastern Nova Scotia to Cape Cod (Fig. 3.1).  Each telemetry station 

was equipped with automated data-logging VHF receivers (SRX-600, Lotek Wireless 

Newmarket, ON or SensorGnome http://www.sensorgnome.org) connected to antennas 

using RG58 coaxial cable.  Antennas included single-pole omni-directional, or an array 

of two to six directional (Yagi) antennas (five or nine element) mounted on lighthouses, 

10-m telescoping tripod poles, or other structures.  Receivers were plugged into external 

AC power sources, or powered by solar panel arrays (one or two 55 or 65 W panels) 

connected to a battery bank (one to five 12VDC sealed lead acid batteries).  Receivers 

monitored and recorded VHF signals from all tagged birds within detection range 

(typically < 20 km) continuously from time of tagging at each site through to October (all 

sites) or December (Sable Island, Country Island, and some coastal sites).  

Tagging 

From early June to mid-July 2013, we used walk-in traps and bow nets to capture 

terns at their nest sites during the late incubation period through approximately 3 days 

following hatch. Across the four study sites, we deployed a total of 182 transmitters on 

130 adult Common Terns and 52 adult Arctic Terns (Tables 3.1 and 3.2). All terns were 

tagged using digitally-coded VHF transmitters (Avian NanoTag series; Lotek Wireless, 

Newmarket, ON) that allowed over 500 individual identification codes to be monitored 

simultaneously on a single frequency (166.380 MHz). Depending on the site, transmitters 

weighed between 1.2 to 1.5 g and were programmed with burst rate intervals that varied 

http://www.motus-wts.org/
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between 4.8 to 10.5 seconds, resulting in an expected tag life that ranged from 124 to 240 

days.  At each site, transmitters were attached to the inter-scapular region using 

cyanoacrylate adhesive and held in place with sub-cutaneous sutures that were secured to 

the transmitter through custom fit end-tubes (inner diameter 1 mm). 

We assessed transmitter retention by searching for dropped transmitters within the 

tern colony, and by examining signals recorded by automated radio telemetry stations, 

where continuous detections by a single antenna over multiple days indicated a stationary 

tag.  Individuals with dropped transmitters were excluded from subsequent analyses. 

However, we were unable to account for birds with dropped transmitters that were not 

recovered by field crews or that were dropped beyond detection range of the automated 

radio telemetry array.   

Data Processing 

All analyses were conducted in R version 3.0.2 (R Development Core Team 2016). 

We processed raw detection data using a burst rate filter in the R package 'sensorgnome' 

(Brzustowski 2015), that retained data as valid when at least three consecutive detections 

were separated by the transmitters' burst rate interval.  

Length of Stay 

Length of stay at the nesting colonies was calculated as the number of days between 

estimated hatch date and departure date from colony; however, we excluded nine nests 

from Petit Manan Island that failed prior to hatch (three Common Tern nests and six 

Arctic Tern nests).  Length of stay at staging sites was calculated as the difference in days 

between the time of first detection at the staging site and the time of final detection at the 
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staging site.  Length of stay in the study area was calculated as the difference in days 

between the time of tagging and the time of last detection by the telemetry array.  

After verifying normality and homoscedasticity of the data, we fit a series of general 

linear models to compare the length of stay by species and colony.  For the first model, 

the dependent variable was length of stay in the colony and the independent variables 

were species (Arctic or Common Tern), nesting colony (Petit Manan Island, Country 

Island, or Sable Island), and an interaction term between species and nesting colony.  For 

the second model, the dependent variable was length of stay in the study area and the 

independent variables were species (Arctic or Common Tern), nesting colony (Petit 

Manan Island, Country Island, or Sable Island), and an interaction term between species 

and nesting colony.  We used post-hoc Tukey tests (R package 'multcomp', Hothorn 

2016) to determine which colonies were significantly different (p < 0.05) for all 

comparisons.  

We fit two additional general linear models using data from just the Common Terns 

in our study.  For these models, we compared length of stay in the nesting colony and 

length of stay in the study area between Common Terns from the colonies in the Gulf of 

Maine and Canada (pooled) versus Common Terns from the South Monomoy Island 

colony in Nantucket Sound.  

Dispersal and staging 

We examined the probability of dispersal to Nantucket Sound by Common Terns 

among the three colony sites in the Gulf of Maine and Canada using logistic regression, 

where the dependent variable was binary (where 1 = individuals that staged in Nantucket 

Sound and 0 = individuals that did not), and the independent variables were nesting 
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colony (Petit Manan Island, Country Island, or Sable Island) and length of stay in the 

nesting colony (in days). We used a likelihood ratio test to assess the effects of colony 

site and length of stay in the nesting colony (Hosmer and Lemeshow 2001).  

Next, we present summary statistics of the distance and duration of staging 

movements detected by the array. We calculated the distance of staging movements as 

the Euclidian distance traveled between the nesting colony and staging sites. We 

estimated travel time as the number of days between the last detection at the colony and 

the first detection at staging sites in the Nantucket Sound region (specifically Monomoy 

NWR, and Great Point, Coatue Point, and Eel Point, on Nantucket Island, and Muskeget 

Island). We calculated length of stay at staging sites as the total amount of time (in days) 

between the first and last detection recorded by automated radio telemetry station(s) at 

each site.  For all birds, we assumed that the timing of their final observations coincided 

with departure from the study area.  However, estimates of length of stay and departure 

dates at the nesting colonies and staging sites should be considered minimum estimates 

due to the possibility of additional, unobserved dropped tags. 

Diel variation in movements 

To examine diel variation in movements, we used circular statistics (R package 

'Circular', Agostinelli and Lund 2013) to calculate mean departure times (on a 24-hour 

clock) and mean resultant length of timing of key movements (ρ, a measure of dispersion 

of a sample of directional measurements). Specifically, we examined: 1) arrival times of 

Common Terns at staging sites; 2) timing of detections of post-breeding movements of 

Arctic Terns; and 3) departure times from the study area for both species. We used a 

Watson's goodness of fit test to determine if circular data met the assumptions of a von 
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Mises distribution (circular normal). The data on timing of arrival to staging areas and 

timing of post-breeding movements of Arctic Terns from Petit Manan Island detected 

passing through Nova Scotia did not meet the assumptions for the von Mises distribution, 

so we used the non-parametric Rao spacing test of non-uniformity to determine if these 

times were spaced uniformly throughout a 24-hour period (Batschelet 1981, Zar 1999). 

The data on departure times from the study area met the assumptions of the von Mises 

distribution, so we used the parametric Rayleigh test of uniformity to determine whether 

the distribution of departure times was uniform throughout a 24-hour period.  We then 

conducted a circular Analysis of Variance (R package 'Circular', Agostinelli and Lund 

2013) to assess variation in departure times between species (Zar 1999). 

Results 

Tag retention 

Of 182 deployed transmitters, 13 transmitters (7%) were dropped before individuals 

departed their nesting colony (2 of which were redeployed).  This resulted in a total of 

171 tags (120 Common Terns and 51 Arctic Terns) that were included in the final 

analyses (Table 3.1).  

Length of stay  

Length of stay at the colony site differed significantly between Arctic and Common 

terns (F1,87 = 6.312, p = 0.014) but not among colonies (F2,87 = 1.439, p = 0.334; Fig. 3.2). 

Overall, mean (± SE) length of stay at the colony was about 8 days longer for Arctic 

Terns (29 days ± 2 days, range -5 to 48 days) than Common Terns (21 days ± 2 days, 

range -5 to 71 days).  For Common Terns, length of stay in the colony was significantly 
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longer (T117 = 5.992, p <0.001) for birds from the South Monomoy Island colony in 

Nantucket Sound compared to birds from the colonies in the Gulf of Maine and Canada. 

 For Common and Arctic terns from colonies in the Gulf of Maine and Canada, mean 

departure date from the study area was 22 July (range 19 Jun to 7 Sep) and did not differ 

significantly among colonies (F2,96 = 0.261, p = 0.771) or species (F1,96 = 1.133, p = 

0.290; Table 3.2). Common Terns from Nantucket Sound departed from the study area 

significantly later (t117 = 5.91, p < 0.001) relative to Common Terns from colonies in the 

Gulf of Maine and Canada (Table 3.2).  

Dispersal of Common Terns 

Overall, 26% of Common Terns from the three colonies in the Gulf of Maine and 

Canada were detected in Nantucket Sound during dispersal (Fig. 3.3). We found no 

significant differences in the probability of dispersal to Nantucket Sound among nesting 

colonies (Likelihood Ratio Test: χ² = 60.26, n = 52, p = 0.854), although there was a 

significant, positive relationship between length of stay at the nesting colony and 

probability of staging in Nantucket Sound (Likelihood Ratio Test: χ² =  38.341, n = 52, p 

< 0.001). The mean (± SE) minimum (Euclidian) distance traveled by Common Terns (n 

= 14) from their nesting colonies to Nantucket Sound was 705 km (± 62 km; range 352 to 

891 km). The mean (± SE) trip duration was 4.58 days (± 0.65 days; range 1.77 to 10.0 

days; Table 3.3). 

Common Terns from colonies in the Gulf of Maine and Canada arrived in Nantucket 

Sound between 26 July and 6 Sep, and departed from Nantucket Sound between 7 Aug 

and 7 Sep (Table 3.4). Mean (± SE) length of stay of Common Terns (n = 14) in 

Nantucket Sound was 5.24 days (± 1.58 days; range < 1 to 23.28 days; Table 3.4). All of 
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the terns staging in the Nantucket Sound area were detected at Monomoy NWR., with 

some birds remaining for up to three weeks (Table 3.5). With the exception of one tern 

from Country Island, Common Terns that dispersed to Nantucket Sound were not 

detected again by northern sites within our network of telemetry towers, indicating they 

likely departed southward from the region to continue migration. The one Country Island 

tern staged in Nantucket Sound for 2.75 days, and then flew approximately 160 km north 

to the Isle of Shoals in the Gulf of Maine where it was detected for approximately three 

hours before departing from the study area.  

Dispersal of Arctic Terns 

Dispersal movements of Arctic Tern were largely undetected by the telemetry array. 

Arctic Terns from Sable Island and Country Island were not detected beyond 100 km of 

their nesting colonies. We detected 27% (n = 15) of the Arctic Terns from Petit Manan 

Island at sites along the eastern coast of Nova Scotia during post-breeding period, 

between 25 July and 17 Aug (Fig 3.4).  Three of the four Arctic Terns detected in Nova 

Scotia were observed for < 5 minutes as they passed within range of receiving stations. 

The remaining bird departed the breeding colony and was detected along the coast of 

Nova Scotia for three days.  It then traveled back to the breeding colony, where it 

remained for approximately one day.  This bird then traveled back through Nova Scotia 

where it was detected for less than five minutes as it passed by within range of a 

telemetry station.  The mean (± SE) minimum (Euclidian) distance traveled by Arctic 

Terns (n = 4) from the Petit Manan Island colony to sites in Nova Scotia was 682 km (± 

266 km; range 377 to 1,478 km) and the mean (± SE) trip duration was 10.02 days (± 

3.74 days; range 1.00 to 17.90 days; Table 3.3).  Mean (± SE) length of stay of Arctic 
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Terns (n = 4) from the Petit Manan Island colony at sites in coastal Nova Scotia was 0.78 

days (± 0.77 days; range < 0.01 to 3.11 days; Table 4).   

Timing of movements 

For Common and Arctic Terns that were detected away from their colony sites during 

the post-breeding period (n = 14 Common Terns and n = 4 Arctic Terns, respectively), 

Common Terns arrived at staging areas between 15:00 hrs and 05:00 hrs, peaking within 

two hours of sunset (Fig. 3.5A), and Arctic Terns were detected passing by the coast of 

Nova Scotia at night, between 22:00 hrs and 04:00 hrs (Fig. 3.5B). Across all terns in the 

study (n = 182), timing of departure from the study area occurred just before sunrise, with 

a unimodal distribution that had a mean departure time of 04:49 hrs (ρ = 0.175; Fig. 3.6). 

Departure times were not uniformly distributed throughout the day (R=0.1753, p = 

0.005), and did not vary between species (Circular Analysis of Variance Likelihood Ratio 

Test: χ² = 0.001, n = 182, p = 0.972). 

Discussion 

Using an automated international telemetry array and VHF tracking technology, this 

study offered new insights into the migratory behavior of two seabird species from 

breeding sites in the western North Atlantic. We documented connectivity among nesting 

sites in the Gulf of Maine and Canada for Common Terns and a staging site in 

Massachusetts, USA. In contrast, the lack of detections of Arctic Terns by the array 

suggests this species predominately migrates offshore. From a behavioral perspective, our 

data show that both tern species initiate post-breeding movements principally at night, 

typically within two hours prior to sunrise.  
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Our results showed wide variation in length of stay of terns at the colony site relative 

to their hatch dates. Among Common and Arctic terns, timing of fledging typically varied 

between 21 to 29 days after eggs hatch and successful breeders disperse away from their 

colony sites between 10 to 20 days after chicks fledge (Nisbet 1976, Hatch 2002), 

whereas failed breeders may depart from the colony within days following nest loss (P. 

Loring, unpublished data).  However, due to incomplete productivity data across our 

study sites, we were unable to relate departure date to reproductive success of individual 

birds in this analysis.  Alternatively, differences in length of stay among colonies may 

also be influenced by variation of prey availability (Safina and Burger 1989), which we 

were unable to quantify in this study.  It is also likely that some apparent departure prior 

to estimated fledge dates was due to tag loss or malfunction.  We removed known 

dropped transmitters (7% of deployments) from analyses, but it is possible that additional 

birds dropped their transmitters beyond range of the telemetry array prior to colony 

departure, and thus were not accounted for as dropped.  Therefore, estimates of length of 

stay at the colony site and proportions of terns that staged in the Nantucket Sound region 

should be considered a minimum. 

During the post-breeding period (July and August), Common and Roseate terns from 

nesting colonies throughout the western North Atlantic may disperse hundreds of 

kilometers to staging areas throughout the region (Austin 1953, Shealer and Kress 1994, 

Trull et al. 1999).  We found that, from late July to early September, 26% (n = 53) of our 

tagged Common Terns from northern colonies dispersed up to 800 km to staging areas in 

Nantucket Sound, and that their mean travel time (< 1 week) was shorter relative to the 
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dispersal of Roseate Terns across similar distances reported by other studies (mean travel 

time > 3 weeks (Shealer and Kress 1994). 

Nesting terns remained significantly longer at the South Monomoy Island colony, and 

all of the Common Terns from northern colony sites that staged in the Nantucket Sound 

region were detected at Monomoy NWR. Some birds remained on Monomoy NWR for 

up to three weeks.  During the post-breeding period, Monomoy NWR is known as an 

important staging area for terns, due to its remote location with relatively low levels of 

human disturbance, large area of sand flats available for roosting, and proximity to 

foraging areas that includes extensive shoals (Trull et al. 1999).  During the post-breeding 

period, the majority of staging terns in the Cape Cod and Nantucket Sound region used 

Monomoy NWR and an adjacent barrier beach as nocturnal roosting areas (Trull et al. 

1999).  We found that a minimum of 25% of our tagged birds from Gulf of Maine and 

Canadian tern colonies dispersed to Monomoy NWR during the post-breeding period, 

further highlighting the importance of Monomoy NWR for post-breeding terns within the 

western North Atlantic Ocean. 

Common Terns that staged in Nantucket Sound departed from the region between 

mid-August and early September, which is consistent with past studies (Veit and Petersen 

1993, Trull et al. 1999).  Using geolocators, Nisbet et al. (2011b) found that the mean fall 

migration date of female Common Terns from the southern New England area was in 

mid-August, while the mean date for males was in early September.  Most terns that 

staged in Nantucket Sound appeared to depart from the study area from that region, with 

the exception of one individual that was detected flying from Nantucket Sound to the 

Gulf of Maine prior to departure.  Northern movements of terns from the southern New 



68 
 

England region to sites in Gulf of Maine during the post-breeding period was 

documented for Common Terns (Austin 1953) and Roseate Terns (Shealer and Kress 

1994).  

With the exception of eastward movements of Arctic Terns from the Petit Manan 

Island colony that were detected passing through sites in Nova Scotia, we were unable to 

assess the post-breeding dispersal of Arctic Terns with our telemetry array.  This suggests 

that Arctic Terns use offshore routes after departing their colonies.  This was not entirely 

unexpected, as prior research to document Arctic Tern migration using geolocators have 

demonstrated that Arctic Terns from colonies in the Gulf of Maine traveled north-

northeast after nesting, then migrated east across the Atlantic Ocean (L. Welch, 

unpublished data).  Geolocator studies of Arctic Terns tagged from colonies in Greenland 

and Iceland revealed that, during post-breeding dispersal, individuals traveled to a pelagic 

stopover region in the eastern Newfoundland Basin and western slope of mid-North 

Atlantic Ridge (41 to 53° N and 27 to 41° W) where they spent an average of three weeks 

prior to migrating southeast towards the coast of Africa (Egevang et al. 2010). 

Departure movements of both species were initiated primarily at night during this 

study.  There is little empirical evidence of the precise timing of tern movements within 

the literature, but observational and radar data indicate that terns initiate migratory 

movement at dusk and fly at migratory altitudes (1,000 to 3,000 m) during night 

(Alerstam 1985, Veit and Petersen 1993).  We found that, for both Common and Arctic 

terns, departure times from the study area peaked just before dawn (04:00 to 05:00 hrs).  

It is possible that these departure times coincided with morning foraging flights, as peak 

foraging activity is known to occur largely during morning hours (Burger and Gochfeld 
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1991, Galbraith et al. 1999).  More complete coverage of automated radio telemetry 

stations throughout their post-breeding range is needed to more precisely quantify timing 

of migratory movements using digital VHF technology. 

Conclusions 

Common and Arctic terns from colonies in the western North Atlantic exhibit 

divergent strategies for dispersal.  Nantucket Sound appears to be an important pre-

migratory staging area for Common Terns from breeding colonies in the western North 

Atlantic.  More information is needed on post-breeding movements of Arctic Terns to 

identify important offshore staging areas, although geolocator technology has provided 

evidence of offshore staging and stopover areas at relatively coarse temporal and spatial 

scales (Egevang et al. 2010, Duffy et al. 2013, McKnight et al. 2013).  Additional 

automated radio telemetry stations, in both coastal and offshore areas, would be useful 

for more accurately tracking the post-breeding movements of Common and Arctic terns 

in our study area.  
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Table 3.1. Number of Common and Arctic terns fitted with digital VHF transmitters at 

four colonies in the western North Atlantic in 2013. Tagged (n) indicates the starting 

sample size, and Final (n) indicates the sample size retained for subsequent analyses after 

removing (and in some instances redeploying) transmitters that were dropped. 

 

 

 

 

 Tagged (n)  Final (n) 

    

Colony Common Arctic  Common Arctic 

Petit Manan Is.   14 16    14 15 

Country Is.   15 15    11 16 

Sable Is.   29 21    28 20 

Monomoy Is.   72   0    67   0 

Total 130 52  120 51 
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Table 3.2.  Median (range) dates of transmitter deployment, estimated hatch, and final detection in our study area of Common (n = 

120) and Arctic terns (n = 51) marked with digital VHF transmitters at four nesting colonies in the western North Atlantic in 2013.  

 Deployment Hatch  Final detection 

Colony Common Arctic Common Arctic Common Arctic 

Petit Manan Is. 6/13 (6/13-6/21) 6/13 (6/13-6/20) 6/26 (6/22-6/30) 6/24 (6/20-7/20) 7/23 (6/28-8/19) 7/23 (6/27-8/17) 

Country Is. 6/15 (6/14-7/4) 6/15 (6/14-7/14) 6/26 (6/23-7/20) 6/24 (6/20-7/20) 7/9 (6/23-8/18) 7/30 (6/28-8/14) 

Sable Is. 6/10 (6/9-6/13) 6/10 (6/9-6/11) 6/24† 6/24† 7/20 (6/20-9/7) 7/30 (6/19-8/10) 

Monomoy Is 6/20 (6/4-7/6) --- 6/21 (6/15-7/15) --- 8/5 (7/4-9/15) --- 

† On Sable Island, individual nests were not monitored so assumed mean hatch date of 6/24  
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Table 3.3. Mean (± SE and range) distance traveled by Common (n = 53) and Arctic terns (n = 51) to post-breeding dispersal sites and 

duration (in days) of post-breeding dispersal movements (assuming Euclidian distances) from three nesting colonies in the western 

North Atlantic during 2013.   

 Minimum Distance Traveled (km) Trip Duration (days) 

Colony Common Arctic Common Arctic 

Petit Manan Is. 356 (± 3; 352-361) 681 (± 265.7; 377-1478) 3.5 (± 0.9; 1.8-5.8) 7.5 (± 2.9; 1.0-17.9)  

Country Is. 556 (± 199; 160-786) --- 2.4 (± 0.4; 1.5-2.8) --- 

Sable Is. 867 (± 5; 851-891) --- 5.5 (± 0.9, 2.6 - 10.0) --- 
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Table 3.4. Common (n = 14) and Arctic Tern (n = 4) arrival and departure dates (median and range) and length of stay (mean ± SE 

and range) at post-breeding dispersal sites from three nesting colonies in the western North Atlantic in 2013.   

 Arrival date Departure date Length of stay (days) 

 Common Arctic Common Arctic Common Arctic 

Petit Manan Is.  8/4 (7/26 - 8/6) 8/1 (7/25 - 8/17) 8/12 (8/7 - 8/19) 8/3 (7/30 - 8/17) 10.20 (± 4.41; 4.04-

23.28) 

0.78 (±0.77; 

<0.01 - 3.11) 

Country Is. 8/10 (8/6 - 8/13) --- 8/16 (8/14 - 8/18) --- 6.36 (± 1.43; 4.92-

7.79) 

--- 

Sable Is. 8/11 (7/26 - 9/6) --- 8/12 (7/27 - 9/7) --- 2.47 (± 0.90; 0.01 - 

7.68) 

--- 
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Table 3.5. Number of Common Terns detected (n) and their length of stay (mean ± SE 

and range, in days) in Nantucket Sound, MA from three nesting colonies in the western 

North Atlantic during the post-breeding dispersal period in 2013. 

Colony n Length of stay  SE Min Max 

Petit Manan Island  4 9.29 4.20 4.02 21.83 

Country Island 2 3.91 3.18 0.73 7.09 

Sable Island 8 1.82 0.94 0.00 7.68 
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Figure 3.1. Map of 2013 study area in the western North Atlantic showing the locations 

of four tern breeding colonies (insets) and 62 automated radio telemetry stations, each 

consisting of directional antenna arrays mounted on masts or lighthouses (solid and open 

triangles, respectively) or omnidirectional antennas positioned in tern colonies (solid 

points).  
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Figure 3.2. Mean (± SE) length of stay (in days), relative to estimated hatch dates, within 

the nesting colony of Common Terns (yellow) and Arctic Terns (blue) during the 

breeding period.  
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Figure 3.3. Euclidian post-breeding movements of tagged Common Terns (n = 120) from 

four nesting colonies in the northwest Atlantic (Petit Manan Island, Maine, USA [red]; 

Country Island, Nova Scotia, Canada [yellow]; Sable Island, Nova Scotia, Canada 

[green]; and South Monomoy Island, Massachusetts, USA [blue]) tracked by 62 

automated radio telemetry stations during the 2013 post-breeding dispersal period. Black 

arrows show generalized direction of travel. 
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Figure 3.4. Euclidian post-breeding movements of tagged Arctic Terns (n = 52) from 

three nesting colonies in the northwest Atlantic (Petit Manan Island, Maine, USA [red]; 

Country Island, Nova Scotia, Canada [yellow]; and Sable Island, Nova Scotia, Canada 

[green]) tracked by 62 automated radio telemetry stations during 2013. Black arrows 

show generalized direction of travel. 
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Figure 3.5. Diel variation (hrs, in local time) in arrival times of Common Terns (n = 14) 

from three nesting colonies in the northwest Atlantic (Petit Manan Island, Maine, USA; 

Country Island, Nova Scotia, Canada; and Sable Island, Nova Scotia, Canada) at staging 

areas in Nantucket Sound, Massachusetts, USA during 2013. Dashed lines show local 

times of sunrise (orange) and sunset (blue). 
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Figure 3.6. Diel variation (hrs, in local time) in passage times of Arctic Terns (n = 4) 

from Petit Manan Island, Maine, USA passing through sites in Nova Scotia, Canada 

during the post-breeding period in 2013. Dashed lines show local times of sunrise 

(orange) and sunset (blue). 

 

  



88 
 

 

Figure 3.7. Diel variation (hrs, local time) of post-breeding departure times of Common 

Terns (6A; n = 120) from western North Atlantic study area during 2013. Dashed lines 

show local times of sunrise (orange) and sunset (blue). 
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Figure 3.8. Diel variation (hrs, local time) of post-breeding departure times of Arctic 

Terns (6B; n = 52) from western North Atlantic study area during 2013. Dashed lines 

show local times of sunrise (orange) and sunset (blue). 
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CHAPTER 4 

 

ATMOSPHERIC, TEMPORAL, AND DEMOGRAPHIC FACTORS INFLUENCE 

EXPOSURE OF COMMON TERNS TO OFFSHORE WIND ENERGY AREAS IN 

THE U.S. ATLANTIC 

Abstract 

Individual-based tracking studies are critical for assessing potential effects of offshore 

wind energy facilities on bird populations.  This is particularly true when inclement 

weather limits visibility and leads to elevated collision risks with offshore wind turbines.  

In 2014, we attached digital VHF transmitters to 116 adult Common Terns (Sterna 

hirundo) from two major nesting colonies in the U.S. Atlantic: South Monomoy Island, 

MA and Great Gull Island, NY.  We tracked their regional movements using a network of 

automated towers erected at strategically-placed coastal and offshore sites from Cape 

Cod, MA, to Long Island, NY, and used a Brownian Bridge Moment Model to estimate 

flights across Wind Energy Areas (WEAs) in state and federal waters. We used an 

extended Cox Proportional Hazard Analysis to model the rate of WEA crossing events to 

various atmospheric and demographic covariates.  We documented a total of 94 WEA 

crossing events that occurred across all hours of the day and night.  Adult females from 

Great Gull Island were more likely to cross WEAs relative to males from South 

Monomoy Island.  WEA crossing events that occurred early on in the study period, 

within days following chick hatch, were associated with higher wind speeds and lower 

visibility relative to events that occurred later in the study period, during post-breeding 

dispersal.  Our study addresses a long-standing information gap on the movements of 
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terns at night and during inclement weather, and demonstrates the utility of digital VHF 

telemetry for conducting similar studies on the taxonomically similar but Federally 

endangered Roseate Tern (Sterna dougallii).  

Introduction 

Renewable energy initiatives, such as the U.S. Department of Energy's effort to 

achieve 54 gigawatts of offshore wind generating capacity by 2030, have spurred plans 

for development of offshore wind energy facilities off the U.S. Atlantic Coast (Beaudry‐

Losique et al. 2011).  To date, the Bureau of Ocean Energy Management (BOEM) has 

issued eleven commercial wind energy leases within the Atlantic Outer Continental Shelf 

(AOCS), totaling over 1.1 million acres (4,781 km2) of Federal waters (≥ 5.5 km 

offshore), and is in the planning stages for leasing additional offshore areas along the 

AOCS (Bureau of Ocean Energy Management 2016).  Several Atlantic coast states are 

developing plans to site additional wind energy facilities within their jurisdictional waters 

(≤ 5.5 km from the coast), and the first offshore wind facility in the U.S. is currently 

under construction off the coast of Rhode Island (Baranowski et al. 2016).  

With this expansion in renewable energy development offshore comes a need for 

more detailed information on the occurrence of birds in the AOCS, so that possible 

adverse effects to avian populations can be monitored and managed (Goodale and 

Milman 2016).  Research at existing facilities in western Europe has shown that offshore 

wind facilities may subject birds to various adverse effects, including: acting as barriers 

to movement (e.g. between foraging and roosting sites, along migration routes); 

destruction, modification, or displacement of habitat; and causing direct mortality from 

collisions with infrastructure or pressure vortices (Exo et al. 2003, Fox et al. 2006).  
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Risks of collisions with offshore wind turbines are elevated during periods of night and 

low visibility (Dirksen et al. 1998), and inclement weather conditions, such as fog, 

precipitation, or high wind speeds (Exo et al. 2003).  Thus, information on timing, 

distribution, movements of birds offshore, particularly at night and during adverse 

weather conditions, is needed for siting offshore wind facilities in areas with relatively 

low levels of avian use, and for monitoring interactions between birds and wind energy 

facilities that have already been sited using the best available science (Johnson 2014). 

Previous work within the AOCS assessed the timing, distribution, and movements of 

birds using ship-based, aerial, and telemetry surveys (Perkins et al. 2003, Sadoti et al. 

2005, Winiarski et al. 2014, Goyert et al. 2016).  Ship-based and aerial survey methods 

provide static counts of the spatial distribution and abundance of birds in offshore areas. 

However, these surveys are typically limited to periods of daylight and favorable weather 

with suitable conditions for observation, so are less suitable for collecting information at 

night and during inclement weather when collision risks are elevated (Allison et al. 

2008). 

Telemetry studies use tracking devices to monitor the locations of marked 

individuals, and many types of devices are capable of providing information on 

movements throughout the diel period and during all types of weather conditions (Kunz 

et al. 2007, Burger and Shaffer 2008).  This information can be used to assess 

demographic variation in use of offshore areas, including species, breeding population, 

age, and sex (Montevecchi et al. 2012).  In addition, tracking studies provide critical 

information on movement pathways, including those between nocturnal and diurnal roost 

areas (Allison et al. 2006), feeding and nesting areas (Perrow et al. 2006), and during 
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migration (Griffin et al. 2010).  Individual-based information is also useful for assessing 

temporal variation in offshore movements, including patterns related to time of day, 

season, and the stage of the annual cycle, such as the breeding versus non-breeding 

periods (Drewitt and Langston 2006). 

To date, several telemetry studies have been conducted throughout the AOCS with a 

focus on collecting data on the movements of birds offshore to help inform siting 

decisions of offshore wind energy areas.  However, due to limitations of available 

technologies suitable for tracking wide-ranging birds offshore, these studies have been 

focused on monitoring relatively large-bodied taxa, such as seaducks (Meattey et al. 

2015, Allison et al. 2006, Loring et al. 2014), loons (Gray et al. 2015), gannets (Adams et 

al. 2015), and raptors (Desorbo et al. 2015).  The smallest available satellite-based 

transmitters are still relatively heavy (5 to 10 g) for use on small-bodied (< 150 g) bird 

species since tags should be restricted to < 3 to 5% of body mass to minimize impacts to 

tagged individuals (Fair et al. 2010). 

The Roseate Tern (Sterna dougallii), is a small-bodied seabird (mean mass 115 ± 7 g, 

range 90 to 133 g, Nisbet et al. 2014) that is listed as Endangered under the U.S. 

Endangered Species Act and is known to occur within the Atlantic OCS during breeding, 

staging, and migration (Burger et al. 2011).  Along the Atlantic coast of North America, 

Roseate Terns breed in mixed colonies in association with the taxonomically similar 

Common Tern (Sterna hirundo) on a limited number of islands distributed from Maritime 

Canada to Long Island, New York (Nisbet et al. 2014).  Relative to the Roseate Tern, the 

North American Atlantic coast breeding range of the Common Tern is more widespread 

and extends from Newfoundland and Labrador, Canada to South Carolina, USA (Nisbet 
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2002a).  The Common Tern is considered a USFWS “conservation focal species” (Mid-

Atlantic/New England/Maritimes Region Waterbird Working Group 2006) and listed as a 

Threatened or Special Concern species by states encompassing its U.S. Atlantic coast 

breeding range.  During the post-breeding period, both Common and Roseate Terns may 

disperse hundreds of kilometers away from their nesting colonies to congregate at staging 

areas, some of the largest of which are known to occur within Cape Cod and Nantucket 

Sound region of Massachusetts (Trull et al. 1999).  From these staging areas, both species 

migrate offshore, across the Atlantic OCS, to distal staging areas in the West Indies 

(Nisbet et al. 2011a, Mostello et al. 2014). 

Qualitative risk evaluations indicate that offshore wind facilities on the AOCS may 

pose risks to Common and Roseate terns during breeding, staging, and migratory periods 

(Burger et al. 2011).  However, due to weight limitations of available tracking 

technologies, very little empirical data exists on the movements of these species in 

offshore environments (U.S. Fish and Wildlife Service 2008, Burger et al. 2011). 

Previous studies have used archival light-level loggers (geolocators) to track the 

movements of Common and Roseate terns in the western North Atlantic (Nisbet et al. 

2011a, Mostello et al. 2014). However, these devices are limited to recording two 

locations per day that are routinely subject to errors of > 100 km, and thus, cannot 

identify fine-scale movement tracks which are needed to assess the potential impacts of 

wind facilities at specific sites.  Detailed information on the offshore movements of terns, 

particularly at night and during inclement weather conditions, is essential for developing 

quantitative risk evaluations to inform siting and management decisions (Burger et al. 

2011). 
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In this study, we used digital VHF transmitters and array of automated radio 

telemetry stations to track the breeding and post-breeding movements of Common Terns 

from two major nesting colonies in U.S. Atlantic that are in proximity to multiple 

offshore wind energy areas currently under consideration for development in the AOCS. 

Digital VHF telemetry is a relatively new technology that permits hundreds of individuals 

to be tagged with lightweight transmitters and monitored simultaneously and around the 

clock from automated receiving stations (Mills et al. 2011, Taylor et al. 2011, Mitchell et 

al. 2012, Woodworth et al. 2014).  The overarching goal of this study was to pilot the 

suitability of digital VHF telemetry for monitoring the offshore movements of small-

bodied birds, and to address information gaps on the movements of Common Terns in 

offshore areas.  

Our specific objectives were to: 1) quantify the occurrence and extent of offshore 

movements by adult Common Terns from two major nesting colonies within the southern 

New England region of the AOCS; 2) model the rate of offshore movement events 

relative to various temporal (i.e. breeding and post-breeding periods), demographic (sex, 

nesting colony), and atmospheric (wind speed, visibility, precipitation rate) covariates; 

and 3) assess the timing of offshore movements relative to daylight. Through this work 

with Common Terns, we aim to evaluate the utility of using coded VHF transmitters and 

automated radio telemetry arrays to address the above objectives for the taxonomically 

similar but Federally-Endangered Roseate Tern in future studies. 

Methods 

Study area  
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We conducted fieldwork in the southern New England continental shelf region from 

Long Island, NY to Cape Cod, MA (40° N to 42° N; Fig. 4.1).  Multiple areas for 

offshore renewable energy development have been delineated within the study area 

(Bureau of Ocean Energy Management 2016).  These include an approximately 34-km2 

nearshore Renewable Energy Zone within Rhode Island state waters (defined as landward 

of the Submerged Lands Act Boundary, within approximately 5.5 m from shore) 

southeast of Block Island, where a 5-turbine, 30-MW wind energy facility is currently 

under construction and scheduled to be operational by fall 2016.  Within Federal Waters 

(defined as seaward of the Submerged Lands Act Boundary, greater than approximately 

5.5 m from shore) of the study area are multiple Wind Lease Areas that have been leased 

to companies with the intent to build a wind energy facility (BOEM).  These include a 

119 km2 lease area in Nantucket Sound, Massachusetts, and three separate lease areas 

offshore of Rhode Island Sound that total 2,101 km2.  Adjacent to the lease areas offshore 

of Rhode Island Sound is a Wind Planning Area that is being considered for offshore 

wind energy development and covers an additional 1,572 km2. 

We tagged Common Terns from two major nesting colonies within the region: South 

Monomoy Island and Great Gull Island.  South Monomoy Island (41° 36’ 31” N, 69° 59’ 

12” W), is located within Monomoy National Wildlife Refuge (NWR), a 30-km2 barrier 

beach and island complex located off of the coast of Cape Cod, Massachusetts, USA 

(Fig. 4.1).  South Monomoy Island is approximately 9-km from north to south, and up to 

2-km wide.  The island supports, one of the largest Common Tern colonies on the 

Atlantic Coast, with over 8,500 nesting pairs in 2014 (Gulf of Maine Seabird Working 

Group (GOMSWG) 2014).  Great Gull Island (41° 12’ 23” N, 72° 06’ 25” W) is a 0.08 
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km2 site in eastern Long Island Sound, NY, that supports one of the largest 

concentrations of nesting Common Terns (approximately 9,500 pairs) and Roseate Terns 

(approximately 1,800 pairs) in the Western Hemisphere (H. Hays and G. Cormons, 

unpubl. data) and is managed by the Great Gull Island Project with the American 

Museum of Natural History. 

Capture and tagging  

From mid to late June, we used walk-in treadle traps to capture Common Terns at 

their nests, within approximately 3 to 5 days of their hatch date. We individually banded 

terns with an incoloy U.S. Geological Survey band on one tarsometatarsus and a wrap-

around a black plastic field readable band engraved in white with a unique 3-digit 

alphanumeric code on the opposite tarsometatarsus.  We also collected three to five 

contour feathers from each bird to determine gender using a molecular analysis (Avian 

Biotech, Gainesville, FL). 

We attached a digital 1.5 g VHF transmitter ('Avian NanoTag'; Lotek Wireless, Inc., 

Newmarket, Ontario, Canada) on one randomly-selected adult per nest.  Each transmitter 

body measured 11 mm x 8 mm x 7 mm, and had custom fitted tubes (inner diameter 1 

mm) at the anterior and posterior ends for attachment, and a 15-cm whip antenna.  We 

attached transmitters to the dorsal inter-scapular region using cyanoacrylate adhesive and 

two sutures (Prolene: 45-cm length, 4.0, BB taper point needle, catalog # 8581H) that 

were inserted subcutaneously and secured to the end-tubes of the transmitter.  Total 

weight of each transmitter and attachment materials was < 2% of the body mass of the 

birds in our study.  Total handling time, from capture to release, ranged from 20 to 40 

min per individual.  We examined possible tag effects during the breeding period by 
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monitoring the fledge success of tagged terns in the Monomoy colony versus non-tagged 

controls and found no differences in fledge success (Loring et al. in prep).  

Digital VHF telemetry 

Digital coding within each transmitters' pulse allowed up to 521 individuals to be 

uniquely identified on a single VHF frequency by receiving units.  We programmed 

transmitters to transmit signals on 166.380 MHz every five to six seconds, for a total 

expected operational life of approximately 160 days.  

We tracked the movements of tagged terns using a network of automated radio 

telemetry stations (hereafter network) established throughout the study area (Fig. 4.1, 

Appendix 4.1).  The network included 11 automated radio telemetry towers, each 

consisting of an array of six 9-element (11.1 dBd) Yagi antennas end-mounted in a radial 

configuration atop a 12.2 m mast.  The antennas were connected to a solar-powered, 

automated receiving unit (SRX-600, Lotek Wireless, Ontario, Canada) that scanned for 

signals with each antenna for 6.5 seconds in succession, around the clock.  The network 

also included a receiving station at each colony site that was configured to monitor nest 

attendance.  The receiving station at the Monomoy colony consisted of an automated 

receiving unit equipped with a single 5-element (9 dBd) antenna mounted on a 1.2 m 

mast.  The receiving station on Great Gull Island consisted of an automated receiving unit 

equipped with three 5-element (9 dBd) antenna mounted on a 12.2 m observation tower. 

We programmed all receiving units to automatically log the following data from each 

antenna: transmitter ID number, time stamp (synchronized among all receivers in the 

array using GPS clocks), antenna (defined by receiving station and bearing), and signal 

strength (non-linear scale: 0 to 255).  Through calibration tests, we determined that the 
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range of our telemetry stations to detect transmitters flying at altitudes of 10 to 30 m was 

approximately 10 km. 

Movement models 

We modeled movements of all tagged birds in MATLAB (MathWorks 2016).  Each 

time a tagged individual was detected by an automated receiving unit, we estimated its 2-

dimensional location along the main beam of the receiving antenna given the 

corresponding signal strength value (Janaswamy and Loring in prep), and used a rolling 

mean function to smooth location estimates over a 1-minute time step.  The limitation of 

this model is that it assumed that the signals originated from the main beam of the 

antenna; however, identical signal strength values could also give rise to locations in the 

side and back lobes of the antenna.  However, we felt that this was a reasonable 

approximation given the high directionality (20 dB front-to-back ratio) of the 9-element 

Yagi antennas used in this study.  Another limitation of the signal strength model is that it 

is sensitive to variance in altitude values.  We did not have information on altitude 

associated with each detection, so assumed that all individuals were flying at an altitude 

of 10 m, which is within the typical altitude range of Common Terns flying at sea that has 

been reported elsewhere (Burger et al. 2011, Garthe and Huppop 2004).  

When individuals were temporarily out of range of the network, we used a Brownian 

Bridge Movement Model (BBMM; Horne et al. 2007) to estimate their mean position and 

associated variance during each 1-minute time step.  The BBMM assumed that terns were 

moving at an average flight speed of 10 m s-1 (Wakeling and Hodgson 1992).  The 

BBMM also assumed that the start and end points  of each movement are those generated 

by the signal strength models described above.  
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We defined WEA crossing events as movements where estimated mean trajectories 

intersected WEAs in state or Federal waters within our study area.  The configuration of 

the network was suitable for tracking flights across the Block Island Renewable Energy 

Zone, and the BOEM Lease Areas in Rhode Island Sound and Nantucket Sound, but due 

to range limitations of our tracking network we did not have coverage in the BOEM 

Wind Planning Area to the south of Rhode Island Sound.  Due to logistical challenges, 

several receiving stations within the network were not installed until mid to late July, so 

the number of crossing events should be considered a minimum due to limitations in 

coverage.  

Analyses of WEA crossing events included only movements were either: 1) tagged 

terns were within range of the automated radio telemetry array (positions estimated using 

signal strength values within antenna beams); or 2) tagged terns were moving between 

stations and temporarily out of range of the telemetry array, but the maximum variance of 

the mean flight path estimated by BBMM was < 30 km.  We selected the a 30-km 

threshold to match the spatial resolution of atmospheric covariates, and because we felt it 

was a reasonable spatial resolution to evaluate exposure to BOEM Lease Areas in Rhode 

Island Sound and Nantucket Sound (that range in size from approximately 30 km2 to 

>1500 km2).  

Diel variation in WEA crossing events 

We used the R package 'Circular' (Agostinelli and Lund 2013) to calculate the median 

time of each WEA crossing event using the circular distribution, and the Rao spacing test 

of uniformity to determine if the event times were spaced uniformly throughout a 24-hour 

period (Batschelet 1991, Zar 1999).  To examine movements relative to daylight, we used 
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the R package 'maptools' (Bivand and Lewin-Koh 2016) to calculate local sunrise and 

sunset times for each WEA crossing event.  WEA crossing events that occurred entirely 

between the time of local sunrise and the time of local sunset were considered to have 

occurred during daytime hours.  Conversely, WEA crossing events that occurred entirely 

between the time of local sunset and the time of local sunrise were considered to have 

occurred during nighttime hours.  WEA crossing events that spanned the timing of local 

sunrise or sunset were considered to have occurred at dawn or dusk, respectively.  

Proportional hazards model  

We used a Cox proportional-hazards regression model to examine the rate of WEA 

crossing events as a function of the baseline hazard and a set of atmospheric and 

demographic covariates in the Survival package (Therneau 2016) within the program R 

(R Core Team 2016).  The counting process formulation of Andersen and Gill (Therneau 

and Grambsch 2000) was used to incorporate multiple events (WEA crossings) for 

individual and time dependent variables.  Individuals that moved beyond range of the 

network and did not return, or that dropped their transmitters prior to their departure from 

the study area, were considered right-censored, which in survival analysis framework is 

similar to an individual being removed from the study before the event occurs (Fox and 

Weisberg 2011). 

We assumed that observations within individuals were correlated and used a grouped 

jackknife method to adjust the variance of parameter estimates to account for the 

correlation (Therneau and Grambsch 2000).  For each bird, we used tag date as the start 

of the counting process and a time interval of 1-day for time-dependent covariates.  For 

the time dependent covariates, we obtained the following satellite-derived atmospheric 
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data (32-km spatial resolution and 3-hr temporal resolution) from the National Centers 

for Environmental Prediction (NCEP) and Atmospheric Research (NCAR) Global 

reanalysis-II dataset (Kalnay et al. 1996): precipitation rate (ground or water surface, kg 

m-2 s-1), barometric pressure (ground or water surface, Pa), temperature (ground or water 

surface, K), visibility (ground or water surface, m), v-wind (ground or water surface, m 

s1), u-wind (ground or water surface, m s-1).  We matched atmospheric data with each 

bird location estimate using the nearest time stamp and spatial coordinates of each 

dataset.  We then generated daily mean values of each atmospheric variable per 

individual for subsequent analyses. We checked for correlation between each pair of 

atmospheric covariates by calculating Pearson correlation co-efficents (r), and excluded 

variables with r > 0.60. 

The time independent covariates that we considered were: sex (male or female) and 

nesting colony (Great Gull or Monomoy).  We fit models using all combinations of 

covariates and first-order interaction terms.  To identify the top model, we used the 

stepAIC function in R (Ripley 2016) to run a stepwise backwards-selection procedure 

based on the Akaike Information Criterion (AIC; Venables and Ripley 2002).  

To evaluate the top model, we examined three types of diagnostics to determine 

whether the fitted Cox regression model adequately described the data: 1) violation of the 

assumption of proportional hazards; 2) influential data; 3) non-linearity in the 

relationship between the log-hazard and the covariates (Fox and Weisberg 2011). 

Specifically, we calculated tests of the proportional hazards assumption for each 

covariate, along with a global test of the model as a whole, based on the scaled 

Schoenfeld residuals using the 'cox.zph' function in the Survival package.  We checked 



103 
 

for influential observations by examining index plots of dfbeta (changes in regression co-

efficents calculated by deleting each observation in succession).  Lastly, we checked for 

non-linearity by plotting martingale residuals and partial-residuals against each covariate. 

Results 

Digital VHF telemetry 

We tagged a total of 116 terns, 65 from Monomoy and 51 from Great Gull (Appendix 

4.2).  One of the Monomoy transmitters malfunctioned on the first day of deployment, so 

we included 115 individuals (females: n = 70, males:  n = 45) in the final analysis.  We 

tracked each bird for mean duration of 39.41 days (± 1.33 SE, range 9 to 80 days, n = 

115).  We tagged majority of adult terns within three days of the hatch dates of their 

nests, so assuming that at least one of their chicks survived to fledging age of 25 days 

(Nisbet 2002a), the pre-fledging period occurred during the first 22 to 28 days of the 

study.  

Offshore movements 

Overall, we detected a total of 94 offshore flights by 31 different individuals where 

one or more WEA crossing events occurred.  Mean estimated distance of flights where 

WEA crossing events occurred was 120 km (± 6.33 SE, range 6 to 199 km).  We found 

wide variation in the timing and extent of WEA crossing events, which occurred from 

late June through late August (three to 55 days following tagging).  Frequency of WEA 

crossing events peaked in late July and occurred with less regularity through late August 

as the proportion of individuals that were still being detected by our automated radio 

telemetry array declined (Fig. 4.2).    
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By colony, 6% (n = 4) of individuals from the Monomoy and 53% (n = 27 of 

individuals) from Great Gull had one or more documented WEA crossing events. Among 

these 31 individuals, mean number of WEA crossings was equal to 3.00 events (± 0.53 

SE; range 1 to 12 events).  A total of 18 individuals (n = 4 from Monomoy and n = 14 

from Great Gull) were detected crossing the wind energy area in Nantucket Sound, with a 

mean number of WEA crossings per bird equal to 2.05 events (± 0.60 SE; range 1 to 8 

events).  We documented movements across the wind energy area in Rhode Island Sound 

by a total of 19 individuals, all of which were from Great Gull colony, with a mean 

number of crossing events per individual equal to 1.52 events (± 0.23 SE; range 1 to 5 

events).  We documented movements across the wind energy area in Rhode Island state 

waters off the coast of Block Island by a total of 7 individuals, all of which were from 

Great Gull colony, with a mean (± SE) number of crossing events per individual equal to 

3.37 (± 1.27; range 1 to 10 flights). 

Diel variation in WEA crossing events 

WEA crossing events occurred throughout the diel cycle (Fig. 4.3), although there 

was evidence that event times were not uniformly distributed (Rao's Spacing Test of 

Uniformity: U= 267.09, p < 0.001, n = 94). Of the 94 WEA crossing events that we 

documented, 62% of occurred during daylight hours, 34% occurred during nighttime 

hours, 3% occurred at dawn, and none at dusk (Table 4.1). The majority of flights across 

the WEAs in state and Federal waters off the coast of Rhode Island occurred during 

daylight hours, whereas flights across the wind energy area in Nantucket Sound occurred 

more frequently during nighttime hours (Table 4.1).  

Proportional hazards model  
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Correlation (r) between following variables was > 0.6: wind speed and temperature, 

wind speed and pressure, temperature and pressure, temperature and visibility.  We 

retained the variables wind speed, precipitation, and visibility for use in the Cox 

proportional-hazards regression models as these variables have been identified as 

important factors associated with collision risk (Exo et al. 2003).  

The top model included the terms location, sex, wind speed, visibility, and interaction 

terms between location and wind speed, and location and visibility. Diagnostic tests of 

the top model revealed evidence (p < 0.05) of non-proportional hazards against time for 

the covariates "wind speed" and "visibility", as well as the global test.  Following Fox 

and Weisburg (2011), we addressed the non-proportional hazards by refitting the top 

model with linear interaction terms for wind speed and time, and visibility and time.  In 

the final model, both interaction terms were highly statistically significant (Table 4.2), 

and diagnostic tests on the resulting model indicated no evidence (p > 0.05) of non-

proportional hazards for each covariate and for the global test.  Index plots of dfbeta and 

martingale residual plots of the final model indicated that no additional actions were 

required to address model fit. 

Average daily probability of crossing the WEA increased over the nesting period and 

varied by nesting colony and sex (Fig. 4.4).  Daily probability of WEA crossing events 

was significantly higher for terns from Great Gull Island relative to Monomoy (Hazard 

Ratio = 10.86, 95% CI = 1.14, 103.62; Fig. 4.5) and for females relative to males (Hazard 

Ratio = 3.03, 95% CI = 1.41, 6.51; Fig. 4.6).  For the two atmospheric covariates that 

were included in the top model (wind speed and visibility), there were significant 

interaction terms with both location and time (Table 4.2).  These interaction terms 
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indicated that terns from Great Gull Island were more likely to cross WEAs during 

periods of higher wind speed and lower visibility relative to terns from Monomoy, and 

that flights during periods of higher wind speed and lower visibility largely occurred 

earlier on during the season, whereas flights that occurred later during the season were 

associated with lower wind speeds and higher visibility.  The distribution of wind speed 

values for WEA crossing events was skewed to the right, with a median of 4.21 m/s (Fig. 

4.7).  The distribution of visibility values for WEA crossing events had a long left tail and 

a median of 20.01 km (Fig. 4.8). 

Discussion 

Through this work, we demonstrate the utility of using coded VHF transmitters, 

automated radio telemetry stations, and movement modeling techniques to track the 

flights of small-bodied terns at a regional scale and across offshore WEAs. Our study 

provided new information on extent of offshore movements during the breeding and post-

breeding period.  In addition, we addressed a high-priority information gap on the 

movements of terns at night and during inclement weather (U.S. Fish and Wildlife 

Service 2008). 

Breeding movements 

WEA crossing events occurred from three to 55 days following tagging (hatch date), 

thus spanning the pre-fledging and post-breeding period, and included flights across the 

entire study area at distances exceeding 180 km. Previous work that documented the 

movements of terns during the pre-fledgling period used boat-based surveys or 

conventional radio telemetry, and focused on diurnal foraging locations.  Using boat-

based surveys, Heineman (1992) documented that Roseate Terns from a colony in 
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Buzzards Bay, Massachusetts traveled to distances of up to 30-km away from their 

nesting colony.  Duffy (1986) conducted boat-based surveys of Common and Roseate 

Terns nesting on Great Gull Island, and estimated that the majority of Common and 

Roseate terns foraged within 4 to 12 km (maximum of 22 km) from the colony.  In the 

German North Sea, Becker et al. (1993) tracked Common Terns with conventional VHF 

transmitters and estimated cumulative flight distances of 30 km, with a typical foraging 

radius of 6-km radius of the nesting colony.  Rock et al. (2007) radio-tracked Roseate 

Terns from a plane and found birds foraging up to 7 km from their nesting colony in 

Nova Scotia.  Differences between the flight distances and durations between our study 

and previous research are likely due in part to methodological differences.  The tower 

network established for this study was much more effective at detecting long-distance 

movements than conventional VHF transmitters or following birds in a boat (Perrow et 

al. 2011). 

Nest failure is another factor that may have contributed to the long-distance 

movements that we observed by some individuals from Great Gull Island in early July, 

within days following their hatch date.  We did not have information on chick survival 

for individual nests on Great Gull, but there was evidence that low food availability 

combined with a series of storms caused widespread chick loss and nest failure at the 

colony during early July.  Color-banded Roseate Terns have been observed moving 

between colony sites following nest-loss (Spendelow et al. 1995).  In a radio-telemetry 

study of Little Terns (Sterna albifrons), Perrow et al. (2006) found that the ranges of 

successful breeders were less than 6 km2, whereas the foraging ranges of failed breeders 

exceeded 50 km2.  The birds that we tagged on Monomoy were all nesting within 
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established productivity plots, providing detailed information on the fledge or failure date 

of each nest. However, nest success on Monomoy was relatively high in 2014 (1.56 

fledged chicks/nest; Gulf of Maine Seabird Working Group 2014) and very few of the 

nests of our tagged birds failed, so we did not have an adequate sample size to assess 

movements relative to nest success.  

Post-breeding movements 

We found that the number of WEA crossing events by our tagged adults peaked in 

late July.  Assuming chick survival, this peak corresponds to approximately 5 to 15 days 

following the estimated fledge dates of their chicks.  Common Terns are known to 

disperse from their nesting areas within 10 to 20 days of the fledge dates of their chicks 

(Nisbet 2002a), therefore it is likely that this peak corresponded with post-breeding 

dispersal movements.  Through surveys and re-sighting of marked birds, researchers have 

documented extensive movements of Common and Roseate Terns during the post-

breeding period, that occurs from late July through mid-September (Nisbet 2002b, Nisbet 

et al. 2014).  Blokpoel et al. (1987) found that, during the post-breeding period, Common 

Terns in the Great Lakes region of North America dispersed up to 550 km from their 

breeding colony.  Post-breeding, large numbers of Roseate Terns from colonies ranging 

from western Long Island to the Gulf of Maine have been shown to disperse distances of 

over 300 km to gather by the thousands at sites within the Cape Cod and Islands region of 

Massachusetts (Trull et al. 1999, Jedrey et al. 2010).  Shealer and Kress (1994) found that 

large numbers of Roseate Terns dispersed from colonies in Maine, Massachusetts, and 

New York to a staging area in Saco Bay, Maine, upwards of 500 km away.  It is likely 

that the peak in movements that we observed in late July was related to dispersal 
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movements.  However, we also cannot rule out the possibility that the increase in number 

of flights detected was due in part to increased detection probability of flights by the 

additional radio telemetry stations that were deployed within our study are in mid to late 

July.  

Demographic variation 

Across the breeding and post-breeding periods, we found that terns from Great Gull 

Island were more likely to have a WEA crossing events relative to terns from Monomoy. 

During 2014, there was evidence of low productivity on Great Gull Island that was 

thought to be linked to low food availability, as monitoring data during the breeding 

period indicated that body mass of breeding adults was unusually low that season (H. 

Hays, pers. comm).  For adults that had at least one chick survive to fledge, low food 

availability may have resulted in terns dispersing from the colony site shortly after the 

fledge (Safina and Burger 1989).  Shealer and Kress (1994) suggested that Roseate Terns 

that disperse long distances to Saco Bay, Maine during the post-breeding period do so to 

take advantage of high prey availability.  Additional data on fledge success of our tagged 

birds and prey availability at each colony site would be useful for understanding the 

variability in WEA crossing events by terns from different nesting populations. 

In addition to colony-based differences, we found that females were more likely to fly 

across WEAs compared to males.  Adult Common and Roseate terns provide extensive 

post-fledgling care to their chicks that extends for several weeks after fledging (Nisbet 

1976, Burger 1980) and continues through dispersal to staging areas (Watson and Hatch 

1999).  In a movement study of adult Common Terns from a nesting colony in 

Massachusetts using geolocators, Nisbet et al. (2011b) found that that females initiated 
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migration during early to mid-August, over a month before the males departed, and 

suggested that male Common Terns are responsible for parental care of fledglings during 

the post-breeding dispersal period.  It is possible that the higher rates of movements that 

we observed by females relative to males is related in part to the females having higher 

mobility during the post-fledging period because they were not tied to parental care of 

their young, although we do not have any direct evidence to support this speculation.  

Diel variation 

We found that timing of WEA crossing events occurred during all hours of the day 

and night.  During the pre-fledging period, previous studies have shown that Common 

and Roseate terns primarily foraged diurnally, with peak movements during the early 

morning and late afternoon (Nisbet 2002b, Nisbet et al. 2014).  Information on nocturnal 

flights of Roseate and Common Terns is limited to a few studies that occurred outside of 

the breeding period (U.S. Fish and Wildlife Service 2008).  In a study of staging terns in 

Massachusetts, Trull et al. (1999) observed that mixed flocks of Common and Roseate 

terns roosted at a limited number of sites during the staging period, and arrived at these 

sites during the late evening through after dark.  Hays et al. (1999) described a roost site 

in Mangue Saco, Brazil where Roseate and Common terns arrived after dark and depart 

before first light.  Using radar, Alerstam (1985) found evidence that Common Terns 

initiated high altitude migratory flights during evening hours, suggesting that migratory 

flights took place at night.  These findings are consistent with observations described by 

Veit and Petersen (1993) of large flocks of terns departing from fall staging sites in 

Massachusetts at high altitudes during dusk.  Our observations of terns crossing WEAs at 

night provide additional evidence of nocturnal flights of terns. This information is useful 
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for assessing adverse effects of wind energy facilities to terns (U.S. Fish and Wildlife 

Service 2008), as risk of collision with wind turbines is higher at night versus during the 

day (Exo et al. 2003). 

Atmospheric effects 

In addition to providing new information on nocturnal movements of terns, our study 

addressed a high-priority information need on the movements of terns throughout the 

southern New England region relative to weather conditions (U.S. Fish and Wildlife 

Service 2008).  Previous work that examined the flights of terns relative to weather 

focused on foraging behavior, and found that capture rates of prey were highest in light to 

moderate wind speeds (Dunn 1973, Taylor 1983) with some cloud cover (Watson and 

Hatch 1999).  We found that early in the season, WEA crossing events were associated 

higher wind speed and lower visibility, whereas later in the season, WEA crossing events 

were associated with lower wind speed and higher visibility.  Flying during favorable 

weather, such as the movements that we observed later in the season, is advantageous, as 

it is more energetically efficient and there is a lesser risk of becoming disorientated 

(Richardson 1978).  Flights during the early part of the season were associated with storm 

events in early July that caused widespread chick loss and nest failure on Great Gull.  It is 

likely that movement events associated with these weather patterns early in the season 

were due to nest failure caused by the storms.  Nonetheless, it is important that we 

documented movements in association with inclement weather, as high wind speeds and 

reduced visibility that are known to increase the risk of collisions with wind turbines 

(Exo et al. 2003, Chamberlain et al. 2006).  However, in the context of collision risk 

modeling, relatively few WEA crossing events that we documented occurred under low 
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visibility conditions (< 2 km) that may impair the ability of birds to avoid wind turbines 

(Cook et al. 2014).  

Implications for offshore wind energy development 

Our study provides the first empirical evidence of the movements of terns in the 

AOCS, around-the-clock and during all types of weather conditions. This information is 

essential for assessing the risk of collisions of terns with offshore wind turbines (U.S. 

Fish and Wildlife Service 2008, Burger et al. 2011). Collision mortality of terns with 

wind turbines has been documented by other studies (U.S. Fish and Wildlife Service 

2008) and this work has highlighted the importance of assessing the temporal and 

demographic variation in collision risk. For example, at the Zeebrugge wind energy 

facility in Belgium, 25 turbines located on a breakwater within 30 to 400 m of tern 

nesting habitat, and adjacent to foraging habitat. This facility resulted in the deaths of 

over 150 Common Terns, Sandwich Terns (S. sandvicensis), and Little Terns (S. 

albifrons) per year (Everaert and Stienen 2008). Mortality primarily occurred during the 

breeding period, as bird traveled between nesting and foraging habitat, and 

disproportionately affected adult males that did more of the chick provisioning relative to 

females (Stienen et al. 2008). 

Through this work, we demonstrate the utility of digital VHF telemetry and 

automated radio telemetry stations for monitoring the flights of individual terns across 

offshore wind energy areas, and assessing temporal and demographic variation in 

exposure. However, challenges with using this technology include limited ranges of 

tracking equipment to detect offshore movements, and incomplete information on tag 

retention. Since we likely missed flights that occurred offshore beyond the range of our 
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telemetry array, and since we do not know if the final detections of birds corresponded 

with departure from the study area of from tag loss, the rates of WEA crossing events 

reported here should considered a minimum.  

In the future, detection probability could be improved by mounting tracking devices 

on offshore structures. This could be especially useful for monitoring movements of terns 

and other high priority species through WEAs during and post-construction. In addition, 

estimates of altitude are needed to determine if flights through WEAs are occurring 

within the rotor swept zone (20 to 200 m; Robinson Willmott et al. 2013). In a 

vulnerability assessment of marine birds to offshore wind farms, Furness et al. (2013) 

found wide variation (0-41%) in the estimated numbers of Common Terns flying at rotor 

swept altitudes that were reported across various surveys. It is possible to extend existing 

2-dimensional movement models to include estimates of altitude if simultaneous 

detections are received by four or more antennas from spatially separated receivers 

(Janaswamy and Loring in prep). The importance of altitude data in assessing collision 

risk, and the need for a relatively dense tracking array in order to obtain these data 

accurately, further highlights the utility of strategic placement of receiving units on 

offshore wind turbines and other structures in the future. 

Meeting the U.S. Department of Energy's initiative for 54 GW of domestic offshore 

wind power capacity by 2030 would result in approximately 5,000 to 8,000 turbines 

would be constructed in U.S. waters (Goodale and Milman 2016). Therefore, data on 

individual movements of birds will be imperative for estimating exposure and associated 

cumulative adverse effects of birds encountering multiple offshore wind energy facilities 

throughout their migratory range (Goodale and Milman 2016). An advantage of using 



114 
 

digital VHF technology for monitoring the movements of birds through offshore wind 

energy areas is that the transmitters emit signals frequently (every 5 to 10 seconds), so 

detection probability is relatively high as long as tagged individuals are within range of a 

receiving station. 

 A coordinated network of digital VHF telemetry projects and receiving stations is 

expanding across the Western Hemisphere (www.motus-wts.org), enabling large 

numbers of tagged individuals to be tracked over long distances. Through this type of 

coordinated tracking, it might be possible to assess the exposure of individual birds to 

multiple wind energy areas throughout their migratory range. Monitoring cumulative risk 

of exposure to multiple wind energy facilities is especially important for long-lived 

species of conservation concern (Drewitt and Langston 2006), such as the Roseate Tern 

(Nisbet et al. 2014). Through this work with Common Terns, we have determined that 

digital VHF telemetry technology was suitable for expansion to the Federally endangered 

Roseate Tern, and as a result this species has been the focus of expanded digital VHF 

telemetry studies that we have conducted from 2015 to the present. 
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Table 4.1. Proportion of Wind Energy Area (WEA) crossing events (n = 94) by 

geographic location and time of day, for 31 adult Common Terns tracked with digital 

VHF telemetry in the southern New England continental shelf region during 2014.  

  Day Night Dawn Dusk N 

Nantucket Sound 0.43 0.57 0 0 37 

Rhode Is. Sound 0.72 0.24 0.03 0 29 

Block Island 0.78 0.14 0.07 0 28 

All 0.62 0.34 0.03 0 94 
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Table 4.2. Parameter estimates (maximum likelihood), standard errors (grouped jackknife method), hazard ratios, z-scores, and p-

values for the best fitting Cox Proportional Hazards model. 

Parameter1 Parameter estimate SE (robust) Hazard ratio Z-score p-value 

Location (Great Gull) 2.385000 1.151000 10.860000 2.072 0.038302 

Sex (Female) 1.108000 0.390200 3.029000 2.84 0.004509 

Windspeed (m s-1) 0.631700 0.188100 1.881000 3.359 <0.0001 

Visibility (m) -0.000081 0.000049 0.999900 -1.67 0.094836 

Location (Great Gull) : Windspeed (m s-1) 0.411600 0.114900 1.509000 3.583 0.000339 

Location (Great Gull) : Visibility (m) -0.000089 0.000044 0.999900 -2.02 0.043377 

Windspeed (m s-1) : Time -0.027290 0.007928 0.973100 -3.442 0.000577 

Visibility (m) : Time 0.000007 0.000002 1.000000 2.894 0.003809 

1 Values of the factor covariates given relative to the reference level. Reference levels were 'Monomoy' for the location parameter and 

'male' for the sex parameter. 

 

 



130 
 

 

Figure 4.1. Map of the 2014 Study Area across the southern New England continental 

shelf showing locations of 11 automated radio telemetry towers (black triangles), colony 

sites where Common Terns were tagged with digital VHF transmitters (stars), and the 

Submerged Lands Act Boundary separating state and federal waters (dashed line). 

Polygons show locations of the Block Island Renewable Energy Zone (cross-hatch), 

Bureau of Ocean Energy Management (BOEM) Wind Lease Areas (grey) and BOEM 

Wind Planning Areas (white). 
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Figure 4.2. Daily proportion (left axis, dashed line) of tagged Common Terns detected 

and the frequency (bars, right axis) of Wind Energy Area (WEA) crossing events by date 

in 2014.  Data are from 115 Common Terns tagged with digital VHF transmitters and 

tracked using a network of automated radio telemetry stations in the southern New 

England continental shelf region. 
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Figure 4.3. Temporal distribution of median times (in hours, Eastern Standard Time) of 

Wind Energy Area (WEA) crossing events (n = 94) by 31 Common Terns tracked with 

digital VHF telemetry in the southern New England continental shelf region in 2014. 

Dashed lines show median time of local sunrise (05:30 hrs) and sunset (20:00 hrs) during 

the study period (June 30 to August 23). 
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Figure 4.4. Estimated survival function (solid line) for the Cox Proportional Hazards 

model of offshore flight events by Common Terns per unit time (days since tagging) for: 

males from Monomoy NWR (4.4A); females from Monomoy NWR (4.4B); males from 

Great Gull Island (4.4C); and females from Great Gull Island (4.4D).  For each 

estimation, all other covariates fixed at their mean values. The dashed lines show 95% 

confidence intervals around the survival functions.   
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Figure 4.5. Hazard ratio (black horizontal line) with 95% confidence limits (grey box) of 

Wind Energy Area (WEA) crossing events for Common Terns from the breeding colony 

at Monomoy Island (Monomoy) versus Great Gull Island (Great Gull). Grey histograms 

along x-axis show marginal distribution of each variable. 
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Figure 4.6. Hazard ratio (black horizontal line) with 95% confidence limits (grey box) of 

Wind Energy Area (WEA) crossing events for male versus female Common Terns. Grey 

histograms along x-axis show marginal distribution of each variable. 
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Figure 4.7. Histogram of mean wind speed (m/s) during Wind Energy Area (WEA) 

crossing events (n = 94) by 31 Common Terns tracked with digital VHF telemetry in the 

southern New England continental shelf region in 2014. 
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Figure 4.8. Histogram of mean visibility (km) during Wind Energy Area (WEA) crossing 

events (n = 94) by 31 Common Terns tracked with digital VHF telemetry in the southern 

New England continental shelf region in 2014.  Dashed vertical line delineates crossing 

events with low visibility conditions (< 2 km). 
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Appendix 4.1. Detailed description of automated receiving stations comprising the 2014 VHF radio telemetry array by site, station 

code, geographic coordinates (NAD 83, decimal degrees), installation date, and specifications. 

Site Code Latitude Longitude Install Date  Uninstall Date Installation Specifications 

Eel Pt, 

Nantucket, 

MA 

ELPT 41.2934 -70.1972 5/25/14 11/8/2014 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Coatue Pt, 

Nantucket, 

MA 

CTPT 41.3073 -70.0637 5/27/14 

11/9/2014 Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Great Point, 

Nantucket, 

MA 

GTPT 41.3906 -70.0493 5/29/14 

11/10/2014 Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Muskeget 

Island, 

Nantucket, 

MA 

MUSK 41.3373 -70.3048 5/30/14 Still operating 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

S. Monomoy 

- N, 
MNYN 41.6088 -69.9869 6/16/14 11/29/2014 Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 
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Chatham, 

MA 

on 12.2-m mast 

S. Monomoy 

- S, 

Chatham, 

MA 

MNYS 41.5526 -70.0100 6/8/14 11/29/2014 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Tern colony 

- S. 

Monomoy, 

Chatham, 

MA 

TERN 41.6197 -69.9849 6/11/14 11/29/14 
One, 5-element (9 dBd) Yagi antenna 

(oriented S) on 1.4 m post. 

Tern colony 

- Great Gull 

Island, NY 

GGIS 41.2018 -72.1192 6/30/14 10/12/14 

Three, 5-element (9 dBd) Yagi antennas 

(oriented N, E, and W, respectively) on 

an 11-m observation tower 

Great Point 

Ferry, 

Nantucket 

Sound 

GTPF Mobile Mobile 7/2/14 10/23/14 

Omnidirectional antenna (200 W) on 

ferry (travels between Hyannis, MA to 

Nantucket, MA) 

R/V Henry 

Bigelow 

(NOAA) 

NOAA Mobile Mobile 7/7/14 11/25/14 

Omnidirectional antenna (200 W) on 

NOAA Research Vessel (travels from 

Newport, RI to various offshore sites) 
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Nomans 

Land Island, 

Chilmark, 

MA 

NOMA 41.2613 -70.8152 7/20/14 10/31/14 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Nomans 

Land Island 

(summit), 

Chilmark, 

MA 

NOMS 41.2531 -70.8134 7/20/14 10/31/14 

One, 9-element Yagi antenna oriented 

SW on a 3 m (10 ft) mast at the summit 

(110 ft. elevation) of Nomans Land 

Island 

Block 

Island, New 

Shoreham, 

RI 

BISE 41.1532 -71.5527 7/29/14 11/23/14 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Napatree 

Point, 

Westerly, RI 

NAPA 41.3063 -71.8838 7/11/14 10/24/14 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 

Sachuest 

Point, 

Middletown, 

RI 

SACH 41.4787 -71.2438 7/13/14 10/20/14 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 
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Montauk 

Point, East 

Hampton, 

NY 

MNTK 41.0591 -71.8691 7/18/14 11/15/14 

Six, 9-element (11.1 dBd) Yagi antennas 

oriented radially (60 degree separation) 

on 12.2-m mast 
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Appendix 4.2. Summary of Common Terns fitted with digital VHF transmitters in 2014 

including: ID number of transmitter, sex, location (colony site) of transmitter 

deployment, date of transmitter deployment, date of last detection of transmitter, and total 

days tracked. 

ID Sex Nanotag Location Nanotag Date Last Detection Days Detected 

282 M Monomoy 6/9/2014 7/23/2014 44 

283 M Monomoy 6/9/2014 8/11/2014 63 

284 F Monomoy 6/9/2014 7/26/2014 47 

285 F Monomoy 6/9/2014 7/15/2014 36 

286 F Monomoy 6/9/2014 7/3/2014 24 

287 F Monomoy 6/9/2014 8/9/2014 61 

288 F Monomoy 6/9/2014 8/7/2014 59 

289 M Monomoy 6/9/2014 7/7/2014 28 

290 M Monomoy 6/15/2014 7/19/2014 34 

291 M Monomoy 6/15/2014 7/29/2014 44 

292 M Monomoy 6/15/2014 7/20/2014 35 

293 F Monomoy 6/15/2014 8/3/2014 49 

294 F Monomoy 6/15/2014 7/26/2014 41 

295 M Monomoy 6/15/2014 8/20/2014 66 

297 M Monomoy 6/15/2014 7/26/2014 41 

298 F Monomoy 6/15/2014 7/30/2014 45 

299 F Monomoy 6/19/2014 7/14/2014 25 

300 M Monomoy 6/19/2014 7/26/2014 37 

301 F Monomoy 6/19/2014 7/20/2014 31 

302 F Monomoy 6/19/2014 7/8/2014 19 

303 F Monomoy 6/19/2014 7/1/2014 12 

304 F Monomoy 6/19/2014 8/16/2014 58 

305 M Monomoy 6/19/2014 8/26/2014 68 

306 M Monomoy 6/19/2014 7/24/2014 35 

307 F Monomoy 6/20/2014 7/31/2014 41 

308 F Monomoy 6/19/2014 8/19/2014 61 

309 F Monomoy 6/20/2014 7/28/2014 38 

310 M Monomoy 6/20/2014 8/27/2014 68 

311 F Monomoy 6/20/2014 7/21/2014 31 

312 F Monomoy 6/20/2014 7/22/2014 32 

313 M Monomoy 6/19/2014 8/27/2014 69 

314 F Monomoy 6/19/2014 7/17/2014 28 

315 M Monomoy 6/20/2014 9/8/2014 80 
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316 M Monomoy 6/19/2014 7/20/2014 31 

317 M Monomoy 6/19/2014 7/25/2014 36 

318 F Monomoy 6/20/2014 7/27/2014 37 

319 F Monomoy 6/20/2014 7/29/2014 39 

320 M Monomoy 6/20/2014 7/21/2014 31 

321 F Monomoy 6/20/2014 7/22/2014 32 

322 F Monomoy 6/20/2014 7/17/2014 27 

323 F Monomoy 6/20/2014 8/2/2014 43 

324 F Monomoy 6/20/2014 7/8/2014 18 

325 F Monomoy 6/20/2014 7/25/2014 35 

326 F Monomoy 6/20/2014 8/8/2014 49 

327 M Monomoy 6/20/2014 8/21/2014 62 

328 F Monomoy 6/20/2014 8/8/2014 49 

329 F Monomoy 6/20/2014 7/20/2014 30 

330 F Monomoy 6/20/2014 8/5/2014 46 

331 F Monomoy 6/20/2014 7/27/2014 37 

332 F Monomoy 6/20/2014 8/4/2014 45 

333 M Monomoy 6/20/2014 8/6/2014 47 

334 M Monomoy 6/20/2014 8/25/2014 66 

335 F Monomoy 6/20/2014 8/3/2014 44 

336 M Monomoy 6/20/2014 8/3/2014 44 

337 F Monomoy 6/21/2014 7/19/2014 28 

338 M Monomoy 6/21/2014 8/4/2014 44 

339 F Monomoy 6/21/2014 8/3/2014 43 

340 F Monomoy 6/21/2014 8/16/2014 56 

341 F Monomoy 6/21/2014 8/4/2014 44 

342 M Monomoy 6/21/2014 7/22/2014 31 

343 F Monomoy 6/21/2014 8/7/2014 47 

344 M Monomoy 6/21/2014 8/9/2014 49 

345 F Monomoy 6/21/2014 8/19/2014 59 

346 F Monomoy 6/21/2014 8/16/2014 56 

352 F Great Gull 6/27/2014 8/17/2014 51 

353 F Great Gull 6/28/2014 7/25/2014 27 

354 M Great Gull 6/28/2014 7/23/2014 25 

355 F Great Gull 6/28/2014 7/9/2014 11 

356 M Great Gull 6/28/2014 8/5/2014 38 

357 M Great Gull 6/28/2014 7/30/2014 32 

358 F Great Gull 6/28/2014 7/18/2014 20 

359 F Great Gull 6/28/2014 8/7/2014 40 

360 F Great Gull 6/28/2014 7/20/2014 22 

361 M Great Gull 6/28/2014 7/28/2014 30 



147 
 

362 F Great Gull 6/28/2014 8/10/2014 43 

363 F Great Gull 6/28/2014 8/18/2014 51 

365 F Great Gull 6/28/2014 8/14/2014 47 

366 M Great Gull 6/29/2014 8/11/2014 43 

367 M Great Gull 6/29/2014 8/3/2014 35 

368 F Great Gull 6/29/2014 8/8/2014 40 

369 M Great Gull 6/29/2014 8/12/2014 44 

370 F Great Gull 6/29/2014 7/24/2014 25 

371 F Great Gull 6/29/2014 7/24/2014 25 

372 F Great Gull 6/29/2014 8/28/2014 60 

373 F Great Gull 6/29/2014 8/24/2014 56 

374 M Great Gull 6/29/2014 7/31/2014 32 

375 M Great Gull 6/29/2014 7/24/2014 25 

376 M Great Gull 6/29/2014 7/19/2014 20 

377 M Great Gull 6/29/2014 8/25/2014 57 

378 F Great Gull 6/29/2014 8/9/2014 41 

379 M Great Gull 6/29/2014 7/8/2014 9 

380 F Great Gull 6/30/2014 7/28/2014 28 

381 M Great Gull 6/30/2014 8/4/2014 35 

382 F Great Gull 6/30/2014 7/23/2014 23 

383 F Great Gull 6/30/2014 7/29/2014 29 

384 F Great Gull 6/30/2014 8/3/2014 34 

385 M Great Gull 6/30/2014 7/21/2014 21 

386 F Great Gull 6/30/2014 7/18/2014 18 

387 F Great Gull 6/30/2014 7/25/2014 25 

388 M Great Gull 6/30/2014 8/22/2014 53 

389 F Great Gull 6/30/2014 7/26/2014 26 

390 M Great Gull 6/30/2014 8/10/2014 41 

391 M Great Gull 6/30/2014 7/21/2014 21 

392 F Great Gull 6/30/2014 8/21/2014 52 

393 F Great Gull 6/30/2014 7/30/2014 30 

395 M Great Gull 6/30/2014 7/23/2014 23 

396 F Great Gull 6/30/2014 8/19/2014 50 

397 F Great Gull 6/30/2014 8/5/2014 36 

398 F Great Gull 6/30/2014 8/6/2014 37 

400 M Great Gull 6/30/2014 8/18/2014 49 

401 M Great Gull 6/30/2014 7/10/2014 10 

402 M Great Gull 6/30/2014 7/26/2014 26 

403 F Great Gull 6/30/2014 8/17/2014 48 

404 F Great Gull 6/30/2014 8/21/2014 52 

405 F Great Gull 6/30/2014 8/31/2014 62 
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